G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845","Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.ru":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.en":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8932"],"dc.date.accessioned_dt":"2025-07-09T13:59:02Z","dc.date.accessioned":["2025-07-09T13:59:02Z"],"dc.date.available":["2025-07-09T13:59:02Z"],"publication_grp":["123456789/8932"],"bi_4_dis_filter":["madelung’s disease\n|||\nMadelung’s disease","lipectomy\n|||\nlipectomy","диффузный симметричный липоматоз\n|||\nдиффузный симметричный липоматоз","шеи новообразования\n|||\nшеи новообразования","липэктомия\n|||\nлипэктомия","diffuse symmetric lipomatosis\n|||\ndiffuse symmetric lipomatosis","adipose tissue proliferation\n|||\nadipose tissue proliferation","жировой ткани разрастание\n|||\nжировой ткани разрастание","болезнь маделунга\n|||\nболезнь Маделунга","neck neoplasms\n|||\nneck neoplasms"],"bi_4_dis_partial":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_4_dis_value_filter":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_sort_1_sort":"systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case","bi_sort_3_sort":"2025-07-09T13:59:02Z","read":["g0"],"_version_":1837178072511545344},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:57.86Z","search.uniqueid":"2-8033","search.resourcetype":2,"search.resourceid":8033,"handle":"123456789/8922","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-12-18"],"dc.abstract":["

Introduction. The optimal completion strategy for surgical interventions following resection of the distal colon and proximal rectum in elective and delayed operations remains a subject of active scientific debate, particularly in patients with perifocal abscesses, pelvic inflammatory disease, or inadequate preoperative bowel preparation. Aim. This study aims to compare the outcomes of Hartmann’s procedure, distal colon resection, and anterior resection of rectum with primary anastomosis and protective stoma in patients with the compensated and chronic forms of colonic obstruction, perifocal abscesses, the hypertrophy of anastomosed segments, and unsatisfactory preoperative bowel preparation. Materials and methods. The study included 97 patients. Group 1 comprised 43 patients who underwent Hartmann’s procedure. Group 2 included 54 patients who received either distal colon resection or anterior resection of rectum with primary anastomosis and protective stoma (preoperatively or during surgery). Results and discussion. Postoperative mortality was 2.3% in Group 1 and 1.8% in Group 2. Postoperative complications occurred in 13.9% and 16.7% of cases, respectively. Reconstructive operations were carried out in 79.1% of patients in Group 1 versus 100% in Group 2. Furthermore, Group 1 exhibited a higher incidence of inflammatory complications (21.1%) compared to Group 2 (15.1%). Conclusion. A primary anastomosis with a protective proximal stoma demonstrates comparable rates of anastomotic leakage, inflammatory complications, and mortality to Hartmann’s procedure in patients with colon tumors complicated by compensated intestinal obstruction, perifocal abscesses, and unsatisfactory preoperative bowel preparation (fecal contamination). Furthermore, the reconstructive phase following primary anastomosis is technically less complex and less traumatic, offering reduced surgical complexity and invasiveness.

","

Введение. Вопрос оптимального завершения хирургического вмешательства после резекции дистальных отделов ободочной и проксимальных отделов прямой кишки при плановых и отсроченных операциях у пациентов с перифокальными абсцессами, гнойно-воспалительными образованиями малого таза, а также при неудовлетворительной предоперационной подготовке толстой кишки остается предметом активной научной дискуссии. Целью исследования был сравнительный анализ результатов хирургического лечения после выполнения операции Гартмана, резекций дистальных отделов ободочной кишки или передней резекции прямой кишки с формированием первичного анастомоза под протекционной стомой у пациентов с компенсированными и хроническими формами толстокишечной непроходимости, наличием перифокальных абсцессов, гипертрофией стенок анастомозируемых участков и неудовлетворительной предоперационной подготовкой толстой кишки. Материалы и методы. В исследование вошли 97 больных. В первую группу были включены 43 пациента, которым на радикальном этапе была выполнена операция Гартмана. Во вторую группу — 54 больных, перенесших резекцию дистальных отделов ободочной кишки или переднюю резекцию прямой кишки с формированием первичного анастомоза и наложением протекционной стомы (до- или интраоперационно). Результаты и обсуждение. Послеоперационная летальность составила 2,3% в первой группе и 1,8% во второй, послеоперационные осложнения выявлены в 13,9 и 16,7% случаев соответственно. В первой группе восстановительные операции выполнены у 79,1% больных, во второй — в 100% случаев, при этом воспалительные осложнения возникли у 21,1% пациентов первой группы и у 15,1% — во второй. Заключение. Как показали результаты исследования, наложение первичного анастомоза под прикрытием проксимальной стомы у пациентов с опухолями толстой кишки, осложненными компенсированными формами кишечной непроходимости, перифокальными абсцессами и при неудовлетворительной предоперационной подготовке толстой кишки (каловыми массами в просвете кишки), не увеличивает частоту несостоятельности швов, воспалительных осложнений и летальности по сравнению с операцией Гартмана, в то время как реконструктивно-восстановительный этап после таких вмешательств более прост, менее травматичен и сопровождается меньшими операционно-анестезиологическими рисками, что делает этот метод более предпочтительным.

"],"dc.abstract.en":["

Introduction. The optimal completion strategy for surgical interventions following resection of the distal colon and proximal rectum in elective and delayed operations remains a subject of active scientific debate, particularly in patients with perifocal abscesses, pelvic inflammatory disease, or inadequate preoperative bowel preparation. Aim. This study aims to compare the outcomes of Hartmann’s procedure, distal colon resection, and anterior resection of rectum with primary anastomosis and protective stoma in patients with the compensated and chronic forms of colonic obstruction, perifocal abscesses, the hypertrophy of anastomosed segments, and unsatisfactory preoperative bowel preparation. Materials and methods. The study included 97 patients. Group 1 comprised 43 patients who underwent Hartmann’s procedure. Group 2 included 54 patients who received either distal colon resection or anterior resection of rectum with primary anastomosis and protective stoma (preoperatively or during surgery). Results and discussion. Postoperative mortality was 2.3% in Group 1 and 1.8% in Group 2. Postoperative complications occurred in 13.9% and 16.7% of cases, respectively. Reconstructive operations were carried out in 79.1% of patients in Group 1 versus 100% in Group 2. Furthermore, Group 1 exhibited a higher incidence of inflammatory complications (21.1%) compared to Group 2 (15.1%). Conclusion. A primary anastomosis with a protective proximal stoma demonstrates comparable rates of anastomotic leakage, inflammatory complications, and mortality to Hartmann’s procedure in patients with colon tumors complicated by compensated intestinal obstruction, perifocal abscesses, and unsatisfactory preoperative bowel preparation (fecal contamination). Furthermore, the reconstructive phase following primary anastomosis is technically less complex and less traumatic, offering reduced surgical complexity and invasiveness.

"],"subject":["Hartmann’s procedure","primary anastomosis","protective stoma","intestinal obstruction","perifocal abscess","colostomy","diverticulosis","colon tumors","операция Гартмана","первичный анастомоз","протекционная стома","кишечная непроходимость","перифокальный абсцесс","колостома","дивертикулез","опухоли толстой кишки"],"subject_keyword":["Hartmann’s procedure","Hartmann’s procedure","primary anastomosis","primary anastomosis","protective stoma","protective stoma","intestinal obstruction","intestinal obstruction","perifocal abscess","perifocal abscess","colostomy","colostomy","diverticulosis","diverticulosis","colon tumors","colon tumors","операция Гартмана","операция Гартмана","первичный анастомоз","первичный анастомоз","протекционная стома","протекционная стома","кишечная непроходимость","кишечная непроходимость","перифокальный абсцесс","перифокальный абсцесс","колостома","колостома","дивертикулез","дивертикулез","опухоли толстой кишки","опухоли толстой кишки"],"subject_ac":["hartmann’s procedure\n|||\nHartmann’s procedure","primary anastomosis\n|||\nprimary anastomosis","protective stoma\n|||\nprotective stoma","intestinal obstruction\n|||\nintestinal obstruction","perifocal abscess\n|||\nperifocal abscess","colostomy\n|||\ncolostomy","diverticulosis\n|||\ndiverticulosis","colon tumors\n|||\ncolon tumors","операция гартмана\n|||\nоперация Гартмана","первичный анастомоз\n|||\nпервичный анастомоз","протекционная стома\n|||\nпротекционная стома","кишечная непроходимость\n|||\nкишечная непроходимость","перифокальный абсцесс\n|||\nперифокальный абсцесс","колостома\n|||\nколостома","дивертикулез\n|||\nдивертикулез","опухоли толстой кишки\n|||\nопухоли толстой кишки"],"subject_tax_0_filter":["hartmann’s procedure\n|||\nHartmann’s procedure","primary anastomosis\n|||\nprimary anastomosis","protective stoma\n|||\nprotective stoma","intestinal obstruction\n|||\nintestinal obstruction","perifocal abscess\n|||\nperifocal abscess","colostomy\n|||\ncolostomy","diverticulosis\n|||\ndiverticulosis","colon tumors\n|||\ncolon tumors","операция гартмана\n|||\nоперация Гартмана","первичный анастомоз\n|||\nпервичный анастомоз","протекционная стома\n|||\nпротекционная стома","кишечная непроходимость\n|||\nкишечная непроходимость","перифокальный абсцесс\n|||\nперифокальный абсцесс","колостома\n|||\nколостома","дивертикулез\n|||\nдивертикулез","опухоли толстой кишки\n|||\nопухоли толстой кишки"],"subject_filter":["hartmann’s procedure\n|||\nHartmann’s procedure","primary anastomosis\n|||\nprimary anastomosis","protective stoma\n|||\nprotective stoma","intestinal obstruction\n|||\nintestinal obstruction","perifocal abscess\n|||\nperifocal abscess","colostomy\n|||\ncolostomy","diverticulosis\n|||\ndiverticulosis","colon tumors\n|||\ncolon tumors","операция гартмана\n|||\nоперация Гартмана","первичный анастомоз\n|||\nпервичный анастомоз","протекционная стома\n|||\nпротекционная стома","кишечная непроходимость\n|||\nкишечная непроходимость","перифокальный абсцесс\n|||\nперифокальный абсцесс","колостома\n|||\nколостома","дивертикулез\n|||\nдивертикулез","опухоли толстой кишки\n|||\nопухоли толстой кишки"],"dc.subject_mlt":["Hartmann’s procedure","primary anastomosis","protective stoma","intestinal obstruction","perifocal abscess","colostomy","diverticulosis","colon tumors","операция Гартмана","первичный анастомоз","протекционная стома","кишечная непроходимость","перифокальный абсцесс","колостома","дивертикулез","опухоли толстой кишки"],"dc.subject":["Hartmann’s procedure","primary anastomosis","protective stoma","intestinal obstruction","perifocal abscess","colostomy","diverticulosis","colon tumors","операция Гартмана","первичный анастомоз","протекционная стома","кишечная непроходимость","перифокальный абсцесс","колостома","дивертикулез","опухоли толстой кишки"],"dc.subject.en":["Hartmann’s procedure","primary anastomosis","protective stoma","intestinal obstruction","perifocal abscess","colostomy","diverticulosis","colon tumors"],"title":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"title_keyword":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"title_ac":["hartmann’s procedure versus primary anastomosis with protective proximal stoma after distal colon resection and anterior rectal resection in elective and delayed surgical interventions\n|||\nHartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","операция гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах\n|||\nОперация Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"dc.title_sort":"Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","dc.title_hl":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"dc.title_mlt":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"dc.title":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions","Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"dc.title_stored":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Hartmann’s Procedure Versus Primary Anastomosis with Protective Proximal Stoma after Distal Colon Resection and Anterior Rectal Resection in Elective and Delayed Surgical Interventions"],"dc.abstract.ru":["

Введение. Вопрос оптимального завершения хирургического вмешательства после резекции дистальных отделов ободочной и проксимальных отделов прямой кишки при плановых и отсроченных операциях у пациентов с перифокальными абсцессами, гнойно-воспалительными образованиями малого таза, а также при неудовлетворительной предоперационной подготовке толстой кишки остается предметом активной научной дискуссии. Целью исследования был сравнительный анализ результатов хирургического лечения после выполнения операции Гартмана, резекций дистальных отделов ободочной кишки или передней резекции прямой кишки с формированием первичного анастомоза под протекционной стомой у пациентов с компенсированными и хроническими формами толстокишечной непроходимости, наличием перифокальных абсцессов, гипертрофией стенок анастомозируемых участков и неудовлетворительной предоперационной подготовкой толстой кишки. Материалы и методы. В исследование вошли 97 больных. В первую группу были включены 43 пациента, которым на радикальном этапе была выполнена операция Гартмана. Во вторую группу — 54 больных, перенесших резекцию дистальных отделов ободочной кишки или переднюю резекцию прямой кишки с формированием первичного анастомоза и наложением протекционной стомы (до- или интраоперационно). Результаты и обсуждение. Послеоперационная летальность составила 2,3% в первой группе и 1,8% во второй, послеоперационные осложнения выявлены в 13,9 и 16,7% случаев соответственно. В первой группе восстановительные операции выполнены у 79,1% больных, во второй — в 100% случаев, при этом воспалительные осложнения возникли у 21,1% пациентов первой группы и у 15,1% — во второй. Заключение. Как показали результаты исследования, наложение первичного анастомоза под прикрытием проксимальной стомы у пациентов с опухолями толстой кишки, осложненными компенсированными формами кишечной непроходимости, перифокальными абсцессами и при неудовлетворительной предоперационной подготовке толстой кишки (каловыми массами в просвете кишки), не увеличивает частоту несостоятельности швов, воспалительных осложнений и летальности по сравнению с операцией Гартмана, в то время как реконструктивно-восстановительный этап после таких вмешательств более прост, менее травматичен и сопровождается меньшими операционно-анестезиологическими рисками, что делает этот метод более предпочтительным.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nВопрос оптимального завершения хирургического вмешательства после резекции дистальных отделов ободочной и проксимальных отделов прямой кишки при\nплановых и отсроченных операциях у пациентов с перифокальными абсцессами, гнойно-воспалительными\nобразованиями малого таза, а также при неудовлетворительной предоперационной подготовке толстой\nкишки остается предметом активной научной дискуссии [1–5].\nСогласно данным ряда исследователей, при компенсированных и хронических формах кишечной непроходимости возможно выполнение первичных колоректальных анастомозов [1, 2, 5–7]. В противоположность\nданной позиции другая группа специалистов отстаивает целесообразность выполнения обструктивных резекций по типу операции Гартмана как более безопасной альтернативы [1].\nНаличие перифокальных абсцессов и гнойных скоплений в полости малого таза рассматривается рядом хирургов как абсолютное или относительное противопоказание к формированию первичного анастомоза [5, 6,\n8]. В таких случаях радикальный этап вмешательства,\nкак правило, завершается формированием одноствольной колостомы (операция Гартмана) [2, 5]. Подобный\nподход аргументируется снижением технической сложности операции, исключением непосредственного контакта анастомоза с инфицированными тканями и соответственно снижением вероятности несостоятельности\nшвов.\nДополнительным ограничивающим фактором для формирования первичного анастомоза после резекции\nлевых отделов ободочной кишки или передней резекции прямой кишки, даже в условиях планового или отсроченного хирургического вмешательства, является\nналичие каловых масс в просвете кишки, выраженное\nрасширение ее просвета, а также гипертрофия и воспалительная инфильтрация кишечной стенки в зоне предполагаемого анастомоза [3, 8, 9].\nСледует подчеркнуть, что каждый из способов завершения оперативного вмешательства имеет как преимущества, так и недостатки [1, 2, 6, 10]. В частности,\nвыполнение операции Гартмана нередко сопряжено\nс существенными техническими трудностями на этапе\nвосстановления кишечной непрерывности, а в отдельных случаях, особенно у пациентов с выраженной сопутствующей патологией, одноствольная колостома\nостается постоянной [2, 5, 6].\nВыполнение первичного анастомоза у пациентов с хронической или компенсированной кишечной непроходимостью, наличием перифокальных гнойных образований, выраженной дилатацией кишки, гипертрофией\nее стенки и присутствием каловых масс ассоциировано\nс повышенным риском развития несостоятельности\nшвов [3, 4, 8, 10].\nВместе с тем в современной литературе представлены\nданные, свидетельствующие о возможности выполнения первичного анастомоза у данной категории пациентов с обязательной протекцией проксимальной\nразгрузочной стомой [1, 2, 5]. Согласно этим исследованиям описанные выше факторы не являются решающими в патогенезе несостоятельности анастомоза.\nПрименение разгрузочной стомы и адекватной дренажной системы позволяет нивелировать последствия частичной несостоятельности швов и в ряде случаев избежать повторного хирургического вмешательства, что\nспособствует снижению общей летальности [1, 2, 5, 7].\nКроме того, восстановительный этап после вмешательств с формированием протекционного анастомоза\nявляется менее травматичным и технически более простым по сравнению с реконструкцией кишечной непрерывности после операции Гартмана [1, 6].\nЦель исследования. Провести сравнительный анализ\nрезультатов хирургического лечения после выполнения\nоперации Гартмана, резекций дистальных отделов ободочной кишки или передней резекции прямой кишки\nс формированием первичного анастомоза под протекционной стомой у пациентов с компенсированными\nи хроническими формами толстокишечной непроходимости (ХТКН), наличием перифокальных абсцессов, гипертрофией стенок анастомозируемых участков\nи неудовлетворительной предоперационной подготовкой толстой кишки.\nМАТЕРИАЛЫ И МЕТОДЫ\nПроведен ретроспективный сравнительный анализ\nисторий болезни 97 пациентов, проходивших лечение\nв РКБСМП г. Владикавказа и КБ г. Грозного в период\nс 2011 по 2020 г. В исследование включены две группы больных. В первую группу вошли пациенты, которым на радикальном этапе была выполнена операция\nГартмана. Во вторую группу — пациенты, перенесшие\nрезекцию дистальных отделов ободочной кишки или\nпереднюю резекцию прямой кишки с формированием\nпервичного анастомоза и наложением протекционной\nстомы (до- или интраоперационно). Анализ результатов лечения проводился с момента выполнения основного хирургического вмешательства (операция Гартмана, или Резекция с анастомозом) до этапа выписки\nпосле восстановления непрерывности кишечного тракта и естественного пассажа кишечного содержимого.\nКритерии включения в исследование (на радикальном\nэтапе вмешательства):\n— физическое состояние I–III класса по классификации ASA;\n— выполнение левосторонней гемиколэктомии, резекции сигмовидной кишки или передней резекции прямой кишки;\n— наличие компенсированной или хронической формы толстокишечной непроходимости;\n— выявление перифокальных абсцессов или гнойников\nмалого таза;\n— хроническое расширение просвета приводящей или\nотводящей кишки;\n— гипертрофия стенки кишки в зоне предполагаемого\nанастомоза;\n— наличие каловых масс в просвете приводящей\nкишки.\nВ результате в первую группу вошли 43 больных,\nво вторую — 54 пациента. Причины, послужившие основанием к проведению оперативных вмешательств,\nпредставлены в таблице 1.\nСледует отметить, что радикальный этап оперативного\nвмешательства у пациентов обеих групп выполнялся\nв плановом или отсроченном порядке. У 16 (29,6 %) пациентов второй группы предварительно, за 10–15 суток\nдо основного вмешательства, были наложены декомпрессионные стомы через минидоступ. В частности,\nу 4 (7,4 %) пациентов выполнены двуствольные трансверзостомы в правом подреберье, у 12 (22,2 %) — двуствольные илеостомы в правой подвздошной области\n(в точке Ленца).\nУ остальных 38 пациентов (70,4%) второй группы оперативное вмешательство завершалось наложением\nпроксимальной разгрузочной стомы и ушиванием лапаротомной раны. Из них у 31 больного (57,4%) сформирована двуствольная трансверзостома в правом\nподреберье, а у 7 пациентов с ожирением II–III степени\n(12,9%) — двуствольная илеостома в точке Ленца справа.\nВремя начала операции, а также продолжительность\nи последовательность выполнения ее этапов определялись на основании данных описания оперативного вмешательства из анестезиологических карт.\nВозраст пациентов в первой группе варьировал\nот 37 до 86 лет, средний возраст составил 71,0 ± 5,2 года.\nВо второй группе возраст пациентов находился в диапазоне от 49 до 89 лет, средний возраст составил 67,0 ±\n4,9 года. В обеих группах преобладали пациенты с сердечно-сосудистыми заболеваниями.\nТолько у 32,5 % пациентов первой группы и 35,1 % —\nвторой группы масса тела соответствовала норме или\nбыла ниже нее. У остальных индекс массы тела (ИМТ)\nпревышал физиологические значения. Преобладающее\nбольшинство пациентов в обеих группах имело II степень тяжести физического состояния согласно классификации ASA (табл. 2).\nВ обеих анализируемых группах чаще выполнялись левосторонние гемиколэктомии (табл. 3).\nОбъем резекции определялся локализацией и распространенностью основного заболевания. Вместе с тем\nво второй группе для формирования анастомоза между\nменее измененными участками кишечника объем резекции мог быть расширен как в проксимальном, так\nи в дистальном направлении.\nВосстановление естественного пассажа кишечного содержимого было выполнено у 34 (79,1 %) пациентов\nпервой группы и у 51 (94,4 %) пациента второй группы.\nПосле операций по типу Гартмана восстановительные\nвмешательства проводились в сроки от 2,5 до 6 месяцев. Во второй группе у 16 пациентов, которым стомыбыли наложены с целью декомпрессии и последующей\nзащиты анастомоза, они закрывались в ранние сроки —\nчерез 2–3 недели после выполнения радикального этапа лечения. У остальных 38 пациентов восстановление\nпассажа кишечного содержимого происходило в сроки\nот 4 недель до 4 месяцев. Более длительные интервалы\nмежду основным вмешательством и восстановительной операцией в обеих группах были обусловлены проведением курсов химиотерапии.\nРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nНа радикальном этапе в обеих группах применялась\nидентичная техника мобилизации кишечного сегмента,\nпораженного опухолевым или воспалительным процессом. Также были едиными показания к определению\nобъема удаляемого участка кишки.\nУ пациентов обеих групп при наличии перифокальных абсцессов или гнойников малого таза выполнялась\nаспирация гнойного содержимого. При наличии технической возможности пораженный сегмент кишечника вместе с перифокальными изменениями удаляли\nединым блоком. В случае невозможности применяли\nпоэтапное удаление фиброзной капсулы и фиброзных\nналожений с последующей санацией малого таза.\nОтличительной особенностью второй группы было\nпроведение санации просвета приводящей кишки перед наложением анастомоза: жидкое содержимое удаляли аспирационно, плотные каловые массы — путем\nсмещения в дистальном направлении на 10–15 см.\nВ первой группе у 29 (67,4 %) пациентов просвет приводящей и отводящей культей закрывался аппаратом\nУО-60 с последующим погружением скрепочного шва\nв непрерывный обвивной шов. У 14 (32,6 %) больных\nвыполнялось ручное ушивание: двурядный непрерывный шов в дистальной культе и однорядный в приводящей, с выведением последней через дополнительный\nразрез в левой подвздошной области, дренированием\nмалого таза и формированием стомы.\nВо второй группе у 35 (64,8 %) пациентов просветы\nкульти закрывались аппаратом УО-60. Анастомоз формировался наложением двурядного непрерывного шва\nпосле резекции участков с наложенными скрепками.\nУ 4 (7,4 %) пациентов с выраженной разницей диаметров приводящей и отводящей кишки (50–60 %) анастомоз накладывался после гофрирования приводящего сегмента.\nУ 12 (22,2 %) больных просвет приводящей культи\nушивался однорядным швом, а отводящая кишка пережималась зажимом. После резекции участка с ранее\nналоженным швом формировался двурядный анастомоз. У 2 (3,7 %) пациентов при более чем двукратной\nразнице диаметров накладывался анастомоз «конец\nв бок» после двурядного ушивания дистальной культи.\nУ 1 (1,8 %) пациента с резко расширенной приводящей\nкишкой выполнялся аналогичный анастомоз после\nушивания культи.\nУ 16 (29,6 %) пациентов с ранее сформированными\nдекомпрессионными стомами последние сохранялись\nкак протекционные. У остальных 38 (70,4 %) пациентов формировались проксимальные стомы, включая\n31 (57,4 %) двуствольную трансверзостому в правом\nподреберье и 7 (12,9 %) двуствольных илеостом в точке\nЛенца справа у больных с ожирением II–III степени.\nОперации во всех случаях выполнялись хирургами\nпервой и высшей квалификационной категории со стажем более 10 лет. Наибольшие технические трудности\nвозникали при мобилизации резецируемого сегмента.\nВ случае выраженного несоответствия диаметров культи (во второй группе) применялись описанные методы\nкоррекции.\nСредняя продолжительность операции Гартмана в первой группе составила 104 ± 27 минут, во второй группе — 118 ± 24 минут. При наличии ранее наложенных\nдекомпрессионных стом продолжительность вмешательства составляла 91 ± 17 минут, в то время как при\nформировании анастомоза и наложении новой протекционной стомы — 122 ± 32 минут.\nНа этап формирования одноствольной колостомы в левой подвздошной области в первой группе затрачивалось в среднем 17 ± 7 минут, тогда как наложение двурядного шва во второй группе занимало 14 ± 8 минут.\nПослеоперационная летальность составила 1 (2,3 %)\nслучай в первой группе (острая сердечно-сосудистая\nнедостаточность) и 1 (1,8 %) случай во второй (тромбоэмболия легочной артерии).\nВоспалительные осложнения в первой группе возникли\nу 6 (13,9 %) пациентов: свищ культи прямой кишки — 1\n(2,3 %), несостоятельность культи и затек — 2 (4,6 %),\nнагноение раны — 3 (6,9 %), в одном случае с частичной\nретракцией стомы. Все осложнения купированы консервативно.\nВо второй группе воспалительные осложнения выявлены у 9 (16,7 %) пациентов. Несостоятельность анастомоза диагностирована у 6 (11,1 %) больных, включая\n4 случая субклинических затеков по данным проктографии и 2 случая выделения кишечного содержимого\nпо дренажам. Еще у 3 больных зафиксированы местные\nнагноения в области стомы. Все осложнения также\nустранены консервативно.\nВосстановительные операции в первой группе выполнялись через 2,5–6 месяцев, во второй — в сроки\nот 2 недель до 4 месяцев. Более поздние сроки в обеих\nгруппах были обусловлены проведением химиотерапии\nи в меньшей степени — наличием длительно незаживающих ран передней брюшной стенки.\nВ первой группе восстановительные операции выполнены у 34 (79,1 %) из 42 пациентов. Восемь (19,0 %)\nбольных с тяжелой сердечно-сосудистой патологией\nотказались от вмешательства из-за высокого операционно-анестезиологического риска.\nУ всех оперированных пациентов первой группы при\nповторной операции обнаружены спайки в брюшной\nполости различной степени выраженности, преимущественно в малом тазу, иногда с переходом в фиброз.\nОсобенно выраженные трудности возникали у больных после передней резекции прямой кишки, когда\nпосле выделении дистальной культи, вскрытия ее просвета и создания «площадки» для анастомоза уровень\nналожение анастомоза опускался дистальнее в малый\nтаз.Ручные анастомозы наложены у 19 (55,9 %) больных\n(у 17 — «конец в конец», у 2 — «конец в бок»). Аппаратные — у 15 (44,1 %) пациентов. Средняя продолжительность вмешательства составила 137 ± 31 минут, 143 ± 36 минут при ручных анастомозах и 124 ±\n28 минут при аппаратных. Летальных исходов не зафиксировано. Воспалительные осложнения возникли у 8 (21,1 %) пациентов, включая 5 (13,2 %) случаев\nнесостоятельности анастомоза. Один пациент с перитонитом потребовал релапаротомии и формирования\nповторной колостомы. У 4 больных по данным контрольной проктографии выявлены незначительные\nзатеки. Еще у 5 пациентов отмечено нагноение операционной раны.\nВо второй группе восстановительный этап выполнялся через 2 недели — 4 месяца, при этом задержка операций, как правило, была обусловлена локальными\nвоспалительными изменениями или декомпенсацией\nсопутствующих заболеваний. Восстановительные вмешательства выполнены у всех 53 пациентов.\nУ 34 (64,1 %) больных с двуствольными трансверзостомами, учитывая сохраненную заднюю брыжеечную полуокружность, проводилось ушивание противобрыжеечной полуокружности двурядным швом. У 14 (26,4 %)\nпациентов с илеостомами выполнялся анастомоз «бок\nв бок», а у 5 (9,4 %) — «конец в бок» восходящей кишки.\nСредняя продолжительность вмешательства составила 37 ± 16 минут, 31 ± 11 минут при трансверзостомах\nи 43 ± 14 минут при илеостомах.\nЛетальных исходов не было. Воспалительные осложнения в виде нагноения раны возникли у 5 пациентов. У 8\n(15,1 %) больных с илеостомами развился анастомозит\nс явлениями острой тонкокишечной непроходимости,\nкупированной консервативно в течение 3–5 суток. Все\nвмешательства проводились хирургами первой и высшей категории.\nНа сегодняшний день, как показывает анализ литературы, остается предметом дискуссии оптимальная\nстратегия завершения хирургического вмешательства\nу пациентов с компенсированными и хроническими\nформами толстокишечной непроходимости, наличием перифокальных абсцессов, гипертрофией стенок\nанастомозируемых участков и неудовлетворительной\nпредоперационной подготовкой толстой кишки из-за\nотсутствия крупных рандомизированных исследований с высокой степенью доказательности [1, 3, 5, 11].\nНаиболее часто оперативное вмешательство у этой категории больных завершается либо формированием\nпервичного анастомоза под прикрытием проксимальной стомы, либо резекцией по типу операции Гартмана\n[11–13]. Зачастую решение о наложении первичного\nанастомоза или выполнении обструктивной резекции\nпринимается индивидуально, с учетом общего состояния пациента, состояния толстой кишки и личных\nпредпочтений хирурга [14].\nВ последние годы все больше исследователей, сравнивающих обе методики, склоняются в пользу выбора\nпервичного анастомоза вместо операции Гартмана, поскольку между обеими операциями не обнаруживается\nстатистически значимых различий в частоте послеоперационных осложнений и летальных исходов [12, 14].\nВ то время как у пациентов с первичным анастомозом\nи дивертивной стомой вероятность восстановления\nестественного пассажа существенно выше, чем у больных после обструктивных резекций, из-за меньшей\nсложности выполнения реконструктивной операции,\nа также меньших рисков связанных с ней осложнений\n[11, 12, 14, 15].\nОднако этот вопрос требует дальнейшего изучения\nи продолжения исследований, чтобы получить более\nвысокий уровень доказательной базы для выработки\nчетких рекомендаций для практического применения.\nЗАКЛЮЧЕНИЕ\nНаложение первичного анастомоза под прикрытием\nпроксимальной стомы у пациентов с опухолями толстой кишки, осложненными компенсированными формами кишечной непроходимости, перифокальными\nабсцессами и при неудовлетворительной предоперационной подготовке толстой кишки (каловыми массами\nв просвете кишки), не увеличивает частоту несостоятельности швов, воспалительных осложнений и летальности по сравнению с операцией Гартмана.\nРадикальный этап при использовании первичного анастомоза с протекционной стомой не требует\nзначительного увеличения времени вмешательства\n(118 ± 24 минуты против 104 ± 27 минут в группе операций Гартмана), а при наличии ранее наложенной\nстомы может даже сокращаться (91 ± 17 минут). Восстановительный этап после операции Гартмана технически более сложен и травматичен, занимает больше\nвремени (137 ± 31 минута) и зачастую недоступен для\nвыполнения у части пациентов. В то время как закрытие двуствольных стом технически более просто, менее\nтравматично и сопровождается меньшими операционно-анестезиологическими рисками, что делает метод\nрезекции с анастомозом под защитой стомы предпочтительным у данной категории больных."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nВопрос оптимального завершения хирургического вмешательства после резекции дистальных отделов ободочной и проксимальных отделов прямой кишки при\nплановых и отсроченных операциях у пациентов с перифокальными абсцессами, гнойно-воспалительными\nобразованиями малого таза, а также при неудовлетворительной предоперационной подготовке толстой\nкишки остается предметом активной научной дискуссии [1–5].\nСогласно данным ряда исследователей, при компенсированных и хронических формах кишечной непроходимости возможно выполнение первичных колоректальных анастомозов [1, 2, 5–7]. В противоположность\nданной позиции другая группа специалистов отстаивает целесообразность выполнения обструктивных резекций по типу операции Гартмана как более безопасной альтернативы [1].\nНаличие перифокальных абсцессов и гнойных скоплений в полости малого таза рассматривается рядом хирургов как абсолютное или относительное противопоказание к формированию первичного анастомоза [5, 6,\n8]. В таких случаях радикальный этап вмешательства,\nкак правило, завершается формированием одноствольной колостомы (операция Гартмана) [2, 5]. Подобный\nподход аргументируется снижением технической сложности операции, исключением непосредственного контакта анастомоза с инфицированными тканями и соответственно снижением вероятности несостоятельности\nшвов.\nДополнительным ограничивающим фактором для формирования первичного анастомоза после резекции\nлевых отделов ободочной кишки или передней резекции прямой кишки, даже в условиях планового или отсроченного хирургического вмешательства, является\nналичие каловых масс в просвете кишки, выраженное\nрасширение ее просвета, а также гипертрофия и воспалительная инфильтрация кишечной стенки в зоне предполагаемого анастомоза [3, 8, 9].\nСледует подчеркнуть, что каждый из способов завершения оперативного вмешательства имеет как преимущества, так и недостатки [1, 2, 6, 10]. В частности,\nвыполнение операции Гартмана нередко сопряжено\nс существенными техническими трудностями на этапе\nвосстановления кишечной непрерывности, а в отдельных случаях, особенно у пациентов с выраженной сопутствующей патологией, одноствольная колостома\nостается постоянной [2, 5, 6].\nВыполнение первичного анастомоза у пациентов с хронической или компенсированной кишечной непроходимостью, наличием перифокальных гнойных образований, выраженной дилатацией кишки, гипертрофией\nее стенки и присутствием каловых масс ассоциировано\nс повышенным риском развития несостоятельности\nшвов [3, 4, 8, 10].\nВместе с тем в современной литературе представлены\nданные, свидетельствующие о возможности выполнения первичного анастомоза у данной категории пациентов с обязательной протекцией проксимальной\nразгрузочной стомой [1, 2, 5]. Согласно этим исследованиям описанные выше факторы не являются решающими в патогенезе несостоятельности анастомоза.\nПрименение разгрузочной стомы и адекватной дренажной системы позволяет нивелировать последствия частичной несостоятельности швов и в ряде случаев избежать повторного хирургического вмешательства, что\nспособствует снижению общей летальности [1, 2, 5, 7].\nКроме того, восстановительный этап после вмешательств с формированием протекционного анастомоза\nявляется менее травматичным и технически более простым по сравнению с реконструкцией кишечной непрерывности после операции Гартмана [1, 6].\nЦель исследования. Провести сравнительный анализ\nрезультатов хирургического лечения после выполнения\nоперации Гартмана, резекций дистальных отделов ободочной кишки или передней резекции прямой кишки\nс формированием первичного анастомоза под протекционной стомой у пациентов с компенсированными\nи хроническими формами толстокишечной непроходимости (ХТКН), наличием перифокальных абсцессов, гипертрофией стенок анастомозируемых участков\nи неудовлетворительной предоперационной подготовкой толстой кишки.\nМАТЕРИАЛЫ И МЕТОДЫ\nПроведен ретроспективный сравнительный анализ\nисторий болезни 97 пациентов, проходивших лечение\nв РКБСМП г. Владикавказа и КБ г. Грозного в период\nс 2011 по 2020 г. В исследование включены две группы больных. В первую группу вошли пациенты, которым на радикальном этапе была выполнена операция\nГартмана. Во вторую группу — пациенты, перенесшие\nрезекцию дистальных отделов ободочной кишки или\nпереднюю резекцию прямой кишки с формированием\nпервичного анастомоза и наложением протекционной\nстомы (до- или интраоперационно). Анализ результатов лечения проводился с момента выполнения основного хирургического вмешательства (операция Гартмана, или Резекция с анастомозом) до этапа выписки\nпосле восстановления непрерывности кишечного тракта и естественного пассажа кишечного содержимого.\nКритерии включения в исследование (на радикальном\nэтапе вмешательства):\n— физическое состояние I–III класса по классификации ASA;\n— выполнение левосторонней гемиколэктомии, резекции сигмовидной кишки или передней резекции прямой кишки;\n— наличие компенсированной или хронической формы толстокишечной непроходимости;\n— выявление перифокальных абсцессов или гнойников\nмалого таза;\n— хроническое расширение просвета приводящей или\nотводящей кишки;\n— гипертрофия стенки кишки в зоне предполагаемого\nанастомоза;\n— наличие каловых масс в просвете приводящей\nкишки.\nВ результате в первую группу вошли 43 больных,\nво вторую — 54 пациента. Причины, послужившие основанием к проведению оперативных вмешательств,\nпредставлены в таблице 1.\nСледует отметить, что радикальный этап оперативного\nвмешательства у пациентов обеих групп выполнялся\nв плановом или отсроченном порядке. У 16 (29,6 %) пациентов второй группы предварительно, за 10–15 суток\nдо основного вмешательства, были наложены декомпрессионные стомы через минидоступ. В частности,\nу 4 (7,4 %) пациентов выполнены двуствольные трансверзостомы в правом подреберье, у 12 (22,2 %) — двуствольные илеостомы в правой подвздошной области\n(в точке Ленца).\nУ остальных 38 пациентов (70,4%) второй группы оперативное вмешательство завершалось наложением\nпроксимальной разгрузочной стомы и ушиванием лапаротомной раны. Из них у 31 больного (57,4%) сформирована двуствольная трансверзостома в правом\nподреберье, а у 7 пациентов с ожирением II–III степени\n(12,9%) — двуствольная илеостома в точке Ленца справа.\nВремя начала операции, а также продолжительность\nи последовательность выполнения ее этапов определялись на основании данных описания оперативного вмешательства из анестезиологических карт.\nВозраст пациентов в первой группе варьировал\nот 37 до 86 лет, средний возраст составил 71,0 ± 5,2 года.\nВо второй группе возраст пациентов находился в диапазоне от 49 до 89 лет, средний возраст составил 67,0 ±\n4,9 года. В обеих группах преобладали пациенты с сердечно-сосудистыми заболеваниями.\nТолько у 32,5 % пациентов первой группы и 35,1 % —\nвторой группы масса тела соответствовала норме или\nбыла ниже нее. У остальных индекс массы тела (ИМТ)\nпревышал физиологические значения. Преобладающее\nбольшинство пациентов в обеих группах имело II степень тяжести физического состояния согласно классификации ASA (табл. 2).\nВ обеих анализируемых группах чаще выполнялись левосторонние гемиколэктомии (табл. 3).\nОбъем резекции определялся локализацией и распространенностью основного заболевания. Вместе с тем\nво второй группе для формирования анастомоза между\nменее измененными участками кишечника объем резекции мог быть расширен как в проксимальном, так\nи в дистальном направлении.\nВосстановление естественного пассажа кишечного содержимого было выполнено у 34 (79,1 %) пациентов\nпервой группы и у 51 (94,4 %) пациента второй группы.\nПосле операций по типу Гартмана восстановительные\nвмешательства проводились в сроки от 2,5 до 6 месяцев. Во второй группе у 16 пациентов, которым стомыбыли наложены с целью декомпрессии и последующей\nзащиты анастомоза, они закрывались в ранние сроки —\nчерез 2–3 недели после выполнения радикального этапа лечения. У остальных 38 пациентов восстановление\nпассажа кишечного содержимого происходило в сроки\nот 4 недель до 4 месяцев. Более длительные интервалы\nмежду основным вмешательством и восстановительной операцией в обеих группах были обусловлены проведением курсов химиотерапии.\nРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nНа радикальном этапе в обеих группах применялась\nидентичная техника мобилизации кишечного сегмента,\nпораженного опухолевым или воспалительным процессом. Также были едиными показания к определению\nобъема удаляемого участка кишки.\nУ пациентов обеих групп при наличии перифокальных абсцессов или гнойников малого таза выполнялась\nаспирация гнойного содержимого. При наличии технической возможности пораженный сегмент кишечника вместе с перифокальными изменениями удаляли\nединым блоком. В случае невозможности применяли\nпоэтапное удаление фиброзной капсулы и фиброзных\nналожений с последующей санацией малого таза.\nОтличительной особенностью второй группы было\nпроведение санации просвета приводящей кишки перед наложением анастомоза: жидкое содержимое удаляли аспирационно, плотные каловые массы — путем\nсмещения в дистальном направлении на 10–15 см.\nВ первой группе у 29 (67,4 %) пациентов просвет приводящей и отводящей культей закрывался аппаратом\nУО-60 с последующим погружением скрепочного шва\nв непрерывный обвивной шов. У 14 (32,6 %) больных\nвыполнялось ручное ушивание: двурядный непрерывный шов в дистальной культе и однорядный в приводящей, с выведением последней через дополнительный\nразрез в левой подвздошной области, дренированием\nмалого таза и формированием стомы.\nВо второй группе у 35 (64,8 %) пациентов просветы\nкульти закрывались аппаратом УО-60. Анастомоз формировался наложением двурядного непрерывного шва\nпосле резекции участков с наложенными скрепками.\nУ 4 (7,4 %) пациентов с выраженной разницей диаметров приводящей и отводящей кишки (50–60 %) анастомоз накладывался после гофрирования приводящего сегмента.\nУ 12 (22,2 %) больных просвет приводящей культи\nушивался однорядным швом, а отводящая кишка пережималась зажимом. После резекции участка с ранее\nналоженным швом формировался двурядный анастомоз. У 2 (3,7 %) пациентов при более чем двукратной\nразнице диаметров накладывался анастомоз «конец\nв бок» после двурядного ушивания дистальной культи.\nУ 1 (1,8 %) пациента с резко расширенной приводящей\nкишкой выполнялся аналогичный анастомоз после\nушивания культи.\nУ 16 (29,6 %) пациентов с ранее сформированными\nдекомпрессионными стомами последние сохранялись\nкак протекционные. У остальных 38 (70,4 %) пациентов формировались проксимальные стомы, включая\n31 (57,4 %) двуствольную трансверзостому в правом\nподреберье и 7 (12,9 %) двуствольных илеостом в точке\nЛенца справа у больных с ожирением II–III степени.\nОперации во всех случаях выполнялись хирургами\nпервой и высшей квалификационной категории со стажем более 10 лет. Наибольшие технические трудности\nвозникали при мобилизации резецируемого сегмента.\nВ случае выраженного несоответствия диаметров культи (во второй группе) применялись описанные методы\nкоррекции.\nСредняя продолжительность операции Гартмана в первой группе составила 104 ± 27 минут, во второй группе — 118 ± 24 минут. При наличии ранее наложенных\nдекомпрессионных стом продолжительность вмешательства составляла 91 ± 17 минут, в то время как при\nформировании анастомоза и наложении новой протекционной стомы — 122 ± 32 минут.\nНа этап формирования одноствольной колостомы в левой подвздошной области в первой группе затрачивалось в среднем 17 ± 7 минут, тогда как наложение двурядного шва во второй группе занимало 14 ± 8 минут.\nПослеоперационная летальность составила 1 (2,3 %)\nслучай в первой группе (острая сердечно-сосудистая\nнедостаточность) и 1 (1,8 %) случай во второй (тромбоэмболия легочной артерии).\nВоспалительные осложнения в первой группе возникли\nу 6 (13,9 %) пациентов: свищ культи прямой кишки — 1\n(2,3 %), несостоятельность культи и затек — 2 (4,6 %),\nнагноение раны — 3 (6,9 %), в одном случае с частичной\nретракцией стомы. Все осложнения купированы консервативно.\nВо второй группе воспалительные осложнения выявлены у 9 (16,7 %) пациентов. Несостоятельность анастомоза диагностирована у 6 (11,1 %) больных, включая\n4 случая субклинических затеков по данным проктографии и 2 случая выделения кишечного содержимого\nпо дренажам. Еще у 3 больных зафиксированы местные\nнагноения в области стомы. Все осложнения также\nустранены консервативно.\nВосстановительные операции в первой группе выполнялись через 2,5–6 месяцев, во второй — в сроки\nот 2 недель до 4 месяцев. Более поздние сроки в обеих\nгруппах были обусловлены проведением химиотерапии\nи в меньшей степени — наличием длительно незаживающих ран передней брюшной стенки.\nВ первой группе восстановительные операции выполнены у 34 (79,1 %) из 42 пациентов. Восемь (19,0 %)\nбольных с тяжелой сердечно-сосудистой патологией\nотказались от вмешательства из-за высокого операционно-анестезиологического риска.\nУ всех оперированных пациентов первой группы при\nповторной операции обнаружены спайки в брюшной\nполости различной степени выраженности, преимущественно в малом тазу, иногда с переходом в фиброз.\nОсобенно выраженные трудности возникали у больных после передней резекции прямой кишки, когда\nпосле выделении дистальной культи, вскрытия ее просвета и создания «площадки» для анастомоза уровень\nналожение анастомоза опускался дистальнее в малый\nтаз.Ручные анастомозы наложены у 19 (55,9 %) больных\n(у 17 — «конец в конец», у 2 — «конец в бок»). Аппаратные — у 15 (44,1 %) пациентов. Средняя продолжительность вмешательства составила 137 ± 31 минут, 143 ± 36 минут при ручных анастомозах и 124 ±\n28 минут при аппаратных. Летальных исходов не зафиксировано. Воспалительные осложнения возникли у 8 (21,1 %) пациентов, включая 5 (13,2 %) случаев\nнесостоятельности анастомоза. Один пациент с перитонитом потребовал релапаротомии и формирования\nповторной колостомы. У 4 больных по данным контрольной проктографии выявлены незначительные\nзатеки. Еще у 5 пациентов отмечено нагноение операционной раны.\nВо второй группе восстановительный этап выполнялся через 2 недели — 4 месяца, при этом задержка операций, как правило, была обусловлена локальными\nвоспалительными изменениями или декомпенсацией\nсопутствующих заболеваний. Восстановительные вмешательства выполнены у всех 53 пациентов.\nУ 34 (64,1 %) больных с двуствольными трансверзостомами, учитывая сохраненную заднюю брыжеечную полуокружность, проводилось ушивание противобрыжеечной полуокружности двурядным швом. У 14 (26,4 %)\nпациентов с илеостомами выполнялся анастомоз «бок\nв бок», а у 5 (9,4 %) — «конец в бок» восходящей кишки.\nСредняя продолжительность вмешательства составила 37 ± 16 минут, 31 ± 11 минут при трансверзостомах\nи 43 ± 14 минут при илеостомах.\nЛетальных исходов не было. Воспалительные осложнения в виде нагноения раны возникли у 5 пациентов. У 8\n(15,1 %) больных с илеостомами развился анастомозит\nс явлениями острой тонкокишечной непроходимости,\nкупированной консервативно в течение 3–5 суток. Все\nвмешательства проводились хирургами первой и высшей категории.\nНа сегодняшний день, как показывает анализ литературы, остается предметом дискуссии оптимальная\nстратегия завершения хирургического вмешательства\nу пациентов с компенсированными и хроническими\nформами толстокишечной непроходимости, наличием перифокальных абсцессов, гипертрофией стенок\nанастомозируемых участков и неудовлетворительной\nпредоперационной подготовкой толстой кишки из-за\nотсутствия крупных рандомизированных исследований с высокой степенью доказательности [1, 3, 5, 11].\nНаиболее часто оперативное вмешательство у этой категории больных завершается либо формированием\nпервичного анастомоза под прикрытием проксимальной стомы, либо резекцией по типу операции Гартмана\n[11–13]. Зачастую решение о наложении первичного\nанастомоза или выполнении обструктивной резекции\nпринимается индивидуально, с учетом общего состояния пациента, состояния толстой кишки и личных\nпредпочтений хирурга [14].\nВ последние годы все больше исследователей, сравнивающих обе методики, склоняются в пользу выбора\nпервичного анастомоза вместо операции Гартмана, поскольку между обеими операциями не обнаруживается\nстатистически значимых различий в частоте послеоперационных осложнений и летальных исходов [12, 14].\nВ то время как у пациентов с первичным анастомозом\nи дивертивной стомой вероятность восстановления\nестественного пассажа существенно выше, чем у больных после обструктивных резекций, из-за меньшей\nсложности выполнения реконструктивной операции,\nа также меньших рисков связанных с ней осложнений\n[11, 12, 14, 15].\nОднако этот вопрос требует дальнейшего изучения\nи продолжения исследований, чтобы получить более\nвысокий уровень доказательной базы для выработки\nчетких рекомендаций для практического применения.\nЗАКЛЮЧЕНИЕ\nНаложение первичного анастомоза под прикрытием\nпроксимальной стомы у пациентов с опухолями толстой кишки, осложненными компенсированными формами кишечной непроходимости, перифокальными\nабсцессами и при неудовлетворительной предоперационной подготовке толстой кишки (каловыми массами\nв просвете кишки), не увеличивает частоту несостоятельности швов, воспалительных осложнений и летальности по сравнению с операцией Гартмана.\nРадикальный этап при использовании первичного анастомоза с протекционной стомой не требует\nзначительного увеличения времени вмешательства\n(118 ± 24 минуты против 104 ± 27 минут в группе операций Гартмана), а при наличии ранее наложенной\nстомы может даже сокращаться (91 ± 17 минут). Восстановительный этап после операции Гартмана технически более сложен и травматичен, занимает больше\nвремени (137 ± 31 минута) и зачастую недоступен для\nвыполнения у части пациентов. В то время как закрытие двуствольных стом технически более просто, менее\nтравматично и сопровождается меньшими операционно-анестезиологическими рисками, что делает метод\nрезекции с анастомозом под защитой стомы предпочтительным у данной категории больных."],"dc.subject.ru":["операция Гартмана","первичный анастомоз","протекционная стома","кишечная непроходимость","перифокальный абсцесс","колостома","дивертикулез","опухоли толстой кишки"],"dc.title.ru":["Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["12-18"],"dc.rights":["CC BY 4.0"],"dc.section":["ORIGINAL STUDIES","ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.section.en":["ORIGINAL STUDIES"],"dc.section.ru":["ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["В. З. Тотиков","V. Z. Totikov","З. В. Тотиков","Z. V. Totikov","Д. В. Тобоев","D. V. Toboev","Р. А. Халлаев","R. A. Khallaev"],"author_keyword":["В. З. Тотиков","V. Z. Totikov","З. В. Тотиков","Z. V. Totikov","Д. В. Тобоев","D. V. Toboev","Р. А. Халлаев","R. A. Khallaev"],"author_ac":["в. з. тотиков\n|||\nВ. З. Тотиков","v. z. totikov\n|||\nV. Z. Totikov","з. в. тотиков\n|||\nЗ. В. Тотиков","z. v. totikov\n|||\nZ. V. Totikov","д. в. тобоев\n|||\nД. В. Тобоев","d. v. toboev\n|||\nD. V. Toboev","р. а. халлаев\n|||\nР. А. Халлаев","r. a. khallaev\n|||\nR. A. Khallaev"],"author_filter":["в. з. тотиков\n|||\nВ. З. Тотиков","v. z. totikov\n|||\nV. Z. Totikov","з. в. тотиков\n|||\nЗ. В. Тотиков","z. v. totikov\n|||\nZ. V. Totikov","д. в. тобоев\n|||\nД. В. Тобоев","d. v. toboev\n|||\nD. V. Toboev","р. а. халлаев\n|||\nР. А. Халлаев","r. a. khallaev\n|||\nR. A. Khallaev"],"dc.author.name":["В. З. Тотиков","V. Z. Totikov","З. В. Тотиков","Z. V. Totikov","Д. В. Тобоев","D. V. Toboev","Р. А. Халлаев","R. A. Khallaev"],"dc.author.name.ru":["В. З. Тотиков","З. В. Тотиков","Д. В. Тобоев","Р. А. Халлаев"],"dc.author.affiliation":["Северо-Осетинская государственная медицинская академия","North-Ossetian State Medical Academy","Северо-Осетинская государственная медицинская академия","North-Ossetian State Medical Academy","Северо-Осетинская государственная медицинская академия","North-Ossetian State Medical Academy","Северо-Осетинская государственная медицинская академия","North-Ossetian State Medical Academy"],"dc.author.affiliation.ru":["Северо-Осетинская государственная медицинская академия","Северо-Осетинская государственная медицинская академия","Северо-Осетинская государственная медицинская академия","Северо-Осетинская государственная медицинская академия"],"dc.author.full":["В. З. Тотиков | Северо-Осетинская государственная медицинская академия","V. Z. Totikov | North-Ossetian State Medical Academy","З. В. Тотиков | Северо-Осетинская государственная медицинская академия","Z. V. Totikov | North-Ossetian State Medical Academy","Д. В. Тобоев | Северо-Осетинская государственная медицинская академия","D. V. Toboev | North-Ossetian State Medical Academy","Р. А. Халлаев | Северо-Осетинская государственная медицинская академия","R. A. Khallaev | North-Ossetian State Medical Academy"],"dc.author.full.ru":["В. З. Тотиков | Северо-Осетинская государственная медицинская академия","З. В. Тотиков | Северо-Осетинская государственная медицинская академия","Д. В. Тобоев | Северо-Осетинская государственная медицинская академия","Р. А. Халлаев | Северо-Осетинская государственная медицинская академия"],"dc.author.name.en":["V. Z. Totikov","Z. V. Totikov","D. V. Toboev","R. A. Khallaev"],"dc.author.affiliation.en":["North-Ossetian State Medical Academy","North-Ossetian State Medical Academy","North-Ossetian State Medical Academy","North-Ossetian State Medical Academy"],"dc.author.full.en":["V. Z. Totikov | North-Ossetian State Medical Academy","Z. V. Totikov | North-Ossetian State Medical Academy","D. V. Toboev | North-Ossetian State Medical Academy","R. A. Khallaev | North-Ossetian State Medical Academy"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-0179-9742\", \"affiliation\": \"\\u0421\\u0435\\u0432\\u0435\\u0440\\u043e-\\u041e\\u0441\\u0435\\u0442\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u0430\\u044f \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0430\\u043a\\u0430\\u0434\\u0435\\u043c\\u0438\\u044f\", \"full_name\": \"\\u0412. \\u0417. \\u0422\\u043e\\u0442\\u0438\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0179-9742\", \"affiliation\": \"North-Ossetian State Medical Academy\", \"full_name\": \"V. Z. Totikov\"}}, {\"ru\": {\"orcid\": \"0000-0003-4765-9753\", \"affiliation\": \"\\u0421\\u0435\\u0432\\u0435\\u0440\\u043e-\\u041e\\u0441\\u0435\\u0442\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u0430\\u044f \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0430\\u043a\\u0430\\u0434\\u0435\\u043c\\u0438\\u044f\", \"full_name\": \"\\u0417. \\u0412. \\u0422\\u043e\\u0442\\u0438\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-4765-9753\", \"affiliation\": \"North-Ossetian State Medical Academy\", \"full_name\": \"Z. V. Totikov\"}}, {\"ru\": {\"orcid\": \"0009-0007-2059-3156\", \"affiliation\": \"\\u0421\\u0435\\u0432\\u0435\\u0440\\u043e-\\u041e\\u0441\\u0435\\u0442\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u0430\\u044f \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0430\\u043a\\u0430\\u0434\\u0435\\u043c\\u0438\\u044f\", \"full_name\": \"\\u0414. \\u0412. \\u0422\\u043e\\u0431\\u043e\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0009-0007-2059-3156\", \"affiliation\": \"North-Ossetian State Medical Academy\", \"full_name\": \"D. V. Toboev\"}}, {\"ru\": {\"orcid\": \"0009-0009-4057-2947\", \"affiliation\": \"\\u0421\\u0435\\u0432\\u0435\\u0440\\u043e-\\u041e\\u0441\\u0435\\u0442\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u0430\\u044f \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0430\\u044f \\u0430\\u043a\\u0430\\u0434\\u0435\\u043c\\u0438\\u044f\", \"full_name\": \"\\u0420. \\u0410. \\u0425\\u0430\\u043b\\u043b\\u0430\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0009-0009-4057-2947\", \"affiliation\": \"North-Ossetian State Medical Academy\", \"full_name\": \"R. A. Khallaev\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1083"],"dc.citation":["Bergamini C., Giordano A., Maltinti G., Alemanno G., Cianchi F., Coratti A., et al. Obstructive left side colon cancer: time for a tailored operative approach? Minerva Chir. 2020;75(4):244–54. DOI: 10.23736/S0026-4733.20.08299-1","Edomskis P.P., Hoek V.T., Stark P.W., Lambrichts D.P.V., Draaisma W.A., Consten E.C.J., et al. Hartmann’s procedure versus sigmoidectomy with primary anastomosis for perforated diverticulitis with purulent or fecal peritonitis: Three-year follow-up of a randomised controlled trial. Int J Surg. 2022;98:e106221. DOI: 10.1016/j.ijsu.2021.106221","Hayden D.M., Mora Pinzon M.C., Francescatti A.B., Saclarides T.J. Patient factors may predict anastomotic complications after rectal cancer surgery: Anastomotic complications in rectal cancer. Ann Med Surg (Lond). 2014;(13):11–6. DOI: 10.1016/j.amsu.2014.12.002","Ho Y.H., Ashour M.A.T. Techniques for colorectal anastomosis. World J. Gastroenterol. 2010;16(13):1610–21. DOI: 10.3748/wjg.v16.i13.1610","Lambrichts D.P., Edomskis P.P., van der Bogt R.D., Kleinrensink G.J., Bemelman W.A., Lange J.F. Sigmoid resection with primary anastomosis versus the Hartmann’s procedure for perforated diverticulitis with purulent or fecal peritonitis: a systematic review and meta-analysis. Int J Colorectal Dis. 2020;35(8):1371–86. DOI: 10.1007/s00384-020-03617-8","Тотиков В.З., Тотиков З.В. Рак ободочной кишки, осложненный непроходимостью. Владикавказ: СОГМА; 2013.","Merabishvili G., Mosidze B., Demetrashvili Z., Agdgomelashvili I. Comparison of Hartmann’s procedure versus resection with primary anastomosis in management of left sided colon cancer obstruction: a prospective cohort study. Georgian Med News. 2022;324:21–5. PMID: 35417858","Черкасов М.Ф., Дмитриев А.В., Грошилин В.С., Перескоков С.В., Козыревский М.А., Урюпина А.А. Несостоятельность колоректального анастомоза: факторы риска, профилактика, диагностика, лечебная тактика. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(2):27– 34. DOI: 10.22416/1382-4376-2019-29-2-27-34","Тотиков З.В., Тотиков В.З., Качмазов А.К., Медоев В.В., Калицова М.В., Мальсагов Р.Ю. Способ профилактики несостоятельности анастомоза после передних резекций прямой кишки и реконструктивно-восстановительных операций. Кубанский научный медицинский вестник. 2013;4(139):109–11.","Тотиков З.В., Тотиков В.З., Ибрагимов Л.А., Абдурзаков М.С.А.С., Тарамов У.У., Сарбашева М.М. и др. Несостоятельность колоректальных анастомозов: состояние проблемы. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022;9:271–9. DOI: 10.37882/2223-2966.2022.09.41","Galetin T., Galetin A., Vestweber K.H., Rink A.D. Systematic review and comparison of national and international guidelines on diverticular disease. Int J Color Dis. 2018;33:261–72. DOI: 10.1007/s00384-017-2960-z","Vermeulen J., Gosselink M.P., Busschbach J.J., Lange J.F. Avoiding or reversing Hartmann’s procedure provides improved quality of life after perforated diverticulitis. J Gastrointest Surg. 2010;14:651–7. DOI: 10.1007/s11605-010-1155-5","Hallam S., Mothe B.S, Tirumulaju R.. Hartmann’s procedure, reversal and rate of stoma-free survival. Ann R Coll Surg Engl. 2018;100(4):301–7. DOI: 10.1308/rcsann.2018.0006","Kartal K., Citgez B., Koksal M.H., Besler E., Akgun İ.E., Mihmanli M. Colostomy reversal after a Hartmann’s procedure Effects of experience on mortality and morbidity. Ann Ital Chir. 2019;90:539–44. PMID: 31270277","Farah M., Sorelli P., Kerwat R., Oke O., Ng P. Correlation between ASA Grade with reversal of Hartmann’s procedure — a retrospective study. J Med Life. 2021;14(6):756–61. DOI: 10.25122/jml-2020-0158","Bergamini C., Giordano A., Maltinti G., Alemanno G., Cianchi F., Coratti A., et al. Obstructive left side colon cancer: time for a tailored operative approach? Minerva Chir. 2020;75(4):244–54. DOI: 10.23736/S0026-4733.20.08299-1","Edomskis P.P., Hoek V.T., Stark P.W., Lambrichts D.P.V., Draaisma W.A., Consten E.C.J., et al. Hartmann’s procedure versus sigmoidectomy with primary anastomosis for perforated diverticulitis with purulent or fecal peritonitis: Three-year follow-up of a randomised controlled trial. Int J Surg. 2022;98:e106221. DOI: 10.1016/j.ijsu.2021.106221","Hayden D.M., Mora Pinzon M.C., Francescatti A.B., Saclarides T.J. Patient factors may predict anastomotic complications after rectal cancer surgery: Anastomotic complications in rectal cancer. Ann Med Surg (Lond). 2014;(13):11–6. DOI: 10.1016/j.amsu.2014.12.002","Ho Y.H., Ashour M.A.T. Techniques for colorectal anastomosis. World J. Gastroenterol. 2010;16(13):1610–21. DOI: 10.3748/wjg.v16.i13.1610","Lambrichts D.P., Edomskis P.P., van der Bogt R.D., Kleinrensink G.J., Bemelman W.A., Lange J.F. Sigmoid resection with primary anastomosis versus the Hartmann’s procedure for perforated diverticulitis with purulent or fecal peritonitis: a systematic review and meta-analysis. Int J Colorectal Dis. 2020;35(8):1371–86. DOI: 10.1007/s00384-020-03617-8","Тотиков В.З., Тотиков З.В. Рак ободочной кишки, осложненный непроходимостью. Владикавказ: СОГМА; 2013.","Merabishvili G., Mosidze B., Demetrashvili Z., Agdgomelashvili I. Comparison of Hartmann’s procedure versus resection with primary anastomosis in management of left sided colon cancer obstruction: a prospective cohort study. Georgian Med News. 2022;324:21–5. PMID: 35417858","Черкасов М.Ф., Дмитриев А.В., Грошилин В.С., Перескоков С.В., Козыревский М.А., Урюпина А.А. Несостоятельность колоректального анастомоза: факторы риска, профилактика, диагностика, лечебная тактика. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(2):27– 34. DOI: 10.22416/1382-4376-2019-29-2-27-34","Тотиков З.В., Тотиков В.З., Качмазов А.К., Медоев В.В., Калицова М.В., Мальсагов Р.Ю. Способ профилактики несостоятельности анастомоза после передних резекций прямой кишки и реконструктивно-восстановительных операций. Кубанский научный медицинский вестник. 2013;4(139):109–11.","Тотиков З.В., Тотиков В.З., Ибрагимов Л.А., Абдурзаков М.С.А.С., Тарамов У.У., Сарбашева М.М. и др. Несостоятельность колоректальных анастомозов: состояние проблемы. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022;9:271–9. DOI: 10.37882/2223-2966.2022.09.41","Galetin T., Galetin A., Vestweber K.H., Rink A.D. Systematic review and comparison of national and international guidelines on diverticular disease. Int J Color Dis. 2018;33:261–72. DOI: 10.1007/s00384-017-2960-z","Vermeulen J., Gosselink M.P., Busschbach J.J., Lange J.F. Avoiding or reversing Hartmann’s procedure provides improved quality of life after perforated diverticulitis. J Gastrointest Surg. 2010;14:651–7. DOI: 10.1007/s11605-010-1155-5","Hallam S., Mothe B.S, Tirumulaju R.. Hartmann’s procedure, reversal and rate of stoma-free survival. Ann R Coll Surg Engl. 2018;100(4):301–7. DOI: 10.1308/rcsann.2018.0006","Kartal K., Citgez B., Koksal M.H., Besler E., Akgun İ.E., Mihmanli M. Colostomy reversal after a Hartmann’s procedure Effects of experience on mortality and morbidity. Ann Ital Chir. 2019;90:539–44. PMID: 31270277","Farah M., Sorelli P., Kerwat R., Oke O., Ng P. Correlation between ASA Grade with reversal of Hartmann’s procedure — a retrospective study. J Med Life. 2021;14(6):756–61. DOI: 10.25122/jml-2020-0158"],"dc.citation.ru":["Bergamini C., Giordano A., Maltinti G., Alemanno G., Cianchi F., Coratti A., et al. Obstructive left side colon cancer: time for a tailored operative approach? Minerva Chir. 2020;75(4):244–54. DOI: 10.23736/S0026-4733.20.08299-1","Edomskis P.P., Hoek V.T., Stark P.W., Lambrichts D.P.V., Draaisma W.A., Consten E.C.J., et al. Hartmann’s procedure versus sigmoidectomy with primary anastomosis for perforated diverticulitis with purulent or fecal peritonitis: Three-year follow-up of a randomised controlled trial. Int J Surg. 2022;98:e106221. DOI: 10.1016/j.ijsu.2021.106221","Hayden D.M., Mora Pinzon M.C., Francescatti A.B., Saclarides T.J. Patient factors may predict anastomotic complications after rectal cancer surgery: Anastomotic complications in rectal cancer. Ann Med Surg (Lond). 2014;(13):11–6. DOI: 10.1016/j.amsu.2014.12.002","Ho Y.H., Ashour M.A.T. Techniques for colorectal anastomosis. World J. Gastroenterol. 2010;16(13):1610–21. DOI: 10.3748/wjg.v16.i13.1610","Lambrichts D.P., Edomskis P.P., van der Bogt R.D., Kleinrensink G.J., Bemelman W.A., Lange J.F. Sigmoid resection with primary anastomosis versus the Hartmann’s procedure for perforated diverticulitis with purulent or fecal peritonitis: a systematic review and meta-analysis. Int J Colorectal Dis. 2020;35(8):1371–86. DOI: 10.1007/s00384-020-03617-8","Тотиков В.З., Тотиков З.В. Рак ободочной кишки, осложненный непроходимостью. Владикавказ: СОГМА; 2013.","Merabishvili G., Mosidze B., Demetrashvili Z., Agdgomelashvili I. Comparison of Hartmann’s procedure versus resection with primary anastomosis in management of left sided colon cancer obstruction: a prospective cohort study. Georgian Med News. 2022;324:21–5. PMID: 35417858","Черкасов М.Ф., Дмитриев А.В., Грошилин В.С., Перескоков С.В., Козыревский М.А., Урюпина А.А. Несостоятельность колоректального анастомоза: факторы риска, профилактика, диагностика, лечебная тактика. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(2):27– 34. DOI: 10.22416/1382-4376-2019-29-2-27-34","Тотиков З.В., Тотиков В.З., Качмазов А.К., Медоев В.В., Калицова М.В., Мальсагов Р.Ю. Способ профилактики несостоятельности анастомоза после передних резекций прямой кишки и реконструктивно-восстановительных операций. Кубанский научный медицинский вестник. 2013;4(139):109–11.","Тотиков З.В., Тотиков В.З., Ибрагимов Л.А., Абдурзаков М.С.А.С., Тарамов У.У., Сарбашева М.М. и др. Несостоятельность колоректальных анастомозов: состояние проблемы. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022;9:271–9. DOI: 10.37882/2223-2966.2022.09.41","Galetin T., Galetin A., Vestweber K.H., Rink A.D. Systematic review and comparison of national and international guidelines on diverticular disease. Int J Color Dis. 2018;33:261–72. DOI: 10.1007/s00384-017-2960-z","Vermeulen J., Gosselink M.P., Busschbach J.J., Lange J.F. Avoiding or reversing Hartmann’s procedure provides improved quality of life after perforated diverticulitis. J Gastrointest Surg. 2010;14:651–7. DOI: 10.1007/s11605-010-1155-5","Hallam S., Mothe B.S, Tirumulaju R.. Hartmann’s procedure, reversal and rate of stoma-free survival. Ann R Coll Surg Engl. 2018;100(4):301–7. DOI: 10.1308/rcsann.2018.0006","Kartal K., Citgez B., Koksal M.H., Besler E., Akgun İ.E., Mihmanli M. Colostomy reversal after a Hartmann’s procedure Effects of experience on mortality and morbidity. Ann Ital Chir. 2019;90:539–44. PMID: 31270277","Farah M., Sorelli P., Kerwat R., Oke O., Ng P. Correlation between ASA Grade with reversal of Hartmann’s procedure — a retrospective study. J Med Life. 2021;14(6):756–61. DOI: 10.25122/jml-2020-0158"],"dc.citation.en":["Bergamini C., Giordano A., Maltinti G., Alemanno G., Cianchi F., Coratti A., et al. Obstructive left side colon cancer: time for a tailored operative approach? Minerva Chir. 2020;75(4):244–54. DOI: 10.23736/S0026-4733.20.08299-1","Edomskis P.P., Hoek V.T., Stark P.W., Lambrichts D.P.V., Draaisma W.A., Consten E.C.J., et al. Hartmann’s procedure versus sigmoidectomy with primary anastomosis for perforated diverticulitis with purulent or fecal peritonitis: Three-year follow-up of a randomised controlled trial. Int J Surg. 2022;98:e106221. DOI: 10.1016/j.ijsu.2021.106221","Hayden D.M., Mora Pinzon M.C., Francescatti A.B., Saclarides T.J. Patient factors may predict anastomotic complications after rectal cancer surgery: Anastomotic complications in rectal cancer. Ann Med Surg (Lond). 2014;(13):11–6. DOI: 10.1016/j.amsu.2014.12.002","Ho Y.H., Ashour M.A.T. Techniques for colorectal anastomosis. World J. Gastroenterol. 2010;16(13):1610–21. DOI: 10.3748/wjg.v16.i13.1610","Lambrichts D.P., Edomskis P.P., van der Bogt R.D., Kleinrensink G.J., Bemelman W.A., Lange J.F. Sigmoid resection with primary anastomosis versus the Hartmann’s procedure for perforated diverticulitis with purulent or fecal peritonitis: a systematic review and meta-analysis. Int J Colorectal Dis. 2020;35(8):1371–86. DOI: 10.1007/s00384-020-03617-8","Тотиков В.З., Тотиков З.В. Рак ободочной кишки, осложненный непроходимостью. Владикавказ: СОГМА; 2013.","Merabishvili G., Mosidze B., Demetrashvili Z., Agdgomelashvili I. Comparison of Hartmann’s procedure versus resection with primary anastomosis in management of left sided colon cancer obstruction: a prospective cohort study. Georgian Med News. 2022;324:21–5. PMID: 35417858","Черкасов М.Ф., Дмитриев А.В., Грошилин В.С., Перескоков С.В., Козыревский М.А., Урюпина А.А. Несостоятельность колоректального анастомоза: факторы риска, профилактика, диагностика, лечебная тактика. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019;29(2):27– 34. DOI: 10.22416/1382-4376-2019-29-2-27-34","Тотиков З.В., Тотиков В.З., Качмазов А.К., Медоев В.В., Калицова М.В., Мальсагов Р.Ю. Способ профилактики несостоятельности анастомоза после передних резекций прямой кишки и реконструктивно-восстановительных операций. Кубанский научный медицинский вестник. 2013;4(139):109–11.","Тотиков З.В., Тотиков В.З., Ибрагимов Л.А., Абдурзаков М.С.А.С., Тарамов У.У., Сарбашева М.М. и др. Несостоятельность колоректальных анастомозов: состояние проблемы. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 2022;9:271–9. DOI: 10.37882/2223-2966.2022.09.41","Galetin T., Galetin A., Vestweber K.H., Rink A.D. Systematic review and comparison of national and international guidelines on diverticular disease. Int J Color Dis. 2018;33:261–72. DOI: 10.1007/s00384-017-2960-z","Vermeulen J., Gosselink M.P., Busschbach J.J., Lange J.F. Avoiding or reversing Hartmann’s procedure provides improved quality of life after perforated diverticulitis. J Gastrointest Surg. 2010;14:651–7. DOI: 10.1007/s11605-010-1155-5","Hallam S., Mothe B.S, Tirumulaju R.. Hartmann’s procedure, reversal and rate of stoma-free survival. Ann R Coll Surg Engl. 2018;100(4):301–7. DOI: 10.1308/rcsann.2018.0006","Kartal K., Citgez B., Koksal M.H., Besler E., Akgun İ.E., Mihmanli M. Colostomy reversal after a Hartmann’s procedure Effects of experience on mortality and morbidity. Ann Ital Chir. 2019;90:539–44. PMID: 31270277","Farah M., Sorelli P., Kerwat R., Oke O., Ng P. Correlation between ASA Grade with reversal of Hartmann’s procedure — a retrospective study. J Med Life. 2021;14(6):756–61. DOI: 10.25122/jml-2020-0158"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8922"],"dc.date.accessioned_dt":"2025-07-09T13:58:57Z","dc.date.accessioned":["2025-07-09T13:58:57Z"],"dc.date.available":["2025-07-09T13:58:57Z"],"publication_grp":["123456789/8922"],"bi_4_dis_filter":["операция гартмана\n|||\nоперация Гартмана","протекционная стома\n|||\nпротекционная стома","primary anastomosis\n|||\nprimary anastomosis","colostomy\n|||\ncolostomy","перифокальный абсцесс\n|||\nперифокальный абсцесс","колостома\n|||\nколостома","дивертикулез\n|||\nдивертикулез","опухоли толстой кишки\n|||\nопухоли толстой кишки","hartmann’s procedure\n|||\nHartmann’s procedure","protective stoma\n|||\nprotective stoma","colon tumors\n|||\ncolon tumors","perifocal abscess\n|||\nperifocal abscess","diverticulosis\n|||\ndiverticulosis","первичный анастомоз\n|||\nпервичный анастомоз","intestinal obstruction\n|||\nintestinal obstruction","кишечная непроходимость\n|||\nкишечная непроходимость"],"bi_4_dis_partial":["первичный анастомоз","intestinal obstruction","perifocal abscess","colostomy","colon tumors","primary anastomosis","операция Гартмана","дивертикулез","опухоли толстой кишки","diverticulosis","кишечная непроходимость","перифокальный абсцесс","protective stoma","протекционная стома","колостома","Hartmann’s procedure"],"bi_4_dis_value_filter":["первичный анастомоз","intestinal obstruction","perifocal abscess","colostomy","colon tumors","primary anastomosis","операция Гартмана","дивертикулез","опухоли толстой кишки","diverticulosis","кишечная непроходимость","перифокальный абсцесс","protective stoma","протекционная стома","колостома","Hartmann’s procedure"],"bi_sort_1_sort":"hartmann’s procedure versus primary anastomosis with protective proximal stoma after distal colon resection and anterior rectal resection in elective and delayed surgical interventions","bi_sort_3_sort":"2025-07-09T13:58:57Z","read":["g0"],"_version_":1837178067743670272},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:58.18Z","search.uniqueid":"2-8034","search.resourcetype":2,"search.resourceid":8034,"handle":"123456789/8923","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-19-27"],"dc.abstract":["

Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.

","

Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными механизмами формирования лекарственной резистентности. Белок 1, ассоциированный с рецептором TNF (TRAP1), задействован в регуляции метаболических процессов и устойчивости опухолевых клеток к апоптозу, однако его роль в глиобластоме остается недостаточно изученной. Материалы и методы. Использовали клеточные линии глиомы T98G и астроциты головного мозга человека (HBA) в качестве контроля. Подавление экспрессии TRAP1 осуществляли методом лентивирусной трансдукции короткой шпилечной РНК (кшРНК). Экзосомы выделяли ультрацентрифугированием из культуральной среды и подтверждали их идентификацию по типичным маркерам (TSG101, CD63 и ALIX). Уровень экспрессии TRAP1 на уровне белка и ключевых гликолитических ферментов анализировали методом вестерн-блот анализа. Оценку жизнеспособности опухолевых клеток проводили с помощью МТТ-теста, уровень апоптоза — с помощью аннексина V-FITC/PI и продукцию АТФ — методом биолюминесцентного анализа. Результаты и обсуждение. Показано, что в клетках T98G TRAP1 сверхэкспрессирован, в том числе и в экзосомах, тогда как в HBA уровень TRAP1 был умеренным или низким. Подавление TRAP1 у T98G приводило к снижению экспрессии гликолитических ферментов, росту уровня апоптоза и уменьшению жизнеспособности опухолевых клеток. Повышенная экспрессия TRAP1 усиливала метаболическое перепрограммирование опухолевых клеток в сторону аэробного гликолиза и снижала синтез АТФ. Экзосомальный TRAP1, вероятно, участвует в межклеточной коммуникации, способствуя адаптации опухоли к стрессовым условиям и формированию проопухолевого микроокружения. Заключение. Результаты исследования подтверждают важность TRAP1 в регуляции метаболического статуса глиобластомы и поддержании ее агрессивного фенотипа. Таргетное подавление TRAP1 может рассматриваться как перспективная стратегия терапии глиобластомы, направленная на снижение жизнеспособности опухолевых клеток и ограничение их метаболической гибкости.

"],"dc.abstract.en":["

Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.

"],"subject":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"subject_keyword":["glioblastoma","glioblastoma","TRAP1","TRAP1","metabolic reprogramming","metabolic reprogramming","shRNA","shRNA","exosomes","exosomes","glycolysis","glycolysis","apoptosis","apoptosis","глиобластома","глиобластома","TRAP1","TRAP1","метаболическое перепрограммирование","метаболическое перепрограммирование","кшРНК","кшРНК","экзосомы","экзосомы","гликолиз","гликолиз","апоптоз","апоптоз"],"subject_ac":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"subject_tax_0_filter":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"subject_filter":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"dc.subject_mlt":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.subject":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.subject.en":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis"],"title":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"title_keyword":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"title_ac":["analysis and functional significance of trap1 in glioblastoma\n|||\nAnalysis and Functional Significance of TRAP1 in Glioblastoma","анализ и функциональная значимость белка trap1 при глиобластоме\n|||\nАнализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_sort":"Analysis and Functional Significance of TRAP1 in Glioblastoma","dc.title_hl":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_mlt":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_stored":["Analysis and Functional Significance of TRAP1 in Glioblastoma\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Анализ и функциональная значимость белка TRAP1 при глиобластоме\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Analysis and Functional Significance of TRAP1 in Glioblastoma"],"dc.abstract.ru":["

Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными механизмами формирования лекарственной резистентности. Белок 1, ассоциированный с рецептором TNF (TRAP1), задействован в регуляции метаболических процессов и устойчивости опухолевых клеток к апоптозу, однако его роль в глиобластоме остается недостаточно изученной. Материалы и методы. Использовали клеточные линии глиомы T98G и астроциты головного мозга человека (HBA) в качестве контроля. Подавление экспрессии TRAP1 осуществляли методом лентивирусной трансдукции короткой шпилечной РНК (кшРНК). Экзосомы выделяли ультрацентрифугированием из культуральной среды и подтверждали их идентификацию по типичным маркерам (TSG101, CD63 и ALIX). Уровень экспрессии TRAP1 на уровне белка и ключевых гликолитических ферментов анализировали методом вестерн-блот анализа. Оценку жизнеспособности опухолевых клеток проводили с помощью МТТ-теста, уровень апоптоза — с помощью аннексина V-FITC/PI и продукцию АТФ — методом биолюминесцентного анализа. Результаты и обсуждение. Показано, что в клетках T98G TRAP1 сверхэкспрессирован, в том числе и в экзосомах, тогда как в HBA уровень TRAP1 был умеренным или низким. Подавление TRAP1 у T98G приводило к снижению экспрессии гликолитических ферментов, росту уровня апоптоза и уменьшению жизнеспособности опухолевых клеток. Повышенная экспрессия TRAP1 усиливала метаболическое перепрограммирование опухолевых клеток в сторону аэробного гликолиза и снижала синтез АТФ. Экзосомальный TRAP1, вероятно, участвует в межклеточной коммуникации, способствуя адаптации опухоли к стрессовым условиям и формированию проопухолевого микроокружения. Заключение. Результаты исследования подтверждают важность TRAP1 в регуляции метаболического статуса глиобластомы и поддержании ее агрессивного фенотипа. Таргетное подавление TRAP1 может рассматриваться как перспективная стратегия терапии глиобластомы, направленная на снижение жизнеспособности опухолевых клеток и ограничение их метаболической гибкости.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nГлиобластома по-прежнему остается одной из наиболее злокачественных опухолей центральной нервной\nсистемы (ЦНС), характеризуясь крайне неблагоприятным прогнозом, несмотря на достижения в области\nдиагностики и лечения [1, 2]. Успехи в изучении молекулярной природы глиобластомы позволили выявить\nряд ключевых сигнальных путей и генетических изменений, однако гетерогенность опухоли, а также сложность ее микроокружения затрудняют разработку универсальных и высокоэффективных терапевтических\nстратегий [3, 4]. Ключевым аспектом прогрессирования глиобластомы является способность опухолевых\nклеток к быстрому метаболическому переориентированию и адаптации к изменяющимся условиям среды,\nв частности к гипоксии, характерной для обширных\nнекротических зон внутри самой опухоли [5–7]. Такое\nперепрограммирование метаболизма обеспечивает\nинтенсивный рост и пролиферацию клеток, а также\nнередко ведет к формированию лекарственной устойчивости. В контексте этих процессов возрастающий\nинтерес вызывает семейство шаперонов HSP90, к которому относится белок 1, ассоциированный с рецептором TNF (TRAP1) [8–10]. TRAP1 изначально рассматривался как регулятор митохондриального гомеостаза\nи апоптоза, однако последующие исследования показали, что он обладает гораздо более широкими функциями, включая участие в процессах трансдукции сигнала,\nподдержании энергетического баланса, а также формировании резистентности опухолевых клеток к химиои лучевой терапии [11, 12]. Многие работы указывают\nна то, что TRAP1 может переключать метаболизм опухолевых клеток с окислительного фосфорилирования\nна аэробный гликолиз, давая опухоли дополнительные\nпреимущества в условиях гипоксии и ограниченных\nэнергетических ресурсов [13, 14]. Особенно интересно,\nчто данная перестройка метаболического статуса часто\nсопровождается повышением устойчивости к апоптотическим сигналам, что еще более усугубляет проблему\nлечения глиобластомы [11].\nЭкзосомы являются наиболее широко изученной группой среди двух основных подгрупп (экзосомы и микровезикулы) внеклеточных везикул (ВВ), высвобождаемых из клеток млекопитающих. Экзосомы возникают\nиз мембран мультивезикулярных телец (МВТ) и имеют\nчашеобразную морфологию под электронным микроскопом с диаметром от 50 до 150 нм. Экзосомы широко изучались на предмет их роли во внутриклеточной\nкоммуникации, особенно во время развития и прогрессирования опухоли. Ассоциированные с экзосомами\nРНК, некодирующие РНК, белки, ДНК и даже метаболиты могут изменять судьбу клеток-реципиентов посредством аутокринной и паракринной сигнализации.\nДоставляемые опухолевыми экзосомами биологические компоненты взаимодействуют со стромальными\nклетками в микроокружении опухоли, модулируют\nпрогрессирование опухоли, ангиогенез, метастазирование и уклонение от иммунного ответа. Измененный метаболизм клеток является одним из признаков злокачественных новообразований, в том числе глиобластома.\nЭкзогенные экзосомы могут вызывать метаболическое\nперепрограммирование и тем самым поддерживать\nрост опухоли. Экзосомальный TRAP1, модулирующий\nопухолевый метаболизм, представляет интерес как потенциальная терапевтическая мишень для изучения его\nроли в онкогенезе глиобластомы, а также для улучшения диагностики и терапии. Более того, повышенное\nсодержание TRAP1 в экзосомах может служить маркером прогрессирования глиобластомы и коррелировать\nс неблагоприятным клиническим исходом. В этой связи\nблокирование TRAP1 или воздействие на механизмы\nэкзосомального транспорта могут стать перспективными направлениями в создании новых противоопухолевых препаратов.\nНастоящее исследование нацелено на углубленный анализ роли TRAP1 в метаболическом перепрограммировании клеток глиобластомы и изучение вклада экзосомального TRAP1 в агрессивность опухоли. Выявление\nключевых молекулярных взаимодействий, лежащих\nв основе метаболической пластичности глиобластомы, может способствовать разработке новых методов\nтерапии, направленных на снижение резистентности\nопухоли к лечению, а также на подавление межклеточных коммуникационных механизмов, способствующих\nпрогрессированию глиобластомы.\nМАТЕРИАЛЫ И МЕТОДЫ\nКультивирование клеток\nКлеточная линия глиом T98G и клеточная линия астроцитов головного мозга человека (HBA) были получены\nиз Китайской национальной инфраструктуры ресурсов\nклеточных линий (http://www.cellresource.cn/, Китай).\nКлеточные линии хранили в Модифицированной среде\nОрла Дульбекко (DMEM) с высоким содержанием глюкозы, дополненной 10 % фетальной бычьей сывороткой\n(FBS) и 100 ЕД/мл пенициллина или 0,1 мг/мл стрептомицина, а также было подтверждено отсутствие контаминации микоплазмой. Клетки хранили во влажном\nинкубаторе, содержащем 5 % атмосферу CO2, при температуре 37 °C в колбе для культивирования клеток,\nстандартной для адгезивных клеток. Клетки обычно\nсубкультивировали при достижении 80 %-го слияния\nс использованием 0,25 %-го раствора трипсина-ЭДТА.\nОбразование сфероидов опухоли наблюдалось в течение 4 дней для T98G. Формирование опухолевых сфероидов ежедневно подтверждали визуально с помощью\nтринокулярного обратного микроскопа Optika XDS-2,\nоснащенного камерой ISH500, а их средние диаметры\nанализировали с помощью программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация\nУльтрацентрифугирование является «золотым стандартом» выделения экзосом из клеток. Основное преимущество этого современного метода заключается\nв том, что он производит высокообогащенные фракции\nэкзосом, а также позволяет собирать дополнительные\nфракции ВВ, а затем супернатант, не содержащий экзосомы, который образуется после высокоскоростного\nотжима. Первые шаги предназначены для лизиса клеток и удаления мертвых клеток их остатков путем последовательного центрифугирования с возрастающей\nскоростью. На каждом из этих этапов осадок выбрасывают, а надосадочную жидкость используют на следующем этапе. Конечный супернатант затем подвергают\nультрацентрифугированию при 100 000 × g для осаждения небольших везикул, соответствующих экзосомам.\nОсадок промывают большим объемом натрий-фосфатного буфера (PBS) для удаления примесей белков и центрифугируют последний раз на той же высокой скорости. Основная часть экзосом, полученных из T98G или\nHBA, имела размеры около 100 нм и морфологические\nособенности сферических, двухслойных, связанных\nс мембраной экзосом, что соответствует морфологическим характеристикам экзосом.\nЭкстракция белка из экзосом\nНабор Total Exosome RNA & Protein Isolation Kit\n(Invitrogen), номер каталога 4478545, для экстракции\nтотальной РНК и белка из экзосом предназначен для\nвыделения белков из одного обогащенного препарата\nэкзосом. Процедура экстракция белка TRAP1 из экзосом, полученных из клеточной линии глиомы T98G\nили HBA, была проведена согласно инструкции Total\nExosome RNA & Protein Isolation Kit (Invitrogen).\nАнализ жизнеспособности клеток\nПосев клеточной линии глиомы T98G подсчитывали через 2, 3 и 4 дня под инвертированным фазово-контрастным микроскопом. Для анализа\n3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид (МТТ)-теста в каждую лунку добавляли реагент МТТ в дозе 5 мг/мл (Roche Diagnostics, Шанхай,\nКитай) и дополнительно инкубировали в течение 2 ч\nпри 37 °C. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1 % DMSO для растворения фиолетовых\nкристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопии.\nРезультаты представлены как средние значения из трех\nнезависимых экспериментов, проведенных в трех повторах.\nАнализ гибели клеток с помощью\nаннексина V‑FITC/PI\nНабор для определения апоптоза клеток аннексин V-флуоресцеин-5-изотиоцианат (FITC) (5 мкл)\nи пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай)\nбыл использован для измерения апоптоза клеточной\nлинии глиом T98G. Опухолевые клетки с плотностью\n3×10 5 клеток были высеяны на 6-луночные планшеты\nв течение 24 ч. Как плавающие, так и адгезивные клетки\nсобирали и дважды промывали холодным PBS. Затем\nклетки ресуспендировали в 500 мкл связывающего буфера и инкубировали с 5 мкл Annexin V-FITC и 5 мкл PI\nв течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США)\nи скорость апоптоза клеток анализировали с помощью\nпакета програмного обеспечения FLOWJO для анализа\nданных проточной цитометрии (v10; BD Biosciences).\nАТФ-мониторинг\nАТФ определяли с помощью набора ATP Bioluminescence\nAssay Kit HS II от компании Roshe в соответствии с инструкциями производителя и нормализовали уровень\nАТФ на микрограмм белка.\nВестерн-блот анализ\nДля проведения вестерн-блот анализа использовали\nследующие антитела: 1) β-актин (1:1000; Zhongshan,\nПекин, Китай); 2) первичное мышиное анти-TRAP1\n(1:1000; OriGene Technologies Inc., Роквилл, Мэриленд, США), антитело против гена предрасположенности к опухолям 101 (англ. tumor susceptibility\ngene 101, TSG101) [EPR7130 (B)] (1:1000); ab125011,\nAbcam), антитело против белка, взаимодействующее\nс ALG-2 (связанный с апоптозом ген 2) X (англ. ALG-2\n(apoptosis-linked gene 2)-interacting protein X, ALIX))\n[EPR23653–32] (1:1000; ab275377, Abcam), антитело\nпротив CD63 [EPR5702] (1:1000; ab134045, Abcam),\nмоноклональные антитела к гексокиназе I (C35C4)\nкролика (1:1000; #2024, Cell Signaling Technology), кроличьи mAb к гексокиназе II (C64G5) (1:1000; #2867, Cell\nSignaling Technology), PKM1 и PKM2 (C103A3) кроличьи mAb (1: 1000; #3190, Cell Signaling Technology),\nPKM2 (D78A4) Кроличьи mAb XP® (1:1000; # 4053S,\nCell Signaling Technology), кроличьи mAb LDHA\n(C4B5) (1:1000; #3582, Cell Signaling Technology), моноклональные антитела кролика фосфофруктокиназа,\nтромбоциты (англ. phosphofructokinase, platelet, PFKP)\n(D4B2) (1:1000; #8164, Cell Signaling Technology), кроличьи моноклональные антитела к пируватдегидрогеназе (C54G1) (1:1000; #3205, Cell Signaling Technology)\nи β-актин (1:1000; Zhongshan, Пекин, Китай). Количественную оценку полос вестерн-блот анализа проводили с использованием программного обеспечения\nOdyssey v1.2 (Gene Company Limited, Гонконг, Китай)\nпутем измерения интенсивности полосы для каждой\nгруппы и нормализации ее по β-актину в качестве внутреннего контроля.\nЛентивирусная трансдукция\nСтабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц (pGFPC-shLenti), содержащих гены, кодирующие короткую\nшпилечную РНК (кшРНК), нацеленные на TRAP1\n(#1: 5′-CGACATGAAACCGTCCATGTT-3′; #2:\n5′-AAACATGAGTTCCAGGCCGAG-3′) (GenePharma Co.,\nШанхай, Китай). Трансдукцию лентивирусных частиц\nпроводили с клетками в среде, содержащей 8 мкг/мл\nполибрена (Solarbio). Через 18 часов эффективность\nтрансдукции проверяли методом проточной цитометрии. Трансдуцированные клетки культивировали\nв среде, свободной от лентивирусных частиц, в течение\nеще 72 часов, а затем использовали 1 мкг/мл пуромицина (Solarbio) для отбора клонов со стабильной экспрессией кшРНК. Вестерн-блот использовали для подтверждения снижения экспрессии белка TRAP1.\nСтатистический анализ\nСтатистический анализ проводился с использованием программного обеспечения SPSS версии 22.0 и различных пакетов программного обеспечения R (версия v.3.6.1). Графики были построены с использованием\nпрограммного обеспечения GraphPad Prism версии 8.0.\nПри необходимости применяли t-критерий Стьюдента,\nANOVA, анализ хи-квадрат или критерий Манна —\nУитни. Вероятность p < 0,05 (*) или p < 0,001 (**) считалась статистически значимой.\nРЕЗУЛЬТАТЫ\nИзменение уровня экспрессии\nTRAP1 на уровне белка при глиобластоме\nЧтобы изучить взаимосвязь между экспрессией эндогенного (клеточного) TRAP1 и экзосомальным\nTRAP1 на уровне белка, мы использовали клеточную\nлинию глиомы T98G и HBA как негативный контроль\nс помощью вестерн-блот анализа. Стабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц, содержащих гены, кодирующие\nкшРНК, нацеленные на TRAP1 (кшРНК TRAP1). Экзосомы были очищены из супернатанта клеточной культуры T98G для наблюдения за морфологией с помощью\nтрансмиссионной электронной микроскопии. Кроме\nтого, вестерн-блот анализ был проведен для выявления экспрессии типичных поверхностных маркеров\nэкзосом (кластер дифференцировки 63 (CD63), ALIX\nи TSG101) и выявления экспрессии TRAP1 на уровне\nбелка. Результаты продемонстрировали, что в клеточной линии HBA (негативный контроль) TRAP1 имел\nумеренный уровень экспрессии, а экзосомы —\ncниженный уровень экспрессии TRAP1. Более того,\nприменение кшTRAP1 по отношению к клеточной линии T98G продемонстрировало снижение экспрессии\nTRAP1 в клетках. Кроме того, экзосомы, изолированные из клеточной линии T98G, также содержали низкий уровень экспрессии TRAP1 после трансфекции\nкшTRAP1 (рис. 1). Данные результаты показывают, что\nнормальные клетки HBA демонстрируют умеренный\nуровень экспрессии или его практическое отсутствие\nв выделяемых ими экзосомах. Тем не менее использование кшTRAP1 практически полностью инактивирует\nTRAP1 как в опухолевых клетках, так и в выделяемых\nими экзосомах. Это говорит о том, что TRAP1 сверхэкспрессирован.\nTRAP1 как потенциальный ключевой\nрегулятор метаболического\nперепрограммирования при глиобластоме\nЧтобы исследовать функцию экзосом с высокой экспрессией белка TRAP1, мы провели результаты\nвестерн-блот анализа для выбранных гликолитических ферментов. Экспрессия гексокиназы 1 (HK1/2),\nМ1/2 пируваткиназы (PKM1/2), лактатдегидрогеназы А\n(ЛДГА), фосфофруктокиназы тромбоцитов (PFKP)\nи пируватдегидрогеназы в пути гликолиза была обнаружена с помощью вестерн-блот анализа (рис. 2). Результаты показали, что высокая экспрессия TRAP1 способствует экспрессии этих гликолитических ферментов,\nтогда как снижение экспрессии TRAP1 с помощью\nкшРНК TRAP1 снижает их экспрессию. Обработка\nклеток экзосомами с высокой экспрессией TRAP1 повышала экспрессию этих гликолитических ферментов\n(рис. 2).\nСледовательно, высокая экспрессия TRAP1 способствует гликолизу. Чтобы выяснить, входит ли пируват\nв результате гликолиза непосредственно в цикл трикарбоновых кислот (ЦТК) или катализируется лактатдегидрогеназой с образованием молочной кислоты,\nмы измерили АТФ, вырабатываемый этими клетками\n(рис. 3).\nМы обнаружили, что высвобождение АТФ уменьшалось в клетках глиомы с высокой экспрессией\nTRAP1 и увеличивалось после снижения экспрессии\nTRAP1, а обработка клеток экзосомами с высокой\nэкспрессией TRAP1 также снижала высвобождение\nАТФ. Таким образом, TRAP1 усиливает пути гликолиза\nв клетках глиобластомы.\nИнгибирование TRAP1 и анализ\nжизнеспособности опухолевых клеток\nС помощью MTT-анализа мы провели оценку влияния\nэкспрессии эндогенного (клеточного) TRAP1 на жизнеспособность клеточной линии глиом T98G в течение\n12, 24, 36 и 48 часов. Было выяснено, что по сравнению\nс HBA (негативный контроль) трансфекция клеток\nT98G кшРНК TRAP1 привела к значительному снижению жизнеспособности опухолевых клеток в районе\n36 и 48 часов (рис. 4 А). Более того, понижение экспрессии TRAP1 в клетках T98G коррелировало с усилением\nапоптоза (рис. 4 Б). Мы считаем, что нарушение регуляции экспрессии TRAP1 является отличительной чертой\nглиобластомы, включая устойчивость опухолевых клеток к гибели и перепрогррамирование энергетического\nметаболизма. Это указывает на то, что возможно и эффективно регулировать развитие и прогрессирование\nглиобластомы путем ингибирования TRAP1.\nОБСУЖДЕНИЕ\nПолученные нами данные подтверждают ключевую\nроль белка TRAP1 в регуляции метаболических процессов и устойчивости клеток глиобластомы к индуцированному апоптозу. Во-первых, мы продемонстрировали, что в клеточной линии глиом T98G TRAP1 обладает\nвыраженной сверхэкспрессией по сравнению с HBA,\nчто согласуется с ранее опубликованными результатами, указывающими на тесную связь между высоким\nуровнем TRAP1 и агрессивным фенотипом опухоли\n[11, 12]. Во-вторых, обнаружение TRAP1 в составе экзосом, выделяемых T98G, указывает на возможную вовлеченность этого белка в межклеточную коммуникацию, которая, согласно ряду работ, играет решающую\nроль в метаболической перестройке опухолевых клеток\nи их взаимодействии со стромальными элементами\nмикроокружения [15–17].\nВысокий уровень TRAP1 в сочетании с повышенной\nэкспрессией гликолитических ферментов, таких как\nHK1/2, PKM1/2, LDHA и PFKP, и сниженным синтезом\nАТФ демонстрирует, что глиобластома активно переключается на аэробный гликолиз (эффект Варбурга),\nчто обеспечивает быстрый рост и пролиферацию,\nа также формирует условия для развития лекарственной устойчивости [5, 6, 13, 14]. При этом подавление\nэкспрессии TRAP1 методами генетического нокдауна\nприводило к снижению жизнеспособности опухолевых\nклеток и к возрастанию уровня апоптоза, что отражает\nвысокую зависимость глиобластомы от этого шаперона\nдля поддержания энергетического баланса и выживания [7, 11]. Данные результаты согласуются с утверждением, что TRAP1 способен регулировать митохондриальные функции и метаболические пути, влияя\nна баланс между окислительным фосфорилированием\nи гликолизом [8–10, 12].\nПрисутствие TRAP1 в экзосомах согласуется с современными представлениями о том, что ВВ активно вовлечены в формирование опухолевого микроокружения и могут транспортировать широкий спектр белков,\nмикроРНК и других сигнальных молекул [15, 16, 18].\nПодобный перенос биоматериала через экзосомы способен усиливать проопухолевые сигналы и способствовать инвазии, ангиогенезу и развитию резистентности\nклеток к терапии [17, 19]. Более того, ряд современных\nисследований подчеркивает растущую значимость экзосом в контексте таргетной терапии глиобластомы,\nвключая использование ингибиторов Hsp90-семействаи подавление передачи различных метаболических\nфакторов [20, 21].\nНаши данные свидетельствуют, что TRAP1 может быть\nодной из ключевых молекул в этих процессах, поскольку\nон непосредственно задействован в поддержании митохондриального гомеостаза и регуляции энергетического\nметаболизма [22–24]. Особо стоит отметить, что перекрестная регуляция TRAP1 и гликолитических ферментов не только формирует «быстрый» способ получения\nэнергии в условиях гипоксии, но и обеспечивает опухолевым клеткам дополнительные строительные блоки для\nсинтеза нуклеотидов, белков и липидов, необходимых\nдля их активного размножения [13, 14]. Это объясняет,\nпочему нарушение экспрессии TRAP1 может приводить\nк быстрому подавлению роста опухолевых клеток и усилению проапоптотических сигналов. С другой стороны,\nсверхэкспрессия TRAP1, вероятно, способствует поддержанию клеточного гомеостаза в условиях терапевтического воздействия, что может объяснять возникновение резистентности к химио- и лучевой терапии [11,\n25]. Современные работы подчеркивают, что модуляция\nактивности TRAP1 способна влиять на ряд сигнальных\nкаскадов, формирующих устойчивость опухоли и ее\nспособность к быстрому метаболическому переключению [26]. Наконец, учитывая, что одна из возможных\nстратегий борьбы с глиобластомой — это подавление\nметаболических путей опухоли, блокирование функции TRAP1 или снижение его уровня экспрессии может рассматриваться как потенциально перспективный\nподход к терапии [5, 23]. В ряде экспериментальных исследований показано, что ингибиторы Hsp90-семейства,\nа также вмешательства, влияющие на биогенез экзосом,\nспособны снижать опухолевую агрессивность и уменьшать риск метастазирования ряда опухолей [15, 16, 18,\n24]. С учетом полученных нами результатов воздействие\nна активность TRAP1 может сочетаться с существующими методами лечения, повышая их эффективность\nза счет нарушения метаболической адаптации и межклеточной коммуникации [27, 28].\nТаким образом, результаты данного исследования\nподтверждают информацию о центральной роли белка TRAP1 в метаболическом перепрограммировании\nи устойчивости клеток глиобластомы. Обнаруженный\nнами факт участия TRAP1 в составе экзосом указывает на дополнительные механизмы поддержания проопухолевого фенотипа, включающие межклеточный\nтранспорт шаперона и модуляцию микроокружения.\nУглубленное понимание этих процессов может способствовать разработке новых таргетных препаратов,\nнаправленных на подавление TRAP1 и блокировку\nключевых этапов межклеточной коммуникации в глиобластоме.\nЗАКЛЮЧЕНИЕ\nПроведенное исследование демонстрирует, что белок\nTRAP1 играет значимую роль в развитии и прогрессировании глиобластомы за счет регуляции метаболического перепрограммирования и поддержания\nвыживаемости опухолевых клеток. Сверхэкспрессия\nTRAP1 в клетках глиомы T98G сопровождается повышением уровня гликолитических ферментов, снижением синтеза АТФ и, как следствие, усилением «гликолитического» фенотипа. Подавление экспрессии\nTRAP1 с помощью кшРНК приводит к снижению выживаемости опухолевых клеток и активации апоптоза,\nчто подтверждает важность данной мишени для роста\nи сохранения метаболического статуса глиобластомы.\nДополнительно выявлено, что TRAP1 присутствует\nв экзосомах, что дает основания полагать, что экзосомальный TRAP1 вовлечен в межклеточную коммуникацию и может способствовать опухолевому метаболическому перепрограммированию в микроокружении.\nВ нашем исследовании есть некоторые ограничения.\nВ нашем будущем исследовании мы подтвердим эти\nрезультаты с помощью экспериментальных методов\nна животных моделях, других линиях клеток человека\nи тканях/жидкостях. Все полученные результаты указывают на потенциальную терапевтическую ценность\nингибирования TRAP1 как стратегии борьбы с глиобластомой, позволяющей существенно снизить ее агрессивность и повысить эффективность существующих\nметодов лечения. В дальнейшем изучение механизмов,\nпосредством которых экзосомальный TRAP1 влияет\nна клетки-реципиенты, а также разработка специфических ингибиторов TRAP1 могут открыть новые подходы к диагностике и терапии данного заболевания."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nГлиобластома по-прежнему остается одной из наиболее злокачественных опухолей центральной нервной\nсистемы (ЦНС), характеризуясь крайне неблагоприятным прогнозом, несмотря на достижения в области\nдиагностики и лечения [1, 2]. Успехи в изучении молекулярной природы глиобластомы позволили выявить\nряд ключевых сигнальных путей и генетических изменений, однако гетерогенность опухоли, а также сложность ее микроокружения затрудняют разработку универсальных и высокоэффективных терапевтических\nстратегий [3, 4]. Ключевым аспектом прогрессирования глиобластомы является способность опухолевых\nклеток к быстрому метаболическому переориентированию и адаптации к изменяющимся условиям среды,\nв частности к гипоксии, характерной для обширных\nнекротических зон внутри самой опухоли [5–7]. Такое\nперепрограммирование метаболизма обеспечивает\nинтенсивный рост и пролиферацию клеток, а также\nнередко ведет к формированию лекарственной устойчивости. В контексте этих процессов возрастающий\nинтерес вызывает семейство шаперонов HSP90, к которому относится белок 1, ассоциированный с рецептором TNF (TRAP1) [8–10]. TRAP1 изначально рассматривался как регулятор митохондриального гомеостаза\nи апоптоза, однако последующие исследования показали, что он обладает гораздо более широкими функциями, включая участие в процессах трансдукции сигнала,\nподдержании энергетического баланса, а также формировании резистентности опухолевых клеток к химиои лучевой терапии [11, 12]. Многие работы указывают\nна то, что TRAP1 может переключать метаболизм опухолевых клеток с окислительного фосфорилирования\nна аэробный гликолиз, давая опухоли дополнительные\nпреимущества в условиях гипоксии и ограниченных\nэнергетических ресурсов [13, 14]. Особенно интересно,\nчто данная перестройка метаболического статуса часто\nсопровождается повышением устойчивости к апоптотическим сигналам, что еще более усугубляет проблему\nлечения глиобластомы [11].\nЭкзосомы являются наиболее широко изученной группой среди двух основных подгрупп (экзосомы и микровезикулы) внеклеточных везикул (ВВ), высвобождаемых из клеток млекопитающих. Экзосомы возникают\nиз мембран мультивезикулярных телец (МВТ) и имеют\nчашеобразную морфологию под электронным микроскопом с диаметром от 50 до 150 нм. Экзосомы широко изучались на предмет их роли во внутриклеточной\nкоммуникации, особенно во время развития и прогрессирования опухоли. Ассоциированные с экзосомами\nРНК, некодирующие РНК, белки, ДНК и даже метаболиты могут изменять судьбу клеток-реципиентов посредством аутокринной и паракринной сигнализации.\nДоставляемые опухолевыми экзосомами биологические компоненты взаимодействуют со стромальными\nклетками в микроокружении опухоли, модулируют\nпрогрессирование опухоли, ангиогенез, метастазирование и уклонение от иммунного ответа. Измененный метаболизм клеток является одним из признаков злокачественных новообразований, в том числе глиобластома.\nЭкзогенные экзосомы могут вызывать метаболическое\nперепрограммирование и тем самым поддерживать\nрост опухоли. Экзосомальный TRAP1, модулирующий\nопухолевый метаболизм, представляет интерес как потенциальная терапевтическая мишень для изучения его\nроли в онкогенезе глиобластомы, а также для улучшения диагностики и терапии. Более того, повышенное\nсодержание TRAP1 в экзосомах может служить маркером прогрессирования глиобластомы и коррелировать\nс неблагоприятным клиническим исходом. В этой связи\nблокирование TRAP1 или воздействие на механизмы\nэкзосомального транспорта могут стать перспективными направлениями в создании новых противоопухолевых препаратов.\nНастоящее исследование нацелено на углубленный анализ роли TRAP1 в метаболическом перепрограммировании клеток глиобластомы и изучение вклада экзосомального TRAP1 в агрессивность опухоли. Выявление\nключевых молекулярных взаимодействий, лежащих\nв основе метаболической пластичности глиобластомы, может способствовать разработке новых методов\nтерапии, направленных на снижение резистентности\nопухоли к лечению, а также на подавление межклеточных коммуникационных механизмов, способствующих\nпрогрессированию глиобластомы.\nМАТЕРИАЛЫ И МЕТОДЫ\nКультивирование клеток\nКлеточная линия глиом T98G и клеточная линия астроцитов головного мозга человека (HBA) были получены\nиз Китайской национальной инфраструктуры ресурсов\nклеточных линий (http://www.cellresource.cn/, Китай).\nКлеточные линии хранили в Модифицированной среде\nОрла Дульбекко (DMEM) с высоким содержанием глюкозы, дополненной 10 % фетальной бычьей сывороткой\n(FBS) и 100 ЕД/мл пенициллина или 0,1 мг/мл стрептомицина, а также было подтверждено отсутствие контаминации микоплазмой. Клетки хранили во влажном\nинкубаторе, содержащем 5 % атмосферу CO2, при температуре 37 °C в колбе для культивирования клеток,\nстандартной для адгезивных клеток. Клетки обычно\nсубкультивировали при достижении 80 %-го слияния\nс использованием 0,25 %-го раствора трипсина-ЭДТА.\nОбразование сфероидов опухоли наблюдалось в течение 4 дней для T98G. Формирование опухолевых сфероидов ежедневно подтверждали визуально с помощью\nтринокулярного обратного микроскопа Optika XDS-2,\nоснащенного камерой ISH500, а их средние диаметры\nанализировали с помощью программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация\nУльтрацентрифугирование является «золотым стандартом» выделения экзосом из клеток. Основное преимущество этого современного метода заключается\nв том, что он производит высокообогащенные фракции\nэкзосом, а также позволяет собирать дополнительные\nфракции ВВ, а затем супернатант, не содержащий экзосомы, который образуется после высокоскоростного\nотжима. Первые шаги предназначены для лизиса клеток и удаления мертвых клеток их остатков путем последовательного центрифугирования с возрастающей\nскоростью. На каждом из этих этапов осадок выбрасывают, а надосадочную жидкость используют на следующем этапе. Конечный супернатант затем подвергают\nультрацентрифугированию при 100 000 × g для осаждения небольших везикул, соответствующих экзосомам.\nОсадок промывают большим объемом натрий-фосфатного буфера (PBS) для удаления примесей белков и центрифугируют последний раз на той же высокой скорости. Основная часть экзосом, полученных из T98G или\nHBA, имела размеры около 100 нм и морфологические\nособенности сферических, двухслойных, связанных\nс мембраной экзосом, что соответствует морфологическим характеристикам экзосом.\nЭкстракция белка из экзосом\nНабор Total Exosome RNA & Protein Isolation Kit\n(Invitrogen), номер каталога 4478545, для экстракции\nтотальной РНК и белка из экзосом предназначен для\nвыделения белков из одного обогащенного препарата\nэкзосом. Процедура экстракция белка TRAP1 из экзосом, полученных из клеточной линии глиомы T98G\nили HBA, была проведена согласно инструкции Total\nExosome RNA & Protein Isolation Kit (Invitrogen).\nАнализ жизнеспособности клеток\nПосев клеточной линии глиомы T98G подсчитывали через 2, 3 и 4 дня под инвертированным фазово-контрастным микроскопом. Для анализа\n3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид (МТТ)-теста в каждую лунку добавляли реагент МТТ в дозе 5 мг/мл (Roche Diagnostics, Шанхай,\nКитай) и дополнительно инкубировали в течение 2 ч\nпри 37 °C. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1 % DMSO для растворения фиолетовых\nкристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопии.\nРезультаты представлены как средние значения из трех\nнезависимых экспериментов, проведенных в трех повторах.\nАнализ гибели клеток с помощью\nаннексина V‑FITC/PI\nНабор для определения апоптоза клеток аннексин V-флуоресцеин-5-изотиоцианат (FITC) (5 мкл)\nи пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай)\nбыл использован для измерения апоптоза клеточной\nлинии глиом T98G. Опухолевые клетки с плотностью\n3×10 5 клеток были высеяны на 6-луночные планшеты\nв течение 24 ч. Как плавающие, так и адгезивные клетки\nсобирали и дважды промывали холодным PBS. Затем\nклетки ресуспендировали в 500 мкл связывающего буфера и инкубировали с 5 мкл Annexin V-FITC и 5 мкл PI\nв течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США)\nи скорость апоптоза клеток анализировали с помощью\nпакета програмного обеспечения FLOWJO для анализа\nданных проточной цитометрии (v10; BD Biosciences).\nАТФ-мониторинг\nАТФ определяли с помощью набора ATP Bioluminescence\nAssay Kit HS II от компании Roshe в соответствии с инструкциями производителя и нормализовали уровень\nАТФ на микрограмм белка.\nВестерн-блот анализ\nДля проведения вестерн-блот анализа использовали\nследующие антитела: 1) β-актин (1:1000; Zhongshan,\nПекин, Китай); 2) первичное мышиное анти-TRAP1\n(1:1000; OriGene Technologies Inc., Роквилл, Мэриленд, США), антитело против гена предрасположенности к опухолям 101 (англ. tumor susceptibility\ngene 101, TSG101) [EPR7130 (B)] (1:1000); ab125011,\nAbcam), антитело против белка, взаимодействующее\nс ALG-2 (связанный с апоптозом ген 2) X (англ. ALG-2\n(apoptosis-linked gene 2)-interacting protein X, ALIX))\n[EPR23653–32] (1:1000; ab275377, Abcam), антитело\nпротив CD63 [EPR5702] (1:1000; ab134045, Abcam),\nмоноклональные антитела к гексокиназе I (C35C4)\nкролика (1:1000; #2024, Cell Signaling Technology), кроличьи mAb к гексокиназе II (C64G5) (1:1000; #2867, Cell\nSignaling Technology), PKM1 и PKM2 (C103A3) кроличьи mAb (1: 1000; #3190, Cell Signaling Technology),\nPKM2 (D78A4) Кроличьи mAb XP® (1:1000; # 4053S,\nCell Signaling Technology), кроличьи mAb LDHA\n(C4B5) (1:1000; #3582, Cell Signaling Technology), моноклональные антитела кролика фосфофруктокиназа,\nтромбоциты (англ. phosphofructokinase, platelet, PFKP)\n(D4B2) (1:1000; #8164, Cell Signaling Technology), кроличьи моноклональные антитела к пируватдегидрогеназе (C54G1) (1:1000; #3205, Cell Signaling Technology)\nи β-актин (1:1000; Zhongshan, Пекин, Китай). Количественную оценку полос вестерн-блот анализа проводили с использованием программного обеспечения\nOdyssey v1.2 (Gene Company Limited, Гонконг, Китай)\nпутем измерения интенсивности полосы для каждой\nгруппы и нормализации ее по β-актину в качестве внутреннего контроля.\nЛентивирусная трансдукция\nСтабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц (pGFPC-shLenti), содержащих гены, кодирующие короткую\nшпилечную РНК (кшРНК), нацеленные на TRAP1\n(#1: 5′-CGACATGAAACCGTCCATGTT-3′; #2:\n5′-AAACATGAGTTCCAGGCCGAG-3′) (GenePharma Co.,\nШанхай, Китай). Трансдукцию лентивирусных частиц\nпроводили с клетками в среде, содержащей 8 мкг/мл\nполибрена (Solarbio). Через 18 часов эффективность\nтрансдукции проверяли методом проточной цитометрии. Трансдуцированные клетки культивировали\nв среде, свободной от лентивирусных частиц, в течение\nеще 72 часов, а затем использовали 1 мкг/мл пуромицина (Solarbio) для отбора клонов со стабильной экспрессией кшРНК. Вестерн-блот использовали для подтверждения снижения экспрессии белка TRAP1.\nСтатистический анализ\nСтатистический анализ проводился с использованием программного обеспечения SPSS версии 22.0 и различных пакетов программного обеспечения R (версия v.3.6.1). Графики были построены с использованием\nпрограммного обеспечения GraphPad Prism версии 8.0.\nПри необходимости применяли t-критерий Стьюдента,\nANOVA, анализ хи-квадрат или критерий Манна —\nУитни. Вероятность p < 0,05 (*) или p < 0,001 (**) считалась статистически значимой.\nРЕЗУЛЬТАТЫ\nИзменение уровня экспрессии\nTRAP1 на уровне белка при глиобластоме\nЧтобы изучить взаимосвязь между экспрессией эндогенного (клеточного) TRAP1 и экзосомальным\nTRAP1 на уровне белка, мы использовали клеточную\nлинию глиомы T98G и HBA как негативный контроль\nс помощью вестерн-блот анализа. Стабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц, содержащих гены, кодирующие\nкшРНК, нацеленные на TRAP1 (кшРНК TRAP1). Экзосомы были очищены из супернатанта клеточной культуры T98G для наблюдения за морфологией с помощью\nтрансмиссионной электронной микроскопии. Кроме\nтого, вестерн-блот анализ был проведен для выявления экспрессии типичных поверхностных маркеров\nэкзосом (кластер дифференцировки 63 (CD63), ALIX\nи TSG101) и выявления экспрессии TRAP1 на уровне\nбелка. Результаты продемонстрировали, что в клеточной линии HBA (негативный контроль) TRAP1 имел\nумеренный уровень экспрессии, а экзосомы —\ncниженный уровень экспрессии TRAP1. Более того,\nприменение кшTRAP1 по отношению к клеточной линии T98G продемонстрировало снижение экспрессии\nTRAP1 в клетках. Кроме того, экзосомы, изолированные из клеточной линии T98G, также содержали низкий уровень экспрессии TRAP1 после трансфекции\nкшTRAP1 (рис. 1). Данные результаты показывают, что\nнормальные клетки HBA демонстрируют умеренный\nуровень экспрессии или его практическое отсутствие\nв выделяемых ими экзосомах. Тем не менее использование кшTRAP1 практически полностью инактивирует\nTRAP1 как в опухолевых клетках, так и в выделяемых\nими экзосомах. Это говорит о том, что TRAP1 сверхэкспрессирован.\nTRAP1 как потенциальный ключевой\nрегулятор метаболического\nперепрограммирования при глиобластоме\nЧтобы исследовать функцию экзосом с высокой экспрессией белка TRAP1, мы провели результаты\nвестерн-блот анализа для выбранных гликолитических ферментов. Экспрессия гексокиназы 1 (HK1/2),\nМ1/2 пируваткиназы (PKM1/2), лактатдегидрогеназы А\n(ЛДГА), фосфофруктокиназы тромбоцитов (PFKP)\nи пируватдегидрогеназы в пути гликолиза была обнаружена с помощью вестерн-блот анализа (рис. 2). Результаты показали, что высокая экспрессия TRAP1 способствует экспрессии этих гликолитических ферментов,\nтогда как снижение экспрессии TRAP1 с помощью\nкшРНК TRAP1 снижает их экспрессию. Обработка\nклеток экзосомами с высокой экспрессией TRAP1 повышала экспрессию этих гликолитических ферментов\n(рис. 2).\nСледовательно, высокая экспрессия TRAP1 способствует гликолизу. Чтобы выяснить, входит ли пируват\nв результате гликолиза непосредственно в цикл трикарбоновых кислот (ЦТК) или катализируется лактатдегидрогеназой с образованием молочной кислоты,\nмы измерили АТФ, вырабатываемый этими клетками\n(рис. 3).\nМы обнаружили, что высвобождение АТФ уменьшалось в клетках глиомы с высокой экспрессией\nTRAP1 и увеличивалось после снижения экспрессии\nTRAP1, а обработка клеток экзосомами с высокой\nэкспрессией TRAP1 также снижала высвобождение\nАТФ. Таким образом, TRAP1 усиливает пути гликолиза\nв клетках глиобластомы.\nИнгибирование TRAP1 и анализ\nжизнеспособности опухолевых клеток\nС помощью MTT-анализа мы провели оценку влияния\nэкспрессии эндогенного (клеточного) TRAP1 на жизнеспособность клеточной линии глиом T98G в течение\n12, 24, 36 и 48 часов. Было выяснено, что по сравнению\nс HBA (негативный контроль) трансфекция клеток\nT98G кшРНК TRAP1 привела к значительному снижению жизнеспособности опухолевых клеток в районе\n36 и 48 часов (рис. 4 А). Более того, понижение экспрессии TRAP1 в клетках T98G коррелировало с усилением\nапоптоза (рис. 4 Б). Мы считаем, что нарушение регуляции экспрессии TRAP1 является отличительной чертой\nглиобластомы, включая устойчивость опухолевых клеток к гибели и перепрогррамирование энергетического\nметаболизма. Это указывает на то, что возможно и эффективно регулировать развитие и прогрессирование\nглиобластомы путем ингибирования TRAP1.\nОБСУЖДЕНИЕ\nПолученные нами данные подтверждают ключевую\nроль белка TRAP1 в регуляции метаболических процессов и устойчивости клеток глиобластомы к индуцированному апоптозу. Во-первых, мы продемонстрировали, что в клеточной линии глиом T98G TRAP1 обладает\nвыраженной сверхэкспрессией по сравнению с HBA,\nчто согласуется с ранее опубликованными результатами, указывающими на тесную связь между высоким\nуровнем TRAP1 и агрессивным фенотипом опухоли\n[11, 12]. Во-вторых, обнаружение TRAP1 в составе экзосом, выделяемых T98G, указывает на возможную вовлеченность этого белка в межклеточную коммуникацию, которая, согласно ряду работ, играет решающую\nроль в метаболической перестройке опухолевых клеток\nи их взаимодействии со стромальными элементами\nмикроокружения [15–17].\nВысокий уровень TRAP1 в сочетании с повышенной\nэкспрессией гликолитических ферментов, таких как\nHK1/2, PKM1/2, LDHA и PFKP, и сниженным синтезом\nАТФ демонстрирует, что глиобластома активно переключается на аэробный гликолиз (эффект Варбурга),\nчто обеспечивает быстрый рост и пролиферацию,\nа также формирует условия для развития лекарственной устойчивости [5, 6, 13, 14]. При этом подавление\nэкспрессии TRAP1 методами генетического нокдауна\nприводило к снижению жизнеспособности опухолевых\nклеток и к возрастанию уровня апоптоза, что отражает\nвысокую зависимость глиобластомы от этого шаперона\nдля поддержания энергетического баланса и выживания [7, 11]. Данные результаты согласуются с утверждением, что TRAP1 способен регулировать митохондриальные функции и метаболические пути, влияя\nна баланс между окислительным фосфорилированием\nи гликолизом [8–10, 12].\nПрисутствие TRAP1 в экзосомах согласуется с современными представлениями о том, что ВВ активно вовлечены в формирование опухолевого микроокружения и могут транспортировать широкий спектр белков,\nмикроРНК и других сигнальных молекул [15, 16, 18].\nПодобный перенос биоматериала через экзосомы способен усиливать проопухолевые сигналы и способствовать инвазии, ангиогенезу и развитию резистентности\nклеток к терапии [17, 19]. Более того, ряд современных\nисследований подчеркивает растущую значимость экзосом в контексте таргетной терапии глиобластомы,\nвключая использование ингибиторов Hsp90-семействаи подавление передачи различных метаболических\nфакторов [20, 21].\nНаши данные свидетельствуют, что TRAP1 может быть\nодной из ключевых молекул в этих процессах, поскольку\nон непосредственно задействован в поддержании митохондриального гомеостаза и регуляции энергетического\nметаболизма [22–24]. Особо стоит отметить, что перекрестная регуляция TRAP1 и гликолитических ферментов не только формирует «быстрый» способ получения\nэнергии в условиях гипоксии, но и обеспечивает опухолевым клеткам дополнительные строительные блоки для\nсинтеза нуклеотидов, белков и липидов, необходимых\nдля их активного размножения [13, 14]. Это объясняет,\nпочему нарушение экспрессии TRAP1 может приводить\nк быстрому подавлению роста опухолевых клеток и усилению проапоптотических сигналов. С другой стороны,\nсверхэкспрессия TRAP1, вероятно, способствует поддержанию клеточного гомеостаза в условиях терапевтического воздействия, что может объяснять возникновение резистентности к химио- и лучевой терапии [11,\n25]. Современные работы подчеркивают, что модуляция\nактивности TRAP1 способна влиять на ряд сигнальных\nкаскадов, формирующих устойчивость опухоли и ее\nспособность к быстрому метаболическому переключению [26]. Наконец, учитывая, что одна из возможных\nстратегий борьбы с глиобластомой — это подавление\nметаболических путей опухоли, блокирование функции TRAP1 или снижение его уровня экспрессии может рассматриваться как потенциально перспективный\nподход к терапии [5, 23]. В ряде экспериментальных исследований показано, что ингибиторы Hsp90-семейства,\nа также вмешательства, влияющие на биогенез экзосом,\nспособны снижать опухолевую агрессивность и уменьшать риск метастазирования ряда опухолей [15, 16, 18,\n24]. С учетом полученных нами результатов воздействие\nна активность TRAP1 может сочетаться с существующими методами лечения, повышая их эффективность\nза счет нарушения метаболической адаптации и межклеточной коммуникации [27, 28].\nТаким образом, результаты данного исследования\nподтверждают информацию о центральной роли белка TRAP1 в метаболическом перепрограммировании\nи устойчивости клеток глиобластомы. Обнаруженный\nнами факт участия TRAP1 в составе экзосом указывает на дополнительные механизмы поддержания проопухолевого фенотипа, включающие межклеточный\nтранспорт шаперона и модуляцию микроокружения.\nУглубленное понимание этих процессов может способствовать разработке новых таргетных препаратов,\nнаправленных на подавление TRAP1 и блокировку\nключевых этапов межклеточной коммуникации в глиобластоме.\nЗАКЛЮЧЕНИЕ\nПроведенное исследование демонстрирует, что белок\nTRAP1 играет значимую роль в развитии и прогрессировании глиобластомы за счет регуляции метаболического перепрограммирования и поддержания\nвыживаемости опухолевых клеток. Сверхэкспрессия\nTRAP1 в клетках глиомы T98G сопровождается повышением уровня гликолитических ферментов, снижением синтеза АТФ и, как следствие, усилением «гликолитического» фенотипа. Подавление экспрессии\nTRAP1 с помощью кшРНК приводит к снижению выживаемости опухолевых клеток и активации апоптоза,\nчто подтверждает важность данной мишени для роста\nи сохранения метаболического статуса глиобластомы.\nДополнительно выявлено, что TRAP1 присутствует\nв экзосомах, что дает основания полагать, что экзосомальный TRAP1 вовлечен в межклеточную коммуникацию и может способствовать опухолевому метаболическому перепрограммированию в микроокружении.\nВ нашем исследовании есть некоторые ограничения.\nВ нашем будущем исследовании мы подтвердим эти\nрезультаты с помощью экспериментальных методов\nна животных моделях, других линиях клеток человека\nи тканях/жидкостях. Все полученные результаты указывают на потенциальную терапевтическую ценность\nингибирования TRAP1 как стратегии борьбы с глиобластомой, позволяющей существенно снизить ее агрессивность и повысить эффективность существующих\nметодов лечения. В дальнейшем изучение механизмов,\nпосредством которых экзосомальный TRAP1 влияет\nна клетки-реципиенты, а также разработка специфических ингибиторов TRAP1 могут открыть новые подходы к диагностике и терапии данного заболевания."],"dc.subject.ru":["глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.title.ru":["Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["19-27"],"dc.rights":["CC BY 4.0"],"dc.section":["ORIGINAL STUDIES","ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.section.en":["ORIGINAL STUDIES"],"dc.section.ru":["ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"author_keyword":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"author_ac":["и. ф. гареев\n|||\nИ. Ф. Гареев","i. f. gareev\n|||\nI. F. Gareev","о. а. бейлерли\n|||\nО. А. Бейлерли","o.a. beylerli\n|||\nO.A. Beylerli","жанг хонгли\n|||\nЖанг Хонгли","zhang hongli\n|||\nZhang Hongli","с. а. румянцев\n|||\nС. А. Румянцев","s. a. roumiantsev\n|||\nS. A. Roumiantsev"],"author_filter":["и. ф. гареев\n|||\nИ. Ф. Гареев","i. f. gareev\n|||\nI. F. Gareev","о. а. бейлерли\n|||\nО. А. Бейлерли","o.a. beylerli\n|||\nO.A. Beylerli","жанг хонгли\n|||\nЖанг Хонгли","zhang hongli\n|||\nZhang Hongli","с. а. румянцев\n|||\nС. А. Румянцев","s. a. roumiantsev\n|||\nS. A. Roumiantsev"],"dc.author.name":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"dc.author.name.ru":["И. Ф. Гареев","О. А. Бейлерли","Жанг Хонгли","С. А. Румянцев"],"dc.author.affiliation":["Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Central Research Laboratory, Bashkir State Medical University ; RUDN University","Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии","Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.affiliation.ru":["Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии"],"dc.author.full":["И. Ф. Гареев | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","I. F. Gareev | Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","О. А. Бейлерли | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","O.A. Beylerli | Central Research Laboratory, Bashkir State Medical University ; RUDN University","Жанг Хонгли | Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","Zhang Hongli | First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","С. А. Румянцев | Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии","S. A. Roumiantsev | Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.full.ru":["И. Ф. Гареев | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","О. А. Бейлерли | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Жанг Хонгли | Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","С. А. Румянцев | Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии"],"dc.author.name.en":["I. F. Gareev","O.A. Beylerli","Zhang Hongli","S. A. Roumiantsev"],"dc.author.affiliation.en":["Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","Central Research Laboratory, Bashkir State Medical University ; RUDN University","First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.full.en":["I. F. Gareev | Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","O.A. Beylerli | Central Research Laboratory, Bashkir State Medical University ; RUDN University","Zhang Hongli | First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","S. A. Roumiantsev | Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0002-4965-0835\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440\\u0430\\u043b\\u044c\\u043d\\u0430\\u044f \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0430\\u044f \\u043b\\u0430\\u0431\\u043e\\u0440\\u0430\\u0442\\u043e\\u0440\\u0438\\u044f, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041d.\\u0418. \\u041f\\u0438\\u0440\\u043e\\u0433\\u043e\\u0432\\u0430\", \"full_name\": \"\\u0418. \\u0424. \\u0413\\u0430\\u0440\\u0435\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4965-0835\", \"affiliation\": \"Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University\", \"full_name\": \"I. F. Gareev\"}}, {\"ru\": {\"orcid\": \"0000-0002-6149-5460\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440\\u0430\\u043b\\u044c\\u043d\\u0430\\u044f \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0430\\u044f \\u043b\\u0430\\u0431\\u043e\\u0440\\u0430\\u0442\\u043e\\u0440\\u0438\\u044f, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0434\\u0440\\u0443\\u0436\\u0431\\u044b \\u043d\\u0430\\u0440\\u043e\\u0434\\u043e\\u0432 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041f\\u0430\\u0442\\u0440\\u0438\\u0441\\u0430 \\u041b\\u0443\\u043c\\u0443\\u043c\\u0431\\u044b\", \"full_name\": \"\\u041e. \\u0410. \\u0411\\u0435\\u0439\\u043b\\u0435\\u0440\\u043b\\u0438\"}, \"en\": {\"orcid\": \"0000-0002-6149-5460\", \"affiliation\": \"Central Research Laboratory, Bashkir State Medical University ; RUDN University\", \"full_name\": \"O.A. Beylerli\"}}, {\"ru\": {\"orcid\": \"0009-0001-4036-519X\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u0430\\u0444\\u0444\\u0438\\u043b\\u0438\\u0440\\u043e\\u0432\\u0430\\u043d\\u043d\\u044b\\u0439 \\u0433\\u043e\\u0441\\u043f\\u0438\\u0442\\u0430\\u043b\\u044c \\u0425\\u0430\\u0440\\u0431\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\\u0430 ; \\u0418\\u043d\\u0441\\u0442\\u0438\\u0442\\u0443\\u0442 \\u043d\\u0435\\u0439\\u0440\\u043e\\u043d\\u0430\\u0443\\u043a \\u043f\\u0440\\u043e\\u0432\\u0438\\u043d\\u0446\\u0438\\u0438 \\u0425\\u044d\\u0439\\u043b\\u0443\\u043d\\u0446\\u0437\\u044f\\u043d\", \"full_name\": \"\\u0416\\u0430\\u043d\\u0433 \\u0425\\u043e\\u043d\\u0433\\u043b\\u0438\"}, \"en\": {\"orcid\": \"0009-0001-4036-519X\", \"affiliation\": \"First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute\", \"full_name\": \"Zhang Hongli\"}}, {\"ru\": {\"orcid\": \"0000-0002-7418-0222\", \"affiliation\": \"\\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041d.\\u0418. \\u041f\\u0438\\u0440\\u043e\\u0433\\u043e\\u0432\\u0430 ; \\u041d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440 \\u044d\\u043d\\u0434\\u043e\\u043a\\u0440\\u0438\\u043d\\u043e\\u043b\\u043e\\u0433\\u0438\\u0438\", \"full_name\": \"\\u0421. \\u0410. \\u0420\\u0443\\u043c\\u044f\\u043d\\u0446\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-7418-0222\", \"affiliation\": \"Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre\", \"full_name\": \"S. A. Roumiantsev\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1084"],"dc.citation":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2","Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.citation.ru":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.citation.en":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8923"],"dc.date.accessioned_dt":"2025-07-09T13:58:57Z","dc.date.accessioned":["2025-07-09T13:58:57Z"],"dc.date.available":["2025-07-09T13:58:57Z"],"publication_grp":["123456789/8923"],"bi_4_dis_filter":["exosomes\n|||\nexosomes","гликолиз\n|||\nгликолиз","глиобластома\n|||\nглиобластома","кшрнк\n|||\nкшРНК","апоптоз\n|||\nапоптоз","apoptosis\n|||\napoptosis","trap1\n|||\nTRAP1","экзосомы\n|||\nэкзосомы","shrna\n|||\nshRNA","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","glioblastoma\n|||\nglioblastoma","metabolic reprogramming\n|||\nmetabolic reprogramming","glycolysis\n|||\nglycolysis"],"bi_4_dis_partial":["TRAP1","glycolysis","экзосомы","apoptosis","апоптоз","гликолиз","glioblastoma","shRNA","exosomes","глиобластома","metabolic reprogramming","кшРНК","метаболическое перепрограммирование"],"bi_4_dis_value_filter":["TRAP1","glycolysis","экзосомы","apoptosis","апоптоз","гликолиз","glioblastoma","shRNA","exosomes","глиобластома","metabolic reprogramming","кшРНК","метаболическое перепрограммирование"],"bi_sort_1_sort":"analysis and functional significance of trap1 in glioblastoma","bi_sort_3_sort":"2025-07-09T13:58:57Z","read":["g0"],"_version_":1837178068080263168}]},"facet_counts":{"facet_queries":{},"facet_fields":{},"facet_dates":{},"facet_ranges":{},"facet_intervals":{}},"highlighting":{"2-8020":{"dc.fullRISC.ru":[" контрольной группой: \n22,5 ± 4,1 и 26,9 ± 5,3 мин соответственно (p = 0,005). В предоперационном периоде у"],"dc.citation.en":[" эндовенозной лазерной облитерации. Флебология. 2019;13(2):146–53. DOI: 10.17116/flebo201913021146"],"dc.fullRISC":[" контрольной группой: \n22,5 ± 4,1 и 26,9 ± 5,3 мин соответственно (p = 0,005). В предоперационном периоде у"],"dc.citation.ru":[" эндовенозной лазерной облитерации. Флебология. 2019;13(2):146–53. DOI: 10.17116/flebo201913021146"],"dc.citation":[" эндовенозной лазерной облитерации. Флебология. 2019;13(2):146–53. DOI: 10.17116/flebo201913021146"]},"2-8023":{"dc.fullHTML":[">

2,58 (2,40; 2,80)

2,53 (2,34; 2,68)53,5 (34,7; 74,6) пг/мл (тест Вилкоксона p < 0,001). При этом у 67"],"dc.fullHTML.ru":[">

2,58 (2,40; 2,80)

2,53 (2,34; 2,68)53,5 (34,7; 74,6) пг/мл (тест Вилкоксона p < 0,001). При этом у 67"]},"2-8031":{"dc.citation.en":[" местнораспространенным локорегиональным рецидивом рака прямой кишки. Хирургия. Журнал им. Н.И. Пирогова. 2022;12-2:44–53"],"dc.citation.ru":[" местнораспространенным локорегиональным рецидивом рака прямой кишки. Хирургия. Журнал им. Н.И. Пирогова. 2022;12-2:44–53"],"dc.citation":[" местнораспространенным локорегиональным рецидивом рака прямой кишки. Хирургия. Журнал им. Н.И. Пирогова. 2022;12-2:44–53"]},"2-7916":{},"2-7910":{},"2-8038":{"dc.fullRISC.ru":[" данной клинической ситуации [53]. УЗИ\nособенно эффективно для визуализации образований,\nрасположенных"],"dc.citation.en":[" in bronchoalveolar lavages — A cancer centre’s 10-year experience. Cytopathology. 2022;33(4):449–53."],"dc.fullRISC":[" данной клинической ситуации [53]. УЗИ\nособенно эффективно для визуализации образований,\nрасположенных"],"dc.citation.ru":[" in bronchoalveolar lavages — A cancer centre’s 10-year experience. Cytopathology. 2022;33(4):449–53."],"dc.citation":[" in bronchoalveolar lavages — A cancer centre’s 10-year experience. Cytopathology. 2022;33(4):449–53."]},"2-8043":{"dc.fullRISC.ru":[" год. Средний возраст — 53 года, а соотношение мужского и женского пола составило 93:13.\nОсновными"],"dc.fullRISC":[" год. Средний возраст — 53 года, а соотношение мужского и женского пола составило 93:13.\nОсновными"]},"2-8033":{"dc.fullRISC.ru":[" изменениями или декомпенсацией\nсопутствующих заболеваний. Восстановительные вмешательства выполнены у всех 53"],"dc.fullRISC":[" изменениями или декомпенсацией\nсопутствующих заболеваний. Восстановительные вмешательства выполнены у всех 53"]},"2-8034":{"dc.fullRISC.ru":[" программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация"],"dc.fullRISC":[" программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация"]}}} -->

По вашему запросу найдено документов: 19

Страница 2 из 2

Модификация эндовенозной лазерной коагуляции большой подкожной вены у пациентов с варикозной болезнью на стадии стихшего тромбофлебита

Обоснование нового подхода к хирургическому лечению пациентов с первичным гиперпаратиреозом на основании анализа динамики лабораторных показателей костного метаболизма
А. В. Величко, A. V. Velichko, Ю. И. Ярец, Yu. I. Yarets, З. А. Дундаров, Z. A. Dundarov (Креативная хирургия и онкология, №1, 2025)

Применение дополненной реальности в хирургии рецидивной опухоли малого таза: клинический случай

О механизме фармакологической регуляции неоиннервации в субхондральной кости хондроитин сульфатом на поздних стадиях остеоартрита

Особенности проявлений орофациальной и соматической боли у пациентов с болезнью Крона и язвенным колитом

Дифференциальная диагностика периферического образования легкого: обзор возможностей и ограничений современных методов

G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" [21]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [22]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [23]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [24]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [25]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [26]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [27]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [28]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [29]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [30]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [31]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [32]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [33]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [34]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [35]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [36]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [37]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [38]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [39]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [40]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [41]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.ru"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.en"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.identifier.uri"]=> array(1) { [0]=> string(36) "http://hdl.handle.net/123456789/8932" } ["dc.date.accessioned_dt"]=> string(20) "2025-07-09T13:59:02Z" ["dc.date.accessioned"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["dc.date.available"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["publication_grp"]=> array(1) { [0]=> string(14) "123456789/8932" } ["bi_4_dis_filter"]=> array(10) { [0]=> string(45) "madelung’s disease ||| Madelung’s disease" [1]=> string(23) "lipectomy ||| lipectomy" [2]=> string(133) "диффузный симметричный липоматоз ||| диффузный симметричный липоматоз" [3]=> string(79) "шеи новообразования ||| шеи новообразования" [4]=> string(45) "липэктомия ||| липэктомия" [5]=> string(63) "diffuse symmetric lipomatosis ||| diffuse symmetric lipomatosis" [6]=> string(61) "adipose tissue proliferation ||| adipose tissue proliferation" [7]=> string(103) "жировой ткани разрастание ||| жировой ткани разрастание" [8]=> string(71) "болезнь маделунга ||| болезнь Маделунга" [9]=> string(33) "neck neoplasms ||| neck neoplasms" } ["bi_4_dis_partial"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_4_dis_value_filter"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_sort_1_sort"]=> string(99) "systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case" ["bi_sort_3_sort"]=> string(20) "2025-07-09T13:59:02Z" ["read"]=> array(1) { [0]=> string(2) "g0" } ["_version_"]=> int(1837178072511545344) } -->
Системный доброкачественный липоматоз (болезнь Маделунга): опыт хирургического лечения (клинический случай)

Операция Гартмана, или первичный анастомоз под прикрытием проксимальной стомы после резекции дистальных отделов ободочной кишки и передней резекции прямой кишки при плановых и отсроченных оперативных вмешательствах

Анализ и функциональная значимость белка TRAP1 при глиобластоме

Страница 2 из 2