G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845","Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.ru":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.en":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8932"],"dc.date.accessioned_dt":"2025-07-09T13:59:02Z","dc.date.accessioned":["2025-07-09T13:59:02Z"],"dc.date.available":["2025-07-09T13:59:02Z"],"publication_grp":["123456789/8932"],"bi_4_dis_filter":["madelung’s disease\n|||\nMadelung’s disease","lipectomy\n|||\nlipectomy","диффузный симметричный липоматоз\n|||\nдиффузный симметричный липоматоз","шеи новообразования\n|||\nшеи новообразования","липэктомия\n|||\nлипэктомия","diffuse symmetric lipomatosis\n|||\ndiffuse symmetric lipomatosis","adipose tissue proliferation\n|||\nadipose tissue proliferation","жировой ткани разрастание\n|||\nжировой ткани разрастание","болезнь маделунга\n|||\nболезнь Маделунга","neck neoplasms\n|||\nneck neoplasms"],"bi_4_dis_partial":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_4_dis_value_filter":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_sort_1_sort":"systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case","bi_sort_3_sort":"2025-07-09T13:59:02Z","read":["g0"],"_version_":1837178072511545344},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:56.795Z","search.uniqueid":"2-8030","search.resourcetype":2,"search.resourceid":8030,"handle":"123456789/8919","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-1-79-84"],"dc.abstract":["

Introduction. Abdominal mesothelial cyst (AMC) is a type of mesenteric cysts of mesothelial origin. In patients with AMC and a history of diverticular disease, differential diagnosis is extremely difficult and requires the use of a correct diagnostic algorithm.

Materials and methods. A case of a 39-year-old patient with a cystic mass of the greater omentum is presented. The preliminary diagnosis was made on the basis of an ultrasound examination and an abdominal CT scan with intravenous contrast.

Results. The patient underwent a laparoscopic removal of the cystic mass of the greater omentum. The intraoperative findings confirmed the presence of a clearly defined cystic tumor originating from the greater omentum. The histologic study yielded the following macroscopic description: a thin-walled mass of gelatinous consistency, round in shape, and 8.5 cm in diameter. The outer surface was shiny and translucent, with a vascular pattern, a small amount of fatty tissue, and reddish-brown hemorrhages. The contents of the cyst were yellowish in color. The inner surface was translucent with white strands and a vascular pattern. The wall thickness varied from 0.1 to 0.3 cm. The microscopic description was as follows: fragments of adipose tissue with layers of fibrous tissue, that are lined with mesothelium in some areas. The morphology does not contradict the diagnosis of a cyst of the greater omentum.

Discussion. The described clinical case demonstrated that in patients with AMC and a history of diverticular disease, differential diagnosis is extremely difficult and requires the use of a correct diagnostic algorithm. A thorough preoperative preparation and surgical risk assessment allowed a laparoscopic surgical procedure to be performed.

Conclusion. The clinical case demonstrates that for such neoplasms, surgeons should give preference to laparoscopic access. It is also necessary to conduct a thorough differential diagnosis prior to surgery.

","

Введение. Мезотелиальная киста брюшной полости (МКБП) является разновидностью мезентериальных кист мезотелиального происхождения. Дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма.

Материалы и методы. Представлен случай кистозного образования большого сальника у пациента 39 лет. Предварительный диагноз выставлен на основании ультразвукового исследования и данных компьютерной томографии органов брюшной полости с внутривенным контрастированием. Результаты. Больному было выполнено лапароскопическое удаление кистозного новообразования большого сальника. Интраоперационная картина подтвердила наличие четко выраженной кистозной опухоли, исходящей из пряди большого сальника. Гистологическое исследование: макроскопическое описание — тонкостенное образование студенистой консистенции, округлой формы, диаметром 8,5 см. Наружная поверхность блестящая, полупрозрачная, с инъекцией сосудов, небольшим количеством жировой клетчатки и кровоизлияниями красно-бурого цвета. Содержимое кисты желтоватого цвета. Внутренняя поверхность полупрозрачная с тяжами белого цвета и инъекцией сосудов. Толщина стенки от 0,1 до 0,3 см. Микроскопическое описание: фрагменты жировой ткани с прослойками фиброзной ткани, выстланные на отдельных участках мезотелием. Морфология не противоречит диагнозу кисты большого сальника.

Обсуждение. Описанный клинический случай продемонстрировал, что дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма. Тщательная предоперационная подготовка и оценка хирургических рисков позволили выполнить хирургическое вмешательство с применением лапароскопических технологий.

Заключение. Клинический случай демонстрирует, что лапароскопический доступ при подобных новообразованиях должен быть приоритетным для хирурга. Необходимо проводить тщательную дифференциальную диагностику перед оперативным вмешательством.

"],"dc.abstract.en":["

Introduction. Abdominal mesothelial cyst (AMC) is a type of mesenteric cysts of mesothelial origin. In patients with AMC and a history of diverticular disease, differential diagnosis is extremely difficult and requires the use of a correct diagnostic algorithm.

Materials and methods. A case of a 39-year-old patient with a cystic mass of the greater omentum is presented. The preliminary diagnosis was made on the basis of an ultrasound examination and an abdominal CT scan with intravenous contrast.

Results. The patient underwent a laparoscopic removal of the cystic mass of the greater omentum. The intraoperative findings confirmed the presence of a clearly defined cystic tumor originating from the greater omentum. The histologic study yielded the following macroscopic description: a thin-walled mass of gelatinous consistency, round in shape, and 8.5 cm in diameter. The outer surface was shiny and translucent, with a vascular pattern, a small amount of fatty tissue, and reddish-brown hemorrhages. The contents of the cyst were yellowish in color. The inner surface was translucent with white strands and a vascular pattern. The wall thickness varied from 0.1 to 0.3 cm. The microscopic description was as follows: fragments of adipose tissue with layers of fibrous tissue, that are lined with mesothelium in some areas. The morphology does not contradict the diagnosis of a cyst of the greater omentum.

Discussion. The described clinical case demonstrated that in patients with AMC and a history of diverticular disease, differential diagnosis is extremely difficult and requires the use of a correct diagnostic algorithm. A thorough preoperative preparation and surgical risk assessment allowed a laparoscopic surgical procedure to be performed.

Conclusion. The clinical case demonstrates that for such neoplasms, surgeons should give preference to laparoscopic access. It is also necessary to conduct a thorough differential diagnosis prior to surgery.

"],"subject":["mesothelial cyst","abdominal cyst","cyst of the greater omentum","cystadenoma","laparoscopy","diverticular disease of the colon","differential diagnosis","мезотелиальная киста","киста брюшной полости","киста большого сальника","цистаденома","лапароскопия","дивертикулез толстой кишки","дифференциальная диагностика"],"subject_keyword":["mesothelial cyst","mesothelial cyst","abdominal cyst","abdominal cyst","cyst of the greater omentum","cyst of the greater omentum","cystadenoma","cystadenoma","laparoscopy","laparoscopy","diverticular disease of the colon","diverticular disease of the colon","differential diagnosis","differential diagnosis","мезотелиальная киста","мезотелиальная киста","киста брюшной полости","киста брюшной полости","киста большого сальника","киста большого сальника","цистаденома","цистаденома","лапароскопия","лапароскопия","дивертикулез толстой кишки","дивертикулез толстой кишки","дифференциальная диагностика","дифференциальная диагностика"],"subject_ac":["mesothelial cyst\n|||\nmesothelial cyst","abdominal cyst\n|||\nabdominal cyst","cyst of the greater omentum\n|||\ncyst of the greater omentum","cystadenoma\n|||\ncystadenoma","laparoscopy\n|||\nlaparoscopy","diverticular disease of the colon\n|||\ndiverticular disease of the colon","differential diagnosis\n|||\ndifferential diagnosis","мезотелиальная киста\n|||\nмезотелиальная киста","киста брюшной полости\n|||\nкиста брюшной полости","киста большого сальника\n|||\nкиста большого сальника","цистаденома\n|||\nцистаденома","лапароскопия\n|||\nлапароскопия","дивертикулез толстой кишки\n|||\nдивертикулез толстой кишки","дифференциальная диагностика\n|||\nдифференциальная диагностика"],"subject_tax_0_filter":["mesothelial cyst\n|||\nmesothelial cyst","abdominal cyst\n|||\nabdominal cyst","cyst of the greater omentum\n|||\ncyst of the greater omentum","cystadenoma\n|||\ncystadenoma","laparoscopy\n|||\nlaparoscopy","diverticular disease of the colon\n|||\ndiverticular disease of the colon","differential diagnosis\n|||\ndifferential diagnosis","мезотелиальная киста\n|||\nмезотелиальная киста","киста брюшной полости\n|||\nкиста брюшной полости","киста большого сальника\n|||\nкиста большого сальника","цистаденома\n|||\nцистаденома","лапароскопия\n|||\nлапароскопия","дивертикулез толстой кишки\n|||\nдивертикулез толстой кишки","дифференциальная диагностика\n|||\nдифференциальная диагностика"],"subject_filter":["mesothelial cyst\n|||\nmesothelial cyst","abdominal cyst\n|||\nabdominal cyst","cyst of the greater omentum\n|||\ncyst of the greater omentum","cystadenoma\n|||\ncystadenoma","laparoscopy\n|||\nlaparoscopy","diverticular disease of the colon\n|||\ndiverticular disease of the colon","differential diagnosis\n|||\ndifferential diagnosis","мезотелиальная киста\n|||\nмезотелиальная киста","киста брюшной полости\n|||\nкиста брюшной полости","киста большого сальника\n|||\nкиста большого сальника","цистаденома\n|||\nцистаденома","лапароскопия\n|||\nлапароскопия","дивертикулез толстой кишки\n|||\nдивертикулез толстой кишки","дифференциальная диагностика\n|||\nдифференциальная диагностика"],"dc.subject_mlt":["mesothelial cyst","abdominal cyst","cyst of the greater omentum","cystadenoma","laparoscopy","diverticular disease of the colon","differential diagnosis","мезотелиальная киста","киста брюшной полости","киста большого сальника","цистаденома","лапароскопия","дивертикулез толстой кишки","дифференциальная диагностика"],"dc.subject":["mesothelial cyst","abdominal cyst","cyst of the greater omentum","cystadenoma","laparoscopy","diverticular disease of the colon","differential diagnosis","мезотелиальная киста","киста брюшной полости","киста большого сальника","цистаденома","лапароскопия","дивертикулез толстой кишки","дифференциальная диагностика"],"dc.subject.en":["mesothelial cyst","abdominal cyst","cyst of the greater omentum","cystadenoma","laparoscopy","diverticular disease of the colon","differential diagnosis"],"title":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"title_keyword":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"title_ac":["laparoscopic removal of a mesothelial cyst of the greater omentum: clinical case\n|||\nLaparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай\n|||\nЛапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"dc.title_sort":"Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","dc.title_hl":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"dc.title_mlt":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"dc.title":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case","Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"dc.title_stored":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Laparoscopic Removal of a Mesothelial Cyst of the Greater Omentum: Clinical Case"],"dc.abstract.ru":["

Введение. Мезотелиальная киста брюшной полости (МКБП) является разновидностью мезентериальных кист мезотелиального происхождения. Дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма.

Материалы и методы. Представлен случай кистозного образования большого сальника у пациента 39 лет. Предварительный диагноз выставлен на основании ультразвукового исследования и данных компьютерной томографии органов брюшной полости с внутривенным контрастированием. Результаты. Больному было выполнено лапароскопическое удаление кистозного новообразования большого сальника. Интраоперационная картина подтвердила наличие четко выраженной кистозной опухоли, исходящей из пряди большого сальника. Гистологическое исследование: макроскопическое описание — тонкостенное образование студенистой консистенции, округлой формы, диаметром 8,5 см. Наружная поверхность блестящая, полупрозрачная, с инъекцией сосудов, небольшим количеством жировой клетчатки и кровоизлияниями красно-бурого цвета. Содержимое кисты желтоватого цвета. Внутренняя поверхность полупрозрачная с тяжами белого цвета и инъекцией сосудов. Толщина стенки от 0,1 до 0,3 см. Микроскопическое описание: фрагменты жировой ткани с прослойками фиброзной ткани, выстланные на отдельных участках мезотелием. Морфология не противоречит диагнозу кисты большого сальника.

Обсуждение. Описанный клинический случай продемонстрировал, что дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма. Тщательная предоперационная подготовка и оценка хирургических рисков позволили выполнить хирургическое вмешательство с применением лапароскопических технологий.

Заключение. Клинический случай демонстрирует, что лапароскопический доступ при подобных новообразованиях должен быть приоритетным для хирурга. Необходимо проводить тщательную дифференциальную диагностику перед оперативным вмешательством.

"],"dc.fileName":["cover_article_1056_ru_RU.jpg"],"dc.fileName.ru":["cover_article_1056_ru_RU.jpg"],"dc.fullHTML":["

ВВЕДЕНИЕ

Мезотелиальная киста брюшной полости (МКБП) является разновидностью мезентериальных кист мезотелиального происхождения. Согласно классификации МКБП Perrot выделяют доброкачественные кистозные мезотелиомы и злокачественные кистозные мезотелиомы, относящиеся к мезентериальным кистам (МК) мезотелиального происхождения. Другими типами мезентериальных кист являются непанкреатические псевдокисты, дермоидные кисты и кисты лимфатического, энтерального или урогенитального происхождения, а также истинные кисты большого сальника [1].

МКБП встречается крайне редко — в литературе описано всего около 900 случаев в период с 1980 года по настоящее время, из которых в 4 случаях была обнаружена истинная киста большого сальника [2–4]. Размеры кист колеблются от 3 до 40 см [2–6]. Увеличение данных образований в размерах приводит к усилению клинических проявлений, в частности возникновению болевого синдрома. Перфорация или нагноение кистозного новообразования в брюшной полости может стать причиной развития разлитого перитонита. В диагностике значимую помощь оказывают ультразвуковое исследование (УЗИ) и компьютерная томография (КТ) органов брюшной полости с контрастированием [2][4].

Характерным морфологическим признаком так называемых истинных кист большого сальника является выстилание полости слоем эндотелия. Дермоидные кисты представлены сквамозным эпителием и могут состоять из волос, зубов и жирового содержимого. Ложные кисты большого сальника возникают после тупых травм передней брюшной стенки [5]. Наш клинический случай лапароскопического удаления мезотелиальной кисты большого сальника является вторым среди описанных в отечественной литературе. Особенностью нашего клинического наблюдения является наличие у пациента в анамнезе дивертикулярной болезни, что не позволяло исключить дивертикулы Меккеля и достоверно определить место происхождения кистозной опухоли.

МАТЕРИАЛЫ И МЕТОДЫ

Клиническое наблюдение

Мужчина 39 лет обратился в Клинику колопроктологии и малоинвазивной хирургии МГМУ им. Сеченова за консультацией в связи с наличием у него в анамнезе дивертикулеза толстой кишки. При дообследовании пациента выявлено кистозное образование брюшной полости. Была выполнена компьютерная томография органов брюшной полости и малого таза (рис. 1).

\"\"

Рисунок 1. КТ-картина кистозного образования брюшной полости в аксиальной и фронтальной плоскостях (А и В)

Figure 1. CT scan of the abdominal cystic mass in the axial and frontal planes (A and B)

В толстой кишке, в том числе в правой ее половине, определяются множественные дивертикулы. Параколическая клетчатка в правой половине толстой кишки без признаков уплотнения. В правых отделах брюшной полости на уровне мезогастрия определяется овоидной формы жидкостное образование плотностью +14HU, размерами до 64×72×96 мм. Образование передней стенкой прилежит к большому сальнику, задней и нижней стенкой — к петлям тонкой кишки и восходящему отделу толстой кишки, верхней стенкой — к печеночному изгибу толстой кишки. Образование не накапливает контрастный препарат.

Было принято решение дополнительно провести КТ-исследование на фоне перорального контрастирования для исключения сообщения образования с прилежащими отделами тонкой и толстой кишки. Признаков сообщения контрастированных петель тонкой и толстой кишки с просветом образования не выявлено.

Учитывая полученные данные, обнаружены КТ-признаки внеорганного жидкостного образования правых отделов брюшной полости, предположительно исходящего из листков брюшины (вероятнее всего, расположенного в структуре большого сальника).

РЕЗУЛЬТАТЫ

После предоперационной подготовки пациенту выполнено лапароскопическое удаление кистозного образования большого сальника. Оптический троакар был установлен в параумбиликальной области слева. При ревизии в области восходящей и поперечно-ободочной кишки визуализировано кистозное образование до 10 см, покрытое прядью большого сальника (рис. 2). В правой и левой подвздошной областях установлены рабочие троакары, а также троакар ассистента в левом подреберье (схема расстановки схожа со схемой расстановки для резекции правых отделов толстой кишки). Кистозное образование мобилизовано по всем стенкам с резекцией пряди большого сальника. Истинной сосудистой ножки в ходе выделения выявлено не было. По всей видимости, кровоснабжение данного образования обеспечивали сосудистые ветки пряди большого сальника. Препарат помещен в контейнер, выведен в мини-лапаротомный разрез длиной 10 см (в месте введения оптического троакара). Выполнена аспирация кисты непосредственно в контейнере — получено 100 мл светлой прозрачной серозной жидкости. В ложе кистозной опухоли установлен дренаж.

\"\"

Рисунок 2. Интраоперационный вид опухоли

Figure 2. Intraoperative view of the tumor

Послеоперационный период протекал гладко. Дренаж извлечен на 3-е сутки. На 7-е сутки пациент выписан из стационара. Гистологическое исследование: макроскопическое описание — тонкостенное образование студенистой консистенции, округлой формы, диаметром 8,5 см. Наружная поверхность блестящая, полупрозрачная, с инъекцией сосудов, небольшим количеством жировой клетчатки и кровоизлияниями красно-бурого цвета. Содержимое кисты желтоватого цвета. Внутренняя поверхность полупрозрачная, с тяжами белого цвета и инъекцией сосудов. Толщина стенки от 0,1 до 0,3 см (рис. 3). Микроскопическое описание — фрагменты жировой ткани с прослойками фиброзной ткани, выстланные на отдельных участках мезотелием. Морфология не противоречит диагнозу кисты большого сальника. При контрольном обследовании спустя 6 месяцев после операции данных за рецидив не получено.

\"\"

Рисунок 3. Удаленный препарат

Figure 3. The removed mass

ОБСУЖДЕНИЕ

Истинная киста большого сальника относится к разновидностям МКБП. В литературе описано 4 подобных клинических случая. У всех пациентов диагностика была затруднена и окончательный диагноз был установлен только после гистологического исследования [7]. Это связано с тем, что заболевание имело осложненное течение, сопровождалось выраженным болевым синдромом, а инструментальная диагностика ограничивалась лишь УЗИ органов брюшной полости с последующим хирургическим лечением [7].

Наш алгоритм диагностических исследований позволил поставить диагноз истинной кисты на первое место. Проведение КТ-исследования на фоне перорального контрастирования позволило нам исключить сообщение образования с прилежащими отделами тонкой и толстой кишки.

Описанный клинический случай продемонстрировал, что дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма. Тщательная предоперационная подготовка и оценка хирургических рисков позволила выполнить хирургическое вмешательство с применением лапароскопических технологий [8–17].

В отечественной литературе в 2012 году был описан клинический случай пациентки 60 лет, обратившейся в поликлинику ЦКБ УДП с жалобами на тяжесть в правом подреберье и тупые боли, возникающие при физической нагрузке. При проведении УЗИ и КТ брюшной полости выявлена киста брюшной полости, однако только по данным КТ определить, откуда исходит киста, не представлялось возможным (варианты: из сальника, брыжейки тонкой кишки, забрюшинного пространства). Пациентке было выполнено лапароскопическое удаление кисты брюшной полости.

При ревизии выявлено, что сальник полностью покрывает кисту. Осуществлена мобилизация кисты размером 6×4 см, исходящей из сальника. Произведено выделение кисты без нарушения ее целостности, сосудистая ножка клипирована дважды и пересечена. Киста погружена в контейнер, непосредственно в контейнере пунктирована, при этом отмечено светлое содержимое, и извлечена из брюшной полости через эпигастральный доступ. По данным гистологического исследования — мезотелиальная киста без признаков малигнизации [2]. Данный клинический случай полностью схож с нашим. Иных подобных публикаций в отечественной литературе найти не удалось.

В настоящем клиническом случае опухоль успешно удалена лапароскопическим доступом — это позволило провести адекватную ревизию брюшной полости и прецизионную мобилизацию образования из окружающих тканей.

МКБП являются результатом врожденного неполного сращения выстланных мезотелием поверхностей висцеральной брюшины, что, в свою очередь, объясняет их локализацию в большом сальнике, брыжейке тонкой и толстой кишки [18][19]. МКБП встречаются в основном у детей и молодых пациентов, в то время как у пожилых пациентов данное заболевание почти не диагностируется [18]. Результаты патоморфологического исследования показывают, что МКБП представляет собой тонкостенную однокамерную кисту с серозным содержимым [19]. Ее внутренняя поверхность выстлана плоскими, кубическими или столбчатыми мезотелиальными клетками, а стенка фиброзирована без каких-либо лимфатических или мышечных структур [3][19].

Результаты цитологического исследования показали, что жидкостное содержимое кистозного образования представлено округлыми клетками с правильными круглыми ядрами, заметными одиночными ядрышками и выраженной цитоплазмой [3]. Иммуногистохимическое исследование, в свою очередь, позволяет обеспечить более подробную характеристику мезотелиальных клеток, которые являются отрицательными для факторов VIII и CD31 и положительными для общего кератина, виментина и моноазида этидия в сложном клиническом случае [3][10][13].

Предоперационная диагностика МКБП крайне затруднительна ввиду низкой частоты встречаемости данных образований, а также из-за отсутствия специфической клинической картины, которая зависит от размера образования и в большинстве случаев не имеет специфических симптомов [3–5][20]. При увеличении размеров МКБП могут возникать патогномичные симптомы, обусловленные сдавливающим воздействием кисты на окружающие органы и ткани: боль в животе, вздутие, запоры, тошнота и рвота [3][6–8][20][21]. При клиническом обследовании можно обнаружить безболезненное при пальпации мягкое и эластичное образование в брюшной полости, относительно подвижное в поперечном направлении [3][21]. Киста может быть гигантских размеров, схожей с асцитом или опухолью яичника. Также может наблюдаться клиника острого живота из-за разрыва капсулы кистозной опухоли, клиника кишечной непроходимости в связи с инфицированием, кровоизлиянием или перекрутом МКБП [3][4][21]. Вариабельные, неспецифические и вялотекущие симптомы чаще встречаются у взрослых, в то время как картина острого живота проявляется в основном у детей [3].

Рентгенография органов брюшной полости с пассажем бария зачастую не имеет диагностической информативности [20][21]. Диагностическую ценность представляют УЗИ брюшной полости, компьютерная томография и магнитно-резонансная томография [19][22]. Данные методы позволяют оценить структуру кистозного образования, его истинные размеры, локализацию, отношение к окружающим органам и прилежащим структурам, а также особенности стенки и содержимого кисты [3][18–22].

ЗАКЛЮЧЕНИЕ

Таким образом, следует отметить, что МКБП должна рассматриваться в качестве дифференциального диагноза, когда у пациентов обнаруживается кистозная опухоль в брюшной полости. Радикальное хирургическое удаление данного новообразования является методом выбора; лапароскопический доступ при этом наиболее предпочтителен и безопасен — его преимущество заключается в минимальной инвазивности. Для исключения злокачественности новообразования и предупреждения осложнений может потребоваться резекция соседних органов [2][3][9][10][23]. Пункция кисты, транскутанное дренирование и марсупиализация — нежелательные варианты лечения, которые не следует проводить из-за их низкой эффективности и высокого риска осложнений [3][23][24].

"],"dc.fullHTML.ru":["

ВВЕДЕНИЕ

Мезотелиальная киста брюшной полости (МКБП) является разновидностью мезентериальных кист мезотелиального происхождения. Согласно классификации МКБП Perrot выделяют доброкачественные кистозные мезотелиомы и злокачественные кистозные мезотелиомы, относящиеся к мезентериальным кистам (МК) мезотелиального происхождения. Другими типами мезентериальных кист являются непанкреатические псевдокисты, дермоидные кисты и кисты лимфатического, энтерального или урогенитального происхождения, а также истинные кисты большого сальника [1].

МКБП встречается крайне редко — в литературе описано всего около 900 случаев в период с 1980 года по настоящее время, из которых в 4 случаях была обнаружена истинная киста большого сальника [2–4]. Размеры кист колеблются от 3 до 40 см [2–6]. Увеличение данных образований в размерах приводит к усилению клинических проявлений, в частности возникновению болевого синдрома. Перфорация или нагноение кистозного новообразования в брюшной полости может стать причиной развития разлитого перитонита. В диагностике значимую помощь оказывают ультразвуковое исследование (УЗИ) и компьютерная томография (КТ) органов брюшной полости с контрастированием [2][4].

Характерным морфологическим признаком так называемых истинных кист большого сальника является выстилание полости слоем эндотелия. Дермоидные кисты представлены сквамозным эпителием и могут состоять из волос, зубов и жирового содержимого. Ложные кисты большого сальника возникают после тупых травм передней брюшной стенки [5]. Наш клинический случай лапароскопического удаления мезотелиальной кисты большого сальника является вторым среди описанных в отечественной литературе. Особенностью нашего клинического наблюдения является наличие у пациента в анамнезе дивертикулярной болезни, что не позволяло исключить дивертикулы Меккеля и достоверно определить место происхождения кистозной опухоли.

МАТЕРИАЛЫ И МЕТОДЫ

Клиническое наблюдение

Мужчина 39 лет обратился в Клинику колопроктологии и малоинвазивной хирургии МГМУ им. Сеченова за консультацией в связи с наличием у него в анамнезе дивертикулеза толстой кишки. При дообследовании пациента выявлено кистозное образование брюшной полости. Была выполнена компьютерная томография органов брюшной полости и малого таза (рис. 1).

\"\"

Рисунок 1. КТ-картина кистозного образования брюшной полости в аксиальной и фронтальной плоскостях (А и В)

Figure 1. CT scan of the abdominal cystic mass in the axial and frontal planes (A and B)

В толстой кишке, в том числе в правой ее половине, определяются множественные дивертикулы. Параколическая клетчатка в правой половине толстой кишки без признаков уплотнения. В правых отделах брюшной полости на уровне мезогастрия определяется овоидной формы жидкостное образование плотностью +14HU, размерами до 64×72×96 мм. Образование передней стенкой прилежит к большому сальнику, задней и нижней стенкой — к петлям тонкой кишки и восходящему отделу толстой кишки, верхней стенкой — к печеночному изгибу толстой кишки. Образование не накапливает контрастный препарат.

Было принято решение дополнительно провести КТ-исследование на фоне перорального контрастирования для исключения сообщения образования с прилежащими отделами тонкой и толстой кишки. Признаков сообщения контрастированных петель тонкой и толстой кишки с просветом образования не выявлено.

Учитывая полученные данные, обнаружены КТ-признаки внеорганного жидкостного образования правых отделов брюшной полости, предположительно исходящего из листков брюшины (вероятнее всего, расположенного в структуре большого сальника).

РЕЗУЛЬТАТЫ

После предоперационной подготовки пациенту выполнено лапароскопическое удаление кистозного образования большого сальника. Оптический троакар был установлен в параумбиликальной области слева. При ревизии в области восходящей и поперечно-ободочной кишки визуализировано кистозное образование до 10 см, покрытое прядью большого сальника (рис. 2). В правой и левой подвздошной областях установлены рабочие троакары, а также троакар ассистента в левом подреберье (схема расстановки схожа со схемой расстановки для резекции правых отделов толстой кишки). Кистозное образование мобилизовано по всем стенкам с резекцией пряди большого сальника. Истинной сосудистой ножки в ходе выделения выявлено не было. По всей видимости, кровоснабжение данного образования обеспечивали сосудистые ветки пряди большого сальника. Препарат помещен в контейнер, выведен в мини-лапаротомный разрез длиной 10 см (в месте введения оптического троакара). Выполнена аспирация кисты непосредственно в контейнере — получено 100 мл светлой прозрачной серозной жидкости. В ложе кистозной опухоли установлен дренаж.

\"\"

Рисунок 2. Интраоперационный вид опухоли

Figure 2. Intraoperative view of the tumor

Послеоперационный период протекал гладко. Дренаж извлечен на 3-е сутки. На 7-е сутки пациент выписан из стационара. Гистологическое исследование: макроскопическое описание — тонкостенное образование студенистой консистенции, округлой формы, диаметром 8,5 см. Наружная поверхность блестящая, полупрозрачная, с инъекцией сосудов, небольшим количеством жировой клетчатки и кровоизлияниями красно-бурого цвета. Содержимое кисты желтоватого цвета. Внутренняя поверхность полупрозрачная, с тяжами белого цвета и инъекцией сосудов. Толщина стенки от 0,1 до 0,3 см (рис. 3). Микроскопическое описание — фрагменты жировой ткани с прослойками фиброзной ткани, выстланные на отдельных участках мезотелием. Морфология не противоречит диагнозу кисты большого сальника. При контрольном обследовании спустя 6 месяцев после операции данных за рецидив не получено.

\"\"

Рисунок 3. Удаленный препарат

Figure 3. The removed mass

ОБСУЖДЕНИЕ

Истинная киста большого сальника относится к разновидностям МКБП. В литературе описано 4 подобных клинических случая. У всех пациентов диагностика была затруднена и окончательный диагноз был установлен только после гистологического исследования [7]. Это связано с тем, что заболевание имело осложненное течение, сопровождалось выраженным болевым синдромом, а инструментальная диагностика ограничивалась лишь УЗИ органов брюшной полости с последующим хирургическим лечением [7].

Наш алгоритм диагностических исследований позволил поставить диагноз истинной кисты на первое место. Проведение КТ-исследования на фоне перорального контрастирования позволило нам исключить сообщение образования с прилежащими отделами тонкой и толстой кишки.

Описанный клинический случай продемонстрировал, что дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма. Тщательная предоперационная подготовка и оценка хирургических рисков позволила выполнить хирургическое вмешательство с применением лапароскопических технологий [8–17].

В отечественной литературе в 2012 году был описан клинический случай пациентки 60 лет, обратившейся в поликлинику ЦКБ УДП с жалобами на тяжесть в правом подреберье и тупые боли, возникающие при физической нагрузке. При проведении УЗИ и КТ брюшной полости выявлена киста брюшной полости, однако только по данным КТ определить, откуда исходит киста, не представлялось возможным (варианты: из сальника, брыжейки тонкой кишки, забрюшинного пространства). Пациентке было выполнено лапароскопическое удаление кисты брюшной полости.

При ревизии выявлено, что сальник полностью покрывает кисту. Осуществлена мобилизация кисты размером 6×4 см, исходящей из сальника. Произведено выделение кисты без нарушения ее целостности, сосудистая ножка клипирована дважды и пересечена. Киста погружена в контейнер, непосредственно в контейнере пунктирована, при этом отмечено светлое содержимое, и извлечена из брюшной полости через эпигастральный доступ. По данным гистологического исследования — мезотелиальная киста без признаков малигнизации [2]. Данный клинический случай полностью схож с нашим. Иных подобных публикаций в отечественной литературе найти не удалось.

В настоящем клиническом случае опухоль успешно удалена лапароскопическим доступом — это позволило провести адекватную ревизию брюшной полости и прецизионную мобилизацию образования из окружающих тканей.

МКБП являются результатом врожденного неполного сращения выстланных мезотелием поверхностей висцеральной брюшины, что, в свою очередь, объясняет их локализацию в большом сальнике, брыжейке тонкой и толстой кишки [18][19]. МКБП встречаются в основном у детей и молодых пациентов, в то время как у пожилых пациентов данное заболевание почти не диагностируется [18]. Результаты патоморфологического исследования показывают, что МКБП представляет собой тонкостенную однокамерную кисту с серозным содержимым [19]. Ее внутренняя поверхность выстлана плоскими, кубическими или столбчатыми мезотелиальными клетками, а стенка фиброзирована без каких-либо лимфатических или мышечных структур [3][19].

Результаты цитологического исследования показали, что жидкостное содержимое кистозного образования представлено округлыми клетками с правильными круглыми ядрами, заметными одиночными ядрышками и выраженной цитоплазмой [3]. Иммуногистохимическое исследование, в свою очередь, позволяет обеспечить более подробную характеристику мезотелиальных клеток, которые являются отрицательными для факторов VIII и CD31 и положительными для общего кератина, виментина и моноазида этидия в сложном клиническом случае [3][10][13].

Предоперационная диагностика МКБП крайне затруднительна ввиду низкой частоты встречаемости данных образований, а также из-за отсутствия специфической клинической картины, которая зависит от размера образования и в большинстве случаев не имеет специфических симптомов [3–5][20]. При увеличении размеров МКБП могут возникать патогномичные симптомы, обусловленные сдавливающим воздействием кисты на окружающие органы и ткани: боль в животе, вздутие, запоры, тошнота и рвота [3][6–8][20][21]. При клиническом обследовании можно обнаружить безболезненное при пальпации мягкое и эластичное образование в брюшной полости, относительно подвижное в поперечном направлении [3][21]. Киста может быть гигантских размеров, схожей с асцитом или опухолью яичника. Также может наблюдаться клиника острого живота из-за разрыва капсулы кистозной опухоли, клиника кишечной непроходимости в связи с инфицированием, кровоизлиянием или перекрутом МКБП [3][4][21]. Вариабельные, неспецифические и вялотекущие симптомы чаще встречаются у взрослых, в то время как картина острого живота проявляется в основном у детей [3].

Рентгенография органов брюшной полости с пассажем бария зачастую не имеет диагностической информативности [20][21]. Диагностическую ценность представляют УЗИ брюшной полости, компьютерная томография и магнитно-резонансная томография [19][22]. Данные методы позволяют оценить структуру кистозного образования, его истинные размеры, локализацию, отношение к окружающим органам и прилежащим структурам, а также особенности стенки и содержимого кисты [3][18–22].

ЗАКЛЮЧЕНИЕ

Таким образом, следует отметить, что МКБП должна рассматриваться в качестве дифференциального диагноза, когда у пациентов обнаруживается кистозная опухоль в брюшной полости. Радикальное хирургическое удаление данного новообразования является методом выбора; лапароскопический доступ при этом наиболее предпочтителен и безопасен — его преимущество заключается в минимальной инвазивности. Для исключения злокачественности новообразования и предупреждения осложнений может потребоваться резекция соседних органов [2][3][9][10][23]. Пункция кисты, транскутанное дренирование и марсупиализация — нежелательные варианты лечения, которые не следует проводить из-за их низкой эффективности и высокого риска осложнений [3][23][24].

"],"dc.fullRISC":["Мезотелиальная киста брюшной полости (МКБП) является разновидностью мезентериальных кист мезотелиального происхождения. Согласно классификации МКБП Perrot выделяют доброкачественные кистозные мезотелиомы и злокачественные кистозные мезотелиомы, относящиеся к мезентериальным кистам (МК) мезотелиального происхождения. Другими типами мезентериальных кист являются непанкреатические псевдокисты, дермоидные кисты и кисты лимфатического, энтерального или урогенитального происхождения, а также истинные кисты большого сальника [1].\n\nМКБП встречается крайне редко — в литературе описано всего около 900 случаев в период с 1980 года по настоящее время, из которых в 4 случаях была обнаружена истинная киста большого сальника [2–4]. Размеры кист колеблются от 3 до 40 см [2–6]. Увеличение данных образований в размерах приводит к усилению клинических проявлений, в частности возникновению болевого синдрома. Перфорация или нагноение кистозного новообразования в брюшной полости может стать причиной развития разлитого перитонита. В диагностике значимую помощь оказывают ультразвуковое исследование (УЗИ) и компьютерная томография (КТ) органов брюшной полости с контрастированием [2, 4].\n\nХарактерным морфологическим признаком так называемых истинных кист большого сальника является выстилание полости слоем эндотелия. Дермоидные кисты представлены сквамозным эпителием и могут состоять из волос, зубов и жирового содержимого. Ложные кисты большого сальника возникают после тупых травм передней брюшной стенки [5]. Наш клинический случай лапароскопического удаления мезотелиальной кисты большого сальника является вторым среди описанных в отечественной литературе. Особенностью нашего клинического наблюдения является наличие у пациента в анамнезе дивертикулярной болезни, что не позволяло исключить дивертикулы Меккеля и достоверно определить место происхождения кистозной опухоли.\n\n \n\nМАТЕРИАЛЫ И МЕТОДЫ\n\nКлиническое наблюдение\n\nМужчина 39 лет обратился в Клинику колопроктологии и малоинвазивной хирургии МГМУ им. Сеченова за консультацией в связи с наличием у него в анамнезе дивертикулеза толстой кишки. При дообследовании пациента выявлено кистозное образование брюшной полости. Была выполнена компьютерная томография органов брюшной полости и малого таза (рис. 1).\n\nВ толстой кишке, в том числе в правой ее половине, определяются множественные дивертикулы. Параколическая клетчатка в правой половине толстой кишки без признаков уплотнения. В правых отделах брюшной полости на уровне мезогастрия определяется овоидной формы жидкостное образование плотностью +14HU, размерами до 64×72×96 мм. Образование передней стенкой прилежит к большому сальнику, задней и нижней стенкой — к петлям тонкой кишки и восходящему отделу толстой кишки, верхней стенкой — к печеночному изгибу толстой кишки. Образование не накапливает контрастный препарат.\n\nБыло принято решение дополнительно провести КТ-исследование на фоне перорального контрастирования для исключения сообщения образования с прилежащими отделами тонкой и толстой кишки. Признаков сообщения контрастированных петель тонкой и толстой кишки с просветом образования не выявлено.\n\nУчитывая полученные данные, обнаружены КТ-признаки внеорганного жидкостного образования правых отделов брюшной полости, предположительно исходящего из листков брюшины (вероятнее всего, расположенного в структуре большого сальника).\n\n \n\nРЕЗУЛЬТАТЫ\n\nПосле предоперационной подготовки пациенту выполнено лапароскопическое удаление кистозного образования большого сальника. Оптический троакар был установлен в параумбиликальной области слева. При ревизии в области восходящей и поперечно-ободочной кишки визуализировано кистозное образование до 10 см, покрытое прядью большого сальника (рис. 2). В правой и левой подвздошной областях установлены рабочие троакары, а также троакар ассистента в левом подреберье (схема расстановки схожа со схемой расстановки для резекции правых отделов толстой кишки). Кистозное образование мобилизовано по всем стенкам с резекцией пряди большого сальника. Истинной сосудистой ножки в ходе выделения выявлено не было. По всей видимости, кровоснабжение данного образования обеспечивали сосудистые ветки пряди большого сальника. Препарат помещен в контейнер, выведен в мини-лапаротомный разрез длиной 10 см (в месте введения оптического троакара). Выполнена аспирация кисты непосредственно в контейнере — получено 100 мл светлой прозрачной серозной жидкости. В ложе кистозной опухоли установлен дренаж.\n\nПослеоперационный период протекал гладко. Дренаж извлечен на 3-е сутки. На 7-е сутки пациент выписан из стационара. Гистологическое исследование: макроскопическое описание — тонкостенное образование студенистой консистенции, округлой формы, диаметром 8,5 см. Наружная поверхность блестящая, полупрозрачная, с инъекцией сосудов, небольшим количеством жировой клетчатки и кровоизлияниями красно-бурого цвета. Содержимое кисты желтоватого цвета. Внутренняя поверхность полупрозрачная, с тяжами белого цвета и инъекцией сосудов. Толщина стенки от 0,1 до 0,3 см (рис. 3). Микроскопическое описание — фрагменты жировой ткани с прослойками фиброзной ткани, выстланные на отдельных участках мезотелием. Морфология не противоречит диагнозу кисты большого сальника. При контрольном обследовании спустя 6 месяцев после операции данных за рецидив не получено.\n\n \n\nОБСУЖДЕНИЕ\n\nИстинная киста большого сальника относится к разновидностям МКБП. В литературе описано 4 подобных клинических случая. У всех пациентов диагностика была затруднена и окончательный диагноз был установлен только после гистологического исследования [7]. Это связано с тем, что заболевание имело осложненное течение, сопровождалось выраженным болевым синдромом, а инструментальная диагностика ограничивалась лишь УЗИ органов брюшной полости с последующим хирургическим лечением [7].\n\nНаш алгоритм диагностических исследований позволил поставить диагноз истинной кисты на первое место. Проведение КТ-исследования на фоне перорального контрастирования позволило нам исключить сообщение образования с прилежащими отделами тонкой и толстой кишки.\n\nОписанный клинический случай продемонстрировал, что дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма. Тщательная предоперационная подготовка и оценка хирургических рисков позволила выполнить хирургическое вмешательство с применением лапароскопических технологий [8–17].\n\nВ отечественной литературе в 2012 году был описан клинический случай пациентки 60 лет, обратившейся в поликлинику ЦКБ УДП с жалобами на тяжесть в правом подреберье и тупые боли, возникающие при физической нагрузке. При проведении УЗИ и КТ брюшной полости выявлена киста брюшной полости, однако только по данным КТ определить, откуда исходит киста, не представлялось возможным (варианты: из сальника, брыжейки тонкой кишки, забрюшинного пространства). Пациентке было выполнено лапароскопическое удаление кисты брюшной полости.\n\nПри ревизии выявлено, что сальник полностью покрывает кисту. Осуществлена мобилизация кисты размером 6×4 см, исходящей из сальника. Произведено выделение кисты без нарушения ее целостности, сосудистая ножка клипирована дважды и пересечена. Киста погружена в контейнер, непосредственно в контейнере пунктирована, при этом отмечено светлое содержимое, и извлечена из брюшной полости через эпигастральный доступ. По данным гистологического исследования — мезотелиальная киста без признаков малигнизации [2]. Данный клинический случай полностью схож с нашим. Иных подобных публикаций в отечественной литературе найти не удалось.\n\nВ настоящем клиническом случае опухоль успешно удалена лапароскопическим доступом — это позволило провести адекватную ревизию брюшной полости и прецизионную мобилизацию образования из окружающих тканей.\n\nМКБП являются результатом врожденного неполного сращения выстланных мезотелием поверхностей висцеральной брюшины, что, в свою очередь, объясняет их локализацию в большом сальнике, брыжейке тонкой и толстой кишки [18, 19]. МКБП встречаются в основном у детей и молодых пациентов, в то время как у пожилых пациентов данное заболевание почти не диагностируется [18]. Результаты патоморфологического исследования показывают, что МКБП представляет собой тонкостенную однокамерную кисту с серозным содержимым [19]. Ее внутренняя поверхность выстлана плоскими, кубическими или столбчатыми мезотелиальными клетками, а стенка фиброзирована без каких-либо лимфатических или мышечных структур [3, 19].\n\nРезультаты цитологического исследования показали, что жидкостное содержимое кистозного образования представлено округлыми клетками с правильными круглыми ядрами, заметными одиночными ядрышками и выраженной цитоплазмой [3]. Иммуногистохимическое исследование, в свою очередь, позволяет обеспечить более подробную характеристику мезотелиальных клеток, которые являются отрицательными для факторов VIII и CD31 и положительными для общего кератина, виментина и моноазида этидия в сложном клиническом случае [3, 10, 13].\n\nПредоперационная диагностика МКБП крайне затруднительна ввиду низкой частоты встречаемости данных образований, а также из-за отсутствия специфической клинической картины, которая зависит от размера образования и в большинстве случаев не имеет специфических симптомов [3–5, 20]. При увеличении размеров МКБП могут возникать патогномичные симптомы, обусловленные сдавливающим воздействием кисты на окружающие органы и ткани: боль в животе, вздутие, запоры, тошнота и рвота [3, 6–8, 20, 21]. При клиническом обследовании можно обнаружить безболезненное при пальпации мягкое и эластичное образование в брюшной полости, относительно подвижное в поперечном направлении [3, 21]. Киста может быть гигантских размеров, схожей с асцитом или опухолью яичника. Также может наблюдаться клиника острого живота из-за разрыва капсулы кистозной опухоли, клиника кишечной непроходимости в связи с инфицированием, кровоизлиянием или перекрутом МКБП [3, 4, 21]. Вариабельные, неспецифические и вялотекущие симптомы чаще встречаются у взрослых, в то время как картина острого живота проявляется в основном у детей [3].\n\nРентгенография органов брюшной полости с пассажем бария зачастую не имеет диагностической информативности [20, 21]. Диагностическую ценность представляют УЗИ брюшной полости, компьютерная томография и магнитно-резонансная томография [19, 22]. Данные методы позволяют оценить структуру кистозного образования, его истинные размеры, локализацию, отношение к окружающим органам и прилежащим структурам, а также особенности стенки и содержимого кисты [3, 18–22].\n\n \n\nЗАКЛЮЧЕНИЕ\n\nТаким образом, следует отметить, что МКБП должна рассматриваться в качестве дифференциального диагноза, когда у пациентов обнаруживается кистозная опухоль в брюшной полости. Радикальное хирургическое удаление данного новообразования является методом выбора; лапароскопический доступ при этом наиболее предпочтителен и безопасен — его преимущество заключается в минимальной инвазивности. Для исключения злокачественности новообразования и предупреждения осложнений может потребоваться резекция соседних органов [2, 3, 9, 10, 23]. Пункция кисты, транскутанное дренирование и марсупиализация — нежелательные варианты лечения, которые не следует проводить из-за их низкой эффективности и высокого риска осложнений [3, 23, 24]."],"dc.fullRISC.ru":["Мезотелиальная киста брюшной полости (МКБП) является разновидностью мезентериальных кист мезотелиального происхождения. Согласно классификации МКБП Perrot выделяют доброкачественные кистозные мезотелиомы и злокачественные кистозные мезотелиомы, относящиеся к мезентериальным кистам (МК) мезотелиального происхождения. Другими типами мезентериальных кист являются непанкреатические псевдокисты, дермоидные кисты и кисты лимфатического, энтерального или урогенитального происхождения, а также истинные кисты большого сальника [1].\n\nМКБП встречается крайне редко — в литературе описано всего около 900 случаев в период с 1980 года по настоящее время, из которых в 4 случаях была обнаружена истинная киста большого сальника [2–4]. Размеры кист колеблются от 3 до 40 см [2–6]. Увеличение данных образований в размерах приводит к усилению клинических проявлений, в частности возникновению болевого синдрома. Перфорация или нагноение кистозного новообразования в брюшной полости может стать причиной развития разлитого перитонита. В диагностике значимую помощь оказывают ультразвуковое исследование (УЗИ) и компьютерная томография (КТ) органов брюшной полости с контрастированием [2, 4].\n\nХарактерным морфологическим признаком так называемых истинных кист большого сальника является выстилание полости слоем эндотелия. Дермоидные кисты представлены сквамозным эпителием и могут состоять из волос, зубов и жирового содержимого. Ложные кисты большого сальника возникают после тупых травм передней брюшной стенки [5]. Наш клинический случай лапароскопического удаления мезотелиальной кисты большого сальника является вторым среди описанных в отечественной литературе. Особенностью нашего клинического наблюдения является наличие у пациента в анамнезе дивертикулярной болезни, что не позволяло исключить дивертикулы Меккеля и достоверно определить место происхождения кистозной опухоли.\n\n \n\nМАТЕРИАЛЫ И МЕТОДЫ\n\nКлиническое наблюдение\n\nМужчина 39 лет обратился в Клинику колопроктологии и малоинвазивной хирургии МГМУ им. Сеченова за консультацией в связи с наличием у него в анамнезе дивертикулеза толстой кишки. При дообследовании пациента выявлено кистозное образование брюшной полости. Была выполнена компьютерная томография органов брюшной полости и малого таза (рис. 1).\n\nВ толстой кишке, в том числе в правой ее половине, определяются множественные дивертикулы. Параколическая клетчатка в правой половине толстой кишки без признаков уплотнения. В правых отделах брюшной полости на уровне мезогастрия определяется овоидной формы жидкостное образование плотностью +14HU, размерами до 64×72×96 мм. Образование передней стенкой прилежит к большому сальнику, задней и нижней стенкой — к петлям тонкой кишки и восходящему отделу толстой кишки, верхней стенкой — к печеночному изгибу толстой кишки. Образование не накапливает контрастный препарат.\n\nБыло принято решение дополнительно провести КТ-исследование на фоне перорального контрастирования для исключения сообщения образования с прилежащими отделами тонкой и толстой кишки. Признаков сообщения контрастированных петель тонкой и толстой кишки с просветом образования не выявлено.\n\nУчитывая полученные данные, обнаружены КТ-признаки внеорганного жидкостного образования правых отделов брюшной полости, предположительно исходящего из листков брюшины (вероятнее всего, расположенного в структуре большого сальника).\n\n \n\nРЕЗУЛЬТАТЫ\n\nПосле предоперационной подготовки пациенту выполнено лапароскопическое удаление кистозного образования большого сальника. Оптический троакар был установлен в параумбиликальной области слева. При ревизии в области восходящей и поперечно-ободочной кишки визуализировано кистозное образование до 10 см, покрытое прядью большого сальника (рис. 2). В правой и левой подвздошной областях установлены рабочие троакары, а также троакар ассистента в левом подреберье (схема расстановки схожа со схемой расстановки для резекции правых отделов толстой кишки). Кистозное образование мобилизовано по всем стенкам с резекцией пряди большого сальника. Истинной сосудистой ножки в ходе выделения выявлено не было. По всей видимости, кровоснабжение данного образования обеспечивали сосудистые ветки пряди большого сальника. Препарат помещен в контейнер, выведен в мини-лапаротомный разрез длиной 10 см (в месте введения оптического троакара). Выполнена аспирация кисты непосредственно в контейнере — получено 100 мл светлой прозрачной серозной жидкости. В ложе кистозной опухоли установлен дренаж.\n\nПослеоперационный период протекал гладко. Дренаж извлечен на 3-е сутки. На 7-е сутки пациент выписан из стационара. Гистологическое исследование: макроскопическое описание — тонкостенное образование студенистой консистенции, округлой формы, диаметром 8,5 см. Наружная поверхность блестящая, полупрозрачная, с инъекцией сосудов, небольшим количеством жировой клетчатки и кровоизлияниями красно-бурого цвета. Содержимое кисты желтоватого цвета. Внутренняя поверхность полупрозрачная, с тяжами белого цвета и инъекцией сосудов. Толщина стенки от 0,1 до 0,3 см (рис. 3). Микроскопическое описание — фрагменты жировой ткани с прослойками фиброзной ткани, выстланные на отдельных участках мезотелием. Морфология не противоречит диагнозу кисты большого сальника. При контрольном обследовании спустя 6 месяцев после операции данных за рецидив не получено.\n\n \n\nОБСУЖДЕНИЕ\n\nИстинная киста большого сальника относится к разновидностям МКБП. В литературе описано 4 подобных клинических случая. У всех пациентов диагностика была затруднена и окончательный диагноз был установлен только после гистологического исследования [7]. Это связано с тем, что заболевание имело осложненное течение, сопровождалось выраженным болевым синдромом, а инструментальная диагностика ограничивалась лишь УЗИ органов брюшной полости с последующим хирургическим лечением [7].\n\nНаш алгоритм диагностических исследований позволил поставить диагноз истинной кисты на первое место. Проведение КТ-исследования на фоне перорального контрастирования позволило нам исключить сообщение образования с прилежащими отделами тонкой и толстой кишки.\n\nОписанный клинический случай продемонстрировал, что дифференциальная диагностика у пациентов с МКБП и наличием в анамнезе дивертикулярной болезни крайне затруднительна и требует применения правильного диагностического алгоритма. Тщательная предоперационная подготовка и оценка хирургических рисков позволила выполнить хирургическое вмешательство с применением лапароскопических технологий [8–17].\n\nВ отечественной литературе в 2012 году был описан клинический случай пациентки 60 лет, обратившейся в поликлинику ЦКБ УДП с жалобами на тяжесть в правом подреберье и тупые боли, возникающие при физической нагрузке. При проведении УЗИ и КТ брюшной полости выявлена киста брюшной полости, однако только по данным КТ определить, откуда исходит киста, не представлялось возможным (варианты: из сальника, брыжейки тонкой кишки, забрюшинного пространства). Пациентке было выполнено лапароскопическое удаление кисты брюшной полости.\n\nПри ревизии выявлено, что сальник полностью покрывает кисту. Осуществлена мобилизация кисты размером 6×4 см, исходящей из сальника. Произведено выделение кисты без нарушения ее целостности, сосудистая ножка клипирована дважды и пересечена. Киста погружена в контейнер, непосредственно в контейнере пунктирована, при этом отмечено светлое содержимое, и извлечена из брюшной полости через эпигастральный доступ. По данным гистологического исследования — мезотелиальная киста без признаков малигнизации [2]. Данный клинический случай полностью схож с нашим. Иных подобных публикаций в отечественной литературе найти не удалось.\n\nВ настоящем клиническом случае опухоль успешно удалена лапароскопическим доступом — это позволило провести адекватную ревизию брюшной полости и прецизионную мобилизацию образования из окружающих тканей.\n\nМКБП являются результатом врожденного неполного сращения выстланных мезотелием поверхностей висцеральной брюшины, что, в свою очередь, объясняет их локализацию в большом сальнике, брыжейке тонкой и толстой кишки [18, 19]. МКБП встречаются в основном у детей и молодых пациентов, в то время как у пожилых пациентов данное заболевание почти не диагностируется [18]. Результаты патоморфологического исследования показывают, что МКБП представляет собой тонкостенную однокамерную кисту с серозным содержимым [19]. Ее внутренняя поверхность выстлана плоскими, кубическими или столбчатыми мезотелиальными клетками, а стенка фиброзирована без каких-либо лимфатических или мышечных структур [3, 19].\n\nРезультаты цитологического исследования показали, что жидкостное содержимое кистозного образования представлено округлыми клетками с правильными круглыми ядрами, заметными одиночными ядрышками и выраженной цитоплазмой [3]. Иммуногистохимическое исследование, в свою очередь, позволяет обеспечить более подробную характеристику мезотелиальных клеток, которые являются отрицательными для факторов VIII и CD31 и положительными для общего кератина, виментина и моноазида этидия в сложном клиническом случае [3, 10, 13].\n\nПредоперационная диагностика МКБП крайне затруднительна ввиду низкой частоты встречаемости данных образований, а также из-за отсутствия специфической клинической картины, которая зависит от размера образования и в большинстве случаев не имеет специфических симптомов [3–5, 20]. При увеличении размеров МКБП могут возникать патогномичные симптомы, обусловленные сдавливающим воздействием кисты на окружающие органы и ткани: боль в животе, вздутие, запоры, тошнота и рвота [3, 6–8, 20, 21]. При клиническом обследовании можно обнаружить безболезненное при пальпации мягкое и эластичное образование в брюшной полости, относительно подвижное в поперечном направлении [3, 21]. Киста может быть гигантских размеров, схожей с асцитом или опухолью яичника. Также может наблюдаться клиника острого живота из-за разрыва капсулы кистозной опухоли, клиника кишечной непроходимости в связи с инфицированием, кровоизлиянием или перекрутом МКБП [3, 4, 21]. Вариабельные, неспецифические и вялотекущие симптомы чаще встречаются у взрослых, в то время как картина острого живота проявляется в основном у детей [3].\n\nРентгенография органов брюшной полости с пассажем бария зачастую не имеет диагностической информативности [20, 21]. Диагностическую ценность представляют УЗИ брюшной полости, компьютерная томография и магнитно-резонансная томография [19, 22]. Данные методы позволяют оценить структуру кистозного образования, его истинные размеры, локализацию, отношение к окружающим органам и прилежащим структурам, а также особенности стенки и содержимого кисты [3, 18–22].\n\n \n\nЗАКЛЮЧЕНИЕ\n\nТаким образом, следует отметить, что МКБП должна рассматриваться в качестве дифференциального диагноза, когда у пациентов обнаруживается кистозная опухоль в брюшной полости. Радикальное хирургическое удаление данного новообразования является методом выбора; лапароскопический доступ при этом наиболее предпочтителен и безопасен — его преимущество заключается в минимальной инвазивности. Для исключения злокачественности новообразования и предупреждения осложнений может потребоваться резекция соседних органов [2, 3, 9, 10, 23]. Пункция кисты, транскутанное дренирование и марсупиализация — нежелательные варианты лечения, которые не следует проводить из-за их низкой эффективности и высокого риска осложнений [3, 23, 24]."],"dc.height":["500"],"dc.height.ru":["500"],"dc.originalFileName":["1-.jpg"],"dc.originalFileName.ru":["1-.jpg"],"dc.subject.ru":["мезотелиальная киста","киста брюшной полости","киста большого сальника","цистаденома","лапароскопия","дивертикулез толстой кишки","дифференциальная диагностика"],"dc.title.ru":["Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай"],"dc.width":["278"],"dc.width.ru":["278"],"dc.issue.volume":["15"],"dc.issue.number":["1"],"dc.pages":["79-84"],"dc.rights":["CC BY 4.0"],"dc.section":["CLINICAL CASE","КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.section.en":["CLINICAL CASE"],"dc.section.ru":["КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["С. Ю. Трищенков","S. Yu. Trishchenkov","В. М. Нековаль","V. M. Nekoval","Р. Т. Рзаев","R. T. Rzaev","В. В. Балабан","V. V. Balaban","П. В. Царьков","P. V. Tsarkov"],"author_keyword":["С. Ю. Трищенков","S. Yu. Trishchenkov","В. М. Нековаль","V. M. Nekoval","Р. Т. Рзаев","R. T. Rzaev","В. В. Балабан","V. V. Balaban","П. В. Царьков","P. V. Tsarkov"],"author_ac":["с. ю. трищенков\n|||\nС. Ю. Трищенков","s. yu. trishchenkov\n|||\nS. Yu. Trishchenkov","в. м. нековаль\n|||\nВ. М. Нековаль","v. m. nekoval\n|||\nV. M. Nekoval","р. т. рзаев\n|||\nР. Т. Рзаев","r. t. rzaev\n|||\nR. T. Rzaev","в. в. балабан\n|||\nВ. В. Балабан","v. v. balaban\n|||\nV. V. Balaban","п. в. царьков\n|||\nП. В. Царьков","p. v. tsarkov\n|||\nP. V. Tsarkov"],"author_filter":["с. ю. трищенков\n|||\nС. Ю. Трищенков","s. yu. trishchenkov\n|||\nS. Yu. Trishchenkov","в. м. нековаль\n|||\nВ. М. Нековаль","v. m. nekoval\n|||\nV. M. Nekoval","р. т. рзаев\n|||\nР. Т. Рзаев","r. t. rzaev\n|||\nR. T. Rzaev","в. в. балабан\n|||\nВ. В. Балабан","v. v. balaban\n|||\nV. V. Balaban","п. в. царьков\n|||\nП. В. Царьков","p. v. tsarkov\n|||\nP. V. Tsarkov"],"dc.author.name":["С. Ю. Трищенков","S. Yu. Trishchenkov","В. М. Нековаль","V. M. Nekoval","Р. Т. Рзаев","R. T. Rzaev","В. В. Балабан","V. V. Balaban","П. В. Царьков","P. V. Tsarkov"],"dc.author.name.ru":["С. Ю. Трищенков","В. М. Нековаль","Р. Т. Рзаев","В. В. Балабан","П. В. Царьков"],"dc.author.affiliation":["Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Sechenov First Moscow State Medical University","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Sechenov First Moscow State Medical University","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Sechenov First Moscow State Medical University","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Sechenov First Moscow State Medical University","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Sechenov First Moscow State Medical University"],"dc.author.affiliation.ru":["Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)"],"dc.author.full":["С. Ю. Трищенков | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","S. Yu. Trishchenkov | Sechenov First Moscow State Medical University","В. М. Нековаль | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","V. M. Nekoval | Sechenov First Moscow State Medical University","Р. Т. Рзаев | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","R. T. Rzaev | Sechenov First Moscow State Medical University","В. В. Балабан | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","V. V. Balaban | Sechenov First Moscow State Medical University","П. В. Царьков | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","P. V. Tsarkov | Sechenov First Moscow State Medical University"],"dc.author.full.ru":["С. Ю. Трищенков | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","В. М. Нековаль | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","Р. Т. Рзаев | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","В. В. Балабан | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)","П. В. Царьков | Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский университет)"],"dc.author.name.en":["S. Yu. Trishchenkov","V. M. Nekoval","R. T. Rzaev","V. V. Balaban","P. V. Tsarkov"],"dc.author.affiliation.en":["Sechenov First Moscow State Medical University","Sechenov First Moscow State Medical University","Sechenov First Moscow State Medical University","Sechenov First Moscow State Medical University","Sechenov First Moscow State Medical University"],"dc.author.full.en":["S. Yu. Trishchenkov | Sechenov First Moscow State Medical University","V. M. Nekoval | Sechenov First Moscow State Medical University","R. T. Rzaev | Sechenov First Moscow State Medical University","V. V. Balaban | Sechenov First Moscow State Medical University","P. V. Tsarkov | Sechenov First Moscow State Medical University"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0002-8019-0961\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u041c\\u043e\\u0441\\u043a\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c. \\u0418.\\u041c. \\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0430 (\\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442)\", \"full_name\": \"\\u0421. \\u042e. \\u0422\\u0440\\u0438\\u0449\\u0435\\u043d\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-8019-0961\", \"affiliation\": \"Sechenov First Moscow State Medical University\", \"full_name\": \"S. Yu. Trishchenkov\"}}, {\"ru\": {\"orcid\": \"0000-0002-3192-3786\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u041c\\u043e\\u0441\\u043a\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c. \\u0418.\\u041c. \\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0430 (\\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442)\", \"full_name\": \"\\u0412. \\u041c. \\u041d\\u0435\\u043a\\u043e\\u0432\\u0430\\u043b\\u044c\"}, \"en\": {\"orcid\": \"0000-0002-3192-3786\", \"affiliation\": \"Sechenov First Moscow State Medical University\", \"full_name\": \"V. M. Nekoval\"}}, {\"ru\": {\"orcid\": \"\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u041c\\u043e\\u0441\\u043a\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c. \\u0418.\\u041c. \\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0430 (\\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442)\", \"full_name\": \"\\u0420. \\u0422. \\u0420\\u0437\\u0430\\u0435\\u0432\"}, \"en\": {\"orcid\": \"\", \"affiliation\": \"Sechenov First Moscow State Medical University\", \"full_name\": \"R. T. Rzaev\"}}, {\"ru\": {\"orcid\": \"0000-0002-7226-4641\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u041c\\u043e\\u0441\\u043a\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c. \\u0418.\\u041c. \\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0430 (\\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442)\", \"full_name\": \"\\u0412. \\u0412. \\u0411\\u0430\\u043b\\u0430\\u0431\\u0430\\u043d\"}, \"en\": {\"orcid\": \"0000-0002-7226-4641\", \"affiliation\": \"Sechenov First Moscow State Medical University\", \"full_name\": \"V. V. Balaban\"}}, {\"ru\": {\"orcid\": \"0000-0002-7134-6821\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u041c\\u043e\\u0441\\u043a\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c. \\u0418.\\u041c. \\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0430 (\\u0421\\u0435\\u0447\\u0435\\u043d\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442)\", \"full_name\": \"\\u041f. \\u0412. \\u0426\\u0430\\u0440\\u044c\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-7134-6821\", \"affiliation\": \"Sechenov First Moscow State Medical University\", \"full_name\": \"P. V. Tsarkov\"}}]}"],"dateIssued":["2025-04-01"],"dateIssued_keyword":["2025-04-01","2025"],"dateIssued_ac":["2025-04-01\n|||\n2025-04-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-04-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1056"],"dc.citation":["de Perrot M., Bründler M., Tötsch M., Mentha G., Morel P. Mesenteric cysts. Toward less confusion? Dig Surg. 2000;17(4):323–8. DOI: 10.1159/000018872","Кочуков В.П., Ложкевич А.А., Островерхова Е.Г., Попова И.Э., Лозоватор А.Л., Бунин И.В. Киста большого сальника. Трудный пациент. 2012;10(1):34–5.","Prior-Rosas J.E., Mejía-Ruíz B., Magdaleno-Becerra B.A., Nava-Tenorio C.G., Alonso-Domínguez S.M., Botello-Ortiz G.E. Giant benign mesenteric cysts (mesothelioma and lymphangioma): A report of two cases. Int J Surg Case Rep. 2024;125:110587. DOI: 10.1016/j.ijscr.2024.110587","Stoupis C., Ros P.R., Abbitt P.L., Burton S.S., Gauger J. Bubbles in the belly: imaging of cystic mesenteric or omental masses. Radiographics. 1994;14(4):729–37. DOI: 10.1148/radiographics.14.4.7938764","Tsopozidi M., Kepertis C., Godosis D., Mouravas V., Demiri C., Spyridakis I. Laparoscopic-assisted excision of a huge polycystic omental lymphangioma in a 3 year old patient presenting with acute abdomen: case report and review. Pan Afr Med J. 2021;38:228. DOI: 10.11604/pamj.2021.38.228.26607","Abebe D.M., Nureta T.H., Gima T. A rare case of huge intra-abdominal cystic lymphangioma arising from rectovesical pouch; a case report. Int J Surg Case Rep. 2023;106:108275. DOI: 10.1016/j.ijscr.2023.108275","Alqurashi H.E., Alaryni A.A., Alsairafi R.A., Alharbi A.M., Alaqla A.A. Mesenteric cyst: a case report. Cureus. 2023;15(1):e34325. DOI: 10.7759/cureus.34325","Azimi B., Bagherian Lemraski S., Kouchak Hosseini S.P., Khoshnoudi H., Aghaei M., Haghbin Toutounchi A. Small bowel volvulus and mesenteric ischemia induced by mesenteric cystic lymphangioma in an adult and literature review; a case report. Int J Surg Case Rep. 2023;105:108083. DOI: 10.1016/j.ijscr.2023.108083","Shayesteh S., Salimian K.J., Fouladi D.F., Blanco A., Fishman E.K., Kawamoto S. Intra-abdominal lymphangioma: A case report. Radiol Case Rep. 2020;16(1):123–7. DOI: 10.1016/j.radcr.2020.10.052","Gagliardi F., Lauro A., Tripodi D., Amabile M.I., Palumbo P., Di Matteo F.M., et al. Mesenteric cyst with GI symptoms: a fluid approach to treatment—case report and literature review. Dig. Dis. Sci. 2022;67(3):786–98. DOI: 10.1007/s10620-021-07352-0","Mahfoud H., Flissate F., Tligui S., Benammi S., Etber A., Baidada A. Mesenteric cystic lymphangioma misdiagnosed as ovarian cyst in a 63-year-old female: a case report and review of literature. Int. J. Surg. Case Rep. 2024;120:109846. DOI: 10.1016/j.ijscr.2024.109846","Kogo H., Matsumoto S., Uchida E. Single-port laparoscopic-assisted resection for a large abdominal cystic lymphangioma: a case report. Surg Case Rep. 2018;4(1):92. DOI: 10.1186/s40792-018-0501-9","Hamaguchi Y., Arita S., Sugimoto N., Inamoto O., Takagi H., Kogire M., et al. Laparoscopic resection of abdominal cystic lymphangioma derived from lesser omentum: Case report. Medicine (Baltimore). 2020;99(1):e18641. DOI: 10.1097/MD.0000000000018641","Chew B.J.W., Khare M.M. Intra-abdominal cystic lymphangioma. J Pediatr. 2019;205:288. DOI: 10.1016/j.jpeds.2018.09.034","Yacoub J.H., Clark J.A., Paal E.E., Manning M.A. Approach to cystic lesions in the abdomen and pelvis, with radiologic-pathologic correlation. Radiographics. 2021;41(5):1368–86. DOI: 10.1148/RG.2021200207","Hoang V.T., Nguyen M.D., Van H.A.T., Hoang D.T. Review of diagnosis, differential diagnosis, and management of retroperitoneal lymphangioma. Jpn J Radiol. 2023;41(3):283–301. DOI: 10.1007/s11604-022-01356-0","Maranna H., Bains L., Lal P., Bhatia R., Beg M.Y., Kumar P., et al. Cystic lymphangioma of the greater omentum: a case of partial spontaneous regression and review of the literature. Case Rep Surg. 2020;2020:8932017. DOI: 10.1155/2020/8932017","Namikawa T., Shimizu S., Yokota K., Tanioka N., Munekage M., Uemura S., et al. Cystic lymphangioma of the greater omentum treated by laparoscopic resection. Clin J Gastroenterol. 2021;14(4):1004–7. DOI: 10.1007/s12328-021-01404-8","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Chand M.T., Edens J., Lin T., Anderson I., Berri R. Benign multicystic peritoneal mesothelioma: literature review and update. Autops Case Rep. 2020;10(3):e2020159. DOI: 10.4322/acr.2020.159","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Takeda A., Ito H., Nakamura H. Large omental cystic lymphangioma masquerading as mucinous ovarian neoplasia in an 8-year-old premenarchal girl: the findings from diagnostic imaging and laparoscopic-assisted excision. J Pediatr Adolesc Gynecol. 2017;30(6):659–62. DOI: 10.1016/j.jpag.2017.06.003","Ellis C.L., Banerjee P., Carney E., Sharma R., Netto G.J. Adrenal lymphangioma: clinicopathologic and immunohistochemical characteristics of a rare lesion. Hum Pathol. 2011;42(7):1013–8. DOI: 10.1016/j.humpath.2010.10.023","Chin C.C., Shiau J., Luo C.W., Hou M.F. Lymphangioma of small bowel in adults: A rare cause of abdominal symptoms. Asian J Surg. 2023;46(2):863–7. DOI: 10.1016/j.asjsur.2022.09.013","de Perrot M., Bründler M., Tötsch M., Mentha G., Morel P. Mesenteric cysts. Toward less confusion? Dig Surg. 2000;17(4):323–8. DOI: 10.1159/000018872","Кочуков В.П., Ложкевич А.А., Островерхова Е.Г., Попова И.Э., Лозоватор А.Л., Бунин И.В. Киста большого сальника. Трудный пациент. 2012;10(1):34–5.","Prior-Rosas J.E., Mejía-Ruíz B., Magdaleno-Becerra B.A., Nava-Tenorio C.G., Alonso-Domínguez S.M., Botello-Ortiz G.E. Giant benign mesenteric cysts (mesothelioma and lymphangioma): A report of two cases. Int J Surg Case Rep. 2024;125:110587. DOI: 10.1016/j.ijscr.2024.110587","Stoupis C., Ros P.R., Abbitt P.L., Burton S.S., Gauger J. Bubbles in the belly: imaging of cystic mesenteric or omental masses. Radiographics. 1994;14(4):729–37. DOI: 10.1148/radiographics.14.4.7938764","Tsopozidi M., Kepertis C., Godosis D., Mouravas V., Demiri C., Spyridakis I. Laparoscopic-assisted excision of a huge polycystic omental lymphangioma in a 3 year old patient presenting with acute abdomen: case report and review. Pan Afr Med J. 2021;38:228. DOI: 10.11604/pamj.2021.38.228.26607","Abebe D.M., Nureta T.H., Gima T. A rare case of huge intra-abdominal cystic lymphangioma arising from rectovesical pouch; a case report. Int J Surg Case Rep. 2023;106:108275. DOI: 10.1016/j.ijscr.2023.108275","Alqurashi H.E., Alaryni A.A., Alsairafi R.A., Alharbi A.M., Alaqla A.A. Mesenteric cyst: a case report. Cureus. 2023;15(1):e34325. DOI: 10.7759/cureus.34325","Azimi B., Bagherian Lemraski S., Kouchak Hosseini S.P., Khoshnoudi H., Aghaei M., Haghbin Toutounchi A. Small bowel volvulus and mesenteric ischemia induced by mesenteric cystic lymphangioma in an adult and literature review; a case report. Int J Surg Case Rep. 2023;105:108083. DOI: 10.1016/j.ijscr.2023.108083","Shayesteh S., Salimian K.J., Fouladi D.F., Blanco A., Fishman E.K., Kawamoto S. Intra-abdominal lymphangioma: A case report. Radiol Case Rep. 2020;16(1):123–7. DOI: 10.1016/j.radcr.2020.10.052","Gagliardi F., Lauro A., Tripodi D., Amabile M.I., Palumbo P., Di Matteo F.M., et al. Mesenteric cyst with GI symptoms: a fluid approach to treatment—case report and literature review. Dig. Dis. Sci. 2022;67(3):786–98. DOI: 10.1007/s10620-021-07352-0","Mahfoud H., Flissate F., Tligui S., Benammi S., Etber A., Baidada A. Mesenteric cystic lymphangioma misdiagnosed as ovarian cyst in a 63-year-old female: a case report and review of literature. Int. J. Surg. Case Rep. 2024;120:109846. DOI: 10.1016/j.ijscr.2024.109846","Kogo H., Matsumoto S., Uchida E. Single-port laparoscopic-assisted resection for a large abdominal cystic lymphangioma: a case report. Surg Case Rep. 2018;4(1):92. DOI: 10.1186/s40792-018-0501-9","Hamaguchi Y., Arita S., Sugimoto N., Inamoto O., Takagi H., Kogire M., et al. Laparoscopic resection of abdominal cystic lymphangioma derived from lesser omentum: Case report. Medicine (Baltimore). 2020;99(1):e18641. DOI: 10.1097/MD.0000000000018641","Chew B.J.W., Khare M.M. Intra-abdominal cystic lymphangioma. J Pediatr. 2019;205:288. DOI: 10.1016/j.jpeds.2018.09.034","Yacoub J.H., Clark J.A., Paal E.E., Manning M.A. Approach to cystic lesions in the abdomen and pelvis, with radiologic-pathologic correlation. Radiographics. 2021;41(5):1368–86. DOI: 10.1148/RG.2021200207","Hoang V.T., Nguyen M.D., Van H.A.T., Hoang D.T. Review of diagnosis, differential diagnosis, and management of retroperitoneal lymphangioma. Jpn J Radiol. 2023;41(3):283–301. DOI: 10.1007/s11604-022-01356-0","Maranna H., Bains L., Lal P., Bhatia R., Beg M.Y., Kumar P., et al. Cystic lymphangioma of the greater omentum: a case of partial spontaneous regression and review of the literature. Case Rep Surg. 2020;2020:8932017. DOI: 10.1155/2020/8932017","Namikawa T., Shimizu S., Yokota K., Tanioka N., Munekage M., Uemura S., et al. Cystic lymphangioma of the greater omentum treated by laparoscopic resection. Clin J Gastroenterol. 2021;14(4):1004–7. DOI: 10.1007/s12328-021-01404-8","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Chand M.T., Edens J., Lin T., Anderson I., Berri R. Benign multicystic peritoneal mesothelioma: literature review and update. Autops Case Rep. 2020;10(3):e2020159. DOI: 10.4322/acr.2020.159","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Takeda A., Ito H., Nakamura H. Large omental cystic lymphangioma masquerading as mucinous ovarian neoplasia in an 8-year-old premenarchal girl: the findings from diagnostic imaging and laparoscopic-assisted excision. J Pediatr Adolesc Gynecol. 2017;30(6):659–62. DOI: 10.1016/j.jpag.2017.06.003","Ellis C.L., Banerjee P., Carney E., Sharma R., Netto G.J. Adrenal lymphangioma: clinicopathologic and immunohistochemical characteristics of a rare lesion. Hum Pathol. 2011;42(7):1013–8. DOI: 10.1016/j.humpath.2010.10.023","Chin C.C., Shiau J., Luo C.W., Hou M.F. Lymphangioma of small bowel in adults: A rare cause of abdominal symptoms. Asian J Surg. 2023;46(2):863–7. DOI: 10.1016/j.asjsur.2022.09.013"],"dc.citation.ru":["de Perrot M., Bründler M., Tötsch M., Mentha G., Morel P. Mesenteric cysts. Toward less confusion? Dig Surg. 2000;17(4):323–8. DOI: 10.1159/000018872","Кочуков В.П., Ложкевич А.А., Островерхова Е.Г., Попова И.Э., Лозоватор А.Л., Бунин И.В. Киста большого сальника. Трудный пациент. 2012;10(1):34–5.","Prior-Rosas J.E., Mejía-Ruíz B., Magdaleno-Becerra B.A., Nava-Tenorio C.G., Alonso-Domínguez S.M., Botello-Ortiz G.E. Giant benign mesenteric cysts (mesothelioma and lymphangioma): A report of two cases. Int J Surg Case Rep. 2024;125:110587. DOI: 10.1016/j.ijscr.2024.110587","Stoupis C., Ros P.R., Abbitt P.L., Burton S.S., Gauger J. Bubbles in the belly: imaging of cystic mesenteric or omental masses. Radiographics. 1994;14(4):729–37. DOI: 10.1148/radiographics.14.4.7938764","Tsopozidi M., Kepertis C., Godosis D., Mouravas V., Demiri C., Spyridakis I. Laparoscopic-assisted excision of a huge polycystic omental lymphangioma in a 3 year old patient presenting with acute abdomen: case report and review. Pan Afr Med J. 2021;38:228. DOI: 10.11604/pamj.2021.38.228.26607","Abebe D.M., Nureta T.H., Gima T. A rare case of huge intra-abdominal cystic lymphangioma arising from rectovesical pouch; a case report. Int J Surg Case Rep. 2023;106:108275. DOI: 10.1016/j.ijscr.2023.108275","Alqurashi H.E., Alaryni A.A., Alsairafi R.A., Alharbi A.M., Alaqla A.A. Mesenteric cyst: a case report. Cureus. 2023;15(1):e34325. DOI: 10.7759/cureus.34325","Azimi B., Bagherian Lemraski S., Kouchak Hosseini S.P., Khoshnoudi H., Aghaei M., Haghbin Toutounchi A. Small bowel volvulus and mesenteric ischemia induced by mesenteric cystic lymphangioma in an adult and literature review; a case report. Int J Surg Case Rep. 2023;105:108083. DOI: 10.1016/j.ijscr.2023.108083","Shayesteh S., Salimian K.J., Fouladi D.F., Blanco A., Fishman E.K., Kawamoto S. Intra-abdominal lymphangioma: A case report. Radiol Case Rep. 2020;16(1):123–7. DOI: 10.1016/j.radcr.2020.10.052","Gagliardi F., Lauro A., Tripodi D., Amabile M.I., Palumbo P., Di Matteo F.M., et al. Mesenteric cyst with GI symptoms: a fluid approach to treatment—case report and literature review. Dig. Dis. Sci. 2022;67(3):786–98. DOI: 10.1007/s10620-021-07352-0","Mahfoud H., Flissate F., Tligui S., Benammi S., Etber A., Baidada A. Mesenteric cystic lymphangioma misdiagnosed as ovarian cyst in a 63-year-old female: a case report and review of literature. Int. J. Surg. Case Rep. 2024;120:109846. DOI: 10.1016/j.ijscr.2024.109846","Kogo H., Matsumoto S., Uchida E. Single-port laparoscopic-assisted resection for a large abdominal cystic lymphangioma: a case report. Surg Case Rep. 2018;4(1):92. DOI: 10.1186/s40792-018-0501-9","Hamaguchi Y., Arita S., Sugimoto N., Inamoto O., Takagi H., Kogire M., et al. Laparoscopic resection of abdominal cystic lymphangioma derived from lesser omentum: Case report. Medicine (Baltimore). 2020;99(1):e18641. DOI: 10.1097/MD.0000000000018641","Chew B.J.W., Khare M.M. Intra-abdominal cystic lymphangioma. J Pediatr. 2019;205:288. DOI: 10.1016/j.jpeds.2018.09.034","Yacoub J.H., Clark J.A., Paal E.E., Manning M.A. Approach to cystic lesions in the abdomen and pelvis, with radiologic-pathologic correlation. Radiographics. 2021;41(5):1368–86. DOI: 10.1148/RG.2021200207","Hoang V.T., Nguyen M.D., Van H.A.T., Hoang D.T. Review of diagnosis, differential diagnosis, and management of retroperitoneal lymphangioma. Jpn J Radiol. 2023;41(3):283–301. DOI: 10.1007/s11604-022-01356-0","Maranna H., Bains L., Lal P., Bhatia R., Beg M.Y., Kumar P., et al. Cystic lymphangioma of the greater omentum: a case of partial spontaneous regression and review of the literature. Case Rep Surg. 2020;2020:8932017. DOI: 10.1155/2020/8932017","Namikawa T., Shimizu S., Yokota K., Tanioka N., Munekage M., Uemura S., et al. Cystic lymphangioma of the greater omentum treated by laparoscopic resection. Clin J Gastroenterol. 2021;14(4):1004–7. DOI: 10.1007/s12328-021-01404-8","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Chand M.T., Edens J., Lin T., Anderson I., Berri R. Benign multicystic peritoneal mesothelioma: literature review and update. Autops Case Rep. 2020;10(3):e2020159. DOI: 10.4322/acr.2020.159","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Takeda A., Ito H., Nakamura H. Large omental cystic lymphangioma masquerading as mucinous ovarian neoplasia in an 8-year-old premenarchal girl: the findings from diagnostic imaging and laparoscopic-assisted excision. J Pediatr Adolesc Gynecol. 2017;30(6):659–62. DOI: 10.1016/j.jpag.2017.06.003","Ellis C.L., Banerjee P., Carney E., Sharma R., Netto G.J. Adrenal lymphangioma: clinicopathologic and immunohistochemical characteristics of a rare lesion. Hum Pathol. 2011;42(7):1013–8. DOI: 10.1016/j.humpath.2010.10.023","Chin C.C., Shiau J., Luo C.W., Hou M.F. Lymphangioma of small bowel in adults: A rare cause of abdominal symptoms. Asian J Surg. 2023;46(2):863–7. DOI: 10.1016/j.asjsur.2022.09.013"],"dc.citation.en":["de Perrot M., Bründler M., Tötsch M., Mentha G., Morel P. Mesenteric cysts. Toward less confusion? Dig Surg. 2000;17(4):323–8. DOI: 10.1159/000018872","Кочуков В.П., Ложкевич А.А., Островерхова Е.Г., Попова И.Э., Лозоватор А.Л., Бунин И.В. Киста большого сальника. Трудный пациент. 2012;10(1):34–5.","Prior-Rosas J.E., Mejía-Ruíz B., Magdaleno-Becerra B.A., Nava-Tenorio C.G., Alonso-Domínguez S.M., Botello-Ortiz G.E. Giant benign mesenteric cysts (mesothelioma and lymphangioma): A report of two cases. Int J Surg Case Rep. 2024;125:110587. DOI: 10.1016/j.ijscr.2024.110587","Stoupis C., Ros P.R., Abbitt P.L., Burton S.S., Gauger J. Bubbles in the belly: imaging of cystic mesenteric or omental masses. Radiographics. 1994;14(4):729–37. DOI: 10.1148/radiographics.14.4.7938764","Tsopozidi M., Kepertis C., Godosis D., Mouravas V., Demiri C., Spyridakis I. Laparoscopic-assisted excision of a huge polycystic omental lymphangioma in a 3 year old patient presenting with acute abdomen: case report and review. Pan Afr Med J. 2021;38:228. DOI: 10.11604/pamj.2021.38.228.26607","Abebe D.M., Nureta T.H., Gima T. A rare case of huge intra-abdominal cystic lymphangioma arising from rectovesical pouch; a case report. Int J Surg Case Rep. 2023;106:108275. DOI: 10.1016/j.ijscr.2023.108275","Alqurashi H.E., Alaryni A.A., Alsairafi R.A., Alharbi A.M., Alaqla A.A. Mesenteric cyst: a case report. Cureus. 2023;15(1):e34325. DOI: 10.7759/cureus.34325","Azimi B., Bagherian Lemraski S., Kouchak Hosseini S.P., Khoshnoudi H., Aghaei M., Haghbin Toutounchi A. Small bowel volvulus and mesenteric ischemia induced by mesenteric cystic lymphangioma in an adult and literature review; a case report. Int J Surg Case Rep. 2023;105:108083. DOI: 10.1016/j.ijscr.2023.108083","Shayesteh S., Salimian K.J., Fouladi D.F., Blanco A., Fishman E.K., Kawamoto S. Intra-abdominal lymphangioma: A case report. Radiol Case Rep. 2020;16(1):123–7. DOI: 10.1016/j.radcr.2020.10.052","Gagliardi F., Lauro A., Tripodi D., Amabile M.I., Palumbo P., Di Matteo F.M., et al. Mesenteric cyst with GI symptoms: a fluid approach to treatment—case report and literature review. Dig. Dis. Sci. 2022;67(3):786–98. DOI: 10.1007/s10620-021-07352-0","Mahfoud H., Flissate F., Tligui S., Benammi S., Etber A., Baidada A. Mesenteric cystic lymphangioma misdiagnosed as ovarian cyst in a 63-year-old female: a case report and review of literature. Int. J. Surg. Case Rep. 2024;120:109846. DOI: 10.1016/j.ijscr.2024.109846","Kogo H., Matsumoto S., Uchida E. Single-port laparoscopic-assisted resection for a large abdominal cystic lymphangioma: a case report. Surg Case Rep. 2018;4(1):92. DOI: 10.1186/s40792-018-0501-9","Hamaguchi Y., Arita S., Sugimoto N., Inamoto O., Takagi H., Kogire M., et al. Laparoscopic resection of abdominal cystic lymphangioma derived from lesser omentum: Case report. Medicine (Baltimore). 2020;99(1):e18641. DOI: 10.1097/MD.0000000000018641","Chew B.J.W., Khare M.M. Intra-abdominal cystic lymphangioma. J Pediatr. 2019;205:288. DOI: 10.1016/j.jpeds.2018.09.034","Yacoub J.H., Clark J.A., Paal E.E., Manning M.A. Approach to cystic lesions in the abdomen and pelvis, with radiologic-pathologic correlation. Radiographics. 2021;41(5):1368–86. DOI: 10.1148/RG.2021200207","Hoang V.T., Nguyen M.D., Van H.A.T., Hoang D.T. Review of diagnosis, differential diagnosis, and management of retroperitoneal lymphangioma. Jpn J Radiol. 2023;41(3):283–301. DOI: 10.1007/s11604-022-01356-0","Maranna H., Bains L., Lal P., Bhatia R., Beg M.Y., Kumar P., et al. Cystic lymphangioma of the greater omentum: a case of partial spontaneous regression and review of the literature. Case Rep Surg. 2020;2020:8932017. DOI: 10.1155/2020/8932017","Namikawa T., Shimizu S., Yokota K., Tanioka N., Munekage M., Uemura S., et al. Cystic lymphangioma of the greater omentum treated by laparoscopic resection. Clin J Gastroenterol. 2021;14(4):1004–7. DOI: 10.1007/s12328-021-01404-8","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Chand M.T., Edens J., Lin T., Anderson I., Berri R. Benign multicystic peritoneal mesothelioma: literature review and update. Autops Case Rep. 2020;10(3):e2020159. DOI: 10.4322/acr.2020.159","Li Y.-Y., Wang Q., Zhu J. Mesenteric cystic lymphatic malformation: a rare case report and review of the literature. AME Case Rep. 2024;8:23. DOI: 10.21037/acr-23-143","Takeda A., Ito H., Nakamura H. Large omental cystic lymphangioma masquerading as mucinous ovarian neoplasia in an 8-year-old premenarchal girl: the findings from diagnostic imaging and laparoscopic-assisted excision. J Pediatr Adolesc Gynecol. 2017;30(6):659–62. DOI: 10.1016/j.jpag.2017.06.003","Ellis C.L., Banerjee P., Carney E., Sharma R., Netto G.J. Adrenal lymphangioma: clinicopathologic and immunohistochemical characteristics of a rare lesion. Hum Pathol. 2011;42(7):1013–8. DOI: 10.1016/j.humpath.2010.10.023","Chin C.C., Shiau J., Luo C.W., Hou M.F. Lymphangioma of small bowel in adults: A rare cause of abdominal symptoms. Asian J Surg. 2023;46(2):863–7. DOI: 10.1016/j.asjsur.2022.09.013"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8919"],"dc.date.accessioned_dt":"2025-07-09T13:58:56Z","dc.date.accessioned":["2025-07-09T13:58:56Z"],"dc.date.available":["2025-07-09T13:58:56Z"],"publication_grp":["123456789/8919"],"bi_4_dis_filter":["mesothelial cyst\n|||\nmesothelial cyst","diverticular disease of the colon\n|||\ndiverticular disease of the colon","киста брюшной полости\n|||\nкиста брюшной полости","laparoscopy\n|||\nlaparoscopy","cystadenoma\n|||\ncystadenoma","cyst of the greater omentum\n|||\ncyst of the greater omentum","abdominal cyst\n|||\nabdominal cyst","дифференциальная диагностика\n|||\nдифференциальная диагностика","лапароскопия\n|||\nлапароскопия","киста большого сальника\n|||\nкиста большого сальника","differential diagnosis\n|||\ndifferential diagnosis","мезотелиальная киста\n|||\nмезотелиальная киста","цистаденома\n|||\nцистаденома","дивертикулез толстой кишки\n|||\nдивертикулез толстой кишки"],"bi_4_dis_partial":["mesothelial cyst","laparoscopy","дивертикулез толстой кишки","differential diagnosis","цистаденома","cystadenoma","мезотелиальная киста","лапароскопия","киста брюшной полости","abdominal cyst","diverticular disease of the colon","киста большого сальника","cyst of the greater omentum","дифференциальная диагностика"],"bi_4_dis_value_filter":["mesothelial cyst","laparoscopy","дивертикулез толстой кишки","differential diagnosis","цистаденома","cystadenoma","мезотелиальная киста","лапароскопия","киста брюшной полости","abdominal cyst","diverticular disease of the colon","киста большого сальника","cyst of the greater omentum","дифференциальная диагностика"],"bi_sort_1_sort":"laparoscopic removal of a mesothelial cyst of the greater omentum: clinical case","bi_sort_3_sort":"2025-07-09T13:58:56Z","read":["g0"],"_version_":1837178066625888256},{"SolrIndexer.lastIndexed":"2025-07-09T13:59:00.286Z","search.uniqueid":"2-8039","search.resourcetype":2,"search.resourceid":8039,"handle":"123456789/8928","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-75-82"],"dc.abstract":["

Introduction. Cutaneous melanoma is a highly aggressive malignancy with a significant risk of metastasis. Current treatment strategies include surgical resection, immunotherapy, and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite the efficacy of dual BRAF/MEK inhibition, the rapid development of drug resistance remains a challenge, prompting interest in combination immunotherapy plus targeted therapy. Aim. This study aimed to evaluate the efficacy and tolerability of triple therapy, involving atezolizumab, vemurafenib, and cobimetinib in patients with BRAF V600 mutation-driven metastatic melanoma following failure of prior lines of therapy. Materials and methods. We present a detailed case report of a patient with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first-line therapy with dabrafenib and trametinib. After subsequent progression, second- and third-line therapies with pembrolizumab followed by pembrolizumab and lenvatinib were administered; however, both therapies proved ineffective. Fourth-line therapy with atezolizumab, vemurafenib, and cobimetinib demonstrated a significant clinical response. Results and discussion. Following six months of triple therapy, positron emission tomography/computed tomography (PET/CT) confirmed complete metabolic regression of the previously identified lesions, including those in the intrathoracic lymph nodes and pulmonary metastases. The treatment was well tolerated, with no grade 3–4 adverse events. Conclusion. This clinical case highlights the potential of the atezolizumab, vemurafenib, and cobimetinib therapy in patients with pretreated BRAF V600E-mutated metastatic melanoma. This regimen may benefit patients with acquired resistance to BRAF/MEK inhibitors and immune checkpoint inhibitors. The findings underscore the importance of personalized treatment strategies and the need for further research in this area.

","

Введение. Меланома кожи является высокоагрессивным злокачественным новообразованием с высоким риском метастазирования. Современные методы лечения включают хирургическое вмешательство, иммунотерапию и таргетную терапию, направленную на мутации в сигнальных путях MAPK/ERK, в частности BRAF V600E. Несмотря на эффективность двойных режимов (ингибиторы BRAF и MEK), быстро развивающаяся лекарственная устойчивость остается проблемой, что обусловило интерес к комбинированной иммуно-таргетной терапии. Цель: оценить эффективность и переносимость тройной комбинации Атезолизумаб + Вемурафениб + Кобиметиниб у пациента с метастатической меланомой кожи, BRAF V600E-положительной, после неудачи предшествующих линий терапии. Материалы и методы. Приведен детализированный клинический случай пациента с метастатической меланомой кожи, у которого после операции и первой линии терапии комбинацией Дабрафениб + Траметиниб была зафиксирована стабилизация заболевания в течение 27 месяцев. После последующего прогрессирования были применены вторая и третья линии терапии: Пембролизумаб, затем Пембролизумаб + Ленватиниб, однако они оказались недостаточно эффективными. Четвертая линия терапии: комбинация Атезолизумаб + Вемурафениб + Кобиметиниб — показала выраженный положительный эффект. Результаты и обсуждение. После шести месяцев терапии тройной комбинацией отмечено полное метаболическое регрессирование ранее выявленных очагов по данным ПЭТ-КТ, включая внутригрудные лимфатические узлы и метастатические очаги в легких. Терапия продолжена, переносимость удовлетворительная, нежелательные явления 3–4-й степени отсутствуют. Заключение. Клинический случай демонстрирует перспективность применения комбинированной схемы Атезолизумаб + Вемурафениб + Кобиметиниб у предлеченного пациента с метастатической меланомой, обладающей мутацией BRAF V600E. Данный подход может быть эффективным у пациентов с ранее развившейся резистентностью к BRAF/MEK-ингибиторам и ингибиторам контрольных точек иммунного ответа. Полученные данные подтверждают актуальность персонализированного подхода в лечении меланомы и необходимость дальнейших исследований в этой области.

"],"dc.abstract.en":["

Introduction. Cutaneous melanoma is a highly aggressive malignancy with a significant risk of metastasis. Current treatment strategies include surgical resection, immunotherapy, and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite the efficacy of dual BRAF/MEK inhibition, the rapid development of drug resistance remains a challenge, prompting interest in combination immunotherapy plus targeted therapy. Aim. This study aimed to evaluate the efficacy and tolerability of triple therapy, involving atezolizumab, vemurafenib, and cobimetinib in patients with BRAF V600 mutation-driven metastatic melanoma following failure of prior lines of therapy. Materials and methods. We present a detailed case report of a patient with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first-line therapy with dabrafenib and trametinib. After subsequent progression, second- and third-line therapies with pembrolizumab followed by pembrolizumab and lenvatinib were administered; however, both therapies proved ineffective. Fourth-line therapy with atezolizumab, vemurafenib, and cobimetinib demonstrated a significant clinical response. Results and discussion. Following six months of triple therapy, positron emission tomography/computed tomography (PET/CT) confirmed complete metabolic regression of the previously identified lesions, including those in the intrathoracic lymph nodes and pulmonary metastases. The treatment was well tolerated, with no grade 3–4 adverse events. Conclusion. This clinical case highlights the potential of the atezolizumab, vemurafenib, and cobimetinib therapy in patients with pretreated BRAF V600E-mutated metastatic melanoma. This regimen may benefit patients with acquired resistance to BRAF/MEK inhibitors and immune checkpoint inhibitors. The findings underscore the importance of personalized treatment strategies and the need for further research in this area.

"],"subject":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy","меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"subject_keyword":["melanoma","melanoma","atezolizumab","atezolizumab","vemurafenib","vemurafenib","cobimetinib","cobimetinib","immunotherapy","immunotherapy","tumor biomarkers","tumor biomarkers","SOX transcription factors","SOX transcription factors","targeted therapy","targeted therapy","меланома","меланома","атезолизумаб","атезолизумаб","вемурафениб","вемурафениб","кобиметиниб","кобиметиниб","иммунотерапия","иммунотерапия","биомаркеры новообразований","биомаркеры новообразований","Soxe транскрипционные факторы","Soxe транскрипционные факторы","таргетная терапия","таргетная терапия"],"subject_ac":["melanoma\n|||\nmelanoma","atezolizumab\n|||\natezolizumab","vemurafenib\n|||\nvemurafenib","cobimetinib\n|||\ncobimetinib","immunotherapy\n|||\nimmunotherapy","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","меланома\n|||\nмеланома","атезолизумаб\n|||\nатезолизумаб","вемурафениб\n|||\nвемурафениб","кобиметиниб\n|||\nкобиметиниб","иммунотерапия\n|||\nиммунотерапия","биомаркеры новообразований\n|||\nбиомаркеры новообразований","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы","таргетная терапия\n|||\nтаргетная терапия"],"subject_tax_0_filter":["melanoma\n|||\nmelanoma","atezolizumab\n|||\natezolizumab","vemurafenib\n|||\nvemurafenib","cobimetinib\n|||\ncobimetinib","immunotherapy\n|||\nimmunotherapy","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","меланома\n|||\nмеланома","атезолизумаб\n|||\nатезолизумаб","вемурафениб\n|||\nвемурафениб","кобиметиниб\n|||\nкобиметиниб","иммунотерапия\n|||\nиммунотерапия","биомаркеры новообразований\n|||\nбиомаркеры новообразований","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы","таргетная терапия\n|||\nтаргетная терапия"],"subject_filter":["melanoma\n|||\nmelanoma","atezolizumab\n|||\natezolizumab","vemurafenib\n|||\nvemurafenib","cobimetinib\n|||\ncobimetinib","immunotherapy\n|||\nimmunotherapy","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","меланома\n|||\nмеланома","атезолизумаб\n|||\nатезолизумаб","вемурафениб\n|||\nвемурафениб","кобиметиниб\n|||\nкобиметиниб","иммунотерапия\n|||\nиммунотерапия","биомаркеры новообразований\n|||\nбиомаркеры новообразований","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы","таргетная терапия\n|||\nтаргетная терапия"],"dc.subject_mlt":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy","меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"dc.subject":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy","меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"dc.subject.en":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy"],"title":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"title_keyword":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"title_ac":["combination braf/mek inhibitor targeted therapy and immunotherapy (atezolizumab + vemurafenib + cobimetinib) for metastatic cutaneous melanoma: clinical case\n|||\nCombination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","комбинированная таргетная терапия ингибиторами braf и mek в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)\n|||\nКомбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title_sort":"Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","dc.title_hl":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title_mlt":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title_stored":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case"],"dc.abstract.ru":["

Введение. Меланома кожи является высокоагрессивным злокачественным новообразованием с высоким риском метастазирования. Современные методы лечения включают хирургическое вмешательство, иммунотерапию и таргетную терапию, направленную на мутации в сигнальных путях MAPK/ERK, в частности BRAF V600E. Несмотря на эффективность двойных режимов (ингибиторы BRAF и MEK), быстро развивающаяся лекарственная устойчивость остается проблемой, что обусловило интерес к комбинированной иммуно-таргетной терапии. Цель: оценить эффективность и переносимость тройной комбинации Атезолизумаб + Вемурафениб + Кобиметиниб у пациента с метастатической меланомой кожи, BRAF V600E-положительной, после неудачи предшествующих линий терапии. Материалы и методы. Приведен детализированный клинический случай пациента с метастатической меланомой кожи, у которого после операции и первой линии терапии комбинацией Дабрафениб + Траметиниб была зафиксирована стабилизация заболевания в течение 27 месяцев. После последующего прогрессирования были применены вторая и третья линии терапии: Пембролизумаб, затем Пембролизумаб + Ленватиниб, однако они оказались недостаточно эффективными. Четвертая линия терапии: комбинация Атезолизумаб + Вемурафениб + Кобиметиниб — показала выраженный положительный эффект. Результаты и обсуждение. После шести месяцев терапии тройной комбинацией отмечено полное метаболическое регрессирование ранее выявленных очагов по данным ПЭТ-КТ, включая внутригрудные лимфатические узлы и метастатические очаги в легких. Терапия продолжена, переносимость удовлетворительная, нежелательные явления 3–4-й степени отсутствуют. Заключение. Клинический случай демонстрирует перспективность применения комбинированной схемы Атезолизумаб + Вемурафениб + Кобиметиниб у предлеченного пациента с метастатической меланомой, обладающей мутацией BRAF V600E. Данный подход может быть эффективным у пациентов с ранее развившейся резистентностью к BRAF/MEK-ингибиторам и ингибиторам контрольных точек иммунного ответа. Полученные данные подтверждают актуальность персонализированного подхода в лечении меланомы и необходимость дальнейших исследований в этой области.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nМеланома кожи представляет собой злокачественное\nновообразование, возникающее из меланоцитов и характеризующееся агрессивным биологическим поведением и высоким потенциалом метастазирования [1].\nСогласно данным GLOBOCAN, ежегодно регистрируется свыше 325 000 новых случаев меланомы, из которых\nболее 57 000 заканчиваются летально [2]. В развитых\nстранах заболеваемость продолжает расти, особенно\nсреди лиц со светлой кожей, проживающих в регионах\nс высокой солнечной активностью [3]. Ультрафиолетовое (УФ) облучение считается основным экзогенным\nфактором канцерогенеза при меланоме. Под действием\nУФ-излучения в меланоцитах накапливаются мутации,\nнарушающие контроль клеточного цикла, пролиферации и апоптоза [4–6].\nОсобенно важны в патогенезе мутации в генах\nBRAF, NRAS, KIT, NF1 и других сигнальных каскадах\nMAPK/ERK и PI3K/AKT [7, 8]. Мутации в гене BRAF\nвстречаются приблизительно в 40–60 % случаев меланомы, причем наиболее распространенной является\nBRAF V600E — замена валина на глутаминовую кислоту в кодоне 600 [9]. Эта мутация ассоциирована с молодым возрастом, большим числом невусов, первичной\nлокализацией на туловище и высокой УФ-экспозицией\n[10, 11]. Исследования показали, что пациенты с BRAFмутацией демонстрируют особый биологический\nи клинический фенотип опухоли [12]. Мутации NRAS\nвстречаются в 15–20 % случаев, особенно при узловых\nформах меланомы, ассоциированных с длительным\nсолнечным воздействием и большей толщиной опухоли [13]. Меланомы без мутации в BRAF или NRAS называются double wild-type и часто характеризуются мутациями в NF1 и KIT [14, 15].\nДиагностика меланомы включает клинико-дерматологическое обследование, дерматоскопию и иммуногистохимические исследования. Одним из наиболее\nчувствительных и специфичных маркеров является\nтранскрипционный фактор SOX10, экспрессируемый\nпрактически во всех формах меланомы, включая десмопластические и веретенообразные подтипы. Его\nчувствительность достигает 100 %, а специфичность —\n93 % [16]. С учетом молекулярных особенностей опухоли за последнее десятилетие произошло значительное\nрасширение терапевтического арсенала за счет таргетной терапии и иммунотерапии [17]. Переломным моментом стало внедрение ингибиторов BRAF (вемурафениб, дабрафениб) и MEK (траметиниб, кобиметиниб,\nбиниметиниб), которые при комбинированном применении существенно улучшили показатели выживаемости [18, 19]. Так, комбинация дабрафениб + траметиниб\nпо сравнению с монотерапией продемонстрировала\nдостоверное увеличение общей выживаемости (ОВ)\nи выживаемости без прогрессирования (ВБП), медиана\nВБП достигала 11 месяцев, а 5-летняя ОВ — 34 % [20].\nПохожими характеристиками обладает комбинация\nвемурафениб + кобиметиниб и энкорафениб + биниметиниб [21].\nОднако на фоне таргетной терапии довольно быстро\nразвивается лекарственная устойчивость — в среднем\nчерез 6–8 месяцев [22]. Среди предполагаемых механизмов устойчивости называют повторную активацию MAPK-пути, мутации в MEK1/2, PIK3CA и экспрессию альтернативных рецепторов роста [23, 24].\nВ связи с этим было предложено использовать комбинированную иммуно- и таргетную терапию. Исследование IMspire150 стало первым, где была продемонстрирована эффективность тройной комбинации\nатезолизумаб + вемурафениб + кобиметиниб: медиана\nВБП достигла 15,1 месяца против 10,6 при двойной\nтерапии, а профиль токсичности оказался приемлемым [25]. Результаты IMspire150 были подтверждены и другими исследованиями, включая SECOMBIT\nи DREAMseq, где оценивались различные стратегии\nпоследовательного и комбинированного применения\nиммуно- и таргетных агентов [26, 27]. Так, в DREAMseq\nбыло показано, что инициальная иммунотерапия\n(Ниволумаб + Ипилимумаб) с последующим переходом\nна таргетную терапию обеспечивает более длительную\nОВ, чем наоборот [27].\nИммуноонкологические препараты (ингибиторы PD-1\nи CTLA-4) продемонстрировали революционные результаты в лечении метастатической меланомы. Комбинация Ниволумаб + Ипилимумаб обеспечивает медиану ОВ свыше 60 месяцев, хотя сопровождается высокой\nтоксичностью (3–4-я степень — у 55 % пациентов) [28,\n29]. Пембролизумаб, другой ингибитор PD-1, в рамках\nисследования KEYNOTE-006 показал двухлетнюю выживаемость около 55 %, особенно у пациентов с высокой экспрессией PD-L1 [30]. При прогрессии на иммунотерапии перспективным вариантом является\nкомбинация Пембролизумаб + Ленватиниб, как показано в исследовании LEAP-004, где общая эффективность\nсоставила 21,4 % [31]. Современные исследования поднимают важность учета иммуноопосредованного «сетпоинта» опухоли — баланса между иммунной атакой\nи защитой опухоли, зависящего от опухолевой микросреды, экспрессии PD-L1, мутационной нагрузки и инфильтрации лимфоцитами [32, 33].\nМикроокружение меланомы включает иммунные\nклетки, сосуды, фибробласты, и его характеристики\nвлияют на ответ на терапию. Например, высокая экспрессия VEGF может снижать эффективность иммунотерапии, поэтому ангиостатические агенты вроде\nЛенватиниба потенциально усиливают ее эффект [34].\nСогласно рекомендациям NCCN (2024) и ESMO (2022),\nвыбор терапии должен быть индивидуализирован\nс учетом мутационного профиля, стадии заболевания, выраженности симптомов и предпочтений пациента [35].\nМАТЕРИАЛЫ И МЕТОДЫ\nПациент А. в 2018 году стал отмечать появление опухоли на коже волосистой части головы в заушной области\nслева. Постепенно отмечал изменение свойств опухоли увеличение в размерах, появление зуда. С января\n2019-го отметил появление опухоли на задней поверхности шеи. Обратился в поликлинику по месту жительства, где было проведено обследование. Пациент был\nнаправлен в Республиканский онкологический диспансер, где образования были верифицированы и выставлен диагноз: меланома кожи заушной области, волосистой части головы стадия 3 а группа 2 T1aN1M0. 15 мая\n2019 г. пациенту было выполнено расширенное истечение опухоли кожи заушной области слева. Произведен\nпоиск мутации генов BRAF. Выявлена мутация в гене\nBRAF V600E. Согласно клиническим рекомендациям\nпациенту назначен курс лекарственной терапии препаратами Дабрафениб и Траметиниб. 31 июля 2019 г.\nпациент начал получать терапию. После третьего курса\nтерапии больной был направлен на контрольное обследование — ПЭТ / КТ, где было отмечено уменьшение\nразмеров и уровня активности в корне правого легкого\n(лимфатический узел) (рис. 1).\nДругие внутригрудные лимфатические узлы неактивны. Пациент продолжил терапию в прежнем режиме.\nПосле девятого курса терапии пациент был вновь направлен на контрольное обследование (ПЭТ / КТ), где\nотмечена стабилизация заболевания со снижением метаболической активности (рис. 2).\nПациенту было рекомендовано продолжить терапию\nв режиме «Дабрафениб и Траметиниб». После 14-го\nкурса терапии по данным контрольного обследования\nотмечено в динамике появление низкой активности\nв немногочисленных лимфатических узлах первого\nи второго уровня шеи. А также появление зоны активности послеоперационной области. Пациент был направлен на консилиум, где принято решение продолжить терапию в прежнем режиме. По окончанию 19-го\nкурса проведен контроль в динамике, где зафиксирована стабилизация заболевания. Пациент продолжил лечение в прежней схеме, и после 26-го курса была вновь\nоценена динамика. По данным позитронной-эмиссионной томографии, отмечена отрицательная динамика\nв виде роста размеров и активности единичного лимфоузла шеи слева вероятнее МТС (рис. 3), в остальном\nрегресс активности в немногочисленных лимфоузлах\nшеи, сохраняются слабо активные лимфоузлы корня\nправого легкого.\nБыло принято решение назначить анти-PD-1 терапию\nПембролизумабом. 28 сентября 2022 г. больной получил первый курс второй линии терапии. По окончании\nтретьего курса была проведена оценка эффективности\nлечения, где выявлена прогрессия заболевания в виде\nувеличения лимфоузлов шеи слева с повышением метаболической активности (рис. 4).\nПроведена биопсия лимфатического узла. Патологоанатомически подтверждён метастаз пигментной меланомы в исследованном узле. 9 февраля 2023 г. пациенту\nпроведена экстирпация метастатических пораженных\nлимфоузлов шеи. После чего консилиумом было решено добавить к Пембролизумабу Ленватиниб. После четырех курсов данной схемы терапии по данным\nПЭТ-КТ отмечено появление очагов в правом легком\nс низкой метаболической активностью. Для уточнения\nхарактера выявленных очагов была проведена компьютерная томография, где было подтверждено прогрессирование заболевания в виде появления метастатических очагов в легком. Онкологическим консилиумом\nРеспубликанского онкологического диспансера было\nпредложено лечение: Атезолизумаб + Вемурафениб +\nКобиметиниб. После шести месяцев терапии на контрольном обследовании данных о наличии очагов с патологическим метаболизмом 18F-ФДГ, характерных длянеопластического процесса, не выявлено, в сравнении\nс предыдущим исследованием отмечается снижение\nактивности внутригрудных лимфатических узлов. Регресс ранее визуализируемых очагов в легких. Пациент\nпродолжил терапию в прежнем режиме. В настоящее\nвремя пациент продолжает получать терапию Атезолизумаб + Вемурафениб + Кобиметиниб. Нежелательных\nявлений, требующих коррекции дозировки или отмены\nпрепарата, не выявлено.\nРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nМеланома кожи с мутацией BRAF V600E представляет\nсобой особую клинико-биологическую подгруппу опухолей, для которой за последние годы разработаны различные терапевтические подходы, включая таргетные\nпрепараты и иммуноонкологические средства [7, 9, 17].\nПациенту, описанному в настоящем наблюдении, была\nпроведена радикальная хирургическая резекция с последующим применением таргетной терапии комбинацией Дабрафениб + Траметиниб, что соответствует\nсовременным рекомендациям по ведению пациентов\nс мутацией BRAF V600E на стадии III и IV [18, 19, 35].\nКак показано в исследовании COMBI-AD, адъювантное\nприменение Дабрафениба с Траметинибом у пациентов\nс полностью удаленной меланомой стадии III приводит\nк значимому снижению риска рецидива и увеличению\nобщей выживаемости: через 3 года она составила 86 %\n[20]. У описанного пациента стабилизация заболевания\nсохранялась более 2 лет, что подтверждает данные литературы о длительном клиническом контроле на фоне\nдвойной таргетной терапии [21].\nОднако, как и в большинстве случаев, в течение третьего года лечения у пациента было зарегистрировано\nпрогрессирование заболевания, что может быть связано с формированием лекарственной устойчивости\nк ингибиторам BRAF и MEK. Предполагается, что повторная активация MAPK-пути, мутации в MEK1/2,\nа также компенсация через PI3K-AKT путь являются\nосновными причинами вторичной резистентности\n[22–24]. Вторая линия лечения включала назначение\nПембролизумаба — ингибитора PD-1, эффективность\nкоторого подтверждена в исследовании KEYNOTE-006,\nгде при распространенной меланоме медиана общей\nвыживаемости составила 32,7 месяца [30]. Однако у пациента было отмечено раннее прогрессирование после\nначала иммунотерапии, что, вероятно, обусловлено иммунологическим «холодным» фенотипом опухоли или\nугнетающим микроклиматом опухолевой микросреды\n[32, 33].\nВ качестве третьей линии был применен режим «Пембролизумаб + Ленватиниб». Данная комбинация показала перспективные результаты в исследовании\nLEAP-004 (фаза II), особенно у пациентов с прогрессированием после PD-1 терапии: общая эффективность\nсоставила 21,4 %, а медиана ВБП — 4,2 месяца [31]. Однако и этот подход оказался недостаточно эффективным в конкретном клиническом случае, что диктует\nнеобходимость более агрессивной и комбинированной\nстратегии.\nВ 2023 году пациенту было назначено лечение в режиме\n«Атезолизумаб + Вемурафениб + Кобиметиниб», основанное на данных рандомизированного клинического\nисследования IMspire150, где тройная терапия показала значимое преимущество по медиане выживаемости\nбез прогрессирования (15,1 против 10,6 месяца при\nдвойной терапии), а также более высокий общий ответ(ORR) [25]. Этот подход признан эффективным при наличии активной мутации BRAF и удовлетворительного\nсоматического статуса пациента [26].\nОтдельного внимания заслуживает вопрос о выборе\nпоследовательности терапии при BRAF-положительной\nмеланоме. Исследование DREAMseq (фаза III) продемонстрировало преимущество начала лечения с иммунотерапии (Ниволумаб + Ипилимумаб), а затем — переход к таргетным препаратам. Однако при агрессивном\nклиническом течении, выраженном симптомокомплексе или быстро растущих метастазах обосновано первичное применение таргетной терапии [27]. Также следует учитывать важность оценки микросреды опухоли,\nуровня экспрессии PD-L1 и мутационной нагрузки при\nпрогнозировании ответа на иммунотерапию [32–34].\nИнтеграция биомаркеров и динамического мониторинга ответа на лечение в реальной клинической практике\nостается ключевым направлением развития персонализированной онкологии.\nТаким образом, представленный случай демонстрирует весь спектр современных терапевтических стратегий при метастатической меланоме и подчеркивает\nнеобходимость индивидуального подбора лечения\nс учетом молекулярно-генетических характеристик\nопухоли, динамики ответа и развития резистентности.\nИспользование комбинированной терапии, как показано в IMspire150, дает реальные шансы на долгосрочный\nконтроль заболевания у тщательно отобранных пациентов [25].\nПациенту с BRAF-положительной меланомой, согласно\nклиническим рекомендациям, была проведена радикальная операция с последующим назначением таргетной терапии комбинацией Дабрафениб + Траметиниб.\nНа фоне проводимого лечения отмечалась длительная\nстабилизация заболевания — около 27 месяцев. Эти данные согласуются с результатами исследования COMBIAD, где сообщается, что адъювантная терапия данной\nкомбинацией у пациентов с BRAF-мутированной меланомой стадии III приводит к 3-летней общей выживаемости 86% [20]. Также в этом исследовании было установлено, что нежелательные явления были, как правило,\nобратимыми и контролируемыми [20].\nПосле прогрессирования заболевания во время таргетной терапии пациенту был назначен Пембролизумаб.\nЭтот препарат представляет собой гуманизированное\nмоноклональное антитело IgG4, направленное против\nрецептора PD-1 и блокирующее взаимодействие с его\nлигандами PD-L1 и PD-L2 [30]. Как показано в исследовании KEYNOTE-006, применение Пембролизумаба\nприводит к значительному улучшению общей выживаемости по сравнению с Ипилимумабом [30]. Однако у описанного пациента прогрессирование было зафиксировано на ранних сроках иммунотерапии, что,\nвероятно, связано с иммуносупрессивной опухолевой\nмикросредой [33]. Следующим этапом лечения стала\nкомбинация Пембролизумаб + Ленватиниб. Эффективность данной схемы была продемонстрирована\nво II фазе исследования LEAP-004, где комбинированная терапия у предлеченных пациентов с метастатической меланомой привела к объективному ответу у 21,4 %\nпациентов [31]. Однако у данного пациента отмечалась\nдальнейшая отрицательная динамика, включая появление метастатических очагов в легких.\nВ связи с прогрессированием заболевания было принято решение о переходе на схему «Атезолизумаб +\nВемурафениб + Кобиметиниб». Согласно данным\nклинического исследования IMspire150, эта тройная\nкомбинация обеспечила медиану выживаемости без\nпрогрессирования 15,1 месяца против 10,6 месяца\nв группе двойной таргетной терапии (Вемурафениб +\nКобиметиниб), при этом профиль токсичности оставался приемлемым [25]. Данное исследование подтвердило преимущества добавления иммунотерапии\nк таргетному режиму у пациентов с ранее не леченной\nBRAF-мутированной меланомой [25]. Таким образом,\nклиническое течение у данного пациента в целом соответствует текущим научным данным.\nСогласно исследованию DREAMseq, для пациентов\nс BRAF-мутированной меланомой возможны различные подходы к выбору последовательности терапии:\nот инициальной иммунотерапии до первичной таргетной терапии [27]. Учитывая агрессивность заболевания\nи необходимость быстрого ответа, у нашего пациента\nстартовая тактика с таргетной терапии была оправдана.\nЗАКЛЮЧЕНИЕ\nПациент с положительной мутацией BRAF, у которого была проведена радикальная операция, после\nкоторой он получал терапию комбинацией Дабрафениб + Траметиниб. Отмечена стабилизация заболевания на протяжении 27 месяцев. Позже, когда лечение\nне достигло ожидаемого эффекта, пациент был переведен на следующую линию терапии: Пембролизумаб.\nЗатем после прогрессирования добавлен был Ленватиниб. Но после очередной прогрессии заболевания\nпациенту было предложено комбинированное лечение\nАтезолизумаб + Вемурафениб + Кобиметиниб, которое\nпоказало лучшие результаты в клиническом исследовании IMspire-150. Пациент получает по настоящее время данную комбинацию, с хорошей переносимостью\nи стабильной динамикой."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nМеланома кожи представляет собой злокачественное\nновообразование, возникающее из меланоцитов и характеризующееся агрессивным биологическим поведением и высоким потенциалом метастазирования [1].\nСогласно данным GLOBOCAN, ежегодно регистрируется свыше 325 000 новых случаев меланомы, из которых\nболее 57 000 заканчиваются летально [2]. В развитых\nстранах заболеваемость продолжает расти, особенно\nсреди лиц со светлой кожей, проживающих в регионах\nс высокой солнечной активностью [3]. Ультрафиолетовое (УФ) облучение считается основным экзогенным\nфактором канцерогенеза при меланоме. Под действием\nУФ-излучения в меланоцитах накапливаются мутации,\nнарушающие контроль клеточного цикла, пролиферации и апоптоза [4–6].\nОсобенно важны в патогенезе мутации в генах\nBRAF, NRAS, KIT, NF1 и других сигнальных каскадах\nMAPK/ERK и PI3K/AKT [7, 8]. Мутации в гене BRAF\nвстречаются приблизительно в 40–60 % случаев меланомы, причем наиболее распространенной является\nBRAF V600E — замена валина на глутаминовую кислоту в кодоне 600 [9]. Эта мутация ассоциирована с молодым возрастом, большим числом невусов, первичной\nлокализацией на туловище и высокой УФ-экспозицией\n[10, 11]. Исследования показали, что пациенты с BRAFмутацией демонстрируют особый биологический\nи клинический фенотип опухоли [12]. Мутации NRAS\nвстречаются в 15–20 % случаев, особенно при узловых\nформах меланомы, ассоциированных с длительным\nсолнечным воздействием и большей толщиной опухоли [13]. Меланомы без мутации в BRAF или NRAS называются double wild-type и часто характеризуются мутациями в NF1 и KIT [14, 15].\nДиагностика меланомы включает клинико-дерматологическое обследование, дерматоскопию и иммуногистохимические исследования. Одним из наиболее\nчувствительных и специфичных маркеров является\nтранскрипционный фактор SOX10, экспрессируемый\nпрактически во всех формах меланомы, включая десмопластические и веретенообразные подтипы. Его\nчувствительность достигает 100 %, а специфичность —\n93 % [16]. С учетом молекулярных особенностей опухоли за последнее десятилетие произошло значительное\nрасширение терапевтического арсенала за счет таргетной терапии и иммунотерапии [17]. Переломным моментом стало внедрение ингибиторов BRAF (вемурафениб, дабрафениб) и MEK (траметиниб, кобиметиниб,\nбиниметиниб), которые при комбинированном применении существенно улучшили показатели выживаемости [18, 19]. Так, комбинация дабрафениб + траметиниб\nпо сравнению с монотерапией продемонстрировала\nдостоверное увеличение общей выживаемости (ОВ)\nи выживаемости без прогрессирования (ВБП), медиана\nВБП достигала 11 месяцев, а 5-летняя ОВ — 34 % [20].\nПохожими характеристиками обладает комбинация\nвемурафениб + кобиметиниб и энкорафениб + биниметиниб [21].\nОднако на фоне таргетной терапии довольно быстро\nразвивается лекарственная устойчивость — в среднем\nчерез 6–8 месяцев [22]. Среди предполагаемых механизмов устойчивости называют повторную активацию MAPK-пути, мутации в MEK1/2, PIK3CA и экспрессию альтернативных рецепторов роста [23, 24].\nВ связи с этим было предложено использовать комбинированную иммуно- и таргетную терапию. Исследование IMspire150 стало первым, где была продемонстрирована эффективность тройной комбинации\nатезолизумаб + вемурафениб + кобиметиниб: медиана\nВБП достигла 15,1 месяца против 10,6 при двойной\nтерапии, а профиль токсичности оказался приемлемым [25]. Результаты IMspire150 были подтверждены и другими исследованиями, включая SECOMBIT\nи DREAMseq, где оценивались различные стратегии\nпоследовательного и комбинированного применения\nиммуно- и таргетных агентов [26, 27]. Так, в DREAMseq\nбыло показано, что инициальная иммунотерапия\n(Ниволумаб + Ипилимумаб) с последующим переходом\nна таргетную терапию обеспечивает более длительную\nОВ, чем наоборот [27].\nИммуноонкологические препараты (ингибиторы PD-1\nи CTLA-4) продемонстрировали революционные результаты в лечении метастатической меланомы. Комбинация Ниволумаб + Ипилимумаб обеспечивает медиану ОВ свыше 60 месяцев, хотя сопровождается высокой\nтоксичностью (3–4-я степень — у 55 % пациентов) [28,\n29]. Пембролизумаб, другой ингибитор PD-1, в рамках\nисследования KEYNOTE-006 показал двухлетнюю выживаемость около 55 %, особенно у пациентов с высокой экспрессией PD-L1 [30]. При прогрессии на иммунотерапии перспективным вариантом является\nкомбинация Пембролизумаб + Ленватиниб, как показано в исследовании LEAP-004, где общая эффективность\nсоставила 21,4 % [31]. Современные исследования поднимают важность учета иммуноопосредованного «сетпоинта» опухоли — баланса между иммунной атакой\nи защитой опухоли, зависящего от опухолевой микросреды, экспрессии PD-L1, мутационной нагрузки и инфильтрации лимфоцитами [32, 33].\nМикроокружение меланомы включает иммунные\nклетки, сосуды, фибробласты, и его характеристики\nвлияют на ответ на терапию. Например, высокая экспрессия VEGF может снижать эффективность иммунотерапии, поэтому ангиостатические агенты вроде\nЛенватиниба потенциально усиливают ее эффект [34].\nСогласно рекомендациям NCCN (2024) и ESMO (2022),\nвыбор терапии должен быть индивидуализирован\nс учетом мутационного профиля, стадии заболевания, выраженности симптомов и предпочтений пациента [35].\nМАТЕРИАЛЫ И МЕТОДЫ\nПациент А. в 2018 году стал отмечать появление опухоли на коже волосистой части головы в заушной области\nслева. Постепенно отмечал изменение свойств опухоли увеличение в размерах, появление зуда. С января\n2019-го отметил появление опухоли на задней поверхности шеи. Обратился в поликлинику по месту жительства, где было проведено обследование. Пациент был\nнаправлен в Республиканский онкологический диспансер, где образования были верифицированы и выставлен диагноз: меланома кожи заушной области, волосистой части головы стадия 3 а группа 2 T1aN1M0. 15 мая\n2019 г. пациенту было выполнено расширенное истечение опухоли кожи заушной области слева. Произведен\nпоиск мутации генов BRAF. Выявлена мутация в гене\nBRAF V600E. Согласно клиническим рекомендациям\nпациенту назначен курс лекарственной терапии препаратами Дабрафениб и Траметиниб. 31 июля 2019 г.\nпациент начал получать терапию. После третьего курса\nтерапии больной был направлен на контрольное обследование — ПЭТ / КТ, где было отмечено уменьшение\nразмеров и уровня активности в корне правого легкого\n(лимфатический узел) (рис. 1).\nДругие внутригрудные лимфатические узлы неактивны. Пациент продолжил терапию в прежнем режиме.\nПосле девятого курса терапии пациент был вновь направлен на контрольное обследование (ПЭТ / КТ), где\nотмечена стабилизация заболевания со снижением метаболической активности (рис. 2).\nПациенту было рекомендовано продолжить терапию\nв режиме «Дабрафениб и Траметиниб». После 14-го\nкурса терапии по данным контрольного обследования\nотмечено в динамике появление низкой активности\nв немногочисленных лимфатических узлах первого\nи второго уровня шеи. А также появление зоны активности послеоперационной области. Пациент был направлен на консилиум, где принято решение продолжить терапию в прежнем режиме. По окончанию 19-го\nкурса проведен контроль в динамике, где зафиксирована стабилизация заболевания. Пациент продолжил лечение в прежней схеме, и после 26-го курса была вновь\nоценена динамика. По данным позитронной-эмиссионной томографии, отмечена отрицательная динамика\nв виде роста размеров и активности единичного лимфоузла шеи слева вероятнее МТС (рис. 3), в остальном\nрегресс активности в немногочисленных лимфоузлах\nшеи, сохраняются слабо активные лимфоузлы корня\nправого легкого.\nБыло принято решение назначить анти-PD-1 терапию\nПембролизумабом. 28 сентября 2022 г. больной получил первый курс второй линии терапии. По окончании\nтретьего курса была проведена оценка эффективности\nлечения, где выявлена прогрессия заболевания в виде\nувеличения лимфоузлов шеи слева с повышением метаболической активности (рис. 4).\nПроведена биопсия лимфатического узла. Патологоанатомически подтверждён метастаз пигментной меланомы в исследованном узле. 9 февраля 2023 г. пациенту\nпроведена экстирпация метастатических пораженных\nлимфоузлов шеи. После чего консилиумом было решено добавить к Пембролизумабу Ленватиниб. После четырех курсов данной схемы терапии по данным\nПЭТ-КТ отмечено появление очагов в правом легком\nс низкой метаболической активностью. Для уточнения\nхарактера выявленных очагов была проведена компьютерная томография, где было подтверждено прогрессирование заболевания в виде появления метастатических очагов в легком. Онкологическим консилиумом\nРеспубликанского онкологического диспансера было\nпредложено лечение: Атезолизумаб + Вемурафениб +\nКобиметиниб. После шести месяцев терапии на контрольном обследовании данных о наличии очагов с патологическим метаболизмом 18F-ФДГ, характерных длянеопластического процесса, не выявлено, в сравнении\nс предыдущим исследованием отмечается снижение\nактивности внутригрудных лимфатических узлов. Регресс ранее визуализируемых очагов в легких. Пациент\nпродолжил терапию в прежнем режиме. В настоящее\nвремя пациент продолжает получать терапию Атезолизумаб + Вемурафениб + Кобиметиниб. Нежелательных\nявлений, требующих коррекции дозировки или отмены\nпрепарата, не выявлено.\nРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nМеланома кожи с мутацией BRAF V600E представляет\nсобой особую клинико-биологическую подгруппу опухолей, для которой за последние годы разработаны различные терапевтические подходы, включая таргетные\nпрепараты и иммуноонкологические средства [7, 9, 17].\nПациенту, описанному в настоящем наблюдении, была\nпроведена радикальная хирургическая резекция с последующим применением таргетной терапии комбинацией Дабрафениб + Траметиниб, что соответствует\nсовременным рекомендациям по ведению пациентов\nс мутацией BRAF V600E на стадии III и IV [18, 19, 35].\nКак показано в исследовании COMBI-AD, адъювантное\nприменение Дабрафениба с Траметинибом у пациентов\nс полностью удаленной меланомой стадии III приводит\nк значимому снижению риска рецидива и увеличению\nобщей выживаемости: через 3 года она составила 86 %\n[20]. У описанного пациента стабилизация заболевания\nсохранялась более 2 лет, что подтверждает данные литературы о длительном клиническом контроле на фоне\nдвойной таргетной терапии [21].\nОднако, как и в большинстве случаев, в течение третьего года лечения у пациента было зарегистрировано\nпрогрессирование заболевания, что может быть связано с формированием лекарственной устойчивости\nк ингибиторам BRAF и MEK. Предполагается, что повторная активация MAPK-пути, мутации в MEK1/2,\nа также компенсация через PI3K-AKT путь являются\nосновными причинами вторичной резистентности\n[22–24]. Вторая линия лечения включала назначение\nПембролизумаба — ингибитора PD-1, эффективность\nкоторого подтверждена в исследовании KEYNOTE-006,\nгде при распространенной меланоме медиана общей\nвыживаемости составила 32,7 месяца [30]. Однако у пациента было отмечено раннее прогрессирование после\nначала иммунотерапии, что, вероятно, обусловлено иммунологическим «холодным» фенотипом опухоли или\nугнетающим микроклиматом опухолевой микросреды\n[32, 33].\nВ качестве третьей линии был применен режим «Пембролизумаб + Ленватиниб». Данная комбинация показала перспективные результаты в исследовании\nLEAP-004 (фаза II), особенно у пациентов с прогрессированием после PD-1 терапии: общая эффективность\nсоставила 21,4 %, а медиана ВБП — 4,2 месяца [31]. Однако и этот подход оказался недостаточно эффективным в конкретном клиническом случае, что диктует\nнеобходимость более агрессивной и комбинированной\nстратегии.\nВ 2023 году пациенту было назначено лечение в режиме\n«Атезолизумаб + Вемурафениб + Кобиметиниб», основанное на данных рандомизированного клинического\nисследования IMspire150, где тройная терапия показала значимое преимущество по медиане выживаемости\nбез прогрессирования (15,1 против 10,6 месяца при\nдвойной терапии), а также более высокий общий ответ(ORR) [25]. Этот подход признан эффективным при наличии активной мутации BRAF и удовлетворительного\nсоматического статуса пациента [26].\nОтдельного внимания заслуживает вопрос о выборе\nпоследовательности терапии при BRAF-положительной\nмеланоме. Исследование DREAMseq (фаза III) продемонстрировало преимущество начала лечения с иммунотерапии (Ниволумаб + Ипилимумаб), а затем — переход к таргетным препаратам. Однако при агрессивном\nклиническом течении, выраженном симптомокомплексе или быстро растущих метастазах обосновано первичное применение таргетной терапии [27]. Также следует учитывать важность оценки микросреды опухоли,\nуровня экспрессии PD-L1 и мутационной нагрузки при\nпрогнозировании ответа на иммунотерапию [32–34].\nИнтеграция биомаркеров и динамического мониторинга ответа на лечение в реальной клинической практике\nостается ключевым направлением развития персонализированной онкологии.\nТаким образом, представленный случай демонстрирует весь спектр современных терапевтических стратегий при метастатической меланоме и подчеркивает\nнеобходимость индивидуального подбора лечения\nс учетом молекулярно-генетических характеристик\nопухоли, динамики ответа и развития резистентности.\nИспользование комбинированной терапии, как показано в IMspire150, дает реальные шансы на долгосрочный\nконтроль заболевания у тщательно отобранных пациентов [25].\nПациенту с BRAF-положительной меланомой, согласно\nклиническим рекомендациям, была проведена радикальная операция с последующим назначением таргетной терапии комбинацией Дабрафениб + Траметиниб.\nНа фоне проводимого лечения отмечалась длительная\nстабилизация заболевания — около 27 месяцев. Эти данные согласуются с результатами исследования COMBIAD, где сообщается, что адъювантная терапия данной\nкомбинацией у пациентов с BRAF-мутированной меланомой стадии III приводит к 3-летней общей выживаемости 86% [20]. Также в этом исследовании было установлено, что нежелательные явления были, как правило,\nобратимыми и контролируемыми [20].\nПосле прогрессирования заболевания во время таргетной терапии пациенту был назначен Пембролизумаб.\nЭтот препарат представляет собой гуманизированное\nмоноклональное антитело IgG4, направленное против\nрецептора PD-1 и блокирующее взаимодействие с его\nлигандами PD-L1 и PD-L2 [30]. Как показано в исследовании KEYNOTE-006, применение Пембролизумаба\nприводит к значительному улучшению общей выживаемости по сравнению с Ипилимумабом [30]. Однако у описанного пациента прогрессирование было зафиксировано на ранних сроках иммунотерапии, что,\nвероятно, связано с иммуносупрессивной опухолевой\nмикросредой [33]. Следующим этапом лечения стала\nкомбинация Пембролизумаб + Ленватиниб. Эффективность данной схемы была продемонстрирована\nво II фазе исследования LEAP-004, где комбинированная терапия у предлеченных пациентов с метастатической меланомой привела к объективному ответу у 21,4 %\nпациентов [31]. Однако у данного пациента отмечалась\nдальнейшая отрицательная динамика, включая появление метастатических очагов в легких.\nВ связи с прогрессированием заболевания было принято решение о переходе на схему «Атезолизумаб +\nВемурафениб + Кобиметиниб». Согласно данным\nклинического исследования IMspire150, эта тройная\nкомбинация обеспечила медиану выживаемости без\nпрогрессирования 15,1 месяца против 10,6 месяца\nв группе двойной таргетной терапии (Вемурафениб +\nКобиметиниб), при этом профиль токсичности оставался приемлемым [25]. Данное исследование подтвердило преимущества добавления иммунотерапии\nк таргетному режиму у пациентов с ранее не леченной\nBRAF-мутированной меланомой [25]. Таким образом,\nклиническое течение у данного пациента в целом соответствует текущим научным данным.\nСогласно исследованию DREAMseq, для пациентов\nс BRAF-мутированной меланомой возможны различные подходы к выбору последовательности терапии:\nот инициальной иммунотерапии до первичной таргетной терапии [27]. Учитывая агрессивность заболевания\nи необходимость быстрого ответа, у нашего пациента\nстартовая тактика с таргетной терапии была оправдана.\nЗАКЛЮЧЕНИЕ\nПациент с положительной мутацией BRAF, у которого была проведена радикальная операция, после\nкоторой он получал терапию комбинацией Дабрафениб + Траметиниб. Отмечена стабилизация заболевания на протяжении 27 месяцев. Позже, когда лечение\nне достигло ожидаемого эффекта, пациент был переведен на следующую линию терапии: Пембролизумаб.\nЗатем после прогрессирования добавлен был Ленватиниб. Но после очередной прогрессии заболевания\nпациенту было предложено комбинированное лечение\nАтезолизумаб + Вемурафениб + Кобиметиниб, которое\nпоказало лучшие результаты в клиническом исследовании IMspire-150. Пациент получает по настоящее время данную комбинацию, с хорошей переносимостью\nи стабильной динамикой."],"dc.subject.ru":["меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"dc.title.ru":["Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["75-82"],"dc.rights":["CC BY 4.0"],"dc.section":["CLINICAL CASE","КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.section.en":["CLINICAL CASE"],"dc.section.ru":["КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["В. Е. Аскаров","V. E. Askarov","А. В. Султанбаев","A. V. Sultanbaev","К. В. Меньшиков","K. V. Menshikov","В. С. Чалов","V. S. Chalov","Н. И. Султанбаева","N. I. Sultanbaeva","И. А. Меньшикова","I. A. Menshikova"],"author_keyword":["В. Е. Аскаров","V. E. Askarov","А. В. Султанбаев","A. V. Sultanbaev","К. В. Меньшиков","K. V. Menshikov","В. С. Чалов","V. S. Chalov","Н. И. Султанбаева","N. I. Sultanbaeva","И. А. Меньшикова","I. A. Menshikova"],"author_ac":["в. е. аскаров\n|||\nВ. Е. Аскаров","v. e. askarov\n|||\nV. E. Askarov","а. в. султанбаев\n|||\nА. В. Султанбаев","a. v. sultanbaev\n|||\nA. V. Sultanbaev","к. в. меньшиков\n|||\nК. В. Меньшиков","k. v. menshikov\n|||\nK. V. Menshikov","в. с. чалов\n|||\nВ. С. Чалов","v. s. chalov\n|||\nV. S. Chalov","н. и. султанбаева\n|||\nН. И. Султанбаева","n. i. sultanbaeva\n|||\nN. I. Sultanbaeva","и. а. меньшикова\n|||\nИ. А. Меньшикова","i. a. menshikova\n|||\nI. A. Menshikova"],"author_filter":["в. е. аскаров\n|||\nВ. Е. Аскаров","v. e. askarov\n|||\nV. E. Askarov","а. в. султанбаев\n|||\nА. В. Султанбаев","a. v. sultanbaev\n|||\nA. V. Sultanbaev","к. в. меньшиков\n|||\nК. В. Меньшиков","k. v. menshikov\n|||\nK. V. Menshikov","в. с. чалов\n|||\nВ. С. Чалов","v. s. chalov\n|||\nV. S. Chalov","н. и. султанбаева\n|||\nН. И. Султанбаева","n. i. sultanbaeva\n|||\nN. I. Sultanbaeva","и. а. меньшикова\n|||\nИ. А. Меньшикова","i. a. menshikova\n|||\nI. A. Menshikova"],"dc.author.name":["В. Е. Аскаров","V. E. Askarov","А. В. Султанбаев","A. V. Sultanbaev","К. В. Меньшиков","K. V. Menshikov","В. С. Чалов","V. S. Chalov","Н. И. Султанбаева","N. I. Sultanbaeva","И. А. Меньшикова","I. A. Menshikova"],"dc.author.name.ru":["В. Е. Аскаров","А. В. Султанбаев","К. В. Меньшиков","В. С. Чалов","Н. И. Султанбаева","И. А. Меньшикова"],"dc.author.affiliation":["Республиканский клинический онкологический диспансер","Republican Clinical Oncological Dispensary","Республиканский клинический онкологический диспансер","Republican Clinical Oncological Dispensary","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Republican Clinical Oncological Dispensary ; Bashkir State Medical University","Центр ядерной медицины","Nuclear Medicine Centre","Республиканский клинический онкологический диспансер","Republican Clinical Oncological Dispensary","Башкирский государственный медицинский университет","Bashkir State Medical University"],"dc.author.affiliation.ru":["Республиканский клинический онкологический диспансер","Республиканский клинический онкологический диспансер","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Центр ядерной медицины","Республиканский клинический онкологический диспансер","Башкирский государственный медицинский университет"],"dc.author.full":["В. Е. Аскаров | Республиканский клинический онкологический диспансер","V. E. Askarov | Republican Clinical Oncological Dispensary","А. В. Султанбаев | Республиканский клинический онкологический диспансер","A. V. Sultanbaev | Republican Clinical Oncological Dispensary","К. В. Меньшиков | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","K. V. Menshikov | Republican Clinical Oncological Dispensary ; Bashkir State Medical University","В. С. Чалов | Центр ядерной медицины","V. S. Chalov | Nuclear Medicine Centre","Н. И. Султанбаева | Республиканский клинический онкологический диспансер","N. I. Sultanbaeva | Republican Clinical Oncological Dispensary","И. А. Меньшикова | Башкирский государственный медицинский университет","I. A. Menshikova | Bashkir State Medical University"],"dc.author.full.ru":["В. Е. Аскаров | Республиканский клинический онкологический диспансер","А. В. Султанбаев | Республиканский клинический онкологический диспансер","К. В. Меньшиков | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","В. С. Чалов | Центр ядерной медицины","Н. И. Султанбаева | Республиканский клинический онкологический диспансер","И. А. Меньшикова | Башкирский государственный медицинский университет"],"dc.author.name.en":["V. E. Askarov","A. V. Sultanbaev","K. V. Menshikov","V. S. Chalov","N. I. Sultanbaeva","I. A. Menshikova"],"dc.author.affiliation.en":["Republican Clinical Oncological Dispensary","Republican Clinical Oncological Dispensary","Republican Clinical Oncological Dispensary ; Bashkir State Medical University","Nuclear Medicine Centre","Republican Clinical Oncological Dispensary","Bashkir State Medical University"],"dc.author.full.en":["V. E. Askarov | Republican Clinical Oncological Dispensary","A. V. Sultanbaev | Republican Clinical Oncological Dispensary","K. V. Menshikov | Republican Clinical Oncological Dispensary ; Bashkir State Medical University","V. S. Chalov | Nuclear Medicine Centre","N. I. Sultanbaeva | Republican Clinical Oncological Dispensary","I. A. Menshikova | Bashkir State Medical University"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-0988-7261\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u0412. \\u0415. \\u0410\\u0441\\u043a\\u0430\\u0440\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0988-7261\", \"affiliation\": \"Republican Clinical Oncological Dispensary\", \"full_name\": \"V. E. Askarov\"}}, {\"ru\": {\"orcid\": \"0000-0003-0996-5995\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u0410. \\u0412. \\u0421\\u0443\\u043b\\u0442\\u0430\\u043d\\u0431\\u0430\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0996-5995\", \"affiliation\": \"Republican Clinical Oncological Dispensary\", \"full_name\": \"A. V. Sultanbaev\"}}, {\"ru\": {\"orcid\": \"0000-0003-3734-2779\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440 ; \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041a. \\u0412. \\u041c\\u0435\\u043d\\u044c\\u0448\\u0438\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-3734-2779\", \"affiliation\": \"Republican Clinical Oncological Dispensary ; Bashkir State Medical University\", \"full_name\": \"K. V. Menshikov\"}}, {\"ru\": {\"orcid\": \"0000-0001-8779-4074\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440 \\u044f\\u0434\\u0435\\u0440\\u043d\\u043e\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u044b\", \"full_name\": \"\\u0412. \\u0421. \\u0427\\u0430\\u043b\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0001-8779-4074\", \"affiliation\": \"Nuclear Medicine Centre\", \"full_name\": \"V. S. Chalov\"}}, {\"ru\": {\"orcid\": \"0000-0001-5926-0446\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u041d. \\u0418. \\u0421\\u0443\\u043b\\u0442\\u0430\\u043d\\u0431\\u0430\\u0435\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0001-5926-0446\", \"affiliation\": \"Republican Clinical Oncological Dispensary\", \"full_name\": \"N. I. Sultanbaeva\"}}, {\"ru\": {\"orcid\": \"0000-0002-8665-8895\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0418. \\u0410. \\u041c\\u0435\\u043d\\u044c\\u0448\\u0438\\u043a\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0002-8665-8895\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"I. A. Menshikova\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1089"],"dc.citation":["Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947","Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947"],"dc.citation.ru":["Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947"],"dc.citation.en":["Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8928"],"dc.date.accessioned_dt":"2025-07-09T13:59:00Z","dc.date.accessioned":["2025-07-09T13:59:00Z"],"dc.date.available":["2025-07-09T13:59:00Z"],"publication_grp":["123456789/8928"],"bi_4_dis_filter":["иммунотерапия\n|||\nиммунотерапия","cobimetinib\n|||\ncobimetinib","меланома\n|||\nмеланома","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","вемурафениб\n|||\nвемурафениб","atezolizumab\n|||\natezolizumab","immunotherapy\n|||\nimmunotherapy","биомаркеры новообразований\n|||\nбиомаркеры новообразований","vemurafenib\n|||\nvemurafenib","таргетная терапия\n|||\nтаргетная терапия","атезолизумаб\n|||\nатезолизумаб","melanoma\n|||\nmelanoma","кобиметиниб\n|||\nкобиметиниб","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы"],"bi_4_dis_partial":["targeted therapy","меланома","tumor biomarkers","vemurafenib","melanoma","SOX transcription factors","atezolizumab","Soxe транскрипционные факторы","биомаркеры новообразований","cobimetinib","атезолизумаб","таргетная терапия","immunotherapy","кобиметиниб","иммунотерапия","вемурафениб"],"bi_4_dis_value_filter":["targeted therapy","меланома","tumor biomarkers","vemurafenib","melanoma","SOX transcription factors","atezolizumab","Soxe транскрипционные факторы","биомаркеры новообразований","cobimetinib","атезолизумаб","таргетная терапия","immunotherapy","кобиметиниб","иммунотерапия","вемурафениб"],"bi_sort_1_sort":"combination braf/mek inhibitor targeted therapy and immunotherapy (atezolizumab + vemurafenib + cobimetinib) for metastatic cutaneous melanoma: clinical case","bi_sort_3_sort":"2025-07-09T13:59:00Z","read":["g0"],"_version_":1837178070286467072},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:58.18Z","search.uniqueid":"2-8034","search.resourcetype":2,"search.resourceid":8034,"handle":"123456789/8923","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-19-27"],"dc.abstract":["

Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.

","

Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными механизмами формирования лекарственной резистентности. Белок 1, ассоциированный с рецептором TNF (TRAP1), задействован в регуляции метаболических процессов и устойчивости опухолевых клеток к апоптозу, однако его роль в глиобластоме остается недостаточно изученной. Материалы и методы. Использовали клеточные линии глиомы T98G и астроциты головного мозга человека (HBA) в качестве контроля. Подавление экспрессии TRAP1 осуществляли методом лентивирусной трансдукции короткой шпилечной РНК (кшРНК). Экзосомы выделяли ультрацентрифугированием из культуральной среды и подтверждали их идентификацию по типичным маркерам (TSG101, CD63 и ALIX). Уровень экспрессии TRAP1 на уровне белка и ключевых гликолитических ферментов анализировали методом вестерн-блот анализа. Оценку жизнеспособности опухолевых клеток проводили с помощью МТТ-теста, уровень апоптоза — с помощью аннексина V-FITC/PI и продукцию АТФ — методом биолюминесцентного анализа. Результаты и обсуждение. Показано, что в клетках T98G TRAP1 сверхэкспрессирован, в том числе и в экзосомах, тогда как в HBA уровень TRAP1 был умеренным или низким. Подавление TRAP1 у T98G приводило к снижению экспрессии гликолитических ферментов, росту уровня апоптоза и уменьшению жизнеспособности опухолевых клеток. Повышенная экспрессия TRAP1 усиливала метаболическое перепрограммирование опухолевых клеток в сторону аэробного гликолиза и снижала синтез АТФ. Экзосомальный TRAP1, вероятно, участвует в межклеточной коммуникации, способствуя адаптации опухоли к стрессовым условиям и формированию проопухолевого микроокружения. Заключение. Результаты исследования подтверждают важность TRAP1 в регуляции метаболического статуса глиобластомы и поддержании ее агрессивного фенотипа. Таргетное подавление TRAP1 может рассматриваться как перспективная стратегия терапии глиобластомы, направленная на снижение жизнеспособности опухолевых клеток и ограничение их метаболической гибкости.

"],"dc.abstract.en":["

Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.

"],"subject":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"subject_keyword":["glioblastoma","glioblastoma","TRAP1","TRAP1","metabolic reprogramming","metabolic reprogramming","shRNA","shRNA","exosomes","exosomes","glycolysis","glycolysis","apoptosis","apoptosis","глиобластома","глиобластома","TRAP1","TRAP1","метаболическое перепрограммирование","метаболическое перепрограммирование","кшРНК","кшРНК","экзосомы","экзосомы","гликолиз","гликолиз","апоптоз","апоптоз"],"subject_ac":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"subject_tax_0_filter":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"subject_filter":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"dc.subject_mlt":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.subject":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.subject.en":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis"],"title":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"title_keyword":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"title_ac":["analysis and functional significance of trap1 in glioblastoma\n|||\nAnalysis and Functional Significance of TRAP1 in Glioblastoma","анализ и функциональная значимость белка trap1 при глиобластоме\n|||\nАнализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_sort":"Analysis and Functional Significance of TRAP1 in Glioblastoma","dc.title_hl":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_mlt":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_stored":["Analysis and Functional Significance of TRAP1 in Glioblastoma\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Анализ и функциональная значимость белка TRAP1 при глиобластоме\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Analysis and Functional Significance of TRAP1 in Glioblastoma"],"dc.abstract.ru":["

Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными механизмами формирования лекарственной резистентности. Белок 1, ассоциированный с рецептором TNF (TRAP1), задействован в регуляции метаболических процессов и устойчивости опухолевых клеток к апоптозу, однако его роль в глиобластоме остается недостаточно изученной. Материалы и методы. Использовали клеточные линии глиомы T98G и астроциты головного мозга человека (HBA) в качестве контроля. Подавление экспрессии TRAP1 осуществляли методом лентивирусной трансдукции короткой шпилечной РНК (кшРНК). Экзосомы выделяли ультрацентрифугированием из культуральной среды и подтверждали их идентификацию по типичным маркерам (TSG101, CD63 и ALIX). Уровень экспрессии TRAP1 на уровне белка и ключевых гликолитических ферментов анализировали методом вестерн-блот анализа. Оценку жизнеспособности опухолевых клеток проводили с помощью МТТ-теста, уровень апоптоза — с помощью аннексина V-FITC/PI и продукцию АТФ — методом биолюминесцентного анализа. Результаты и обсуждение. Показано, что в клетках T98G TRAP1 сверхэкспрессирован, в том числе и в экзосомах, тогда как в HBA уровень TRAP1 был умеренным или низким. Подавление TRAP1 у T98G приводило к снижению экспрессии гликолитических ферментов, росту уровня апоптоза и уменьшению жизнеспособности опухолевых клеток. Повышенная экспрессия TRAP1 усиливала метаболическое перепрограммирование опухолевых клеток в сторону аэробного гликолиза и снижала синтез АТФ. Экзосомальный TRAP1, вероятно, участвует в межклеточной коммуникации, способствуя адаптации опухоли к стрессовым условиям и формированию проопухолевого микроокружения. Заключение. Результаты исследования подтверждают важность TRAP1 в регуляции метаболического статуса глиобластомы и поддержании ее агрессивного фенотипа. Таргетное подавление TRAP1 может рассматриваться как перспективная стратегия терапии глиобластомы, направленная на снижение жизнеспособности опухолевых клеток и ограничение их метаболической гибкости.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nГлиобластома по-прежнему остается одной из наиболее злокачественных опухолей центральной нервной\nсистемы (ЦНС), характеризуясь крайне неблагоприятным прогнозом, несмотря на достижения в области\nдиагностики и лечения [1, 2]. Успехи в изучении молекулярной природы глиобластомы позволили выявить\nряд ключевых сигнальных путей и генетических изменений, однако гетерогенность опухоли, а также сложность ее микроокружения затрудняют разработку универсальных и высокоэффективных терапевтических\nстратегий [3, 4]. Ключевым аспектом прогрессирования глиобластомы является способность опухолевых\nклеток к быстрому метаболическому переориентированию и адаптации к изменяющимся условиям среды,\nв частности к гипоксии, характерной для обширных\nнекротических зон внутри самой опухоли [5–7]. Такое\nперепрограммирование метаболизма обеспечивает\nинтенсивный рост и пролиферацию клеток, а также\nнередко ведет к формированию лекарственной устойчивости. В контексте этих процессов возрастающий\nинтерес вызывает семейство шаперонов HSP90, к которому относится белок 1, ассоциированный с рецептором TNF (TRAP1) [8–10]. TRAP1 изначально рассматривался как регулятор митохондриального гомеостаза\nи апоптоза, однако последующие исследования показали, что он обладает гораздо более широкими функциями, включая участие в процессах трансдукции сигнала,\nподдержании энергетического баланса, а также формировании резистентности опухолевых клеток к химиои лучевой терапии [11, 12]. Многие работы указывают\nна то, что TRAP1 может переключать метаболизм опухолевых клеток с окислительного фосфорилирования\nна аэробный гликолиз, давая опухоли дополнительные\nпреимущества в условиях гипоксии и ограниченных\nэнергетических ресурсов [13, 14]. Особенно интересно,\nчто данная перестройка метаболического статуса часто\nсопровождается повышением устойчивости к апоптотическим сигналам, что еще более усугубляет проблему\nлечения глиобластомы [11].\nЭкзосомы являются наиболее широко изученной группой среди двух основных подгрупп (экзосомы и микровезикулы) внеклеточных везикул (ВВ), высвобождаемых из клеток млекопитающих. Экзосомы возникают\nиз мембран мультивезикулярных телец (МВТ) и имеют\nчашеобразную морфологию под электронным микроскопом с диаметром от 50 до 150 нм. Экзосомы широко изучались на предмет их роли во внутриклеточной\nкоммуникации, особенно во время развития и прогрессирования опухоли. Ассоциированные с экзосомами\nРНК, некодирующие РНК, белки, ДНК и даже метаболиты могут изменять судьбу клеток-реципиентов посредством аутокринной и паракринной сигнализации.\nДоставляемые опухолевыми экзосомами биологические компоненты взаимодействуют со стромальными\nклетками в микроокружении опухоли, модулируют\nпрогрессирование опухоли, ангиогенез, метастазирование и уклонение от иммунного ответа. Измененный метаболизм клеток является одним из признаков злокачественных новообразований, в том числе глиобластома.\nЭкзогенные экзосомы могут вызывать метаболическое\nперепрограммирование и тем самым поддерживать\nрост опухоли. Экзосомальный TRAP1, модулирующий\nопухолевый метаболизм, представляет интерес как потенциальная терапевтическая мишень для изучения его\nроли в онкогенезе глиобластомы, а также для улучшения диагностики и терапии. Более того, повышенное\nсодержание TRAP1 в экзосомах может служить маркером прогрессирования глиобластомы и коррелировать\nс неблагоприятным клиническим исходом. В этой связи\nблокирование TRAP1 или воздействие на механизмы\nэкзосомального транспорта могут стать перспективными направлениями в создании новых противоопухолевых препаратов.\nНастоящее исследование нацелено на углубленный анализ роли TRAP1 в метаболическом перепрограммировании клеток глиобластомы и изучение вклада экзосомального TRAP1 в агрессивность опухоли. Выявление\nключевых молекулярных взаимодействий, лежащих\nв основе метаболической пластичности глиобластомы, может способствовать разработке новых методов\nтерапии, направленных на снижение резистентности\nопухоли к лечению, а также на подавление межклеточных коммуникационных механизмов, способствующих\nпрогрессированию глиобластомы.\nМАТЕРИАЛЫ И МЕТОДЫ\nКультивирование клеток\nКлеточная линия глиом T98G и клеточная линия астроцитов головного мозга человека (HBA) были получены\nиз Китайской национальной инфраструктуры ресурсов\nклеточных линий (http://www.cellresource.cn/, Китай).\nКлеточные линии хранили в Модифицированной среде\nОрла Дульбекко (DMEM) с высоким содержанием глюкозы, дополненной 10 % фетальной бычьей сывороткой\n(FBS) и 100 ЕД/мл пенициллина или 0,1 мг/мл стрептомицина, а также было подтверждено отсутствие контаминации микоплазмой. Клетки хранили во влажном\nинкубаторе, содержащем 5 % атмосферу CO2, при температуре 37 °C в колбе для культивирования клеток,\nстандартной для адгезивных клеток. Клетки обычно\nсубкультивировали при достижении 80 %-го слияния\nс использованием 0,25 %-го раствора трипсина-ЭДТА.\nОбразование сфероидов опухоли наблюдалось в течение 4 дней для T98G. Формирование опухолевых сфероидов ежедневно подтверждали визуально с помощью\nтринокулярного обратного микроскопа Optika XDS-2,\nоснащенного камерой ISH500, а их средние диаметры\nанализировали с помощью программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация\nУльтрацентрифугирование является «золотым стандартом» выделения экзосом из клеток. Основное преимущество этого современного метода заключается\nв том, что он производит высокообогащенные фракции\nэкзосом, а также позволяет собирать дополнительные\nфракции ВВ, а затем супернатант, не содержащий экзосомы, который образуется после высокоскоростного\nотжима. Первые шаги предназначены для лизиса клеток и удаления мертвых клеток их остатков путем последовательного центрифугирования с возрастающей\nскоростью. На каждом из этих этапов осадок выбрасывают, а надосадочную жидкость используют на следующем этапе. Конечный супернатант затем подвергают\nультрацентрифугированию при 100 000 × g для осаждения небольших везикул, соответствующих экзосомам.\nОсадок промывают большим объемом натрий-фосфатного буфера (PBS) для удаления примесей белков и центрифугируют последний раз на той же высокой скорости. Основная часть экзосом, полученных из T98G или\nHBA, имела размеры около 100 нм и морфологические\nособенности сферических, двухслойных, связанных\nс мембраной экзосом, что соответствует морфологическим характеристикам экзосом.\nЭкстракция белка из экзосом\nНабор Total Exosome RNA & Protein Isolation Kit\n(Invitrogen), номер каталога 4478545, для экстракции\nтотальной РНК и белка из экзосом предназначен для\nвыделения белков из одного обогащенного препарата\nэкзосом. Процедура экстракция белка TRAP1 из экзосом, полученных из клеточной линии глиомы T98G\nили HBA, была проведена согласно инструкции Total\nExosome RNA & Protein Isolation Kit (Invitrogen).\nАнализ жизнеспособности клеток\nПосев клеточной линии глиомы T98G подсчитывали через 2, 3 и 4 дня под инвертированным фазово-контрастным микроскопом. Для анализа\n3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид (МТТ)-теста в каждую лунку добавляли реагент МТТ в дозе 5 мг/мл (Roche Diagnostics, Шанхай,\nКитай) и дополнительно инкубировали в течение 2 ч\nпри 37 °C. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1 % DMSO для растворения фиолетовых\nкристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопии.\nРезультаты представлены как средние значения из трех\nнезависимых экспериментов, проведенных в трех повторах.\nАнализ гибели клеток с помощью\nаннексина V‑FITC/PI\nНабор для определения апоптоза клеток аннексин V-флуоресцеин-5-изотиоцианат (FITC) (5 мкл)\nи пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай)\nбыл использован для измерения апоптоза клеточной\nлинии глиом T98G. Опухолевые клетки с плотностью\n3×10 5 клеток были высеяны на 6-луночные планшеты\nв течение 24 ч. Как плавающие, так и адгезивные клетки\nсобирали и дважды промывали холодным PBS. Затем\nклетки ресуспендировали в 500 мкл связывающего буфера и инкубировали с 5 мкл Annexin V-FITC и 5 мкл PI\nв течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США)\nи скорость апоптоза клеток анализировали с помощью\nпакета програмного обеспечения FLOWJO для анализа\nданных проточной цитометрии (v10; BD Biosciences).\nАТФ-мониторинг\nАТФ определяли с помощью набора ATP Bioluminescence\nAssay Kit HS II от компании Roshe в соответствии с инструкциями производителя и нормализовали уровень\nАТФ на микрограмм белка.\nВестерн-блот анализ\nДля проведения вестерн-блот анализа использовали\nследующие антитела: 1) β-актин (1:1000; Zhongshan,\nПекин, Китай); 2) первичное мышиное анти-TRAP1\n(1:1000; OriGene Technologies Inc., Роквилл, Мэриленд, США), антитело против гена предрасположенности к опухолям 101 (англ. tumor susceptibility\ngene 101, TSG101) [EPR7130 (B)] (1:1000); ab125011,\nAbcam), антитело против белка, взаимодействующее\nс ALG-2 (связанный с апоптозом ген 2) X (англ. ALG-2\n(apoptosis-linked gene 2)-interacting protein X, ALIX))\n[EPR23653–32] (1:1000; ab275377, Abcam), антитело\nпротив CD63 [EPR5702] (1:1000; ab134045, Abcam),\nмоноклональные антитела к гексокиназе I (C35C4)\nкролика (1:1000; #2024, Cell Signaling Technology), кроличьи mAb к гексокиназе II (C64G5) (1:1000; #2867, Cell\nSignaling Technology), PKM1 и PKM2 (C103A3) кроличьи mAb (1: 1000; #3190, Cell Signaling Technology),\nPKM2 (D78A4) Кроличьи mAb XP® (1:1000; # 4053S,\nCell Signaling Technology), кроличьи mAb LDHA\n(C4B5) (1:1000; #3582, Cell Signaling Technology), моноклональные антитела кролика фосфофруктокиназа,\nтромбоциты (англ. phosphofructokinase, platelet, PFKP)\n(D4B2) (1:1000; #8164, Cell Signaling Technology), кроличьи моноклональные антитела к пируватдегидрогеназе (C54G1) (1:1000; #3205, Cell Signaling Technology)\nи β-актин (1:1000; Zhongshan, Пекин, Китай). Количественную оценку полос вестерн-блот анализа проводили с использованием программного обеспечения\nOdyssey v1.2 (Gene Company Limited, Гонконг, Китай)\nпутем измерения интенсивности полосы для каждой\nгруппы и нормализации ее по β-актину в качестве внутреннего контроля.\nЛентивирусная трансдукция\nСтабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц (pGFPC-shLenti), содержащих гены, кодирующие короткую\nшпилечную РНК (кшРНК), нацеленные на TRAP1\n(#1: 5′-CGACATGAAACCGTCCATGTT-3′; #2:\n5′-AAACATGAGTTCCAGGCCGAG-3′) (GenePharma Co.,\nШанхай, Китай). Трансдукцию лентивирусных частиц\nпроводили с клетками в среде, содержащей 8 мкг/мл\nполибрена (Solarbio). Через 18 часов эффективность\nтрансдукции проверяли методом проточной цитометрии. Трансдуцированные клетки культивировали\nв среде, свободной от лентивирусных частиц, в течение\nеще 72 часов, а затем использовали 1 мкг/мл пуромицина (Solarbio) для отбора клонов со стабильной экспрессией кшРНК. Вестерн-блот использовали для подтверждения снижения экспрессии белка TRAP1.\nСтатистический анализ\nСтатистический анализ проводился с использованием программного обеспечения SPSS версии 22.0 и различных пакетов программного обеспечения R (версия v.3.6.1). Графики были построены с использованием\nпрограммного обеспечения GraphPad Prism версии 8.0.\nПри необходимости применяли t-критерий Стьюдента,\nANOVA, анализ хи-квадрат или критерий Манна —\nУитни. Вероятность p < 0,05 (*) или p < 0,001 (**) считалась статистически значимой.\nРЕЗУЛЬТАТЫ\nИзменение уровня экспрессии\nTRAP1 на уровне белка при глиобластоме\nЧтобы изучить взаимосвязь между экспрессией эндогенного (клеточного) TRAP1 и экзосомальным\nTRAP1 на уровне белка, мы использовали клеточную\nлинию глиомы T98G и HBA как негативный контроль\nс помощью вестерн-блот анализа. Стабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц, содержащих гены, кодирующие\nкшРНК, нацеленные на TRAP1 (кшРНК TRAP1). Экзосомы были очищены из супернатанта клеточной культуры T98G для наблюдения за морфологией с помощью\nтрансмиссионной электронной микроскопии. Кроме\nтого, вестерн-блот анализ был проведен для выявления экспрессии типичных поверхностных маркеров\nэкзосом (кластер дифференцировки 63 (CD63), ALIX\nи TSG101) и выявления экспрессии TRAP1 на уровне\nбелка. Результаты продемонстрировали, что в клеточной линии HBA (негативный контроль) TRAP1 имел\nумеренный уровень экспрессии, а экзосомы —\ncниженный уровень экспрессии TRAP1. Более того,\nприменение кшTRAP1 по отношению к клеточной линии T98G продемонстрировало снижение экспрессии\nTRAP1 в клетках. Кроме того, экзосомы, изолированные из клеточной линии T98G, также содержали низкий уровень экспрессии TRAP1 после трансфекции\nкшTRAP1 (рис. 1). Данные результаты показывают, что\nнормальные клетки HBA демонстрируют умеренный\nуровень экспрессии или его практическое отсутствие\nв выделяемых ими экзосомах. Тем не менее использование кшTRAP1 практически полностью инактивирует\nTRAP1 как в опухолевых клетках, так и в выделяемых\nими экзосомах. Это говорит о том, что TRAP1 сверхэкспрессирован.\nTRAP1 как потенциальный ключевой\nрегулятор метаболического\nперепрограммирования при глиобластоме\nЧтобы исследовать функцию экзосом с высокой экспрессией белка TRAP1, мы провели результаты\nвестерн-блот анализа для выбранных гликолитических ферментов. Экспрессия гексокиназы 1 (HK1/2),\nМ1/2 пируваткиназы (PKM1/2), лактатдегидрогеназы А\n(ЛДГА), фосфофруктокиназы тромбоцитов (PFKP)\nи пируватдегидрогеназы в пути гликолиза была обнаружена с помощью вестерн-блот анализа (рис. 2). Результаты показали, что высокая экспрессия TRAP1 способствует экспрессии этих гликолитических ферментов,\nтогда как снижение экспрессии TRAP1 с помощью\nкшРНК TRAP1 снижает их экспрессию. Обработка\nклеток экзосомами с высокой экспрессией TRAP1 повышала экспрессию этих гликолитических ферментов\n(рис. 2).\nСледовательно, высокая экспрессия TRAP1 способствует гликолизу. Чтобы выяснить, входит ли пируват\nв результате гликолиза непосредственно в цикл трикарбоновых кислот (ЦТК) или катализируется лактатдегидрогеназой с образованием молочной кислоты,\nмы измерили АТФ, вырабатываемый этими клетками\n(рис. 3).\nМы обнаружили, что высвобождение АТФ уменьшалось в клетках глиомы с высокой экспрессией\nTRAP1 и увеличивалось после снижения экспрессии\nTRAP1, а обработка клеток экзосомами с высокой\nэкспрессией TRAP1 также снижала высвобождение\nАТФ. Таким образом, TRAP1 усиливает пути гликолиза\nв клетках глиобластомы.\nИнгибирование TRAP1 и анализ\nжизнеспособности опухолевых клеток\nС помощью MTT-анализа мы провели оценку влияния\nэкспрессии эндогенного (клеточного) TRAP1 на жизнеспособность клеточной линии глиом T98G в течение\n12, 24, 36 и 48 часов. Было выяснено, что по сравнению\nс HBA (негативный контроль) трансфекция клеток\nT98G кшРНК TRAP1 привела к значительному снижению жизнеспособности опухолевых клеток в районе\n36 и 48 часов (рис. 4 А). Более того, понижение экспрессии TRAP1 в клетках T98G коррелировало с усилением\nапоптоза (рис. 4 Б). Мы считаем, что нарушение регуляции экспрессии TRAP1 является отличительной чертой\nглиобластомы, включая устойчивость опухолевых клеток к гибели и перепрогррамирование энергетического\nметаболизма. Это указывает на то, что возможно и эффективно регулировать развитие и прогрессирование\nглиобластомы путем ингибирования TRAP1.\nОБСУЖДЕНИЕ\nПолученные нами данные подтверждают ключевую\nроль белка TRAP1 в регуляции метаболических процессов и устойчивости клеток глиобластомы к индуцированному апоптозу. Во-первых, мы продемонстрировали, что в клеточной линии глиом T98G TRAP1 обладает\nвыраженной сверхэкспрессией по сравнению с HBA,\nчто согласуется с ранее опубликованными результатами, указывающими на тесную связь между высоким\nуровнем TRAP1 и агрессивным фенотипом опухоли\n[11, 12]. Во-вторых, обнаружение TRAP1 в составе экзосом, выделяемых T98G, указывает на возможную вовлеченность этого белка в межклеточную коммуникацию, которая, согласно ряду работ, играет решающую\nроль в метаболической перестройке опухолевых клеток\nи их взаимодействии со стромальными элементами\nмикроокружения [15–17].\nВысокий уровень TRAP1 в сочетании с повышенной\nэкспрессией гликолитических ферментов, таких как\nHK1/2, PKM1/2, LDHA и PFKP, и сниженным синтезом\nАТФ демонстрирует, что глиобластома активно переключается на аэробный гликолиз (эффект Варбурга),\nчто обеспечивает быстрый рост и пролиферацию,\nа также формирует условия для развития лекарственной устойчивости [5, 6, 13, 14]. При этом подавление\nэкспрессии TRAP1 методами генетического нокдауна\nприводило к снижению жизнеспособности опухолевых\nклеток и к возрастанию уровня апоптоза, что отражает\nвысокую зависимость глиобластомы от этого шаперона\nдля поддержания энергетического баланса и выживания [7, 11]. Данные результаты согласуются с утверждением, что TRAP1 способен регулировать митохондриальные функции и метаболические пути, влияя\nна баланс между окислительным фосфорилированием\nи гликолизом [8–10, 12].\nПрисутствие TRAP1 в экзосомах согласуется с современными представлениями о том, что ВВ активно вовлечены в формирование опухолевого микроокружения и могут транспортировать широкий спектр белков,\nмикроРНК и других сигнальных молекул [15, 16, 18].\nПодобный перенос биоматериала через экзосомы способен усиливать проопухолевые сигналы и способствовать инвазии, ангиогенезу и развитию резистентности\nклеток к терапии [17, 19]. Более того, ряд современных\nисследований подчеркивает растущую значимость экзосом в контексте таргетной терапии глиобластомы,\nвключая использование ингибиторов Hsp90-семействаи подавление передачи различных метаболических\nфакторов [20, 21].\nНаши данные свидетельствуют, что TRAP1 может быть\nодной из ключевых молекул в этих процессах, поскольку\nон непосредственно задействован в поддержании митохондриального гомеостаза и регуляции энергетического\nметаболизма [22–24]. Особо стоит отметить, что перекрестная регуляция TRAP1 и гликолитических ферментов не только формирует «быстрый» способ получения\nэнергии в условиях гипоксии, но и обеспечивает опухолевым клеткам дополнительные строительные блоки для\nсинтеза нуклеотидов, белков и липидов, необходимых\nдля их активного размножения [13, 14]. Это объясняет,\nпочему нарушение экспрессии TRAP1 может приводить\nк быстрому подавлению роста опухолевых клеток и усилению проапоптотических сигналов. С другой стороны,\nсверхэкспрессия TRAP1, вероятно, способствует поддержанию клеточного гомеостаза в условиях терапевтического воздействия, что может объяснять возникновение резистентности к химио- и лучевой терапии [11,\n25]. Современные работы подчеркивают, что модуляция\nактивности TRAP1 способна влиять на ряд сигнальных\nкаскадов, формирующих устойчивость опухоли и ее\nспособность к быстрому метаболическому переключению [26]. Наконец, учитывая, что одна из возможных\nстратегий борьбы с глиобластомой — это подавление\nметаболических путей опухоли, блокирование функции TRAP1 или снижение его уровня экспрессии может рассматриваться как потенциально перспективный\nподход к терапии [5, 23]. В ряде экспериментальных исследований показано, что ингибиторы Hsp90-семейства,\nа также вмешательства, влияющие на биогенез экзосом,\nспособны снижать опухолевую агрессивность и уменьшать риск метастазирования ряда опухолей [15, 16, 18,\n24]. С учетом полученных нами результатов воздействие\nна активность TRAP1 может сочетаться с существующими методами лечения, повышая их эффективность\nза счет нарушения метаболической адаптации и межклеточной коммуникации [27, 28].\nТаким образом, результаты данного исследования\nподтверждают информацию о центральной роли белка TRAP1 в метаболическом перепрограммировании\nи устойчивости клеток глиобластомы. Обнаруженный\nнами факт участия TRAP1 в составе экзосом указывает на дополнительные механизмы поддержания проопухолевого фенотипа, включающие межклеточный\nтранспорт шаперона и модуляцию микроокружения.\nУглубленное понимание этих процессов может способствовать разработке новых таргетных препаратов,\nнаправленных на подавление TRAP1 и блокировку\nключевых этапов межклеточной коммуникации в глиобластоме.\nЗАКЛЮЧЕНИЕ\nПроведенное исследование демонстрирует, что белок\nTRAP1 играет значимую роль в развитии и прогрессировании глиобластомы за счет регуляции метаболического перепрограммирования и поддержания\nвыживаемости опухолевых клеток. Сверхэкспрессия\nTRAP1 в клетках глиомы T98G сопровождается повышением уровня гликолитических ферментов, снижением синтеза АТФ и, как следствие, усилением «гликолитического» фенотипа. Подавление экспрессии\nTRAP1 с помощью кшРНК приводит к снижению выживаемости опухолевых клеток и активации апоптоза,\nчто подтверждает важность данной мишени для роста\nи сохранения метаболического статуса глиобластомы.\nДополнительно выявлено, что TRAP1 присутствует\nв экзосомах, что дает основания полагать, что экзосомальный TRAP1 вовлечен в межклеточную коммуникацию и может способствовать опухолевому метаболическому перепрограммированию в микроокружении.\nВ нашем исследовании есть некоторые ограничения.\nВ нашем будущем исследовании мы подтвердим эти\nрезультаты с помощью экспериментальных методов\nна животных моделях, других линиях клеток человека\nи тканях/жидкостях. Все полученные результаты указывают на потенциальную терапевтическую ценность\nингибирования TRAP1 как стратегии борьбы с глиобластомой, позволяющей существенно снизить ее агрессивность и повысить эффективность существующих\nметодов лечения. В дальнейшем изучение механизмов,\nпосредством которых экзосомальный TRAP1 влияет\nна клетки-реципиенты, а также разработка специфических ингибиторов TRAP1 могут открыть новые подходы к диагностике и терапии данного заболевания."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nГлиобластома по-прежнему остается одной из наиболее злокачественных опухолей центральной нервной\nсистемы (ЦНС), характеризуясь крайне неблагоприятным прогнозом, несмотря на достижения в области\nдиагностики и лечения [1, 2]. Успехи в изучении молекулярной природы глиобластомы позволили выявить\nряд ключевых сигнальных путей и генетических изменений, однако гетерогенность опухоли, а также сложность ее микроокружения затрудняют разработку универсальных и высокоэффективных терапевтических\nстратегий [3, 4]. Ключевым аспектом прогрессирования глиобластомы является способность опухолевых\nклеток к быстрому метаболическому переориентированию и адаптации к изменяющимся условиям среды,\nв частности к гипоксии, характерной для обширных\nнекротических зон внутри самой опухоли [5–7]. Такое\nперепрограммирование метаболизма обеспечивает\nинтенсивный рост и пролиферацию клеток, а также\nнередко ведет к формированию лекарственной устойчивости. В контексте этих процессов возрастающий\nинтерес вызывает семейство шаперонов HSP90, к которому относится белок 1, ассоциированный с рецептором TNF (TRAP1) [8–10]. TRAP1 изначально рассматривался как регулятор митохондриального гомеостаза\nи апоптоза, однако последующие исследования показали, что он обладает гораздо более широкими функциями, включая участие в процессах трансдукции сигнала,\nподдержании энергетического баланса, а также формировании резистентности опухолевых клеток к химиои лучевой терапии [11, 12]. Многие работы указывают\nна то, что TRAP1 может переключать метаболизм опухолевых клеток с окислительного фосфорилирования\nна аэробный гликолиз, давая опухоли дополнительные\nпреимущества в условиях гипоксии и ограниченных\nэнергетических ресурсов [13, 14]. Особенно интересно,\nчто данная перестройка метаболического статуса часто\nсопровождается повышением устойчивости к апоптотическим сигналам, что еще более усугубляет проблему\nлечения глиобластомы [11].\nЭкзосомы являются наиболее широко изученной группой среди двух основных подгрупп (экзосомы и микровезикулы) внеклеточных везикул (ВВ), высвобождаемых из клеток млекопитающих. Экзосомы возникают\nиз мембран мультивезикулярных телец (МВТ) и имеют\nчашеобразную морфологию под электронным микроскопом с диаметром от 50 до 150 нм. Экзосомы широко изучались на предмет их роли во внутриклеточной\nкоммуникации, особенно во время развития и прогрессирования опухоли. Ассоциированные с экзосомами\nРНК, некодирующие РНК, белки, ДНК и даже метаболиты могут изменять судьбу клеток-реципиентов посредством аутокринной и паракринной сигнализации.\nДоставляемые опухолевыми экзосомами биологические компоненты взаимодействуют со стромальными\nклетками в микроокружении опухоли, модулируют\nпрогрессирование опухоли, ангиогенез, метастазирование и уклонение от иммунного ответа. Измененный метаболизм клеток является одним из признаков злокачественных новообразований, в том числе глиобластома.\nЭкзогенные экзосомы могут вызывать метаболическое\nперепрограммирование и тем самым поддерживать\nрост опухоли. Экзосомальный TRAP1, модулирующий\nопухолевый метаболизм, представляет интерес как потенциальная терапевтическая мишень для изучения его\nроли в онкогенезе глиобластомы, а также для улучшения диагностики и терапии. Более того, повышенное\nсодержание TRAP1 в экзосомах может служить маркером прогрессирования глиобластомы и коррелировать\nс неблагоприятным клиническим исходом. В этой связи\nблокирование TRAP1 или воздействие на механизмы\nэкзосомального транспорта могут стать перспективными направлениями в создании новых противоопухолевых препаратов.\nНастоящее исследование нацелено на углубленный анализ роли TRAP1 в метаболическом перепрограммировании клеток глиобластомы и изучение вклада экзосомального TRAP1 в агрессивность опухоли. Выявление\nключевых молекулярных взаимодействий, лежащих\nв основе метаболической пластичности глиобластомы, может способствовать разработке новых методов\nтерапии, направленных на снижение резистентности\nопухоли к лечению, а также на подавление межклеточных коммуникационных механизмов, способствующих\nпрогрессированию глиобластомы.\nМАТЕРИАЛЫ И МЕТОДЫ\nКультивирование клеток\nКлеточная линия глиом T98G и клеточная линия астроцитов головного мозга человека (HBA) были получены\nиз Китайской национальной инфраструктуры ресурсов\nклеточных линий (http://www.cellresource.cn/, Китай).\nКлеточные линии хранили в Модифицированной среде\nОрла Дульбекко (DMEM) с высоким содержанием глюкозы, дополненной 10 % фетальной бычьей сывороткой\n(FBS) и 100 ЕД/мл пенициллина или 0,1 мг/мл стрептомицина, а также было подтверждено отсутствие контаминации микоплазмой. Клетки хранили во влажном\nинкубаторе, содержащем 5 % атмосферу CO2, при температуре 37 °C в колбе для культивирования клеток,\nстандартной для адгезивных клеток. Клетки обычно\nсубкультивировали при достижении 80 %-го слияния\nс использованием 0,25 %-го раствора трипсина-ЭДТА.\nОбразование сфероидов опухоли наблюдалось в течение 4 дней для T98G. Формирование опухолевых сфероидов ежедневно подтверждали визуально с помощью\nтринокулярного обратного микроскопа Optika XDS-2,\nоснащенного камерой ISH500, а их средние диаметры\nанализировали с помощью программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация\nУльтрацентрифугирование является «золотым стандартом» выделения экзосом из клеток. Основное преимущество этого современного метода заключается\nв том, что он производит высокообогащенные фракции\nэкзосом, а также позволяет собирать дополнительные\nфракции ВВ, а затем супернатант, не содержащий экзосомы, который образуется после высокоскоростного\nотжима. Первые шаги предназначены для лизиса клеток и удаления мертвых клеток их остатков путем последовательного центрифугирования с возрастающей\nскоростью. На каждом из этих этапов осадок выбрасывают, а надосадочную жидкость используют на следующем этапе. Конечный супернатант затем подвергают\nультрацентрифугированию при 100 000 × g для осаждения небольших везикул, соответствующих экзосомам.\nОсадок промывают большим объемом натрий-фосфатного буфера (PBS) для удаления примесей белков и центрифугируют последний раз на той же высокой скорости. Основная часть экзосом, полученных из T98G или\nHBA, имела размеры около 100 нм и морфологические\nособенности сферических, двухслойных, связанных\nс мембраной экзосом, что соответствует морфологическим характеристикам экзосом.\nЭкстракция белка из экзосом\nНабор Total Exosome RNA & Protein Isolation Kit\n(Invitrogen), номер каталога 4478545, для экстракции\nтотальной РНК и белка из экзосом предназначен для\nвыделения белков из одного обогащенного препарата\nэкзосом. Процедура экстракция белка TRAP1 из экзосом, полученных из клеточной линии глиомы T98G\nили HBA, была проведена согласно инструкции Total\nExosome RNA & Protein Isolation Kit (Invitrogen).\nАнализ жизнеспособности клеток\nПосев клеточной линии глиомы T98G подсчитывали через 2, 3 и 4 дня под инвертированным фазово-контрастным микроскопом. Для анализа\n3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид (МТТ)-теста в каждую лунку добавляли реагент МТТ в дозе 5 мг/мл (Roche Diagnostics, Шанхай,\nКитай) и дополнительно инкубировали в течение 2 ч\nпри 37 °C. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1 % DMSO для растворения фиолетовых\nкристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопии.\nРезультаты представлены как средние значения из трех\nнезависимых экспериментов, проведенных в трех повторах.\nАнализ гибели клеток с помощью\nаннексина V‑FITC/PI\nНабор для определения апоптоза клеток аннексин V-флуоресцеин-5-изотиоцианат (FITC) (5 мкл)\nи пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай)\nбыл использован для измерения апоптоза клеточной\nлинии глиом T98G. Опухолевые клетки с плотностью\n3×10 5 клеток были высеяны на 6-луночные планшеты\nв течение 24 ч. Как плавающие, так и адгезивные клетки\nсобирали и дважды промывали холодным PBS. Затем\nклетки ресуспендировали в 500 мкл связывающего буфера и инкубировали с 5 мкл Annexin V-FITC и 5 мкл PI\nв течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США)\nи скорость апоптоза клеток анализировали с помощью\nпакета програмного обеспечения FLOWJO для анализа\nданных проточной цитометрии (v10; BD Biosciences).\nАТФ-мониторинг\nАТФ определяли с помощью набора ATP Bioluminescence\nAssay Kit HS II от компании Roshe в соответствии с инструкциями производителя и нормализовали уровень\nАТФ на микрограмм белка.\nВестерн-блот анализ\nДля проведения вестерн-блот анализа использовали\nследующие антитела: 1) β-актин (1:1000; Zhongshan,\nПекин, Китай); 2) первичное мышиное анти-TRAP1\n(1:1000; OriGene Technologies Inc., Роквилл, Мэриленд, США), антитело против гена предрасположенности к опухолям 101 (англ. tumor susceptibility\ngene 101, TSG101) [EPR7130 (B)] (1:1000); ab125011,\nAbcam), антитело против белка, взаимодействующее\nс ALG-2 (связанный с апоптозом ген 2) X (англ. ALG-2\n(apoptosis-linked gene 2)-interacting protein X, ALIX))\n[EPR23653–32] (1:1000; ab275377, Abcam), антитело\nпротив CD63 [EPR5702] (1:1000; ab134045, Abcam),\nмоноклональные антитела к гексокиназе I (C35C4)\nкролика (1:1000; #2024, Cell Signaling Technology), кроличьи mAb к гексокиназе II (C64G5) (1:1000; #2867, Cell\nSignaling Technology), PKM1 и PKM2 (C103A3) кроличьи mAb (1: 1000; #3190, Cell Signaling Technology),\nPKM2 (D78A4) Кроличьи mAb XP® (1:1000; # 4053S,\nCell Signaling Technology), кроличьи mAb LDHA\n(C4B5) (1:1000; #3582, Cell Signaling Technology), моноклональные антитела кролика фосфофруктокиназа,\nтромбоциты (англ. phosphofructokinase, platelet, PFKP)\n(D4B2) (1:1000; #8164, Cell Signaling Technology), кроличьи моноклональные антитела к пируватдегидрогеназе (C54G1) (1:1000; #3205, Cell Signaling Technology)\nи β-актин (1:1000; Zhongshan, Пекин, Китай). Количественную оценку полос вестерн-блот анализа проводили с использованием программного обеспечения\nOdyssey v1.2 (Gene Company Limited, Гонконг, Китай)\nпутем измерения интенсивности полосы для каждой\nгруппы и нормализации ее по β-актину в качестве внутреннего контроля.\nЛентивирусная трансдукция\nСтабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц (pGFPC-shLenti), содержащих гены, кодирующие короткую\nшпилечную РНК (кшРНК), нацеленные на TRAP1\n(#1: 5′-CGACATGAAACCGTCCATGTT-3′; #2:\n5′-AAACATGAGTTCCAGGCCGAG-3′) (GenePharma Co.,\nШанхай, Китай). Трансдукцию лентивирусных частиц\nпроводили с клетками в среде, содержащей 8 мкг/мл\nполибрена (Solarbio). Через 18 часов эффективность\nтрансдукции проверяли методом проточной цитометрии. Трансдуцированные клетки культивировали\nв среде, свободной от лентивирусных частиц, в течение\nеще 72 часов, а затем использовали 1 мкг/мл пуромицина (Solarbio) для отбора клонов со стабильной экспрессией кшРНК. Вестерн-блот использовали для подтверждения снижения экспрессии белка TRAP1.\nСтатистический анализ\nСтатистический анализ проводился с использованием программного обеспечения SPSS версии 22.0 и различных пакетов программного обеспечения R (версия v.3.6.1). Графики были построены с использованием\nпрограммного обеспечения GraphPad Prism версии 8.0.\nПри необходимости применяли t-критерий Стьюдента,\nANOVA, анализ хи-квадрат или критерий Манна —\nУитни. Вероятность p < 0,05 (*) или p < 0,001 (**) считалась статистически значимой.\nРЕЗУЛЬТАТЫ\nИзменение уровня экспрессии\nTRAP1 на уровне белка при глиобластоме\nЧтобы изучить взаимосвязь между экспрессией эндогенного (клеточного) TRAP1 и экзосомальным\nTRAP1 на уровне белка, мы использовали клеточную\nлинию глиомы T98G и HBA как негативный контроль\nс помощью вестерн-блот анализа. Стабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц, содержащих гены, кодирующие\nкшРНК, нацеленные на TRAP1 (кшРНК TRAP1). Экзосомы были очищены из супернатанта клеточной культуры T98G для наблюдения за морфологией с помощью\nтрансмиссионной электронной микроскопии. Кроме\nтого, вестерн-блот анализ был проведен для выявления экспрессии типичных поверхностных маркеров\nэкзосом (кластер дифференцировки 63 (CD63), ALIX\nи TSG101) и выявления экспрессии TRAP1 на уровне\nбелка. Результаты продемонстрировали, что в клеточной линии HBA (негативный контроль) TRAP1 имел\nумеренный уровень экспрессии, а экзосомы —\ncниженный уровень экспрессии TRAP1. Более того,\nприменение кшTRAP1 по отношению к клеточной линии T98G продемонстрировало снижение экспрессии\nTRAP1 в клетках. Кроме того, экзосомы, изолированные из клеточной линии T98G, также содержали низкий уровень экспрессии TRAP1 после трансфекции\nкшTRAP1 (рис. 1). Данные результаты показывают, что\nнормальные клетки HBA демонстрируют умеренный\nуровень экспрессии или его практическое отсутствие\nв выделяемых ими экзосомах. Тем не менее использование кшTRAP1 практически полностью инактивирует\nTRAP1 как в опухолевых клетках, так и в выделяемых\nими экзосомах. Это говорит о том, что TRAP1 сверхэкспрессирован.\nTRAP1 как потенциальный ключевой\nрегулятор метаболического\nперепрограммирования при глиобластоме\nЧтобы исследовать функцию экзосом с высокой экспрессией белка TRAP1, мы провели результаты\nвестерн-блот анализа для выбранных гликолитических ферментов. Экспрессия гексокиназы 1 (HK1/2),\nМ1/2 пируваткиназы (PKM1/2), лактатдегидрогеназы А\n(ЛДГА), фосфофруктокиназы тромбоцитов (PFKP)\nи пируватдегидрогеназы в пути гликолиза была обнаружена с помощью вестерн-блот анализа (рис. 2). Результаты показали, что высокая экспрессия TRAP1 способствует экспрессии этих гликолитических ферментов,\nтогда как снижение экспрессии TRAP1 с помощью\nкшРНК TRAP1 снижает их экспрессию. Обработка\nклеток экзосомами с высокой экспрессией TRAP1 повышала экспрессию этих гликолитических ферментов\n(рис. 2).\nСледовательно, высокая экспрессия TRAP1 способствует гликолизу. Чтобы выяснить, входит ли пируват\nв результате гликолиза непосредственно в цикл трикарбоновых кислот (ЦТК) или катализируется лактатдегидрогеназой с образованием молочной кислоты,\nмы измерили АТФ, вырабатываемый этими клетками\n(рис. 3).\nМы обнаружили, что высвобождение АТФ уменьшалось в клетках глиомы с высокой экспрессией\nTRAP1 и увеличивалось после снижения экспрессии\nTRAP1, а обработка клеток экзосомами с высокой\nэкспрессией TRAP1 также снижала высвобождение\nАТФ. Таким образом, TRAP1 усиливает пути гликолиза\nв клетках глиобластомы.\nИнгибирование TRAP1 и анализ\nжизнеспособности опухолевых клеток\nС помощью MTT-анализа мы провели оценку влияния\nэкспрессии эндогенного (клеточного) TRAP1 на жизнеспособность клеточной линии глиом T98G в течение\n12, 24, 36 и 48 часов. Было выяснено, что по сравнению\nс HBA (негативный контроль) трансфекция клеток\nT98G кшРНК TRAP1 привела к значительному снижению жизнеспособности опухолевых клеток в районе\n36 и 48 часов (рис. 4 А). Более того, понижение экспрессии TRAP1 в клетках T98G коррелировало с усилением\nапоптоза (рис. 4 Б). Мы считаем, что нарушение регуляции экспрессии TRAP1 является отличительной чертой\nглиобластомы, включая устойчивость опухолевых клеток к гибели и перепрогррамирование энергетического\nметаболизма. Это указывает на то, что возможно и эффективно регулировать развитие и прогрессирование\nглиобластомы путем ингибирования TRAP1.\nОБСУЖДЕНИЕ\nПолученные нами данные подтверждают ключевую\nроль белка TRAP1 в регуляции метаболических процессов и устойчивости клеток глиобластомы к индуцированному апоптозу. Во-первых, мы продемонстрировали, что в клеточной линии глиом T98G TRAP1 обладает\nвыраженной сверхэкспрессией по сравнению с HBA,\nчто согласуется с ранее опубликованными результатами, указывающими на тесную связь между высоким\nуровнем TRAP1 и агрессивным фенотипом опухоли\n[11, 12]. Во-вторых, обнаружение TRAP1 в составе экзосом, выделяемых T98G, указывает на возможную вовлеченность этого белка в межклеточную коммуникацию, которая, согласно ряду работ, играет решающую\nроль в метаболической перестройке опухолевых клеток\nи их взаимодействии со стромальными элементами\nмикроокружения [15–17].\nВысокий уровень TRAP1 в сочетании с повышенной\nэкспрессией гликолитических ферментов, таких как\nHK1/2, PKM1/2, LDHA и PFKP, и сниженным синтезом\nАТФ демонстрирует, что глиобластома активно переключается на аэробный гликолиз (эффект Варбурга),\nчто обеспечивает быстрый рост и пролиферацию,\nа также формирует условия для развития лекарственной устойчивости [5, 6, 13, 14]. При этом подавление\nэкспрессии TRAP1 методами генетического нокдауна\nприводило к снижению жизнеспособности опухолевых\nклеток и к возрастанию уровня апоптоза, что отражает\nвысокую зависимость глиобластомы от этого шаперона\nдля поддержания энергетического баланса и выживания [7, 11]. Данные результаты согласуются с утверждением, что TRAP1 способен регулировать митохондриальные функции и метаболические пути, влияя\nна баланс между окислительным фосфорилированием\nи гликолизом [8–10, 12].\nПрисутствие TRAP1 в экзосомах согласуется с современными представлениями о том, что ВВ активно вовлечены в формирование опухолевого микроокружения и могут транспортировать широкий спектр белков,\nмикроРНК и других сигнальных молекул [15, 16, 18].\nПодобный перенос биоматериала через экзосомы способен усиливать проопухолевые сигналы и способствовать инвазии, ангиогенезу и развитию резистентности\nклеток к терапии [17, 19]. Более того, ряд современных\nисследований подчеркивает растущую значимость экзосом в контексте таргетной терапии глиобластомы,\nвключая использование ингибиторов Hsp90-семействаи подавление передачи различных метаболических\nфакторов [20, 21].\nНаши данные свидетельствуют, что TRAP1 может быть\nодной из ключевых молекул в этих процессах, поскольку\nон непосредственно задействован в поддержании митохондриального гомеостаза и регуляции энергетического\nметаболизма [22–24]. Особо стоит отметить, что перекрестная регуляция TRAP1 и гликолитических ферментов не только формирует «быстрый» способ получения\nэнергии в условиях гипоксии, но и обеспечивает опухолевым клеткам дополнительные строительные блоки для\nсинтеза нуклеотидов, белков и липидов, необходимых\nдля их активного размножения [13, 14]. Это объясняет,\nпочему нарушение экспрессии TRAP1 может приводить\nк быстрому подавлению роста опухолевых клеток и усилению проапоптотических сигналов. С другой стороны,\nсверхэкспрессия TRAP1, вероятно, способствует поддержанию клеточного гомеостаза в условиях терапевтического воздействия, что может объяснять возникновение резистентности к химио- и лучевой терапии [11,\n25]. Современные работы подчеркивают, что модуляция\nактивности TRAP1 способна влиять на ряд сигнальных\nкаскадов, формирующих устойчивость опухоли и ее\nспособность к быстрому метаболическому переключению [26]. Наконец, учитывая, что одна из возможных\nстратегий борьбы с глиобластомой — это подавление\nметаболических путей опухоли, блокирование функции TRAP1 или снижение его уровня экспрессии может рассматриваться как потенциально перспективный\nподход к терапии [5, 23]. В ряде экспериментальных исследований показано, что ингибиторы Hsp90-семейства,\nа также вмешательства, влияющие на биогенез экзосом,\nспособны снижать опухолевую агрессивность и уменьшать риск метастазирования ряда опухолей [15, 16, 18,\n24]. С учетом полученных нами результатов воздействие\nна активность TRAP1 может сочетаться с существующими методами лечения, повышая их эффективность\nза счет нарушения метаболической адаптации и межклеточной коммуникации [27, 28].\nТаким образом, результаты данного исследования\nподтверждают информацию о центральной роли белка TRAP1 в метаболическом перепрограммировании\nи устойчивости клеток глиобластомы. Обнаруженный\nнами факт участия TRAP1 в составе экзосом указывает на дополнительные механизмы поддержания проопухолевого фенотипа, включающие межклеточный\nтранспорт шаперона и модуляцию микроокружения.\nУглубленное понимание этих процессов может способствовать разработке новых таргетных препаратов,\nнаправленных на подавление TRAP1 и блокировку\nключевых этапов межклеточной коммуникации в глиобластоме.\nЗАКЛЮЧЕНИЕ\nПроведенное исследование демонстрирует, что белок\nTRAP1 играет значимую роль в развитии и прогрессировании глиобластомы за счет регуляции метаболического перепрограммирования и поддержания\nвыживаемости опухолевых клеток. Сверхэкспрессия\nTRAP1 в клетках глиомы T98G сопровождается повышением уровня гликолитических ферментов, снижением синтеза АТФ и, как следствие, усилением «гликолитического» фенотипа. Подавление экспрессии\nTRAP1 с помощью кшРНК приводит к снижению выживаемости опухолевых клеток и активации апоптоза,\nчто подтверждает важность данной мишени для роста\nи сохранения метаболического статуса глиобластомы.\nДополнительно выявлено, что TRAP1 присутствует\nв экзосомах, что дает основания полагать, что экзосомальный TRAP1 вовлечен в межклеточную коммуникацию и может способствовать опухолевому метаболическому перепрограммированию в микроокружении.\nВ нашем исследовании есть некоторые ограничения.\nВ нашем будущем исследовании мы подтвердим эти\nрезультаты с помощью экспериментальных методов\nна животных моделях, других линиях клеток человека\nи тканях/жидкостях. Все полученные результаты указывают на потенциальную терапевтическую ценность\nингибирования TRAP1 как стратегии борьбы с глиобластомой, позволяющей существенно снизить ее агрессивность и повысить эффективность существующих\nметодов лечения. В дальнейшем изучение механизмов,\nпосредством которых экзосомальный TRAP1 влияет\nна клетки-реципиенты, а также разработка специфических ингибиторов TRAP1 могут открыть новые подходы к диагностике и терапии данного заболевания."],"dc.subject.ru":["глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.title.ru":["Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["19-27"],"dc.rights":["CC BY 4.0"],"dc.section":["ORIGINAL STUDIES","ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.section.en":["ORIGINAL STUDIES"],"dc.section.ru":["ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"author_keyword":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"author_ac":["и. ф. гареев\n|||\nИ. Ф. Гареев","i. f. gareev\n|||\nI. F. Gareev","о. а. бейлерли\n|||\nО. А. Бейлерли","o.a. beylerli\n|||\nO.A. Beylerli","жанг хонгли\n|||\nЖанг Хонгли","zhang hongli\n|||\nZhang Hongli","с. а. румянцев\n|||\nС. А. Румянцев","s. a. roumiantsev\n|||\nS. A. Roumiantsev"],"author_filter":["и. ф. гареев\n|||\nИ. Ф. Гареев","i. f. gareev\n|||\nI. F. Gareev","о. а. бейлерли\n|||\nО. А. Бейлерли","o.a. beylerli\n|||\nO.A. Beylerli","жанг хонгли\n|||\nЖанг Хонгли","zhang hongli\n|||\nZhang Hongli","с. а. румянцев\n|||\nС. А. Румянцев","s. a. roumiantsev\n|||\nS. A. Roumiantsev"],"dc.author.name":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"dc.author.name.ru":["И. Ф. Гареев","О. А. Бейлерли","Жанг Хонгли","С. А. Румянцев"],"dc.author.affiliation":["Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Central Research Laboratory, Bashkir State Medical University ; RUDN University","Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии","Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.affiliation.ru":["Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии"],"dc.author.full":["И. Ф. Гареев | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","I. F. Gareev | Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","О. А. Бейлерли | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","O.A. Beylerli | Central Research Laboratory, Bashkir State Medical University ; RUDN University","Жанг Хонгли | Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","Zhang Hongli | First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","С. А. Румянцев | Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии","S. A. Roumiantsev | Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.full.ru":["И. Ф. Гареев | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","О. А. Бейлерли | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Жанг Хонгли | Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","С. А. Румянцев | Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии"],"dc.author.name.en":["I. F. Gareev","O.A. Beylerli","Zhang Hongli","S. A. Roumiantsev"],"dc.author.affiliation.en":["Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","Central Research Laboratory, Bashkir State Medical University ; RUDN University","First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.full.en":["I. F. Gareev | Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","O.A. Beylerli | Central Research Laboratory, Bashkir State Medical University ; RUDN University","Zhang Hongli | First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","S. A. Roumiantsev | Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0002-4965-0835\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440\\u0430\\u043b\\u044c\\u043d\\u0430\\u044f \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0430\\u044f \\u043b\\u0430\\u0431\\u043e\\u0440\\u0430\\u0442\\u043e\\u0440\\u0438\\u044f, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041d.\\u0418. \\u041f\\u0438\\u0440\\u043e\\u0433\\u043e\\u0432\\u0430\", \"full_name\": \"\\u0418. \\u0424. \\u0413\\u0430\\u0440\\u0435\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4965-0835\", \"affiliation\": \"Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University\", \"full_name\": \"I. F. Gareev\"}}, {\"ru\": {\"orcid\": \"0000-0002-6149-5460\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440\\u0430\\u043b\\u044c\\u043d\\u0430\\u044f \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0430\\u044f \\u043b\\u0430\\u0431\\u043e\\u0440\\u0430\\u0442\\u043e\\u0440\\u0438\\u044f, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0434\\u0440\\u0443\\u0436\\u0431\\u044b \\u043d\\u0430\\u0440\\u043e\\u0434\\u043e\\u0432 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041f\\u0430\\u0442\\u0440\\u0438\\u0441\\u0430 \\u041b\\u0443\\u043c\\u0443\\u043c\\u0431\\u044b\", \"full_name\": \"\\u041e. \\u0410. \\u0411\\u0435\\u0439\\u043b\\u0435\\u0440\\u043b\\u0438\"}, \"en\": {\"orcid\": \"0000-0002-6149-5460\", \"affiliation\": \"Central Research Laboratory, Bashkir State Medical University ; RUDN University\", \"full_name\": \"O.A. Beylerli\"}}, {\"ru\": {\"orcid\": \"0009-0001-4036-519X\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u0430\\u0444\\u0444\\u0438\\u043b\\u0438\\u0440\\u043e\\u0432\\u0430\\u043d\\u043d\\u044b\\u0439 \\u0433\\u043e\\u0441\\u043f\\u0438\\u0442\\u0430\\u043b\\u044c \\u0425\\u0430\\u0440\\u0431\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\\u0430 ; \\u0418\\u043d\\u0441\\u0442\\u0438\\u0442\\u0443\\u0442 \\u043d\\u0435\\u0439\\u0440\\u043e\\u043d\\u0430\\u0443\\u043a \\u043f\\u0440\\u043e\\u0432\\u0438\\u043d\\u0446\\u0438\\u0438 \\u0425\\u044d\\u0439\\u043b\\u0443\\u043d\\u0446\\u0437\\u044f\\u043d\", \"full_name\": \"\\u0416\\u0430\\u043d\\u0433 \\u0425\\u043e\\u043d\\u0433\\u043b\\u0438\"}, \"en\": {\"orcid\": \"0009-0001-4036-519X\", \"affiliation\": \"First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute\", \"full_name\": \"Zhang Hongli\"}}, {\"ru\": {\"orcid\": \"0000-0002-7418-0222\", \"affiliation\": \"\\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041d.\\u0418. \\u041f\\u0438\\u0440\\u043e\\u0433\\u043e\\u0432\\u0430 ; \\u041d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440 \\u044d\\u043d\\u0434\\u043e\\u043a\\u0440\\u0438\\u043d\\u043e\\u043b\\u043e\\u0433\\u0438\\u0438\", \"full_name\": \"\\u0421. \\u0410. \\u0420\\u0443\\u043c\\u044f\\u043d\\u0446\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-7418-0222\", \"affiliation\": \"Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre\", \"full_name\": \"S. A. Roumiantsev\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1084"],"dc.citation":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2","Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.citation.ru":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.citation.en":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8923"],"dc.date.accessioned_dt":"2025-07-09T13:58:57Z","dc.date.accessioned":["2025-07-09T13:58:57Z"],"dc.date.available":["2025-07-09T13:58:57Z"],"publication_grp":["123456789/8923"],"bi_4_dis_filter":["exosomes\n|||\nexosomes","гликолиз\n|||\nгликолиз","глиобластома\n|||\nглиобластома","кшрнк\n|||\nкшРНК","апоптоз\n|||\nапоптоз","apoptosis\n|||\napoptosis","trap1\n|||\nTRAP1","экзосомы\n|||\nэкзосомы","shrna\n|||\nshRNA","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","glioblastoma\n|||\nglioblastoma","metabolic reprogramming\n|||\nmetabolic reprogramming","glycolysis\n|||\nglycolysis"],"bi_4_dis_partial":["TRAP1","glycolysis","экзосомы","apoptosis","апоптоз","гликолиз","glioblastoma","shRNA","exosomes","глиобластома","metabolic reprogramming","кшРНК","метаболическое перепрограммирование"],"bi_4_dis_value_filter":["TRAP1","glycolysis","экзосомы","apoptosis","апоптоз","гликолиз","glioblastoma","shRNA","exosomes","глиобластома","metabolic reprogramming","кшРНК","метаболическое перепрограммирование"],"bi_sort_1_sort":"analysis and functional significance of trap1 in glioblastoma","bi_sort_3_sort":"2025-07-09T13:58:57Z","read":["g0"],"_version_":1837178068080263168},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:58.851Z","search.uniqueid":"2-8036","search.resourcetype":2,"search.resourceid":8036,"handle":"123456789/8925","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-43-52"],"dc.abstract":["

Triple-negative breast cancer (TNBC) represents one of the most aggressive subtypes of breast cancer, characterized by the absence of key molecular targets including estrogen receptors (ER), progesterone receptors (PR), and HER2. This molecular profile significantly limits treatment modalities, establishing chemotherapy as the definitive treatment. The high rates of recurrences and metastasis, along with the lack of specific targeted therapies, make TNBC a major clinical challenge. This article evaluates critical prognostic and predictive biomarkers of TNBC, including BRCA1/BRCA2 gene mutations, PD-L1 expression, tumor-infiltrating lymphocytes (TILs), circulating tumor cells (CTCs), and circulating tumor DNA (ctDNA). These markers are pivotal for outcome prediction and treatment optimization. Moreover, a transformative approach to TNBC treatment is represented by personalized medicine based on molecular profiling supported by artificial intelligence (AI). The integration of artificial intelligence (AI) facilitates the analysis of substantial data sets, the accurate prediction of clinical outcomes, and the formulation of customized treatment strategies for individual patients. Thus, this article analyzes current data concerning prognostic and predictive markers of TNBC, with a particular emphasis on their clinical utility and the potential for personalized therapy.

","

Трижды негативный рак молочной железы (TNBC) представляет собой один из самых агрессивных подтипов рака молочной железы, что связано с отсутствием экспрессии ключевых молекулярных мишеней, таких как рецепторы эстрогена (ER), прогестерона (PR) и HER2. Это существенно ограничивает терапевтические опции и делает химиотерапию основным методом лечения. Высокая частота рецидивов, метастазирования и отсутствие специфичных таргетных терапий делают TNBC серьезной проблемой для онкологов. В данной статье рассматриваются ключевые прогностические и предиктивные маркеры TNBC, такие как мутации в генах BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), циркулирующие опухолевые клетки (CTC) и циркулирующая опухолевая ДНК (ctDNA). Эти маркеры играют ключевую роль в прогнозировании исходов и выборе оптимальной терапии. Кроме того, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами искусственного интеллекта (ИИ), представляет собой перспективное направление в лечении TNBC. Применение ИИ позволяет анализировать большие объемы данных и предсказывать клинические исходы с высокой точностью, что позволяет разрабатывать персонализированные стратегии лечения для каждого пациента. Таким образом, данная статья систематизирует и анализирует современные данные о прогностических и предиктивных маркерах TNBC, акцентируя внимание на их клинической значимости и перспективных подходах к персонализированной терапии.

"],"dc.abstract.en":["

Triple-negative breast cancer (TNBC) represents one of the most aggressive subtypes of breast cancer, characterized by the absence of key molecular targets including estrogen receptors (ER), progesterone receptors (PR), and HER2. This molecular profile significantly limits treatment modalities, establishing chemotherapy as the definitive treatment. The high rates of recurrences and metastasis, along with the lack of specific targeted therapies, make TNBC a major clinical challenge. This article evaluates critical prognostic and predictive biomarkers of TNBC, including BRCA1/BRCA2 gene mutations, PD-L1 expression, tumor-infiltrating lymphocytes (TILs), circulating tumor cells (CTCs), and circulating tumor DNA (ctDNA). These markers are pivotal for outcome prediction and treatment optimization. Moreover, a transformative approach to TNBC treatment is represented by personalized medicine based on molecular profiling supported by artificial intelligence (AI). The integration of artificial intelligence (AI) facilitates the analysis of substantial data sets, the accurate prediction of clinical outcomes, and the formulation of customized treatment strategies for individual patients. Thus, this article analyzes current data concerning prognostic and predictive markers of TNBC, with a particular emphasis on their clinical utility and the potential for personalized therapy.

"],"subject":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy","трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"subject_keyword":["triple-negative breast cancer","triple-negative breast cancer","prognostic and predictive biomarkers","prognostic and predictive biomarkers","personalized medicine","personalized medicine","molecular profiling","molecular profiling","artificial intelligence","artificial intelligence","immunotherapy","immunotherapy","трижды негативный рак молочной железы","трижды негативный рак молочной железы","прогностические маркеры","прогностические маркеры","предиктивные маркеры","предиктивные маркеры","персонализированная медицина","персонализированная медицина","молекулярное профилирование","молекулярное профилирование","искусственный интеллект","искусственный интеллект","иммунотерапия","иммунотерапия"],"subject_ac":["triple-negative breast cancer\n|||\ntriple-negative breast cancer","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers","personalized medicine\n|||\npersonalized medicine","molecular profiling\n|||\nmolecular profiling","artificial intelligence\n|||\nartificial intelligence","immunotherapy\n|||\nimmunotherapy","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","предиктивные маркеры\n|||\nпредиктивные маркеры","персонализированная медицина\n|||\nперсонализированная медицина","молекулярное профилирование\n|||\nмолекулярное профилирование","искусственный интеллект\n|||\nискусственный интеллект","иммунотерапия\n|||\nиммунотерапия"],"subject_tax_0_filter":["triple-negative breast cancer\n|||\ntriple-negative breast cancer","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers","personalized medicine\n|||\npersonalized medicine","molecular profiling\n|||\nmolecular profiling","artificial intelligence\n|||\nartificial intelligence","immunotherapy\n|||\nimmunotherapy","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","предиктивные маркеры\n|||\nпредиктивные маркеры","персонализированная медицина\n|||\nперсонализированная медицина","молекулярное профилирование\n|||\nмолекулярное профилирование","искусственный интеллект\n|||\nискусственный интеллект","иммунотерапия\n|||\nиммунотерапия"],"subject_filter":["triple-negative breast cancer\n|||\ntriple-negative breast cancer","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers","personalized medicine\n|||\npersonalized medicine","molecular profiling\n|||\nmolecular profiling","artificial intelligence\n|||\nartificial intelligence","immunotherapy\n|||\nimmunotherapy","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","предиктивные маркеры\n|||\nпредиктивные маркеры","персонализированная медицина\n|||\nперсонализированная медицина","молекулярное профилирование\n|||\nмолекулярное профилирование","искусственный интеллект\n|||\nискусственный интеллект","иммунотерапия\n|||\nиммунотерапия"],"dc.subject_mlt":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy","трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"dc.subject":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy","трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"dc.subject.en":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy"],"title":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"title_keyword":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"title_ac":["multifactorial analysis of prognostic and predictive biomarkers in triple negative breast cancer patients\n|||\nMultifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы\n|||\nМногофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title_sort":"Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","dc.title_hl":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title_mlt":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title_stored":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients"],"dc.abstract.ru":["

Трижды негативный рак молочной железы (TNBC) представляет собой один из самых агрессивных подтипов рака молочной железы, что связано с отсутствием экспрессии ключевых молекулярных мишеней, таких как рецепторы эстрогена (ER), прогестерона (PR) и HER2. Это существенно ограничивает терапевтические опции и делает химиотерапию основным методом лечения. Высокая частота рецидивов, метастазирования и отсутствие специфичных таргетных терапий делают TNBC серьезной проблемой для онкологов. В данной статье рассматриваются ключевые прогностические и предиктивные маркеры TNBC, такие как мутации в генах BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), циркулирующие опухолевые клетки (CTC) и циркулирующая опухолевая ДНК (ctDNA). Эти маркеры играют ключевую роль в прогнозировании исходов и выборе оптимальной терапии. Кроме того, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами искусственного интеллекта (ИИ), представляет собой перспективное направление в лечении TNBC. Применение ИИ позволяет анализировать большие объемы данных и предсказывать клинические исходы с высокой точностью, что позволяет разрабатывать персонализированные стратегии лечения для каждого пациента. Таким образом, данная статья систематизирует и анализирует современные данные о прогностических и предиктивных маркерах TNBC, акцентируя внимание на их клинической значимости и перспективных подходах к персонализированной терапии.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nТрижды негативный рак молочной железы (TNBC) является одним из наиболее агрессивных подтипов рака\nмолочной железы и представляет собой значительную\nклиническую проблему. Этот подтип характеризуется\nотсутствием экспрессии трех основных молекулярных\nмаркеров: рецепторов эстрогена (ER), прогестерона\n(PR) и HER2 (рецептор эпидермального фактора роста\nчеловека 2) [1]. Это исключает возможность использования гормональной терапии и таргетной терапии\nHER2, что ограничивает терапевтические опции и делает основным методом лечения химиотерапию [2].\nАгрессивное течение, высокая частота рецидивов и метастазов, а также отсутствие специфической терапии\nделают TNBC серьезным вызовом для онкологов [3].\nРак молочной железы является наиболее распространенным злокачественным новообразованием среди\nженщин в мире. По данным Всемирной организации\nздравоохранения (ВОЗ) за 2020 год было зарегистрировано более 2,3 миллиона новых случаев рака молочной\nжелезы, что составляет 11,7 % от всех новых онкологических диагнозов. Рак молочной железы занимает первое место по распространенности среди всех злокачественных опухолей у женщин, обгоняя даже рак легких\nи колоректальный рак [4].\nСмертность от рака молочной железы также высока. В 2020 году от этого заболевания умерли около\n685 000 женщин. Несмотря на значительные успехи\nв ранней диагностике и лечении, рак молочной железы\nостается одной из ведущих причин смерти от рака среди женщин. Заболеваемость раком молочной железы\nварьирует в зависимости от региона: в развитых странах (например, Северная Америка, Европа, Австралия)\nпоказатели заболеваемости выше, чем в развивающихся странах. Однако в развивающихся странах (особенно\nв Африке и Азии) уровень смертности от рака молочной\nжелезы выше из-за недостаточного доступа к медицинской помощи и позднего выявления заболевания [4].\nМировые данные показывают, что TNBC составляет\nот 10 до 20 % всех случаев рака молочной железы [5].\nЗаболевание чаще встречается у молодых женщин, особенно до 50 лет, и имеет более высокую частоту у пациенток афроамериканского происхождения, а также\nсреди женщин с мутациями в генах BRCA1 и BRCA2.\nПо данным крупных метаанализов, в Северной Америке и Европе TNBC встречается у 15–20 % пациентов\nс раком молочной железы, а в Азии и Африке частота\nможет быть выше, что связано с генетическими и экологическими факторами [6].\nВ России, по данным национального онкологического\nрегистра, ежегодно регистрируется более 70 000 новых\nслучаев рака молочной железы. Из них 12–15 % случаев\nприходится на трижды негативный подтип. Статистика также показывает, что TNBC чаще диагностируется\nна поздних стадиях, что связано с более агрессивным\nтечением заболевания и поздним выявлением рака.\nРецидивы и метастазы при TNBC развиваются чаще,\nчем при других подтипах рака молочной железы, и их\nчастота достигает 30–40 % у пациенток с поздними стадиями [7, 8].\nПо данным Федеральной службы государственной\nстатистики (Росстат), смертность от рака молочной\nжелезы в России в 2020 году составила 21 634 случая,\nчто делает его одной из ведущих причин смерти среди женщин от злокачественных новообразований [9].\nПроблема ранней диагностики и специфического лечения TNBC является серьезной проблемой для мирового здравоохранения. TNBC занимает значительную\nдолю в структуре смертности среди всех онкологических заболеваний. Данная патология характеризуется\nагрессивным клиническим течением, что напрямую\nотражается на результатах лечения. Определенной перспективой обладают исследования в области скрининга, верификации клинически значимых предикторов\nи прогнозировании ответа на терапию.\nОсновной биологической характеристикой TNBC является его гетерогенность, которая выражается в разнообразии молекулярных и клинических проявлений.\nЭтот подтип рака делится на несколько молекулярных\nподтипов, включая базальноподобный, мезенхимальный и иммуномодулирующий подтипы, каждый из которых имеет разные патогенетические механизмы и потенциально разное реагирование на терапию [1, 10].\nTNBC ассоциируется с повышенной частотой рецидивов в течение первых 3–5 лет после постановки диагноза, а также с более коротким временем до метастазирования по сравнению с другими подтипами рака\nмолочной железы [11]. Более того, метастазы чаще поражают внутренние органы, такие как легкие и мозг,\nчто усложняет лечение и ухудшает прогноз [12].\nОдной из ключевых проблем TNBC является отсутствие специфичных онкомаркеров, что затрудняет\nраннюю диагностику и мониторинг. TNBC обычно\nдиагностируется на основании иммуногистохимических тестов, исключающих экспрессию ER, PR и HER2.\nОднако на сегодняшний день не существует специфических биомаркеров, которые позволили бы точно прогнозировать исход заболевания или эффективность\nтерапии [13, 14].\nСтандартное лечение TNBC включает комбинацию химиотерапии и лучевой терапии, однако значительная\nчасть пациенток не отвечает на лечение, и их прогноз\nостается неблагоприятным [15]. Текущие исследования\nнаправлены на поиск новых биомаркеров, которые могли бы улучшить диагностику, прогноз и выбор терапии\nдля пациентов с TNBC [16].\nЦель данной обзорной статьи — систематизировать\nи проанализировать современные данные о прогностических и предиктивных онкомаркерах для пациенток\nс трижды негативным раком молочной железы. Основное внимание уделено их клинической значимости\nдля прогнозирования исходов и выбора эффективной\nтерапии.\nПатогенез и молекулярные особенности\nTNBC\nTNBC является одним из самых агрессивных подтипов\nрака молочной железы, что связано с его биологическими особенностями и отсутствием терапевтических\nмишеней, таких как ER, PR и HER2. Из-за отсутствияэтих маркеров TNBC не поддается стандартным методам гормональной и таргетной терапии, направленным\nна гормональные или HER2-зависимые опухоли, что\nзначительно ограничивает терапевтические возможности и ухудшает прогноз пациенток.\nКанцерогенез TNBC характеризуется консолидацией\nмножества генетических, эпигенетических и иммунных\nмеханизмов, что определяет трудности при выборе таргетных мишеней с целью специфического лечения [17].\nОсобенности пула опухолевых клеток TNBC, включающие в себя генетическую и иммунологическую неоднородность, предопределяют развитие неопластического\nпроцесса. Высокий метастатический потенциал, инвазивность, склонность к периневральной и лимфоваскулярной инвазии достаточно полно характеризуют\nTNBC как одну из самых агрессивных солидных опухолей [18]. Проводится много исследований, изучающих\nзакономерности между генетическими, гистологическими и иммунологическими параметрами TNBC в совокупности с динамикой развития заболевания и ответом организма.\nТрижды негативный рак молочной железы представляет собой не однородную группу опухолей, а множество\nподтипов с различными молекулярными и клиническими характеристиками. Молекулярная гетерогенность\nTNBC была впервые подробно описана в 2011 году\nв исследовании Lehmann и коллег, где было предложено выделять несколько подтипов опухоли на основе их\nмолекулярного профиля [10]. Эти подтипы включают:\nБазальноподобный подтип (Basal-like TNBC). Он наиболее распространен среди пациенток с TNBC и составляет 70–80 % всех случаев [19, 20]. Базальноподобные опухоли характеризуются высокой экспрессией\nгенов, связанных с базальными клетками, такими как\nцитокератин 5/6 и 17, а также повышенной активностью пролиферативных путей, что делает этот подтип\nагрессивным и трудно поддающимся лечению [21, 22].\nБазальноподобный TNBC ассоциируется с плохими\nпрогнозами, высокой частотой рецидивов и низкой выживаемостью. По данным клинических исследований,\nпациенки с этим подтипом имеют относительно хорошие ответы на химиотерапию, однако частота рецидивов остается высокой [23].\nМезенхимальный подтип (Mesenchymal TNBC): Мезенхимальные опухоли TNBC характеризуются активацией путей, связанных с эпителиально-мезенхимальным\nпереходом (EMT), что способствует инвазивности\nи метастазированию. Мезенхимальный подтип часто\nассоциируется с мутациями в генах, контролирующих\nклеточную миграцию и ремоделирование ткани, таких\nкак Wnt и TGF-β. Пациентки с мезенхимальным подтипом TNBC имеют повышенную склонность к метастазированию и, как следствие, худшие клинические исходы.\nЭтот подтип считается особенно агрессивным и часто\nустойчивым к стандартным методам химиотерапии [10].\nИммуномодулирующий подтип (Immunomodulatory\nTNBC) характеризуется повышенной инфильтрацией опухоли иммунными клетками, такими как\nT-лимфоциты, макрофаги и дендритные клетки. В этом\nподтипе также наблюдается высокая экспрессия генов,\nсвязанных с иммунными ответами, что делает его потенциально чувствительным к иммунотерапии, такой\nкак ингибиторы контрольных точек (например, PD-L1).\nИммуномодулирующий TNBC демонстрирует менее\nагрессивное течение по сравнению с базальноподобным и мезенхимальным подтипами, а также более высокую вероятность положительного ответа на иммунотерапию [18].\nЛюминально-андрогензависимый подтип (LAR TNBC)\nхарактеризуется экспрессией андрогеновых рецепторов (AR) и других генов, связанных с гормональными\nпутями, несмотря на отсутствие экспрессии рецепторов эстрогена и прогестерона. Этот подтип демонстрирует более медленное прогрессирование и менее\nагрессивное течение по сравнению с другими подтипами TNBC. Клинические испытания показывают, что\nпациенты с LAR подтипом могут отвечать на терапию\nингибиторами андрогеновых рецепторов, что открывает новые возможности для таргетной терапии этого\nподтипа [16].\nРазделение TNBC на молекулярные подтипы позволяет разработать более персонализированные подходы\nк лечению, которые учитывают биологические особенности опухоли. Например, пациентки с базальноподобным TNBC могут получать стандартную химиотерапию, тогда как для пациенток с иммуномодулирующим\nподтипом перспективной является иммунотерапия.\nМезенхимальные опухоли могут потребовать разработки новых методов лечения, нацеленных на подавление путей EMT, а пациентки с LAR подтипом могут\nбыть кандидатами на андрогеновую терапию [24, 25].\nТаким образом, молекулярная гетерогенность TNBC\nявляется ключевым фактором, влияющим на выбор\nтерапии и прогноз пациента. Более точное понимание\nмолекулярных механизмов различных подтипов TNBC\nпозволит улучшить результаты лечения, снизить частоту рецидивов и метастазов, а также повысить выживаемость пациенток.\nТекущие подходы к лечению TNBC\nОсновным методом лечения TNBC в течение долгого\nвремени остается противоопухолевая химиотерапия.\nСистемная химиотерапия может быть назначена в разных режимах, в зависимости от стадии опухолевого процесса и соматического статуса пациента. Части пациентов, которым планируется радикальное оперативное\nвмешательство, требуется проведение неоадъювантной\nхимиотерапии, что может позволить уменьшить размеры образования, достичь лекарственного патоморфоза\nи улучшить выживаемость. В случае местно-распространенного характера опухолевого процесса после выполнения радикальной или циторедуктивной операции\nможет потребоваться проведение адъювантной химиотерапии. Ответ на противоопухолевую химиотерапию\nтерапию зависит от множества факторов и не всегда\nбывает прогнозируемым. Наиболее распространенные\nпрепараты, используемые при TNBC, включают: антрациклины (доксорубицин); таксаны (паклитаксел,\nдоцетаксел); алкилирующие агенты (циклофосфамид);\nпроизводные платины (карбоплатин, цисплатин) [26]В работе Sikov W. и соавт. демонстрируются результаты применения системной неоадъювантной химиотерапии в комбинации с иммунными препаратами у пациентов с TNBC. Оценивались отдаленные результаты\nответа на терапию при добавлении к стандартной схеме карбоплатина, а также бевацизумаба. Исследователи\nопределили, что добавление карбоплатина благоприятно сказывается на частоте полного патоморфологичекого ответа, что повлияло на прогноз и показатели\nвыживаемости при TNBC [27].\nВнедрение в клиническую практику иммунотаргетных\nпрепаратов ознаменовало начало новой эры в медикаментозном лечении онкологических заболеваний.\nИсключением не являлся и рак молочной железы, который стад активно изучаться с позиций определения\nточек воздействия иммунных механизмов. Современные иммунотаргетные препараты воздействуют\nна несколько главных «мишеней» — рецептор CTLA-4,\nрецептор PD-1 и его лиганд PD-L1. В настоящее время\nиммунная терапия является актуальным методом лечения TNBC. Изучение экспрессии PD-1 и PD-L1, определение уровня иммунного ответа и специфических\nрецепторов может позволить радикально изменить\nподходы к ранней диагностике и лечению TNBC.\nВ рандомизированном контролируемом исследовании\nSchmid P. и соавт. оценивалась эффективность иммунотерапии у пациентов с TNBC. С этой целью проводился анализ результатов применения комбинации\nингибитора контрольных точек PD-L1 (атезолизумаба)\nс системным химиотерапевтическим препаратом (набпаклитаксел) у пациентов с метастатическими и/или\nнеоперабельным TNBC. Авторы заявили о значительном улучшеним общей выживаемости (ОВ) у пациенток\nс позитивной экспрессией PD-L1, получавших комбинацию атезолизумаба и наб-паклитаксела, по сравнению\nс химиотерапией в монорежиме. Медиана ОВ у этой\nгруппы пациентов увеличилась с 18,7 до 25 месяцев [28].\nДанные результаты декларируют, что использование\nингибиторов контрольных точек может улучшить выживаемость у пациенток с TNBC, особенно в популяции с повышенной экспрессией опухоли PD-L1. Данное\nисследование наряду с другими крупными работами\nстало основанием для валидации атезолизумаба в качестве лекарственного препарата при метастатическом\nTNBC с позитивной экспрессией PD-L1. В другом важном исследовании под руководством Cortes J. и соавт.\nоценивалась эффективность пембролизумаба (ингибитор PD-1) в комбинации с химиотерапией у пациенток\nс метастатическим TNBC. Результаты исследования показали, что добавление пембролизумаба улучшило медиану безрецидивной выживаемости (БРВ) у пациенток с опухолями, экспрессирующими PD-L1. Медиана\nБРВ увеличилась с 5,6 до 9,7 месяца, что подтверждает\nэффективность иммунотерапии в комбинации с химиотерапией для пациентов с PD-L1-позитивными опухолями TNBC [29].\nТаргетная терапия становится важной стратегией в лечении TNBC, особенно для пациенток с мутациями\nв генах BRCA1 и BRCA2, которые составляют значительную часть случаев TNBC. Эти мутации приводят\nк нарушению механизмов репарации ДНК, что делает клетки опухоли более уязвимыми к повреждениям ДНК, вызванным химиотерапией или таргетными\nпрепаратами [30]. Исследование OlympiAD — одно\nиз крупных клинических исследований, подтверждающих эффективность PARP-ингибиторов для лечения\nпациенток с мутациями BRCA. В представленном рандомизированном клиническом исследовании оценивалась эффективность олапариба (PARP-ингибитор)\nв сравнении с системной химиотерапией у пациенток\nс метастатическим TNBC и BRCA-мутацией. Результаты продемонстрировали, что олапариб улучшил медиану БРВ в сравнении с системной химиотерапией: 7,0 месяцев против 4,2 месяцев [31]. Полученные результаты\nподтвердил и роль олапариба как эффективного и безопасного лекарственного препарата для лечения TNBC\nу пациенток с BRCA-мутацией. В последующем данное\nсоединение было валидировано для соответствующей\nкатегории пациентов. Таким образом, таргетная терапия, направленная на использование дефектов в механизмах восстановления ДНК, стала важным компонентом лечения TNBC.\nУспех таргетной терапии и иммунотерапии для TNBC\nво многом зависит от наличия соответствующих прогностических и предиктивных биомаркеров. Например, наличие мутаций BRCA1/2 делает пациенток кандидатами на терапию PARP-ингибиторами, в то время\nкак экспрессия PD-L1 является ключевым маркером\nдля назначения ингибиторов контрольных точек.\nНесмотря на то, что химиотерапия остается основным\nметодом лечения TNBC, новые подходы, такие как\nиммунотерапия и таргетная терапия, начинают значительно улучшать клинические исходы у пациенток\nс этим агрессивным подтипом рака.\nПрогностические маркеры у пациенток\nс TNBC\nОпределение прогноза является важной составляющей комплексного лечения онкологических пациентов. По этой причине правильная оценка вероятностей\nвыживаемости может позволить стратифицировать\nпациентов по группам риска и определять показания\nдля соответствующих методов лечения. Ценным инструментом для прогнозирования в онкологии выступает онкомаркеры — предикторы агрессивности,\nподверженности лечению и выживаемости. Особое\nзначение данные соединения приобретают при лечении\nагрессивных опухолей и запущенных стадий злокачественного процесса в организме. У пациентов с TNBC\nпрогностические онкомаркеры могут стать важной\nопцией для определения стратегии ведения и лечения. В данном разделе рассмотрены ключевые прогностические маркеры TNBC, среди которых циркулирующие опухолевые клетки (CTC), циркулирующая\nопухолевая ДНК (ctDNA), экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), мутации в генах\nBRCA1/BRCA2 и метаболические маркеры.\nCTC и ctDNA выступают в качестве потенциальных\nпрогностических маркеров при различных злокачественных образованиях, в том числе и при TNBC.Они отражают наличие остаточной опухолевой активности и могут служить инструментами для прогнозирования риска рецидива и метастазирования, а также\nдля мониторинга эффективности терапии [32]. CTC\nпредставляют собой опухолевые клетки, которые отделяются от первичной опухоли или метастатических\nочагов и попадают в системный кровоток. Диагностика данных соединений может позволить стратифицировать пациентов по уровню ответа на терапию, что\nпозволит оптимизировать существующие протоколы\nлечения [33]. На сегодняшний день единственным валидированным методом, одобренным FDA (Food and\nDrug Administration) для определения CTC, является\nCellSearch® System. Данная методика основана на иммуномагнитной сепарации клеток, экспрессирующих\nEpCAM (Epithelial cell adhesion molecule — молекула\nклеточной адгезии эпителия). Наряду с представленным методом активно развиваются микрофлюидные\nтехнологии, которые позволяют производить селекцию\nCTC на основе их физико-химических и биологических\nхарактеристик. Для молекулярного анализа широко\nприменяются методы полимеразной цепной реакции\n(ПЦР), позволяющие выявлять специфические генетические маркеры опухолевых клеток и получать более\nточную информацию о молекулярных характеристиках опухоли [34]. Высокие уровни CTC коррелируют\nс неблагоприятным прогнозом. В исследовании Lucci\nи соавт. было показано, что наличие CTC у пациентов\nс ранним раком молочной железы ассоциировано с повышенным риском рецидива и сниженными показателями выживаемости [35]. В наблюдательном исследовании, проведенном Liu M. и соавт., проводился анализ\nрезультатов лечения пациентов с TNBC. Авторы отметили, что пациенты, у которых после неоадъювантной химиотерапии наблюдалось снижение количества\nCTC, имели лучшие клинические исходы по сравнению\nс теми, у кого уровни CTC оставались высокими [36].\nВ другом крупном рандомизированном двойном слепом плацебоконтролируемом исследовании третьей\nфазы исследователи обнаружили, что наличие CTC\nсвязано с повышенным риском развития метастазов\nв отдаленных органах у пациентов с TNBC [37].\nctDNA представляет собой фрагменты ДНК опухолевых клеток, которые высвобождаются в кровоток\nв результате апоптоза или некроза опухолевых клеток. Для определения ctDNA используются высокочувствительные молекулярные методы диагностики,\nкоторые позволяют верифицировать изменения на геномном и генетическом уровнях. Цифровая ПЦР обладает высокой чувствительностью и позволяет количественно определять специфические мутации, тогда\nкак секвенирование следующего поколения (NGS) дает\nвозможность анализировать широкий спектр генетических аномалий, включая точечные мутации, делеции, инсерции и изменения числа копий генов [38].\nЭти технологии позволяют проводить неинвазивный\nмониторинг опухолевого процесса и корректировать\nстратегию лечения в зависимости от молекулярного\nпрофиля заболевания. ctDNA может использоваться\nдля раннего обнаружения минимальной остаточной\nболезни (MRD) после лечения. В проспективном кагортном исследовании Garcia-Murillas и соавт. было показано, что обнаружение ctDNA после хирургического\nвмешательства связано с высоким риском рецидива\n[39]. В проспективном наблюдательном исследовании\nбыло продемонстрировано, что у пациенток с положительной ctDNA после неоадювантной химиотерапии\nмедиана БРВ составила 15,4 месяца, что значительно\nменьше по сравнению с 28,7 месяца у пациенток без обнаруженной ctDNA. Обнаружение ctDNA было связано\nс увеличением риска рецидива с коэффициентом риска\n(HR) 4,5 (95 % доверительный интервал [CI], 2.1–9.5,\np < 0.001) [40].\nCTC и ctDNA являются важными инструментами диагностики, прогнозирования и мониторинга лечения пациентов с TNBC. Дальнейшие исследования в области\nих изучения, а также интеграция этих прогностических\nмаркеров в клинический процесс могут значительно\nповысить эффективность и качество оказываемой персонифицированной помощи при TNBC.\nОпухолевые маркеры, такие как экспрессия PDL1 и инфильтрация опухоли лимфоцитами (TILs), играют важную роль в прогнозировании иммунного ответа\nорганизма на опухоль и проводимое лечение, а также\nв выборе соответствующей схемы иммунной терапии.\nPD-L1 (лиганд программируемой клеточной смерти-1)\nэкспрессируется на поверхности опухолевых клеток\nи взаимодействует с PD-1-рецепторами на T-клетках,\nчто позволяет опухолевым клеткам избегать иммунной\nреакции организма. Высокая экспрессия PD-L1 в опухолях TNBC ассоциируется с более агрессивным течением и худшим прогнозом. В то же время экспрессия\nPD-L1 также предсказывает чувствительность опухоли к иммунотерапии, направленной на блокирование\nконтрольных иммунных точек (checkpoint inhibitors).\nНа сегодняшний день представителями ингибиторов\nконтрольных точек иммунного ответа, используемых\nпри TNBC, являются пембролизумаб и атезолизумаб\n[41]. Исследование KEYNOTE-355 показало, что у пациенток с метастатическим TNBC, у которых опухоли\nэкспрессируют PD-L1, добавление пембролизумаба\nк стандартной химиотерапии улучшает ОВ и БРВ [18].\nTILs представляют собой иммунные клетки, которые инфильтрируют опухолевую ткань и играют\nважную роль в подавлении роста опухоли. Высокий\nуровень TILs в опухолях TNBC считается благоприятным прогностическим фактором, так как он связан\nс лучшими показателями ОВ и более частым полным\nпатоморфологическим ответом на неоадъювантную\nхимиотерапию [42]. В ретроспективном когортноми\nисследовании, проведенном Denkert и соавт. было продемонстрировано, что пациенты с TNBC и высоким\nуровнем TILs имеют значительно лучшие клинические\nрезультаты, включая увеличение БРВ и ОВ. Увеличение\nOS при увеличении TILs на 10 % составило 13 % (HR =\n0.87; 95 % CI: 0.80–0.94; p < 0.001) [43].\nИзменения в метаболических путях опухолевых клеток\nтакже могут служить прогностическими маркерами\nагрессивности TNBC. Аберрантные метаболические\nпроцессы, такие как повышенный гликолиз (эффектВарбурга) и усиленное производство лактата, играют\nважную роль в поддержании агрессивного фенотипа опухолей [44]. Лактат — это продукт повышенного\nпроцесса гликолиза, который используется опухолевыми клетками для поддержания их роста в условиях\nгипоксии. Повышенные уровни лактата и активности лактатдегидрогеназы (ЛДГ) в опухолевых клетках\nкоррелируют с более агрессивным течением заболевания и худшими клиническими исходами у пациентов\nс TNBC. Эти маркеры отражают метаболическую активность опухоли и её способность к быстрому росту\nи метастазированию [45]. В исследовании Malhotra\nи соавт. было продемонстрировано, что у пациентов\nс высоким уровнем ЛДГ наблюдаются худшие прогнозы\nи меньшая выживаемость по сравнению с пациентами\nс нормальными уровнями ЛДГ [46].\nПрогностические маркеры, такие как CTC, ctDNA,\nэкспрессия PD-L1, инфильтрация TILs, мутации\nBRCA1/BRCA2 и метаболические маркеры, играют важную роль в прогнозировании клинических исходов\nи выборе терапии у пациентов с TNBC. Представленные предикторы позволяют выбирать оптимальную\nтактику диагностики и методов лечения, что благоприятно сказывается на клинических результатах.\nПерспективы персонализированной\nмедицины\nПерсонализированная медицина в лечении TNBC активно развивается благодаря внедрению молекулярного профилирования и искусственного интеллекта\n(ИИ). Клиническая агрессивность TNBC диктует необходимость мультимодального подхода к диагностике,\nпрогнозированию и лечению. Интеграция алгоритмов\nкорреляционных взаимоотношений между опухолевыми предикторами, морфофункциональными характеристиками опухоли и клинической картиной заболевания может позволить создать оптимальную стратегию\nпри TNBC.\nАнализ больших объемов геномных, транскриптомных\nи клинических данных требует создания инструментов\nалгоритмизации вычислительного процесса. В данном\nконтексте ИИ стал незаменимой опцией, позволяющей выявлять скрытые закономерности и разрабатывать точные модели для прогнозирования ответа\nна лечение и выживаемости пациентов. Применение\nкомпьютерного интеллекта при TNBC охватывает широкий спектр задач: от анализа биомаркеров, таких как\nBRCA1/BRCA2, PD-L1, CTC и ctDNA, до оценки вероятности рецидивов [47]. В систематическом обзоре где\nбыли рассмотрены 63 исследования, которые использовали методы ИИ для персонализированной медицины\nпри онкологических заболеваниях, было показано, что\nприменение ИИ позволяет с высокой точностью предсказывать ответы на терапию и повышать точность\nдиагностики, используя такие методы, как глубокое обучение и случайные леса [48].\nДополнительно ИИ помогает моделировать возможные исходы лечения. Так, в исследовании Enhanced\nDeep Learning Model for Personalized Cancer Treatment\nразработаны модели глубокого обучения, которые продемонстрировали высокую точность в предсказании\nответа на лечение у пациентов с различными онкологическими заболеваниями, включая TNBC [49].\nКроме предсказания эффективности терапии, ИИ активно применяется для поддержки врачебных решений.\nВ исследовании Amoroso и соавт. представлен подход\n«объяснимого искусственного интеллекта» (Explainable\nAI, XAI), который позволил классифицировать пациентов на основе молекулярных данных и подобрать им\nоптимальные стратегии лечения на основе профилирования опухолей. Это исследование показало, что ИИ может эффективно поддерживать клинические решения\nи увеличивать точность подбора терапии, что особенно\nважно для TNBC [50]. ИИ может предсказывать не только вероятность рецидивов, но и подбирать наилучшие\nсхемы терапии для каждого пациента. Исследование I-PREDICT также подтвердило, что персонализированная терапия на основе геномных данных, подобранная с помощью ИИ, улучшает выживаемость пациентов\nпо сравнению с традиционными подходами [51].\nЗАКЛЮЧЕНИЕ\nTNBC остается одной из самых сложных клинических\nпроблем в онкологии из-за его агрессивного течения,\nвысокой частоты рецидивов и отсутствия стандартных\nтерапевтических мишеней. Благодаря развитию молекулярного профилирования и внедрению методов ИИ\nперсонализированная медицина для пациенток с TNBC\nстановится более доступной и эффективной.\nМолекулярное профилирование позволило выявить\nподтипы TNBC, такие как базальноподобный, мезенхимальный и иммуномодулирующий, что помогает\nврачам разрабатывать более точные стратегии лечения.\nПрогностические и предиктивные маркеры, такие как\nмутации BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли TILs, а также CTC и ctDNA, играют\nважную роль в выборе оптимальной стратегии лечения\nзаболевания.\nПрименение методов ИИ значительно улучшило возможности анализа больших объемов данных, таких как\nрезультаты молекулярного профилирования и клинические данные пациентов. Исследования показали, что\nИИ может предсказывать клинические исходы с высокой точностью, оптимизировать выбор терапии и поддерживать принятие клинических решений. Применение объяснимого ИИ (Explainable AI, XAI) помогает\nврачам не только предсказывать результаты лечения,\nно и понимать, на основе каких данных принимаются\nэти решения, что делает процесс лечения более прозрачным и эффективным.\nТаким образом, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами ИИ, становится ключевым элементом лечения пациенток с TNBC, улучшая как прогнозы,\nтак и результаты терапии. Дальнейшее развитие этих\nтехнологий позволит повысить точность диагностики,\nвыбрать оптимальные стратегии лечения и, в конечном\nсчете, улучшить выживаемость пациентов."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nТрижды негативный рак молочной железы (TNBC) является одним из наиболее агрессивных подтипов рака\nмолочной железы и представляет собой значительную\nклиническую проблему. Этот подтип характеризуется\nотсутствием экспрессии трех основных молекулярных\nмаркеров: рецепторов эстрогена (ER), прогестерона\n(PR) и HER2 (рецептор эпидермального фактора роста\nчеловека 2) [1]. Это исключает возможность использования гормональной терапии и таргетной терапии\nHER2, что ограничивает терапевтические опции и делает основным методом лечения химиотерапию [2].\nАгрессивное течение, высокая частота рецидивов и метастазов, а также отсутствие специфической терапии\nделают TNBC серьезным вызовом для онкологов [3].\nРак молочной железы является наиболее распространенным злокачественным новообразованием среди\nженщин в мире. По данным Всемирной организации\nздравоохранения (ВОЗ) за 2020 год было зарегистрировано более 2,3 миллиона новых случаев рака молочной\nжелезы, что составляет 11,7 % от всех новых онкологических диагнозов. Рак молочной железы занимает первое место по распространенности среди всех злокачественных опухолей у женщин, обгоняя даже рак легких\nи колоректальный рак [4].\nСмертность от рака молочной железы также высока. В 2020 году от этого заболевания умерли около\n685 000 женщин. Несмотря на значительные успехи\nв ранней диагностике и лечении, рак молочной железы\nостается одной из ведущих причин смерти от рака среди женщин. Заболеваемость раком молочной железы\nварьирует в зависимости от региона: в развитых странах (например, Северная Америка, Европа, Австралия)\nпоказатели заболеваемости выше, чем в развивающихся странах. Однако в развивающихся странах (особенно\nв Африке и Азии) уровень смертности от рака молочной\nжелезы выше из-за недостаточного доступа к медицинской помощи и позднего выявления заболевания [4].\nМировые данные показывают, что TNBC составляет\nот 10 до 20 % всех случаев рака молочной железы [5].\nЗаболевание чаще встречается у молодых женщин, особенно до 50 лет, и имеет более высокую частоту у пациенток афроамериканского происхождения, а также\nсреди женщин с мутациями в генах BRCA1 и BRCA2.\nПо данным крупных метаанализов, в Северной Америке и Европе TNBC встречается у 15–20 % пациентов\nс раком молочной железы, а в Азии и Африке частота\nможет быть выше, что связано с генетическими и экологическими факторами [6].\nВ России, по данным национального онкологического\nрегистра, ежегодно регистрируется более 70 000 новых\nслучаев рака молочной железы. Из них 12–15 % случаев\nприходится на трижды негативный подтип. Статистика также показывает, что TNBC чаще диагностируется\nна поздних стадиях, что связано с более агрессивным\nтечением заболевания и поздним выявлением рака.\nРецидивы и метастазы при TNBC развиваются чаще,\nчем при других подтипах рака молочной железы, и их\nчастота достигает 30–40 % у пациенток с поздними стадиями [7, 8].\nПо данным Федеральной службы государственной\nстатистики (Росстат), смертность от рака молочной\nжелезы в России в 2020 году составила 21 634 случая,\nчто делает его одной из ведущих причин смерти среди женщин от злокачественных новообразований [9].\nПроблема ранней диагностики и специфического лечения TNBC является серьезной проблемой для мирового здравоохранения. TNBC занимает значительную\nдолю в структуре смертности среди всех онкологических заболеваний. Данная патология характеризуется\nагрессивным клиническим течением, что напрямую\nотражается на результатах лечения. Определенной перспективой обладают исследования в области скрининга, верификации клинически значимых предикторов\nи прогнозировании ответа на терапию.\nОсновной биологической характеристикой TNBC является его гетерогенность, которая выражается в разнообразии молекулярных и клинических проявлений.\nЭтот подтип рака делится на несколько молекулярных\nподтипов, включая базальноподобный, мезенхимальный и иммуномодулирующий подтипы, каждый из которых имеет разные патогенетические механизмы и потенциально разное реагирование на терапию [1, 10].\nTNBC ассоциируется с повышенной частотой рецидивов в течение первых 3–5 лет после постановки диагноза, а также с более коротким временем до метастазирования по сравнению с другими подтипами рака\nмолочной железы [11]. Более того, метастазы чаще поражают внутренние органы, такие как легкие и мозг,\nчто усложняет лечение и ухудшает прогноз [12].\nОдной из ключевых проблем TNBC является отсутствие специфичных онкомаркеров, что затрудняет\nраннюю диагностику и мониторинг. TNBC обычно\nдиагностируется на основании иммуногистохимических тестов, исключающих экспрессию ER, PR и HER2.\nОднако на сегодняшний день не существует специфических биомаркеров, которые позволили бы точно прогнозировать исход заболевания или эффективность\nтерапии [13, 14].\nСтандартное лечение TNBC включает комбинацию химиотерапии и лучевой терапии, однако значительная\nчасть пациенток не отвечает на лечение, и их прогноз\nостается неблагоприятным [15]. Текущие исследования\nнаправлены на поиск новых биомаркеров, которые могли бы улучшить диагностику, прогноз и выбор терапии\nдля пациентов с TNBC [16].\nЦель данной обзорной статьи — систематизировать\nи проанализировать современные данные о прогностических и предиктивных онкомаркерах для пациенток\nс трижды негативным раком молочной железы. Основное внимание уделено их клинической значимости\nдля прогнозирования исходов и выбора эффективной\nтерапии.\nПатогенез и молекулярные особенности\nTNBC\nTNBC является одним из самых агрессивных подтипов\nрака молочной железы, что связано с его биологическими особенностями и отсутствием терапевтических\nмишеней, таких как ER, PR и HER2. Из-за отсутствияэтих маркеров TNBC не поддается стандартным методам гормональной и таргетной терапии, направленным\nна гормональные или HER2-зависимые опухоли, что\nзначительно ограничивает терапевтические возможности и ухудшает прогноз пациенток.\nКанцерогенез TNBC характеризуется консолидацией\nмножества генетических, эпигенетических и иммунных\nмеханизмов, что определяет трудности при выборе таргетных мишеней с целью специфического лечения [17].\nОсобенности пула опухолевых клеток TNBC, включающие в себя генетическую и иммунологическую неоднородность, предопределяют развитие неопластического\nпроцесса. Высокий метастатический потенциал, инвазивность, склонность к периневральной и лимфоваскулярной инвазии достаточно полно характеризуют\nTNBC как одну из самых агрессивных солидных опухолей [18]. Проводится много исследований, изучающих\nзакономерности между генетическими, гистологическими и иммунологическими параметрами TNBC в совокупности с динамикой развития заболевания и ответом организма.\nТрижды негативный рак молочной железы представляет собой не однородную группу опухолей, а множество\nподтипов с различными молекулярными и клиническими характеристиками. Молекулярная гетерогенность\nTNBC была впервые подробно описана в 2011 году\nв исследовании Lehmann и коллег, где было предложено выделять несколько подтипов опухоли на основе их\nмолекулярного профиля [10]. Эти подтипы включают:\nБазальноподобный подтип (Basal-like TNBC). Он наиболее распространен среди пациенток с TNBC и составляет 70–80 % всех случаев [19, 20]. Базальноподобные опухоли характеризуются высокой экспрессией\nгенов, связанных с базальными клетками, такими как\nцитокератин 5/6 и 17, а также повышенной активностью пролиферативных путей, что делает этот подтип\nагрессивным и трудно поддающимся лечению [21, 22].\nБазальноподобный TNBC ассоциируется с плохими\nпрогнозами, высокой частотой рецидивов и низкой выживаемостью. По данным клинических исследований,\nпациенки с этим подтипом имеют относительно хорошие ответы на химиотерапию, однако частота рецидивов остается высокой [23].\nМезенхимальный подтип (Mesenchymal TNBC): Мезенхимальные опухоли TNBC характеризуются активацией путей, связанных с эпителиально-мезенхимальным\nпереходом (EMT), что способствует инвазивности\nи метастазированию. Мезенхимальный подтип часто\nассоциируется с мутациями в генах, контролирующих\nклеточную миграцию и ремоделирование ткани, таких\nкак Wnt и TGF-β. Пациентки с мезенхимальным подтипом TNBC имеют повышенную склонность к метастазированию и, как следствие, худшие клинические исходы.\nЭтот подтип считается особенно агрессивным и часто\nустойчивым к стандартным методам химиотерапии [10].\nИммуномодулирующий подтип (Immunomodulatory\nTNBC) характеризуется повышенной инфильтрацией опухоли иммунными клетками, такими как\nT-лимфоциты, макрофаги и дендритные клетки. В этом\nподтипе также наблюдается высокая экспрессия генов,\nсвязанных с иммунными ответами, что делает его потенциально чувствительным к иммунотерапии, такой\nкак ингибиторы контрольных точек (например, PD-L1).\nИммуномодулирующий TNBC демонстрирует менее\nагрессивное течение по сравнению с базальноподобным и мезенхимальным подтипами, а также более высокую вероятность положительного ответа на иммунотерапию [18].\nЛюминально-андрогензависимый подтип (LAR TNBC)\nхарактеризуется экспрессией андрогеновых рецепторов (AR) и других генов, связанных с гормональными\nпутями, несмотря на отсутствие экспрессии рецепторов эстрогена и прогестерона. Этот подтип демонстрирует более медленное прогрессирование и менее\nагрессивное течение по сравнению с другими подтипами TNBC. Клинические испытания показывают, что\nпациенты с LAR подтипом могут отвечать на терапию\nингибиторами андрогеновых рецепторов, что открывает новые возможности для таргетной терапии этого\nподтипа [16].\nРазделение TNBC на молекулярные подтипы позволяет разработать более персонализированные подходы\nк лечению, которые учитывают биологические особенности опухоли. Например, пациентки с базальноподобным TNBC могут получать стандартную химиотерапию, тогда как для пациенток с иммуномодулирующим\nподтипом перспективной является иммунотерапия.\nМезенхимальные опухоли могут потребовать разработки новых методов лечения, нацеленных на подавление путей EMT, а пациентки с LAR подтипом могут\nбыть кандидатами на андрогеновую терапию [24, 25].\nТаким образом, молекулярная гетерогенность TNBC\nявляется ключевым фактором, влияющим на выбор\nтерапии и прогноз пациента. Более точное понимание\nмолекулярных механизмов различных подтипов TNBC\nпозволит улучшить результаты лечения, снизить частоту рецидивов и метастазов, а также повысить выживаемость пациенток.\nТекущие подходы к лечению TNBC\nОсновным методом лечения TNBC в течение долгого\nвремени остается противоопухолевая химиотерапия.\nСистемная химиотерапия может быть назначена в разных режимах, в зависимости от стадии опухолевого процесса и соматического статуса пациента. Части пациентов, которым планируется радикальное оперативное\nвмешательство, требуется проведение неоадъювантной\nхимиотерапии, что может позволить уменьшить размеры образования, достичь лекарственного патоморфоза\nи улучшить выживаемость. В случае местно-распространенного характера опухолевого процесса после выполнения радикальной или циторедуктивной операции\nможет потребоваться проведение адъювантной химиотерапии. Ответ на противоопухолевую химиотерапию\nтерапию зависит от множества факторов и не всегда\nбывает прогнозируемым. Наиболее распространенные\nпрепараты, используемые при TNBC, включают: антрациклины (доксорубицин); таксаны (паклитаксел,\nдоцетаксел); алкилирующие агенты (циклофосфамид);\nпроизводные платины (карбоплатин, цисплатин) [26]В работе Sikov W. и соавт. демонстрируются результаты применения системной неоадъювантной химиотерапии в комбинации с иммунными препаратами у пациентов с TNBC. Оценивались отдаленные результаты\nответа на терапию при добавлении к стандартной схеме карбоплатина, а также бевацизумаба. Исследователи\nопределили, что добавление карбоплатина благоприятно сказывается на частоте полного патоморфологичекого ответа, что повлияло на прогноз и показатели\nвыживаемости при TNBC [27].\nВнедрение в клиническую практику иммунотаргетных\nпрепаратов ознаменовало начало новой эры в медикаментозном лечении онкологических заболеваний.\nИсключением не являлся и рак молочной железы, который стад активно изучаться с позиций определения\nточек воздействия иммунных механизмов. Современные иммунотаргетные препараты воздействуют\nна несколько главных «мишеней» — рецептор CTLA-4,\nрецептор PD-1 и его лиганд PD-L1. В настоящее время\nиммунная терапия является актуальным методом лечения TNBC. Изучение экспрессии PD-1 и PD-L1, определение уровня иммунного ответа и специфических\nрецепторов может позволить радикально изменить\nподходы к ранней диагностике и лечению TNBC.\nВ рандомизированном контролируемом исследовании\nSchmid P. и соавт. оценивалась эффективность иммунотерапии у пациентов с TNBC. С этой целью проводился анализ результатов применения комбинации\nингибитора контрольных точек PD-L1 (атезолизумаба)\nс системным химиотерапевтическим препаратом (набпаклитаксел) у пациентов с метастатическими и/или\nнеоперабельным TNBC. Авторы заявили о значительном улучшеним общей выживаемости (ОВ) у пациенток\nс позитивной экспрессией PD-L1, получавших комбинацию атезолизумаба и наб-паклитаксела, по сравнению\nс химиотерапией в монорежиме. Медиана ОВ у этой\nгруппы пациентов увеличилась с 18,7 до 25 месяцев [28].\nДанные результаты декларируют, что использование\nингибиторов контрольных точек может улучшить выживаемость у пациенток с TNBC, особенно в популяции с повышенной экспрессией опухоли PD-L1. Данное\nисследование наряду с другими крупными работами\nстало основанием для валидации атезолизумаба в качестве лекарственного препарата при метастатическом\nTNBC с позитивной экспрессией PD-L1. В другом важном исследовании под руководством Cortes J. и соавт.\nоценивалась эффективность пембролизумаба (ингибитор PD-1) в комбинации с химиотерапией у пациенток\nс метастатическим TNBC. Результаты исследования показали, что добавление пембролизумаба улучшило медиану безрецидивной выживаемости (БРВ) у пациенток с опухолями, экспрессирующими PD-L1. Медиана\nБРВ увеличилась с 5,6 до 9,7 месяца, что подтверждает\nэффективность иммунотерапии в комбинации с химиотерапией для пациентов с PD-L1-позитивными опухолями TNBC [29].\nТаргетная терапия становится важной стратегией в лечении TNBC, особенно для пациенток с мутациями\nв генах BRCA1 и BRCA2, которые составляют значительную часть случаев TNBC. Эти мутации приводят\nк нарушению механизмов репарации ДНК, что делает клетки опухоли более уязвимыми к повреждениям ДНК, вызванным химиотерапией или таргетными\nпрепаратами [30]. Исследование OlympiAD — одно\nиз крупных клинических исследований, подтверждающих эффективность PARP-ингибиторов для лечения\nпациенток с мутациями BRCA. В представленном рандомизированном клиническом исследовании оценивалась эффективность олапариба (PARP-ингибитор)\nв сравнении с системной химиотерапией у пациенток\nс метастатическим TNBC и BRCA-мутацией. Результаты продемонстрировали, что олапариб улучшил медиану БРВ в сравнении с системной химиотерапией: 7,0 месяцев против 4,2 месяцев [31]. Полученные результаты\nподтвердил и роль олапариба как эффективного и безопасного лекарственного препарата для лечения TNBC\nу пациенток с BRCA-мутацией. В последующем данное\nсоединение было валидировано для соответствующей\nкатегории пациентов. Таким образом, таргетная терапия, направленная на использование дефектов в механизмах восстановления ДНК, стала важным компонентом лечения TNBC.\nУспех таргетной терапии и иммунотерапии для TNBC\nво многом зависит от наличия соответствующих прогностических и предиктивных биомаркеров. Например, наличие мутаций BRCA1/2 делает пациенток кандидатами на терапию PARP-ингибиторами, в то время\nкак экспрессия PD-L1 является ключевым маркером\nдля назначения ингибиторов контрольных точек.\nНесмотря на то, что химиотерапия остается основным\nметодом лечения TNBC, новые подходы, такие как\nиммунотерапия и таргетная терапия, начинают значительно улучшать клинические исходы у пациенток\nс этим агрессивным подтипом рака.\nПрогностические маркеры у пациенток\nс TNBC\nОпределение прогноза является важной составляющей комплексного лечения онкологических пациентов. По этой причине правильная оценка вероятностей\nвыживаемости может позволить стратифицировать\nпациентов по группам риска и определять показания\nдля соответствующих методов лечения. Ценным инструментом для прогнозирования в онкологии выступает онкомаркеры — предикторы агрессивности,\nподверженности лечению и выживаемости. Особое\nзначение данные соединения приобретают при лечении\nагрессивных опухолей и запущенных стадий злокачественного процесса в организме. У пациентов с TNBC\nпрогностические онкомаркеры могут стать важной\nопцией для определения стратегии ведения и лечения. В данном разделе рассмотрены ключевые прогностические маркеры TNBC, среди которых циркулирующие опухолевые клетки (CTC), циркулирующая\nопухолевая ДНК (ctDNA), экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), мутации в генах\nBRCA1/BRCA2 и метаболические маркеры.\nCTC и ctDNA выступают в качестве потенциальных\nпрогностических маркеров при различных злокачественных образованиях, в том числе и при TNBC.Они отражают наличие остаточной опухолевой активности и могут служить инструментами для прогнозирования риска рецидива и метастазирования, а также\nдля мониторинга эффективности терапии [32]. CTC\nпредставляют собой опухолевые клетки, которые отделяются от первичной опухоли или метастатических\nочагов и попадают в системный кровоток. Диагностика данных соединений может позволить стратифицировать пациентов по уровню ответа на терапию, что\nпозволит оптимизировать существующие протоколы\nлечения [33]. На сегодняшний день единственным валидированным методом, одобренным FDA (Food and\nDrug Administration) для определения CTC, является\nCellSearch® System. Данная методика основана на иммуномагнитной сепарации клеток, экспрессирующих\nEpCAM (Epithelial cell adhesion molecule — молекула\nклеточной адгезии эпителия). Наряду с представленным методом активно развиваются микрофлюидные\nтехнологии, которые позволяют производить селекцию\nCTC на основе их физико-химических и биологических\nхарактеристик. Для молекулярного анализа широко\nприменяются методы полимеразной цепной реакции\n(ПЦР), позволяющие выявлять специфические генетические маркеры опухолевых клеток и получать более\nточную информацию о молекулярных характеристиках опухоли [34]. Высокие уровни CTC коррелируют\nс неблагоприятным прогнозом. В исследовании Lucci\nи соавт. было показано, что наличие CTC у пациентов\nс ранним раком молочной железы ассоциировано с повышенным риском рецидива и сниженными показателями выживаемости [35]. В наблюдательном исследовании, проведенном Liu M. и соавт., проводился анализ\nрезультатов лечения пациентов с TNBC. Авторы отметили, что пациенты, у которых после неоадъювантной химиотерапии наблюдалось снижение количества\nCTC, имели лучшие клинические исходы по сравнению\nс теми, у кого уровни CTC оставались высокими [36].\nВ другом крупном рандомизированном двойном слепом плацебоконтролируемом исследовании третьей\nфазы исследователи обнаружили, что наличие CTC\nсвязано с повышенным риском развития метастазов\nв отдаленных органах у пациентов с TNBC [37].\nctDNA представляет собой фрагменты ДНК опухолевых клеток, которые высвобождаются в кровоток\nв результате апоптоза или некроза опухолевых клеток. Для определения ctDNA используются высокочувствительные молекулярные методы диагностики,\nкоторые позволяют верифицировать изменения на геномном и генетическом уровнях. Цифровая ПЦР обладает высокой чувствительностью и позволяет количественно определять специфические мутации, тогда\nкак секвенирование следующего поколения (NGS) дает\nвозможность анализировать широкий спектр генетических аномалий, включая точечные мутации, делеции, инсерции и изменения числа копий генов [38].\nЭти технологии позволяют проводить неинвазивный\nмониторинг опухолевого процесса и корректировать\nстратегию лечения в зависимости от молекулярного\nпрофиля заболевания. ctDNA может использоваться\nдля раннего обнаружения минимальной остаточной\nболезни (MRD) после лечения. В проспективном кагортном исследовании Garcia-Murillas и соавт. было показано, что обнаружение ctDNA после хирургического\nвмешательства связано с высоким риском рецидива\n[39]. В проспективном наблюдательном исследовании\nбыло продемонстрировано, что у пациенток с положительной ctDNA после неоадювантной химиотерапии\nмедиана БРВ составила 15,4 месяца, что значительно\nменьше по сравнению с 28,7 месяца у пациенток без обнаруженной ctDNA. Обнаружение ctDNA было связано\nс увеличением риска рецидива с коэффициентом риска\n(HR) 4,5 (95 % доверительный интервал [CI], 2.1–9.5,\np < 0.001) [40].\nCTC и ctDNA являются важными инструментами диагностики, прогнозирования и мониторинга лечения пациентов с TNBC. Дальнейшие исследования в области\nих изучения, а также интеграция этих прогностических\nмаркеров в клинический процесс могут значительно\nповысить эффективность и качество оказываемой персонифицированной помощи при TNBC.\nОпухолевые маркеры, такие как экспрессия PDL1 и инфильтрация опухоли лимфоцитами (TILs), играют важную роль в прогнозировании иммунного ответа\nорганизма на опухоль и проводимое лечение, а также\nв выборе соответствующей схемы иммунной терапии.\nPD-L1 (лиганд программируемой клеточной смерти-1)\nэкспрессируется на поверхности опухолевых клеток\nи взаимодействует с PD-1-рецепторами на T-клетках,\nчто позволяет опухолевым клеткам избегать иммунной\nреакции организма. Высокая экспрессия PD-L1 в опухолях TNBC ассоциируется с более агрессивным течением и худшим прогнозом. В то же время экспрессия\nPD-L1 также предсказывает чувствительность опухоли к иммунотерапии, направленной на блокирование\nконтрольных иммунных точек (checkpoint inhibitors).\nНа сегодняшний день представителями ингибиторов\nконтрольных точек иммунного ответа, используемых\nпри TNBC, являются пембролизумаб и атезолизумаб\n[41]. Исследование KEYNOTE-355 показало, что у пациенток с метастатическим TNBC, у которых опухоли\nэкспрессируют PD-L1, добавление пембролизумаба\nк стандартной химиотерапии улучшает ОВ и БРВ [18].\nTILs представляют собой иммунные клетки, которые инфильтрируют опухолевую ткань и играют\nважную роль в подавлении роста опухоли. Высокий\nуровень TILs в опухолях TNBC считается благоприятным прогностическим фактором, так как он связан\nс лучшими показателями ОВ и более частым полным\nпатоморфологическим ответом на неоадъювантную\nхимиотерапию [42]. В ретроспективном когортноми\nисследовании, проведенном Denkert и соавт. было продемонстрировано, что пациенты с TNBC и высоким\nуровнем TILs имеют значительно лучшие клинические\nрезультаты, включая увеличение БРВ и ОВ. Увеличение\nOS при увеличении TILs на 10 % составило 13 % (HR =\n0.87; 95 % CI: 0.80–0.94; p < 0.001) [43].\nИзменения в метаболических путях опухолевых клеток\nтакже могут служить прогностическими маркерами\nагрессивности TNBC. Аберрантные метаболические\nпроцессы, такие как повышенный гликолиз (эффектВарбурга) и усиленное производство лактата, играют\nважную роль в поддержании агрессивного фенотипа опухолей [44]. Лактат — это продукт повышенного\nпроцесса гликолиза, который используется опухолевыми клетками для поддержания их роста в условиях\nгипоксии. Повышенные уровни лактата и активности лактатдегидрогеназы (ЛДГ) в опухолевых клетках\nкоррелируют с более агрессивным течением заболевания и худшими клиническими исходами у пациентов\nс TNBC. Эти маркеры отражают метаболическую активность опухоли и её способность к быстрому росту\nи метастазированию [45]. В исследовании Malhotra\nи соавт. было продемонстрировано, что у пациентов\nс высоким уровнем ЛДГ наблюдаются худшие прогнозы\nи меньшая выживаемость по сравнению с пациентами\nс нормальными уровнями ЛДГ [46].\nПрогностические маркеры, такие как CTC, ctDNA,\nэкспрессия PD-L1, инфильтрация TILs, мутации\nBRCA1/BRCA2 и метаболические маркеры, играют важную роль в прогнозировании клинических исходов\nи выборе терапии у пациентов с TNBC. Представленные предикторы позволяют выбирать оптимальную\nтактику диагностики и методов лечения, что благоприятно сказывается на клинических результатах.\nПерспективы персонализированной\nмедицины\nПерсонализированная медицина в лечении TNBC активно развивается благодаря внедрению молекулярного профилирования и искусственного интеллекта\n(ИИ). Клиническая агрессивность TNBC диктует необходимость мультимодального подхода к диагностике,\nпрогнозированию и лечению. Интеграция алгоритмов\nкорреляционных взаимоотношений между опухолевыми предикторами, морфофункциональными характеристиками опухоли и клинической картиной заболевания может позволить создать оптимальную стратегию\nпри TNBC.\nАнализ больших объемов геномных, транскриптомных\nи клинических данных требует создания инструментов\nалгоритмизации вычислительного процесса. В данном\nконтексте ИИ стал незаменимой опцией, позволяющей выявлять скрытые закономерности и разрабатывать точные модели для прогнозирования ответа\nна лечение и выживаемости пациентов. Применение\nкомпьютерного интеллекта при TNBC охватывает широкий спектр задач: от анализа биомаркеров, таких как\nBRCA1/BRCA2, PD-L1, CTC и ctDNA, до оценки вероятности рецидивов [47]. В систематическом обзоре где\nбыли рассмотрены 63 исследования, которые использовали методы ИИ для персонализированной медицины\nпри онкологических заболеваниях, было показано, что\nприменение ИИ позволяет с высокой точностью предсказывать ответы на терапию и повышать точность\nдиагностики, используя такие методы, как глубокое обучение и случайные леса [48].\nДополнительно ИИ помогает моделировать возможные исходы лечения. Так, в исследовании Enhanced\nDeep Learning Model for Personalized Cancer Treatment\nразработаны модели глубокого обучения, которые продемонстрировали высокую точность в предсказании\nответа на лечение у пациентов с различными онкологическими заболеваниями, включая TNBC [49].\nКроме предсказания эффективности терапии, ИИ активно применяется для поддержки врачебных решений.\nВ исследовании Amoroso и соавт. представлен подход\n«объяснимого искусственного интеллекта» (Explainable\nAI, XAI), который позволил классифицировать пациентов на основе молекулярных данных и подобрать им\nоптимальные стратегии лечения на основе профилирования опухолей. Это исследование показало, что ИИ может эффективно поддерживать клинические решения\nи увеличивать точность подбора терапии, что особенно\nважно для TNBC [50]. ИИ может предсказывать не только вероятность рецидивов, но и подбирать наилучшие\nсхемы терапии для каждого пациента. Исследование I-PREDICT также подтвердило, что персонализированная терапия на основе геномных данных, подобранная с помощью ИИ, улучшает выживаемость пациентов\nпо сравнению с традиционными подходами [51].\nЗАКЛЮЧЕНИЕ\nTNBC остается одной из самых сложных клинических\nпроблем в онкологии из-за его агрессивного течения,\nвысокой частоты рецидивов и отсутствия стандартных\nтерапевтических мишеней. Благодаря развитию молекулярного профилирования и внедрению методов ИИ\nперсонализированная медицина для пациенток с TNBC\nстановится более доступной и эффективной.\nМолекулярное профилирование позволило выявить\nподтипы TNBC, такие как базальноподобный, мезенхимальный и иммуномодулирующий, что помогает\nврачам разрабатывать более точные стратегии лечения.\nПрогностические и предиктивные маркеры, такие как\nмутации BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли TILs, а также CTC и ctDNA, играют\nважную роль в выборе оптимальной стратегии лечения\nзаболевания.\nПрименение методов ИИ значительно улучшило возможности анализа больших объемов данных, таких как\nрезультаты молекулярного профилирования и клинические данные пациентов. Исследования показали, что\nИИ может предсказывать клинические исходы с высокой точностью, оптимизировать выбор терапии и поддерживать принятие клинических решений. Применение объяснимого ИИ (Explainable AI, XAI) помогает\nврачам не только предсказывать результаты лечения,\nно и понимать, на основе каких данных принимаются\nэти решения, что делает процесс лечения более прозрачным и эффективным.\nТаким образом, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами ИИ, становится ключевым элементом лечения пациенток с TNBC, улучшая как прогнозы,\nтак и результаты терапии. Дальнейшее развитие этих\nтехнологий позволит повысить точность диагностики,\nвыбрать оптимальные стратегии лечения и, в конечном\nсчете, улучшить выживаемость пациентов."],"dc.subject.ru":["трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"dc.title.ru":["Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["43-52"],"dc.rights":["CC BY 4.0"],"dc.section":["LITERATURE REVIEW","ОБЗОР ЛИТЕРАТУРЫ"],"dc.section.en":["LITERATURE REVIEW"],"dc.section.ru":["ОБЗОР ЛИТЕРАТУРЫ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["В. Н. Павлов","V. N. Pavlov","М. Ф. Урманцев","M. F. Urmantsev","Р. Ф. Гильманова","R. F. Gilmanova","Ю. А. Исмагилова","J. A. Ismagilova","М. Р. Бакеев","M. R. Bakeev"],"author_keyword":["В. Н. Павлов","V. N. Pavlov","М. Ф. Урманцев","M. F. Urmantsev","Р. Ф. Гильманова","R. F. Gilmanova","Ю. А. Исмагилова","J. A. Ismagilova","М. Р. Бакеев","M. R. Bakeev"],"author_ac":["в. н. павлов\n|||\nВ. Н. Павлов","v. n. pavlov\n|||\nV. N. Pavlov","м. ф. урманцев\n|||\nМ. Ф. Урманцев","m. f. urmantsev\n|||\nM. F. Urmantsev","р. ф. гильманова\n|||\nР. Ф. Гильманова","r. f. gilmanova\n|||\nR. F. Gilmanova","ю. а. исмагилова\n|||\nЮ. А. Исмагилова","j. a. ismagilova\n|||\nJ. A. Ismagilova","м. р. бакеев\n|||\nМ. Р. Бакеев","m. r. bakeev\n|||\nM. R. Bakeev"],"author_filter":["в. н. павлов\n|||\nВ. Н. Павлов","v. n. pavlov\n|||\nV. N. Pavlov","м. ф. урманцев\n|||\nМ. Ф. Урманцев","m. f. urmantsev\n|||\nM. F. Urmantsev","р. ф. гильманова\n|||\nР. Ф. Гильманова","r. f. gilmanova\n|||\nR. F. Gilmanova","ю. а. исмагилова\n|||\nЮ. А. Исмагилова","j. a. ismagilova\n|||\nJ. A. Ismagilova","м. р. бакеев\n|||\nМ. Р. Бакеев","m. r. bakeev\n|||\nM. R. Bakeev"],"dc.author.name":["В. Н. Павлов","V. N. Pavlov","М. Ф. Урманцев","M. F. Urmantsev","Р. Ф. Гильманова","R. F. Gilmanova","Ю. А. Исмагилова","J. A. Ismagilova","М. Р. Бакеев","M. R. Bakeev"],"dc.author.name.ru":["В. Н. Павлов","М. Ф. Урманцев","Р. Ф. Гильманова","Ю. А. Исмагилова","М. Р. Бакеев"],"dc.author.affiliation":["Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","Bashkir State Medical University ; Clinic of Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University"],"dc.author.affiliation.ru":["Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет"],"dc.author.full":["В. Н. Павлов | Башкирский государственный медицинский университет","V. N. Pavlov | Bashkir State Medical University","М. Ф. Урманцев | Башкирский государственный медицинский университет","M. F. Urmantsev | Bashkir State Medical University","Р. Ф. Гильманова | Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","R. F. Gilmanova | Bashkir State Medical University ; Clinic of Bashkir State Medical University","Ю. А. Исмагилова | Башкирский государственный медицинский университет","J. A. Ismagilova | Bashkir State Medical University","М. Р. Бакеев | Башкирский государственный медицинский университет","M. R. Bakeev | Bashkir State Medical University"],"dc.author.full.ru":["В. Н. Павлов | Башкирский государственный медицинский университет","М. Ф. Урманцев | Башкирский государственный медицинский университет","Р. Ф. Гильманова | Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","Ю. А. Исмагилова | Башкирский государственный медицинский университет","М. Р. Бакеев | Башкирский государственный медицинский университет"],"dc.author.name.en":["V. N. Pavlov","M. F. Urmantsev","R. F. Gilmanova","J. A. Ismagilova","M. R. Bakeev"],"dc.author.affiliation.en":["Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University ; Clinic of Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University"],"dc.author.full.en":["V. N. Pavlov | Bashkir State Medical University","M. F. Urmantsev | Bashkir State Medical University","R. F. Gilmanova | Bashkir State Medical University ; Clinic of Bashkir State Medical University","J. A. Ismagilova | Bashkir State Medical University","M. R. Bakeev | Bashkir State Medical University"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-2125-4897\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0412. \\u041d. \\u041f\\u0430\\u0432\\u043b\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-2125-4897\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"V. N. Pavlov\"}}, {\"ru\": {\"orcid\": \"0000-0002-4657-6625\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041c. \\u0424. \\u0423\\u0440\\u043c\\u0430\\u043d\\u0446\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4657-6625\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"M. F. Urmantsev\"}}, {\"ru\": {\"orcid\": \"0000-0002-3867-0216\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u041a\\u043b\\u0438\\u043d\\u0438\\u043a\\u0430 \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u043e\\u0433\\u043e \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u043e\\u0433\\u043e \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\\u0430\", \"full_name\": \"\\u0420. \\u0424. \\u0413\\u0438\\u043b\\u044c\\u043c\\u0430\\u043d\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0002-3867-0216\", \"affiliation\": \"Bashkir State Medical University ; Clinic of Bashkir State Medical University\", \"full_name\": \"R. F. Gilmanova\"}}, {\"ru\": {\"orcid\": \"0009-0004-0603-7864\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u042e. \\u0410. \\u0418\\u0441\\u043c\\u0430\\u0433\\u0438\\u043b\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0009-0004-0603-7864\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"J. A. Ismagilova\"}}, {\"ru\": {\"orcid\": \"0000-0002-4160-2820\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041c. \\u0420. \\u0411\\u0430\\u043a\\u0435\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4160-2820\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"M. R. Bakeev\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1086"],"dc.citation":["Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881","Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881"],"dc.citation.ru":["Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881"],"dc.citation.en":["Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8925"],"dc.date.accessioned_dt":"2025-07-09T13:58:58Z","dc.date.accessioned":["2025-07-09T13:58:58Z"],"dc.date.available":["2025-07-09T13:58:58Z"],"publication_grp":["123456789/8925"],"bi_4_dis_filter":["иммунотерапия\n|||\nиммунотерапия","triple-negative breast cancer\n|||\ntriple-negative breast cancer","предиктивные маркеры\n|||\nпредиктивные маркеры","immunotherapy\n|||\nimmunotherapy","персонализированная медицина\n|||\nперсонализированная медицина","personalized medicine\n|||\npersonalized medicine","молекулярное профилирование\n|||\nмолекулярное профилирование","artificial intelligence\n|||\nartificial intelligence","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","molecular profiling\n|||\nmolecular profiling","искусственный интеллект\n|||\nискусственный интеллект","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers"],"bi_4_dis_partial":["triple-negative breast cancer","молекулярное профилирование","прогностические маркеры","prognostic and predictive biomarkers","artificial intelligence","personalized medicine","искусственный интеллект","предиктивные маркеры","immunotherapy","трижды негативный рак молочной железы","иммунотерапия","персонализированная медицина","molecular profiling"],"bi_4_dis_value_filter":["triple-negative breast cancer","молекулярное профилирование","прогностические маркеры","prognostic and predictive biomarkers","artificial intelligence","personalized medicine","искусственный интеллект","предиктивные маркеры","immunotherapy","трижды негативный рак молочной железы","иммунотерапия","персонализированная медицина","molecular profiling"],"bi_sort_1_sort":"multifactorial analysis of prognostic and predictive biomarkers in triple negative breast cancer patients","bi_sort_3_sort":"2025-07-09T13:58:58Z","read":["g0"],"_version_":1837178068783857664},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:55.296Z","search.uniqueid":"2-8026","search.resourcetype":2,"search.resourceid":8026,"handle":"123456789/8915","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-1-50-56"],"dc.abstract":["

Crosslinking is a method of linking together high-molecular compounds by forming new chemical cross linkages inside and between macrochains. At the same time, various agents can act as cross linkers, i.e., chemical compounds, ultraviolet radiation, etc. Crosslinking of biotissues is known for improving their mechanical strength, increasing structural density, and reducing bioscaffold permeability. This review aims to characterize possible applications of cross-linking technology in various branches of medicine, i.e., ophthalmology, traumatology, urology, gastroenterology, oncology, bioengineering, and others. A review of domestic and foreign publications was carried out using the database and resources of search systems of scientific electronic libraries such as PubMed, elibrary.ru, Google Scholar, Science Direct, and the library stock of Bashkir State Medical University for the period from 1994 to 2023. The study of available literature sources makes it possible to conclude that the method of ultraviolet crosslinking is currently widely used in ophthalmology, while various modifications of crosslinking have prospects in medicine and related industries and can become the basis for the creation of bioengineered products and original medical technologies aimed at improving the effectiveness of treatment of various human diseases.

","

Кросслинкинг — это метод «сшивания» высокомолекулярных соединений за счет образования новых химических поперечных связей внутри и между макроцепями. При этом в качестве кросслинкеров могут выступать разнообразные агенты — химические соединения, ультрафиолетовое излучение и т. п. Известно, что кросслинкинг биотканей способствует повышению их механической прочности, увеличению структурной плотности и снижению проницаемости биокаркаса. Целью данного обзора является характеристика возможностей применения технологии поперечного сшивания в различных отраслях медицины: офтальмологии, травматологии, урологии, гастроэнтерологии, онкологии, биоинженерии и др. Проведен обзор отечественных и зарубежных публикаций с использованием базы данных и ресурсов поисковых систем научных электронных библиотек: PubMed, elibrary.ru, Google Scholar, Science Direct, а также библиотечного фонда Башкирского государственного медицинского университета за период с 1994 по 2023 г. Исследование доступных литературных источников позволяет заключить, что метод ультрафиолетового кросслинкинга в настоящее время широко применяется в офтальмологии, а различные модификации кросслинкинга имеют перспективы применения в медицине и в смежных отраслях, могут стать основой для создания биоинженерных продуктов и оригинальных медицинских технологий, направленных на повышение эффективности лечения различных заболеваний человека.

"],"dc.abstract.en":["

Crosslinking is a method of linking together high-molecular compounds by forming new chemical cross linkages inside and between macrochains. At the same time, various agents can act as cross linkers, i.e., chemical compounds, ultraviolet radiation, etc. Crosslinking of biotissues is known for improving their mechanical strength, increasing structural density, and reducing bioscaffold permeability. This review aims to characterize possible applications of cross-linking technology in various branches of medicine, i.e., ophthalmology, traumatology, urology, gastroenterology, oncology, bioengineering, and others. A review of domestic and foreign publications was carried out using the database and resources of search systems of scientific electronic libraries such as PubMed, elibrary.ru, Google Scholar, Science Direct, and the library stock of Bashkir State Medical University for the period from 1994 to 2023. The study of available literature sources makes it possible to conclude that the method of ultraviolet crosslinking is currently widely used in ophthalmology, while various modifications of crosslinking have prospects in medicine and related industries and can become the basis for the creation of bioengineered products and original medical technologies aimed at improving the effectiveness of treatment of various human diseases.

"],"subject":["crosslinking","polymers","collagen","bioprinting","hydrogel","crosslinking reagents","biocompatible materials","кросслинкинг","полимеры","коллаген","биопечать","гидрогель","перекрестно-сшивающие реагенты","биосовместимые материалы"],"subject_keyword":["crosslinking","crosslinking","polymers","polymers","collagen","collagen","bioprinting","bioprinting","hydrogel","hydrogel","crosslinking reagents","crosslinking reagents","biocompatible materials","biocompatible materials","кросслинкинг","кросслинкинг","полимеры","полимеры","коллаген","коллаген","биопечать","биопечать","гидрогель","гидрогель","перекрестно-сшивающие реагенты","перекрестно-сшивающие реагенты","биосовместимые материалы","биосовместимые материалы"],"subject_ac":["crosslinking\n|||\ncrosslinking","polymers\n|||\npolymers","collagen\n|||\ncollagen","bioprinting\n|||\nbioprinting","hydrogel\n|||\nhydrogel","crosslinking reagents\n|||\ncrosslinking reagents","biocompatible materials\n|||\nbiocompatible materials","кросслинкинг\n|||\nкросслинкинг","полимеры\n|||\nполимеры","коллаген\n|||\nколлаген","биопечать\n|||\nбиопечать","гидрогель\n|||\nгидрогель","перекрестно-сшивающие реагенты\n|||\nперекрестно-сшивающие реагенты","биосовместимые материалы\n|||\nбиосовместимые материалы"],"subject_tax_0_filter":["crosslinking\n|||\ncrosslinking","polymers\n|||\npolymers","collagen\n|||\ncollagen","bioprinting\n|||\nbioprinting","hydrogel\n|||\nhydrogel","crosslinking reagents\n|||\ncrosslinking reagents","biocompatible materials\n|||\nbiocompatible materials","кросслинкинг\n|||\nкросслинкинг","полимеры\n|||\nполимеры","коллаген\n|||\nколлаген","биопечать\n|||\nбиопечать","гидрогель\n|||\nгидрогель","перекрестно-сшивающие реагенты\n|||\nперекрестно-сшивающие реагенты","биосовместимые материалы\n|||\nбиосовместимые материалы"],"subject_filter":["crosslinking\n|||\ncrosslinking","polymers\n|||\npolymers","collagen\n|||\ncollagen","bioprinting\n|||\nbioprinting","hydrogel\n|||\nhydrogel","crosslinking reagents\n|||\ncrosslinking reagents","biocompatible materials\n|||\nbiocompatible materials","кросслинкинг\n|||\nкросслинкинг","полимеры\n|||\nполимеры","коллаген\n|||\nколлаген","биопечать\n|||\nбиопечать","гидрогель\n|||\nгидрогель","перекрестно-сшивающие реагенты\n|||\nперекрестно-сшивающие реагенты","биосовместимые материалы\n|||\nбиосовместимые материалы"],"dc.subject_mlt":["crosslinking","polymers","collagen","bioprinting","hydrogel","crosslinking reagents","biocompatible materials","кросслинкинг","полимеры","коллаген","биопечать","гидрогель","перекрестно-сшивающие реагенты","биосовместимые материалы"],"dc.subject":["crosslinking","polymers","collagen","bioprinting","hydrogel","crosslinking reagents","biocompatible materials","кросслинкинг","полимеры","коллаген","биопечать","гидрогель","перекрестно-сшивающие реагенты","биосовместимые материалы"],"dc.subject.en":["crosslinking","polymers","collagen","bioprinting","hydrogel","crosslinking reagents","biocompatible materials"],"title":["Biopolymer crosslinking: Application and prospects","Кросслинкинг биополимеров: применение и перспективы"],"title_keyword":["Biopolymer crosslinking: Application and prospects","Кросслинкинг биополимеров: применение и перспективы"],"title_ac":["biopolymer crosslinking: application and prospects\n|||\nBiopolymer crosslinking: Application and prospects","кросслинкинг биополимеров: применение и перспективы\n|||\nКросслинкинг биополимеров: применение и перспективы"],"dc.title_sort":"Biopolymer crosslinking: Application and prospects","dc.title_hl":["Biopolymer crosslinking: Application and prospects","Кросслинкинг биополимеров: применение и перспективы"],"dc.title_mlt":["Biopolymer crosslinking: Application and prospects","Кросслинкинг биополимеров: применение и перспективы"],"dc.title":["Biopolymer crosslinking: Application and prospects","Кросслинкинг биополимеров: применение и перспективы"],"dc.title_stored":["Biopolymer crosslinking: Application and prospects\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Кросслинкинг биополимеров: применение и перспективы\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Biopolymer crosslinking: Application and prospects"],"dc.abstract.ru":["

Кросслинкинг — это метод «сшивания» высокомолекулярных соединений за счет образования новых химических поперечных связей внутри и между макроцепями. При этом в качестве кросслинкеров могут выступать разнообразные агенты — химические соединения, ультрафиолетовое излучение и т. п. Известно, что кросслинкинг биотканей способствует повышению их механической прочности, увеличению структурной плотности и снижению проницаемости биокаркаса. Целью данного обзора является характеристика возможностей применения технологии поперечного сшивания в различных отраслях медицины: офтальмологии, травматологии, урологии, гастроэнтерологии, онкологии, биоинженерии и др. Проведен обзор отечественных и зарубежных публикаций с использованием базы данных и ресурсов поисковых систем научных электронных библиотек: PubMed, elibrary.ru, Google Scholar, Science Direct, а также библиотечного фонда Башкирского государственного медицинского университета за период с 1994 по 2023 г. Исследование доступных литературных источников позволяет заключить, что метод ультрафиолетового кросслинкинга в настоящее время широко применяется в офтальмологии, а различные модификации кросслинкинга имеют перспективы применения в медицине и в смежных отраслях, могут стать основой для создания биоинженерных продуктов и оригинальных медицинских технологий, направленных на повышение эффективности лечения различных заболеваний человека.

"],"dc.fileName":["cover_article_1052_ru_RU.jpg"],"dc.fileName.ru":["cover_article_1052_ru_RU.jpg"],"dc.fullHTML":["

ВВЕДЕНИЕ

Кросслинкинг — метод сшивания биополимеров за счет формирования новых поперечных связей между цепочками макромолекул [1][2]. Одно из первых упоминаний о кросслинкинге в научной литературе относится к 1936 году, когда H. Phillips в журнале Nature описал результаты восстановления и укрепления структуры растянутой животной кожи. В ходе исследования было обнаружено, что при использовании альдегида в качестве окисляющего агента происходит образование новых N=CH и дисульфидных связей между полипептидными цепями макромолекул кожи, что способствует уплотнению материала [3].

Исследования, посвященные ультрафиолетовому (УФ) кросслинкингу в офтальмологии, относятся к концу 80-х годов прошлого века. Так, в 1988 году S. Zigman и соавторы выявили процесс сшивания растворимых белков хрусталика при облучении глаза ультрафиолетом длиной волны 365 нм [4]. Y. Kato с коллегами (1994) описали рибофлавин-индуцированную модификацию коллагена под воздействием УФ-излучения диапазона А [5]. В 1998 году УФ-кросслинкинг роговицы был впервые предложен в качестве потенциального способа лечения кератэктазий [6]. Клиническое применение УФ-кросслинкинга роговицы началось после опубликования статьи G. Wollensak и его коллег в American Journal of Ophthalmology в 2003 году [7]. В настоящее время технология УФ-кросслинкинга роговицы успешно применяется в лечении различных заболеваний, таких как кератоконус, кератомаляции, ятрогенные кератэктазии, язвенные поражения роговой оболочки и др. Данный метод доказал свою эффективность в лечении дегенеративной патологии роговой оболочки глаза, при этом отдельно стоит отметить малоинвазивный характер хирургического вмешательства [8]. Существенный вклад в развитие технологии УФ-кросслинкинга роговицы был внесен научной школой Уфимского НИИ глазных болезней под руководством профессора М. М. Бикбова [9–13].

Виды кросслинкинга

Кросслинкинг может быть осуществлен за счет химической реакции, физического воздействия, ферментативного сшивания или комбинации данных методов (рис. 1). Химический кросслинкинг является следствием реакции модификации функциональных групп органических соединений, вызываемой, как правило, окисляющими агентами.

\"\"

Рисунок 1. Виды кросслинкинга биологических полимеров

Figure 1. Types of biopolymer crosslinking

Физическое сшивание может происходить под влиянием различных видов излучения, включая радиационное воздействие, температурных колебаний или высушивания биополимеров [14].

Ферментативный кросслинкинг представлен процессом изменения структуры органических биополимеров под воздействием белковых соединений. В отличие от описанных выше методов перекрестного сшивания энзимопосредованный кросслинкинг отличается высокой специфичностью, каталитической эффективностью и отсутствием побочных продуктов [15].

Технология кросслининга в травматологии и ортопедии

H. Gu и соавт. изучали влияние последовательного цикла «замораживания-размораживания» тканей и методов сшивания на свойства животной коллагеновой мембраны. Мембрана была получена из раствора бычьего коллагена I типа после очищения от клеточного компонента и лиофилизации. Затем был проведен двойной кросслинкинг УФ-излучением с применением глутарового альдегида (ГА) в качестве окисляющего агента. В результате авторами была получена гидрофильная, плотная и эластичная пленка [16].

M. Saito и K. Marumo в своей работе доказали, что на прочность костей влияет количество образованных поперечных сшивок между коллагеном и окружающими его белками. Авторы предположили, что нарушение процессов ферментативного кросслинкинга протеинов костной ткани является одной из основных причин остеопороза [17].

В исследовании, проведенном P. Cornette и соавт., изучено влияние рибофлавина, обработанного УФ-излучением, на структуру и биомеханические свойства тканей при травме суставных капсул плеча. Исследователи воздействовали на нативный материал связочного аппарата суставов, взятый у пациентов во время операций. Результаты показали, что процедура кросслинкинга увеличила жесткость соединительной ткани с сохранением структуры [18].

Технология кросслинкинга в фармакологии

Механизм поперечного сшивания используется в изготовлении лекарственных препаратов. Так, сшитые хитозановые микросферы были применены для контролируемого высвобождения активных веществ. При этом хитозан выступает в качестве фармацевтического эксципиента [19].

L. Ruixue с коллегами синтезировали методом кросслинкинга новый тип гидрогеля. В состав полученного гидрогеля входит кальцитонин-ген родственный пептид (CGRP, calcitonin gene-related peptide) с гиалуроновй кислотой (HA, hyaluronic acid). Образованный пептидный комплекс HA-c-CGRP вводили в костный дефект черепа крысы. Данный гидрогель способствовал пролиферации клеток костного мозга, так как обладал высокой биосовместимостью со стромальными клетками [20].

Исследователи из Бразилии использовали технологию кросслинкинга для создания пролекарственного вещества на основе углеводов. В исследовании N. S. V. Capanema был представлен синтез макромолекулы на основе полимера карбоксиметилцеллюлозы с доксорубицином гидрохлоридом в присутствии лимонной кислоты. Усовершенствованные гидрогели были применены для местного воздействия на меланому и использовались для доставки доксорубицина гидрохлорида в опухоль [21]. Это исследование показало значение инновационных подходов для разработки новых методов лечения рака с целью облегчения доставки лекарственных веществ непосредственно в опухоль.

Применение кросслинкинга в терапии опухолей

Исследование, проведенное учеными из Шанхайского университета, демонстрирует потенциал использования сшитых композитных гидрогелей и нановолокон для эффективного лечения меланомы. В процессе создания гидрогеля с нанопроволокнами силиката кальция и марганца использовано лазерное облучение с длиной волны 808 нм, при этом нанопроволокна сшиваются, образуя связи с матрицей гидрогеля. Это позволяет создать прочную и стабильную структуру композитного гидрогеля. Последний обладает контролируемым процессом высвобождения ионов двухвалентных металлов из нанопроволокон, что повышает фототермический терапевтический эффект в лечении меланомы in situ [22]. В другом исследовании специалисты из Шанхайского университета науки и техники установили, что производимые таким способом композитные нановолокна способны эффективно преобразовывать световую энергию в тепловую и обладают высокой биосовместимостью in vivo и in vitro [23].

Сшитые УФ-излучением гидрогели представляют собой материал, который способствует регенерации тканей, обладает гистосовместимостью, необходимой плотностью и прочностью. Такие гидрогели могут быть использованы при оперативных вмешательствах в виде раневых и антимикробных повязок, тканевых клеев и герметиков, быстродействующих гемостатических средств, ингибиторов образования рубцов и даже заместителей пораженных участков роговицы [24].

Гидрогели на основе полисахаридов с биоадгезивными, прокоагулянтными, антибактериальными и антиоксидантными свойствами предложены для первой помощи при кровотечениях и для ускорения заживления инфицированных ран. Модифицированные гидрогели создаются с использованием механизмов кросслинкинга, включая формирование динамических и фото-активируемых ковалентных связей, а также многочисленных водородных связей [25].

Кросслинкинг в заживлении ран

Фото-сшитые гидрогели на основе химически измененных полисахаридов можно использовать в качестве материала для заживления кожных ран. УФ-облучение (360 нм) смеси полисахаридов, нанесенной на раневую поверхность, обеспечивает образование полимерной пленки за счет создания новых поперечных связей. Полисахаридные мембраны, полученные таким образом, обладают структурной стабильностью, прочностью, растяжимостью и адгезивностью к раневой поверхности благодаря образованию химических связей как внутри полимера, так и между гидрогелем и белками раневой поверхности. Фото-кросслинкинг может происходить без использования химических фото-инициаторов, что снижает вероятность побочных реакций [26].

Применение технологии кросслинкинг в лечении патологий сосудов

Кросслинкинг коллагена также используется для создания трансплантационного материала для пластики сосудов. Поперечное сшивание применяется для замедления времени биодеградации и способствует восстановлению структурных нарушений в децеллюляризированных сосудах, а также уменьшает воспалительную реакцию отторжения. Данный метод увеличивает просвет и «податливость» трансплантируемых сосудов [27].

Рибофлавин-опосредованное УФ-сшивание трансплантатов сосудов используется для восстановления их биомеханической прочности и предотвращения «обнажения» коллагеновых волокон, что делает их более подходящими для использования в качестве сосудистых имплантов. В эксперименте артерии сшивали с использованием метиленового синего в концентрациях 0,01, 0,015, 0,02 %, время УФ-облучения составляло 20 минут, 1 час, 2 часа соответственно. В ходе исследования было показано, что эта методика улучшает гладкость поверхности и предельную механическую прочность имплантов [28].

При создании новых коллагеновых каркасов для ангиопластики был продемонстрирован опыт использования кросслинкинга, основанного на химической реакции процианидов и альдегидов. В результате было зарегистрировано улучшение механических свойств трансплантата, замедление постимплантационной кальцификации и минимизация иммунного ответа [29].

Механизм кросслинкинга с использованием бета-аминопроприонитрила применяется при констриктивном ремоделировании поврежденных артерий после трансплантации [30]. Данный химический агент оказывает ингибирующее действие на ферменты лизилоксидазу и дезоксипиридинолин, опосредующие физиологический ферментативный кросслинкинг в тканях организма человека, что приводит к контролируемой реакции биодеградации коллагенового каркаса вследствие уменьшения числа меж- и внутрифибриллярных поперечных связей. Использование бета-аминопроприонитрила сокращало неоинтимальную плотность, что способствовало к снижению риска рестеноза, в частности, после баллонной ангиопластики на 33 % [31].

Использование кросслинкинга в урологии

Инъекции коллагена, сшитого глутаровым альдегидом (ГА), используются в урологии как малоинвазивный метод лечения недержания мочи после простатэктомии [32] и пузырно-мочеточникового рефлюкса [33][34]. ГА образует молекулярные поперечные сшивки между компонентами соединительнотканного матрикса, формируя гидрогелевый матрикс с необходимыми биомеханическими свойствами, что используется для укрепления тканей.

Исследование, проведенное L. M. Shortliffe с коллегами, показало эффективность трансуретральной имплантации сшитого глутаральдегидом высокоочищенного бычьего коллагена для коррекции недержания мочи. Инъекции сшитого коллагена, введенные в область шейки мочевого пузыря или мочевого сфинктера, способствовали улучшению состояния у 9 из 17 пациентов. Отсутствие сообщений об осложнениях в данном исследовании является важным аспектом и может свидетельствовать о безопасности данной процедуры [32]. В работе T. D. Richardson и соавторов для лечения недостаточности внутреннего сфинктера у женщин также проведено введение коллагена, модифицированного с помощью химического кросслинкинга. При среднем периоде наблюдения 46 месяцев улучшение состояния наблюдалось у 83 % пациентов [33].

Исследования показывают, что коллаген, сшитый ГА, можно вводить в мочевыводящие пути для коррекции недержания мочи без последующих осложнений и рассматривать их в качестве малоинвазивной альтернативы хирургическому лечению [35]. Но эффективность инъекции коллагена в уретру ограничена и требует постоянного контроля. Это связанно с постепенной реабсорбцией белка и потерей эффекта наполнения подслизистой оболочки. Для того чтобы улучшить долгосрочные результаты и определить оптимальный способ применения коллагена в уретре, требуются дальнейшие исследования [36][37].

Технология кросслинкинга при патологиях желудочно-кишечного тракта

Показано, что механизм кросслинкинга используется для повышения совместимости ксенотрансплантатов подслизистой оболочки тонкой кишки. Сшивание карбодиимидом (кросс-связывание) соединительнотканной оболочки кишки было применено с целью ингибировать коагулянтные эффекты в слизистой оболочке. В настоящее время разрабатывается клинический подход, который позволит улучшить результаты трансплантации подслизистой оболочки тонкой кишки и уменьшить риски коагуляции в результате этой процедуры [38].

Исследование, проведенное D. Kumar, M. J. Benson и J. E. Bland, описывает применение инъекции модифицированного глутаровым альдегидом коллагена для лечения пациентов с хирургически некорригируемым недержанием кала. После инъекции у 11 из 17 пациентов наблюдалось заметное симптоматическое улучшение. Все пациенты переносили введение обработанного коллагена без побочных эффектов. Такая процедура высоко оценена специалистами как простой и хорошо переносимый способ лечения недержания кала, вызванного дисфункцией внутреннего сфинктера. Инъекция коллагена в перианальную область является малоинвазивным и безболезненным методом лечения недержания [39].

3D-моделирование с использованием кросслинкинга

L. R. Versteegden и соавт. в своей работе описывают создание эластических коллагеновых каркасов с помощью методов формования, замораживания и лиофилизации белковых фибрилл. Трансформированные коллагеновые конструкции сжимали, гофрировали и обрабатывали карбодиимидом для проведения химического кросслинкинга. Эта процедура повышала упругость получаемых каркасов [40][41].

Стереолитография — это направление трехмерной печати на основе лазера, в которой используется ультрафиолетовый или видимый свет. Техника заключается в послойном нанесении и сшивании светочувствительного полимера. В данной технологии применяются фотоинициирующие вещества, которые под воздействием световой энергии способствуют образованию полимерных слоев [42].

Для создания биокаркасов методом стереолитографии с видимым светом Z. Wang с коллегами, проводили реакцию химического кросслинкинга между полиэтиленгликолем с эозином Y и метакрилированным желатином. По мнению авторов, это открывает перспективы создания биосовместимых материалов и биомедицинских структур для разработки новых технологий и методов лечения в медицинской практике [43].

ЗАКЛЮЧЕНИЕ

Исследование доступных литературных источников позволяет заключить следующее.

  1. Расширяющиеся возможности использования эффектов кросслинкинга в медицине стали причиной его активного изучения и формирования новой стратегии реабилитации пациентов с различной патологией.
  2. Технология перекрестного связывания имеет потенциал для дальнейшего развития и модернизации, в связи с чем успешно интегрируется в различные сферы медицины и связанные с ней отрасли.
  3. Разработка и внедрение оригинальных биоинженерных продуктов, основанных на принципах поперечного сшивания, позволяет совершенствовать методы лечения различных заболеваний человека и значительно повысить их эффективность.
"],"dc.fullHTML.ru":["

ВВЕДЕНИЕ

Кросслинкинг — метод сшивания биополимеров за счет формирования новых поперечных связей между цепочками макромолекул [1][2]. Одно из первых упоминаний о кросслинкинге в научной литературе относится к 1936 году, когда H. Phillips в журнале Nature описал результаты восстановления и укрепления структуры растянутой животной кожи. В ходе исследования было обнаружено, что при использовании альдегида в качестве окисляющего агента происходит образование новых N=CH и дисульфидных связей между полипептидными цепями макромолекул кожи, что способствует уплотнению материала [3].

Исследования, посвященные ультрафиолетовому (УФ) кросслинкингу в офтальмологии, относятся к концу 80-х годов прошлого века. Так, в 1988 году S. Zigman и соавторы выявили процесс сшивания растворимых белков хрусталика при облучении глаза ультрафиолетом длиной волны 365 нм [4]. Y. Kato с коллегами (1994) описали рибофлавин-индуцированную модификацию коллагена под воздействием УФ-излучения диапазона А [5]. В 1998 году УФ-кросслинкинг роговицы был впервые предложен в качестве потенциального способа лечения кератэктазий [6]. Клиническое применение УФ-кросслинкинга роговицы началось после опубликования статьи G. Wollensak и его коллег в American Journal of Ophthalmology в 2003 году [7]. В настоящее время технология УФ-кросслинкинга роговицы успешно применяется в лечении различных заболеваний, таких как кератоконус, кератомаляции, ятрогенные кератэктазии, язвенные поражения роговой оболочки и др. Данный метод доказал свою эффективность в лечении дегенеративной патологии роговой оболочки глаза, при этом отдельно стоит отметить малоинвазивный характер хирургического вмешательства [8]. Существенный вклад в развитие технологии УФ-кросслинкинга роговицы был внесен научной школой Уфимского НИИ глазных болезней под руководством профессора М. М. Бикбова [9–13].

Виды кросслинкинга

Кросслинкинг может быть осуществлен за счет химической реакции, физического воздействия, ферментативного сшивания или комбинации данных методов (рис. 1). Химический кросслинкинг является следствием реакции модификации функциональных групп органических соединений, вызываемой, как правило, окисляющими агентами.

\"\"

Рисунок 1. Виды кросслинкинга биологических полимеров

Figure 1. Types of biopolymer crosslinking

Физическое сшивание может происходить под влиянием различных видов излучения, включая радиационное воздействие, температурных колебаний или высушивания биополимеров [14].

Ферментативный кросслинкинг представлен процессом изменения структуры органических биополимеров под воздействием белковых соединений. В отличие от описанных выше методов перекрестного сшивания энзимопосредованный кросслинкинг отличается высокой специфичностью, каталитической эффективностью и отсутствием побочных продуктов [15].

Технология кросслининга в травматологии и ортопедии

H. Gu и соавт. изучали влияние последовательного цикла «замораживания-размораживания» тканей и методов сшивания на свойства животной коллагеновой мембраны. Мембрана была получена из раствора бычьего коллагена I типа после очищения от клеточного компонента и лиофилизации. Затем был проведен двойной кросслинкинг УФ-излучением с применением глутарового альдегида (ГА) в качестве окисляющего агента. В результате авторами была получена гидрофильная, плотная и эластичная пленка [16].

M. Saito и K. Marumo в своей работе доказали, что на прочность костей влияет количество образованных поперечных сшивок между коллагеном и окружающими его белками. Авторы предположили, что нарушение процессов ферментативного кросслинкинга протеинов костной ткани является одной из основных причин остеопороза [17].

В исследовании, проведенном P. Cornette и соавт., изучено влияние рибофлавина, обработанного УФ-излучением, на структуру и биомеханические свойства тканей при травме суставных капсул плеча. Исследователи воздействовали на нативный материал связочного аппарата суставов, взятый у пациентов во время операций. Результаты показали, что процедура кросслинкинга увеличила жесткость соединительной ткани с сохранением структуры [18].

Технология кросслинкинга в фармакологии

Механизм поперечного сшивания используется в изготовлении лекарственных препаратов. Так, сшитые хитозановые микросферы были применены для контролируемого высвобождения активных веществ. При этом хитозан выступает в качестве фармацевтического эксципиента [19].

L. Ruixue с коллегами синтезировали методом кросслинкинга новый тип гидрогеля. В состав полученного гидрогеля входит кальцитонин-ген родственный пептид (CGRP, calcitonin gene-related peptide) с гиалуроновй кислотой (HA, hyaluronic acid). Образованный пептидный комплекс HA-c-CGRP вводили в костный дефект черепа крысы. Данный гидрогель способствовал пролиферации клеток костного мозга, так как обладал высокой биосовместимостью со стромальными клетками [20].

Исследователи из Бразилии использовали технологию кросслинкинга для создания пролекарственного вещества на основе углеводов. В исследовании N. S. V. Capanema был представлен синтез макромолекулы на основе полимера карбоксиметилцеллюлозы с доксорубицином гидрохлоридом в присутствии лимонной кислоты. Усовершенствованные гидрогели были применены для местного воздействия на меланому и использовались для доставки доксорубицина гидрохлорида в опухоль [21]. Это исследование показало значение инновационных подходов для разработки новых методов лечения рака с целью облегчения доставки лекарственных веществ непосредственно в опухоль.

Применение кросслинкинга в терапии опухолей

Исследование, проведенное учеными из Шанхайского университета, демонстрирует потенциал использования сшитых композитных гидрогелей и нановолокон для эффективного лечения меланомы. В процессе создания гидрогеля с нанопроволокнами силиката кальция и марганца использовано лазерное облучение с длиной волны 808 нм, при этом нанопроволокна сшиваются, образуя связи с матрицей гидрогеля. Это позволяет создать прочную и стабильную структуру композитного гидрогеля. Последний обладает контролируемым процессом высвобождения ионов двухвалентных металлов из нанопроволокон, что повышает фототермический терапевтический эффект в лечении меланомы in situ [22]. В другом исследовании специалисты из Шанхайского университета науки и техники установили, что производимые таким способом композитные нановолокна способны эффективно преобразовывать световую энергию в тепловую и обладают высокой биосовместимостью in vivo и in vitro [23].

Сшитые УФ-излучением гидрогели представляют собой материал, который способствует регенерации тканей, обладает гистосовместимостью, необходимой плотностью и прочностью. Такие гидрогели могут быть использованы при оперативных вмешательствах в виде раневых и антимикробных повязок, тканевых клеев и герметиков, быстродействующих гемостатических средств, ингибиторов образования рубцов и даже заместителей пораженных участков роговицы [24].

Гидрогели на основе полисахаридов с биоадгезивными, прокоагулянтными, антибактериальными и антиоксидантными свойствами предложены для первой помощи при кровотечениях и для ускорения заживления инфицированных ран. Модифицированные гидрогели создаются с использованием механизмов кросслинкинга, включая формирование динамических и фото-активируемых ковалентных связей, а также многочисленных водородных связей [25].

Кросслинкинг в заживлении ран

Фото-сшитые гидрогели на основе химически измененных полисахаридов можно использовать в качестве материала для заживления кожных ран. УФ-облучение (360 нм) смеси полисахаридов, нанесенной на раневую поверхность, обеспечивает образование полимерной пленки за счет создания новых поперечных связей. Полисахаридные мембраны, полученные таким образом, обладают структурной стабильностью, прочностью, растяжимостью и адгезивностью к раневой поверхности благодаря образованию химических связей как внутри полимера, так и между гидрогелем и белками раневой поверхности. Фото-кросслинкинг может происходить без использования химических фото-инициаторов, что снижает вероятность побочных реакций [26].

Применение технологии кросслинкинг в лечении патологий сосудов

Кросслинкинг коллагена также используется для создания трансплантационного материала для пластики сосудов. Поперечное сшивание применяется для замедления времени биодеградации и способствует восстановлению структурных нарушений в децеллюляризированных сосудах, а также уменьшает воспалительную реакцию отторжения. Данный метод увеличивает просвет и «податливость» трансплантируемых сосудов [27].

Рибофлавин-опосредованное УФ-сшивание трансплантатов сосудов используется для восстановления их биомеханической прочности и предотвращения «обнажения» коллагеновых волокон, что делает их более подходящими для использования в качестве сосудистых имплантов. В эксперименте артерии сшивали с использованием метиленового синего в концентрациях 0,01, 0,015, 0,02 %, время УФ-облучения составляло 20 минут, 1 час, 2 часа соответственно. В ходе исследования было показано, что эта методика улучшает гладкость поверхности и предельную механическую прочность имплантов [28].

При создании новых коллагеновых каркасов для ангиопластики был продемонстрирован опыт использования кросслинкинга, основанного на химической реакции процианидов и альдегидов. В результате было зарегистрировано улучшение механических свойств трансплантата, замедление постимплантационной кальцификации и минимизация иммунного ответа [29].

Механизм кросслинкинга с использованием бета-аминопроприонитрила применяется при констриктивном ремоделировании поврежденных артерий после трансплантации [30]. Данный химический агент оказывает ингибирующее действие на ферменты лизилоксидазу и дезоксипиридинолин, опосредующие физиологический ферментативный кросслинкинг в тканях организма человека, что приводит к контролируемой реакции биодеградации коллагенового каркаса вследствие уменьшения числа меж- и внутрифибриллярных поперечных связей. Использование бета-аминопроприонитрила сокращало неоинтимальную плотность, что способствовало к снижению риска рестеноза, в частности, после баллонной ангиопластики на 33 % [31].

Использование кросслинкинга в урологии

Инъекции коллагена, сшитого глутаровым альдегидом (ГА), используются в урологии как малоинвазивный метод лечения недержания мочи после простатэктомии [32] и пузырно-мочеточникового рефлюкса [33][34]. ГА образует молекулярные поперечные сшивки между компонентами соединительнотканного матрикса, формируя гидрогелевый матрикс с необходимыми биомеханическими свойствами, что используется для укрепления тканей.

Исследование, проведенное L. M. Shortliffe с коллегами, показало эффективность трансуретральной имплантации сшитого глутаральдегидом высокоочищенного бычьего коллагена для коррекции недержания мочи. Инъекции сшитого коллагена, введенные в область шейки мочевого пузыря или мочевого сфинктера, способствовали улучшению состояния у 9 из 17 пациентов. Отсутствие сообщений об осложнениях в данном исследовании является важным аспектом и может свидетельствовать о безопасности данной процедуры [32]. В работе T. D. Richardson и соавторов для лечения недостаточности внутреннего сфинктера у женщин также проведено введение коллагена, модифицированного с помощью химического кросслинкинга. При среднем периоде наблюдения 46 месяцев улучшение состояния наблюдалось у 83 % пациентов [33].

Исследования показывают, что коллаген, сшитый ГА, можно вводить в мочевыводящие пути для коррекции недержания мочи без последующих осложнений и рассматривать их в качестве малоинвазивной альтернативы хирургическому лечению [35]. Но эффективность инъекции коллагена в уретру ограничена и требует постоянного контроля. Это связанно с постепенной реабсорбцией белка и потерей эффекта наполнения подслизистой оболочки. Для того чтобы улучшить долгосрочные результаты и определить оптимальный способ применения коллагена в уретре, требуются дальнейшие исследования [36][37].

Технология кросслинкинга при патологиях желудочно-кишечного тракта

Показано, что механизм кросслинкинга используется для повышения совместимости ксенотрансплантатов подслизистой оболочки тонкой кишки. Сшивание карбодиимидом (кросс-связывание) соединительнотканной оболочки кишки было применено с целью ингибировать коагулянтные эффекты в слизистой оболочке. В настоящее время разрабатывается клинический подход, который позволит улучшить результаты трансплантации подслизистой оболочки тонкой кишки и уменьшить риски коагуляции в результате этой процедуры [38].

Исследование, проведенное D. Kumar, M. J. Benson и J. E. Bland, описывает применение инъекции модифицированного глутаровым альдегидом коллагена для лечения пациентов с хирургически некорригируемым недержанием кала. После инъекции у 11 из 17 пациентов наблюдалось заметное симптоматическое улучшение. Все пациенты переносили введение обработанного коллагена без побочных эффектов. Такая процедура высоко оценена специалистами как простой и хорошо переносимый способ лечения недержания кала, вызванного дисфункцией внутреннего сфинктера. Инъекция коллагена в перианальную область является малоинвазивным и безболезненным методом лечения недержания [39].

3D-моделирование с использованием кросслинкинга

L. R. Versteegden и соавт. в своей работе описывают создание эластических коллагеновых каркасов с помощью методов формования, замораживания и лиофилизации белковых фибрилл. Трансформированные коллагеновые конструкции сжимали, гофрировали и обрабатывали карбодиимидом для проведения химического кросслинкинга. Эта процедура повышала упругость получаемых каркасов [40][41].

Стереолитография — это направление трехмерной печати на основе лазера, в которой используется ультрафиолетовый или видимый свет. Техника заключается в послойном нанесении и сшивании светочувствительного полимера. В данной технологии применяются фотоинициирующие вещества, которые под воздействием световой энергии способствуют образованию полимерных слоев [42].

Для создания биокаркасов методом стереолитографии с видимым светом Z. Wang с коллегами, проводили реакцию химического кросслинкинга между полиэтиленгликолем с эозином Y и метакрилированным желатином. По мнению авторов, это открывает перспективы создания биосовместимых материалов и биомедицинских структур для разработки новых технологий и методов лечения в медицинской практике [43].

ЗАКЛЮЧЕНИЕ

Исследование доступных литературных источников позволяет заключить следующее.

  1. Расширяющиеся возможности использования эффектов кросслинкинга в медицине стали причиной его активного изучения и формирования новой стратегии реабилитации пациентов с различной патологией.
  2. Технология перекрестного связывания имеет потенциал для дальнейшего развития и модернизации, в связи с чем успешно интегрируется в различные сферы медицины и связанные с ней отрасли.
  3. Разработка и внедрение оригинальных биоинженерных продуктов, основанных на принципах поперечного сшивания, позволяет совершенствовать методы лечения различных заболеваний человека и значительно повысить их эффективность.
"],"dc.fullRISC":["Кросслинкинг — метод сшивания биополимеров за счет формирования новых поперечных связей между цепочками макромолекул [1, 2]. Одно из первых упоминаний о кросслинкинге в научной литературе относится к 1936 году, когда H. Phillips в журнале Nature описал результаты восстановления и укрепления структуры растянутой животной кожи. В ходе исследования было обнаружено, что при использовании альдегида в качестве окисляющего агента происходит образование новых N=CH и дисульфидных связей между полипептидными цепями макромолекул кожи, что способствует уплотнению материала [3].\n\nИсследования, посвященные ультрафиолетовому (УФ) кросслинкингу в офтальмологии, относятся к концу 80-х годов прошлого века. Так, в 1988 году S. Zigman и соавторы выявили процесс сшивания растворимых белков хрусталика при облучении глаза ультрафиолетом длиной волны 365 нм [4]. Y. Kato с коллегами (1994) описали рибофлавин-индуцированную модификацию коллагена под воздействием УФ-излучения диапазона А [5]. В 1998 году УФ-кросслинкинг роговицы был впервые предложен в качестве потенциального способа лечения кератэктазий [6]. Клиническое применение УФ-кросслинкинга роговицы началось после опубликования статьи G. Wollensak и его коллег в American Journal of Ophthalmology в 2003 году [7]. В настоящее время технология УФ-кросслинкинга роговицы успешно применяется в лечении различных заболеваний, таких как кератоконус, кератомаляции, ятрогенные кератэктазии, язвенные поражения роговой оболочки и др. Данный метод доказал свою эффективность в лечении дегенеративной патологии роговой оболочки глаза, при этом отдельно стоит отметить малоинвазивный характер хирургического вмешательства [8]. Существенный вклад в развитие технологии УФ-кросслинкинга роговицы был внесен научной школой Уфимского НИИ глазных болезней под руководством профессора М. М. Бикбова [9–13].\n\nВиды кросслинкинга\n\nКросслинкинг может быть осуществлен за счет химической реакции, физического воздействия, ферментативного сшивания или комбинации данных методов (рис. 1). Химический кросслинкинг является следствием реакции модификации функциональных групп органических соединений, вызываемой, как правило, окисляющими агентами.\n\nФизическое сшивание может происходить под влиянием различных видов излучения, включая радиационное воздействие, температурных колебаний или высушивания биополимеров [14].\n\nФерментативный кросслинкинг представлен процессом изменения структуры органических биополимеров под воздействием белковых соединений. В отличие от описанных выше методов перекрестного сшивания энзимопосредованный кросслинкинг отличается высокой специфичностью, каталитической эффективностью и отсутствием побочных продуктов [15].\n\n \n\nТехнология кросслининга в травматологии и ортопедии\n\nH. Gu и соавт. изучали влияние последовательного цикла «замораживания-размораживания» тканей и методов сшивания на свойства животной коллагеновой мембраны. Мембрана была получена из раствора бычьего коллагена I типа после очищения от клеточного компонента и лиофилизации. Затем был проведен двойной кросслинкинг УФ-излучением с применением глутарового альдегида (ГА) в качестве окисляющего агента. В результате авторами была получена гидрофильная, плотная и эластичная пленка [16].\n\nM. Saito и K. Marumo в своей работе доказали, что на прочность костей влияет количество образованных поперечных сшивок между коллагеном и окружающими его белками. Авторы предположили, что нарушение процессов ферментативного кросслинкинга протеинов костной ткани является одной из основных причин остеопороза [17].\n\nВ исследовании, проведенном P. Cornette и соавт., изучено влияние рибофлавина, обработанного УФ-излучением, на структуру и биомеханические свойства тканей при травме суставных капсул плеча. Исследователи воздействовали на нативный материал связочного аппарата суставов, взятый у пациентов во время операций. Результаты показали, что процедура кросслинкинга увеличила жесткость соединительной ткани с сохранением структуры [18].\n\n \n\nТехнология кросслинкинга в фармакологии\n\nМеханизм поперечного сшивания используется в изготовлении лекарственных препаратов. Так, сшитые хитозановые микросферы были применены для контролируемого высвобождения активных веществ. При этом хитозан выступает в качестве фармацевтического эксципиента [19].\n\nL. Ruixue с коллегами синтезировали методом кросслинкинга новый тип гидрогеля. В состав полученного гидрогеля входит кальцитонин-ген родственный пептид (CGRP, calcitonin gene-related peptide) с гиалуроновй кислотой (HA, hyaluronic acid). Образованный пептидный комплекс HA-c-CGRP вводили в костный дефект черепа крысы. Данный гидрогель способствовал пролиферации клеток костного мозга, так как обладал высокой биосовместимостью со стромальными клетками [20].\n\nИсследователи из Бразилии использовали технологию кросслинкинга для создания пролекарственного вещества на основе углеводов. В исследовании N. S. V. Capanema был представлен синтез макромолекулы на основе полимера карбоксиметилцеллюлозы с доксорубицином гидрохлоридом в присутствии лимонной кислоты. Усовершенствованные гидрогели были применены для местного воздействия на меланому и использовались для доставки доксорубицина гидрохлорида в опухоль [21]. Это исследование показало значение инновационных подходов для разработки новых методов лечения рака с целью облегчения доставки лекарственных веществ непосредственно в опухоль.\n\n \n\nПрименение кросслинкинга в терапии опухолей\n\nИсследование, проведенное учеными из Шанхайского университета, демонстрирует потенциал использования сшитых композитных гидрогелей и нановолокон для эффективного лечения меланомы. В процессе создания гидрогеля с нанопроволокнами силиката кальция и марганца использовано лазерное облучение с длиной волны 808 нм, при этом нанопроволокна сшиваются, образуя связи с матрицей гидрогеля. Это позволяет создать прочную и стабильную структуру композитного гидрогеля. Последний обладает контролируемым процессом высвобождения ионов двухвалентных металлов из нанопроволокон, что повышает фототермический терапевтический эффект в лечении меланомы in situ [22]. В другом исследовании специалисты из Шанхайского университета науки и техники установили, что производимые таким способом композитные нановолокна способны эффективно преобразовывать световую энергию в тепловую и обладают высокой биосовместимостью in vivo и in vitro [23].\n\nСшитые УФ-излучением гидрогели представляют собой материал, который способствует регенерации тканей, обладает гистосовместимостью, необходимой плотностью и прочностью. Такие гидрогели могут быть использованы при оперативных вмешательствах в виде раневых и антимикробных повязок, тканевых клеев и герметиков, быстродействующих гемостатических средств, ингибиторов образования рубцов и даже заместителей пораженных участков роговицы [24].\n\nГидрогели на основе полисахаридов с биоадгезивными, прокоагулянтными, антибактериальными и антиоксидантными свойствами предложены для первой помощи при кровотечениях и для ускорения заживления инфицированных ран. Модифицированные гидрогели создаются с использованием механизмов кросслинкинга, включая формирование динамических и фото-активируемых ковалентных связей, а также многочисленных водородных связей [25].\n\nКросслинкинг в заживлении ран\n\nФото-сшитые гидрогели на основе химически измененных полисахаридов можно использовать в качестве материала для заживления кожных ран. УФ-облучение (360 нм) смеси полисахаридов, нанесенной на раневую поверхность, обеспечивает образование полимерной пленки за счет создания новых поперечных связей. Полисахаридные мембраны, полученные таким образом, обладают структурной стабильностью, прочностью, растяжимостью и адгезивностью к раневой поверхности благодаря образованию химических связей как внутри полимера, так и между гидрогелем и белками раневой поверхности. Фото-кросслинкинг может происходить без использования химических фото-инициаторов, что снижает вероятность побочных реакций [26].\n\n \n\nПрименение технологии кросслинкинг в лечении патологий сосудов\n\nКросслинкинг коллагена также используется для создания трансплантационного материала для пластики сосудов. Поперечное сшивание применяется для замедления времени биодеградации и способствует восстановлению структурных нарушений в децеллюляризированных сосудах, а также уменьшает воспалительную реакцию отторжения. Данный метод увеличивает просвет и «податливость» трансплантируемых сосудов [27].\n\nРибофлавин-опосредованное УФ-сшивание трансплантатов сосудов используется для восстановления их биомеханической прочности и предотвращения «обнажения» коллагеновых волокон, что делает их более подходящими для использования в качестве сосудистых имплантов. В эксперименте артерии сшивали с использованием метиленового синего в концентрациях 0,01, 0,015, 0,02 %, время УФ-облучения составляло 20 минут, 1 час, 2 часа соответственно. В ходе исследования было показано, что эта методика улучшает гладкость поверхности и предельную механическую прочность имплантов [28].\n\nПри создании новых коллагеновых каркасов для ангиопластики был продемонстрирован опыт использования кросслинкинга, основанного на химической реакции процианидов и альдегидов. В результате было зарегистрировано улучшение механических свойств трансплантата, замедление постимплантационной кальцификации и минимизация иммунного ответа [29].\n\nМеханизм кросслинкинга с использованием бета-аминопроприонитрила применяется при констриктивном ремоделировании поврежденных артерий после трансплантации [30]. Данный химический агент оказывает ингибирующее действие на ферменты лизилоксидазу и дезоксипиридинолин, опосредующие физиологический ферментативный кросслинкинг в тканях организма человека, что приводит к контролируемой реакции биодеградации коллагенового каркаса вследствие уменьшения числа меж- и внутрифибриллярных поперечных связей. Использование бета-аминопроприонитрила сокращало неоинтимальную плотность, что способствовало к снижению риска рестеноза, в частности, после баллонной ангиопластики на 33 % [31].\n\nИспользование кросслинкинга в урологии\n\nИнъекции коллагена, сшитого глутаровым альдегидом (ГА), используются в урологии как малоинвазивный метод лечения недержания мочи после простатэктомии [32] и пузырно-мочеточникового рефлюкса [33, 34]. ГА образует молекулярные поперечные сшивки между компонентами соединительнотканного матрикса, формируя гидрогелевый матрикс с необходимыми биомеханическими свойствами, что используется для укрепления тканей.\n\nИсследование, проведенное L. M. Shortliffe с коллегами, показало эффективность трансуретральной имплантации сшитого глутаральдегидом высокоочищенного бычьего коллагена для коррекции недержания мочи. Инъекции сшитого коллагена, введенные в область шейки мочевого пузыря или мочевого сфинктера, способствовали улучшению состояния у 9 из 17 пациентов. Отсутствие сообщений об осложнениях в данном исследовании является важным аспектом и может свидетельствовать о безопасности данной процедуры [32]. В работе T. D. Richardson и соавторов для лечения недостаточности внутреннего сфинктера у женщин также проведено введение коллагена, модифицированного с помощью химического кросслинкинга. При среднем периоде наблюдения 46 месяцев улучшение состояния наблюдалось у 83 % пациентов [33].\n\nИсследования показывают, что коллаген, сшитый ГА, можно вводить в мочевыводящие пути для коррекции недержания мочи без последующих осложнений и рассматривать их в качестве малоинвазивной альтернативы хирургическому лечению [35]. Но эффективность инъекции коллагена в уретру ограничена и требует постоянного контроля. Это связанно с постепенной реабсорбцией белка и потерей эффекта наполнения подслизистой оболочки. Для того чтобы улучшить долгосрочные результаты и определить оптимальный способ применения коллагена в уретре, требуются дальнейшие исследования [36, 37].\n\n \n\nТехнология кросслинкинга при патологиях желудочно-кишечного тракта\n\nПоказано, что механизм кросслинкинга используется для повышения совместимости ксенотрансплантатов подслизистой оболочки тонкой кишки. Сшивание карбодиимидом (кросс-связывание) соединительнотканной оболочки кишки было применено с целью ингибировать коагулянтные эффекты в слизистой оболочке. В настоящее время разрабатывается клинический подход, который позволит улучшить результаты трансплантации подслизистой оболочки тонкой кишки и уменьшить риски коагуляции в результате этой процедуры [38].\n\nИсследование, проведенное D. Kumar, M. J. Benson и J. E. Bland, описывает применение инъекции модифицированного глутаровым альдегидом коллагена для лечения пациентов с хирургически некорригируемым недержанием кала. После инъекции у 11 из 17 пациентов наблюдалось заметное симптоматическое улучшение. Все пациенты переносили введение обработанного коллагена без побочных эффектов. Такая процедура высоко оценена специалистами как простой и хорошо переносимый способ лечения недержания кала, вызванного дисфункцией внутреннего сфинктера. Инъекция коллагена в перианальную область является малоинвазивным и безболезненным методом лечения недержания [39].\n\n \n\n3D-моделирование с использованием кросслинкинга\n\nL. R. Versteegden и соавт. в своей работе описывают создание эластических коллагеновых каркасов с помощью методов формования, замораживания и лиофилизации белковых фибрилл. Трансформированные коллагеновые конструкции сжимали, гофрировали и обрабатывали карбодиимидом для проведения химического кросслинкинга. Эта процедура повышала упругость получаемых каркасов [40, 41].\n\nСтереолитография — это направление трехмерной печати на основе лазера, в которой используется ультрафиолетовый или видимый свет. Техника заключается в послойном нанесении и сшивании светочувствительного полимера. В данной технологии применяются фотоинициирующие вещества, которые под воздействием световой энергии способствуют образованию полимерных слоев [42].\n\nДля создания биокаркасов методом стереолитографии с видимым светом Z. Wang с коллегами, проводили реакцию химического кросслинкинга между полиэтиленгликолем с эозином Y и метакрилированным желатином. По мнению авторов, это открывает перспективы создания биосовместимых материалов и биомедицинских структур для разработки новых технологий и методов лечения в медицинской практике [43].\n\n \n\nЗАКЛЮЧЕНИЕ\n\nИсследование доступных литературных источников позволяет заключить следующее.\n\n1. Расширяющиеся возможности использования эффектов кросслинкинга в медицине стали причиной его активного изучения и формирования новой стратегии реабилитации пациентов с различной патологией.\n\n2. Технология перекрестного связывания имеет потенциал для дальнейшего развития и модернизации, в связи с чем успешно интегрируется в различные сферы медицины и связанные с ней отрасли.\n\n3. Разработка и внедрение оригинальных биоинженерных продуктов, основанных на принципах поперечного сшивания, позволяет совершенствовать методы лечения различных заболеваний человека и значительно повысить их эффективность."],"dc.fullRISC.ru":["Кросслинкинг — метод сшивания биополимеров за счет формирования новых поперечных связей между цепочками макромолекул [1, 2]. Одно из первых упоминаний о кросслинкинге в научной литературе относится к 1936 году, когда H. Phillips в журнале Nature описал результаты восстановления и укрепления структуры растянутой животной кожи. В ходе исследования было обнаружено, что при использовании альдегида в качестве окисляющего агента происходит образование новых N=CH и дисульфидных связей между полипептидными цепями макромолекул кожи, что способствует уплотнению материала [3].\n\nИсследования, посвященные ультрафиолетовому (УФ) кросслинкингу в офтальмологии, относятся к концу 80-х годов прошлого века. Так, в 1988 году S. Zigman и соавторы выявили процесс сшивания растворимых белков хрусталика при облучении глаза ультрафиолетом длиной волны 365 нм [4]. Y. Kato с коллегами (1994) описали рибофлавин-индуцированную модификацию коллагена под воздействием УФ-излучения диапазона А [5]. В 1998 году УФ-кросслинкинг роговицы был впервые предложен в качестве потенциального способа лечения кератэктазий [6]. Клиническое применение УФ-кросслинкинга роговицы началось после опубликования статьи G. Wollensak и его коллег в American Journal of Ophthalmology в 2003 году [7]. В настоящее время технология УФ-кросслинкинга роговицы успешно применяется в лечении различных заболеваний, таких как кератоконус, кератомаляции, ятрогенные кератэктазии, язвенные поражения роговой оболочки и др. Данный метод доказал свою эффективность в лечении дегенеративной патологии роговой оболочки глаза, при этом отдельно стоит отметить малоинвазивный характер хирургического вмешательства [8]. Существенный вклад в развитие технологии УФ-кросслинкинга роговицы был внесен научной школой Уфимского НИИ глазных болезней под руководством профессора М. М. Бикбова [9–13].\n\nВиды кросслинкинга\n\nКросслинкинг может быть осуществлен за счет химической реакции, физического воздействия, ферментативного сшивания или комбинации данных методов (рис. 1). Химический кросслинкинг является следствием реакции модификации функциональных групп органических соединений, вызываемой, как правило, окисляющими агентами.\n\nФизическое сшивание может происходить под влиянием различных видов излучения, включая радиационное воздействие, температурных колебаний или высушивания биополимеров [14].\n\nФерментативный кросслинкинг представлен процессом изменения структуры органических биополимеров под воздействием белковых соединений. В отличие от описанных выше методов перекрестного сшивания энзимопосредованный кросслинкинг отличается высокой специфичностью, каталитической эффективностью и отсутствием побочных продуктов [15].\n\n \n\nТехнология кросслининга в травматологии и ортопедии\n\nH. Gu и соавт. изучали влияние последовательного цикла «замораживания-размораживания» тканей и методов сшивания на свойства животной коллагеновой мембраны. Мембрана была получена из раствора бычьего коллагена I типа после очищения от клеточного компонента и лиофилизации. Затем был проведен двойной кросслинкинг УФ-излучением с применением глутарового альдегида (ГА) в качестве окисляющего агента. В результате авторами была получена гидрофильная, плотная и эластичная пленка [16].\n\nM. Saito и K. Marumo в своей работе доказали, что на прочность костей влияет количество образованных поперечных сшивок между коллагеном и окружающими его белками. Авторы предположили, что нарушение процессов ферментативного кросслинкинга протеинов костной ткани является одной из основных причин остеопороза [17].\n\nВ исследовании, проведенном P. Cornette и соавт., изучено влияние рибофлавина, обработанного УФ-излучением, на структуру и биомеханические свойства тканей при травме суставных капсул плеча. Исследователи воздействовали на нативный материал связочного аппарата суставов, взятый у пациентов во время операций. Результаты показали, что процедура кросслинкинга увеличила жесткость соединительной ткани с сохранением структуры [18].\n\n \n\nТехнология кросслинкинга в фармакологии\n\nМеханизм поперечного сшивания используется в изготовлении лекарственных препаратов. Так, сшитые хитозановые микросферы были применены для контролируемого высвобождения активных веществ. При этом хитозан выступает в качестве фармацевтического эксципиента [19].\n\nL. Ruixue с коллегами синтезировали методом кросслинкинга новый тип гидрогеля. В состав полученного гидрогеля входит кальцитонин-ген родственный пептид (CGRP, calcitonin gene-related peptide) с гиалуроновй кислотой (HA, hyaluronic acid). Образованный пептидный комплекс HA-c-CGRP вводили в костный дефект черепа крысы. Данный гидрогель способствовал пролиферации клеток костного мозга, так как обладал высокой биосовместимостью со стромальными клетками [20].\n\nИсследователи из Бразилии использовали технологию кросслинкинга для создания пролекарственного вещества на основе углеводов. В исследовании N. S. V. Capanema был представлен синтез макромолекулы на основе полимера карбоксиметилцеллюлозы с доксорубицином гидрохлоридом в присутствии лимонной кислоты. Усовершенствованные гидрогели были применены для местного воздействия на меланому и использовались для доставки доксорубицина гидрохлорида в опухоль [21]. Это исследование показало значение инновационных подходов для разработки новых методов лечения рака с целью облегчения доставки лекарственных веществ непосредственно в опухоль.\n\n \n\nПрименение кросслинкинга в терапии опухолей\n\nИсследование, проведенное учеными из Шанхайского университета, демонстрирует потенциал использования сшитых композитных гидрогелей и нановолокон для эффективного лечения меланомы. В процессе создания гидрогеля с нанопроволокнами силиката кальция и марганца использовано лазерное облучение с длиной волны 808 нм, при этом нанопроволокна сшиваются, образуя связи с матрицей гидрогеля. Это позволяет создать прочную и стабильную структуру композитного гидрогеля. Последний обладает контролируемым процессом высвобождения ионов двухвалентных металлов из нанопроволокон, что повышает фототермический терапевтический эффект в лечении меланомы in situ [22]. В другом исследовании специалисты из Шанхайского университета науки и техники установили, что производимые таким способом композитные нановолокна способны эффективно преобразовывать световую энергию в тепловую и обладают высокой биосовместимостью in vivo и in vitro [23].\n\nСшитые УФ-излучением гидрогели представляют собой материал, который способствует регенерации тканей, обладает гистосовместимостью, необходимой плотностью и прочностью. Такие гидрогели могут быть использованы при оперативных вмешательствах в виде раневых и антимикробных повязок, тканевых клеев и герметиков, быстродействующих гемостатических средств, ингибиторов образования рубцов и даже заместителей пораженных участков роговицы [24].\n\nГидрогели на основе полисахаридов с биоадгезивными, прокоагулянтными, антибактериальными и антиоксидантными свойствами предложены для первой помощи при кровотечениях и для ускорения заживления инфицированных ран. Модифицированные гидрогели создаются с использованием механизмов кросслинкинга, включая формирование динамических и фото-активируемых ковалентных связей, а также многочисленных водородных связей [25].\n\nКросслинкинг в заживлении ран\n\nФото-сшитые гидрогели на основе химически измененных полисахаридов можно использовать в качестве материала для заживления кожных ран. УФ-облучение (360 нм) смеси полисахаридов, нанесенной на раневую поверхность, обеспечивает образование полимерной пленки за счет создания новых поперечных связей. Полисахаридные мембраны, полученные таким образом, обладают структурной стабильностью, прочностью, растяжимостью и адгезивностью к раневой поверхности благодаря образованию химических связей как внутри полимера, так и между гидрогелем и белками раневой поверхности. Фото-кросслинкинг может происходить без использования химических фото-инициаторов, что снижает вероятность побочных реакций [26].\n\n \n\nПрименение технологии кросслинкинг в лечении патологий сосудов\n\nКросслинкинг коллагена также используется для создания трансплантационного материала для пластики сосудов. Поперечное сшивание применяется для замедления времени биодеградации и способствует восстановлению структурных нарушений в децеллюляризированных сосудах, а также уменьшает воспалительную реакцию отторжения. Данный метод увеличивает просвет и «податливость» трансплантируемых сосудов [27].\n\nРибофлавин-опосредованное УФ-сшивание трансплантатов сосудов используется для восстановления их биомеханической прочности и предотвращения «обнажения» коллагеновых волокон, что делает их более подходящими для использования в качестве сосудистых имплантов. В эксперименте артерии сшивали с использованием метиленового синего в концентрациях 0,01, 0,015, 0,02 %, время УФ-облучения составляло 20 минут, 1 час, 2 часа соответственно. В ходе исследования было показано, что эта методика улучшает гладкость поверхности и предельную механическую прочность имплантов [28].\n\nПри создании новых коллагеновых каркасов для ангиопластики был продемонстрирован опыт использования кросслинкинга, основанного на химической реакции процианидов и альдегидов. В результате было зарегистрировано улучшение механических свойств трансплантата, замедление постимплантационной кальцификации и минимизация иммунного ответа [29].\n\nМеханизм кросслинкинга с использованием бета-аминопроприонитрила применяется при констриктивном ремоделировании поврежденных артерий после трансплантации [30]. Данный химический агент оказывает ингибирующее действие на ферменты лизилоксидазу и дезоксипиридинолин, опосредующие физиологический ферментативный кросслинкинг в тканях организма человека, что приводит к контролируемой реакции биодеградации коллагенового каркаса вследствие уменьшения числа меж- и внутрифибриллярных поперечных связей. Использование бета-аминопроприонитрила сокращало неоинтимальную плотность, что способствовало к снижению риска рестеноза, в частности, после баллонной ангиопластики на 33 % [31].\n\nИспользование кросслинкинга в урологии\n\nИнъекции коллагена, сшитого глутаровым альдегидом (ГА), используются в урологии как малоинвазивный метод лечения недержания мочи после простатэктомии [32] и пузырно-мочеточникового рефлюкса [33, 34]. ГА образует молекулярные поперечные сшивки между компонентами соединительнотканного матрикса, формируя гидрогелевый матрикс с необходимыми биомеханическими свойствами, что используется для укрепления тканей.\n\nИсследование, проведенное L. M. Shortliffe с коллегами, показало эффективность трансуретральной имплантации сшитого глутаральдегидом высокоочищенного бычьего коллагена для коррекции недержания мочи. Инъекции сшитого коллагена, введенные в область шейки мочевого пузыря или мочевого сфинктера, способствовали улучшению состояния у 9 из 17 пациентов. Отсутствие сообщений об осложнениях в данном исследовании является важным аспектом и может свидетельствовать о безопасности данной процедуры [32]. В работе T. D. Richardson и соавторов для лечения недостаточности внутреннего сфинктера у женщин также проведено введение коллагена, модифицированного с помощью химического кросслинкинга. При среднем периоде наблюдения 46 месяцев улучшение состояния наблюдалось у 83 % пациентов [33].\n\nИсследования показывают, что коллаген, сшитый ГА, можно вводить в мочевыводящие пути для коррекции недержания мочи без последующих осложнений и рассматривать их в качестве малоинвазивной альтернативы хирургическому лечению [35]. Но эффективность инъекции коллагена в уретру ограничена и требует постоянного контроля. Это связанно с постепенной реабсорбцией белка и потерей эффекта наполнения подслизистой оболочки. Для того чтобы улучшить долгосрочные результаты и определить оптимальный способ применения коллагена в уретре, требуются дальнейшие исследования [36, 37].\n\n \n\nТехнология кросслинкинга при патологиях желудочно-кишечного тракта\n\nПоказано, что механизм кросслинкинга используется для повышения совместимости ксенотрансплантатов подслизистой оболочки тонкой кишки. Сшивание карбодиимидом (кросс-связывание) соединительнотканной оболочки кишки было применено с целью ингибировать коагулянтные эффекты в слизистой оболочке. В настоящее время разрабатывается клинический подход, который позволит улучшить результаты трансплантации подслизистой оболочки тонкой кишки и уменьшить риски коагуляции в результате этой процедуры [38].\n\nИсследование, проведенное D. Kumar, M. J. Benson и J. E. Bland, описывает применение инъекции модифицированного глутаровым альдегидом коллагена для лечения пациентов с хирургически некорригируемым недержанием кала. После инъекции у 11 из 17 пациентов наблюдалось заметное симптоматическое улучшение. Все пациенты переносили введение обработанного коллагена без побочных эффектов. Такая процедура высоко оценена специалистами как простой и хорошо переносимый способ лечения недержания кала, вызванного дисфункцией внутреннего сфинктера. Инъекция коллагена в перианальную область является малоинвазивным и безболезненным методом лечения недержания [39].\n\n \n\n3D-моделирование с использованием кросслинкинга\n\nL. R. Versteegden и соавт. в своей работе описывают создание эластических коллагеновых каркасов с помощью методов формования, замораживания и лиофилизации белковых фибрилл. Трансформированные коллагеновые конструкции сжимали, гофрировали и обрабатывали карбодиимидом для проведения химического кросслинкинга. Эта процедура повышала упругость получаемых каркасов [40, 41].\n\nСтереолитография — это направление трехмерной печати на основе лазера, в которой используется ультрафиолетовый или видимый свет. Техника заключается в послойном нанесении и сшивании светочувствительного полимера. В данной технологии применяются фотоинициирующие вещества, которые под воздействием световой энергии способствуют образованию полимерных слоев [42].\n\nДля создания биокаркасов методом стереолитографии с видимым светом Z. Wang с коллегами, проводили реакцию химического кросслинкинга между полиэтиленгликолем с эозином Y и метакрилированным желатином. По мнению авторов, это открывает перспективы создания биосовместимых материалов и биомедицинских структур для разработки новых технологий и методов лечения в медицинской практике [43].\n\n \n\nЗАКЛЮЧЕНИЕ\n\nИсследование доступных литературных источников позволяет заключить следующее.\n\n1. Расширяющиеся возможности использования эффектов кросслинкинга в медицине стали причиной его активного изучения и формирования новой стратегии реабилитации пациентов с различной патологией.\n\n2. Технология перекрестного связывания имеет потенциал для дальнейшего развития и модернизации, в связи с чем успешно интегрируется в различные сферы медицины и связанные с ней отрасли.\n\n3. Разработка и внедрение оригинальных биоинженерных продуктов, основанных на принципах поперечного сшивания, позволяет совершенствовать методы лечения различных заболеваний человека и значительно повысить их эффективность."],"dc.height":["343"],"dc.height.ru":["343"],"dc.originalFileName":["1-.jpg"],"dc.originalFileName.ru":["1-.jpg"],"dc.subject.ru":["кросслинкинг","полимеры","коллаген","биопечать","гидрогель","перекрестно-сшивающие реагенты","биосовместимые материалы"],"dc.title.ru":["Кросслинкинг биополимеров: применение и перспективы"],"dc.width":["500"],"dc.width.ru":["500"],"dc.issue.volume":["15"],"dc.issue.number":["1"],"dc.pages":["50-56"],"dc.rights":["CC BY 4.0"],"dc.section":["LITERATURE REVIEW","ОБЗОР ЛИТЕРАТУРЫ"],"dc.section.en":["LITERATURE REVIEW"],"dc.section.ru":["ОБЗОР ЛИТЕРАТУРЫ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["М. М. Бикбов","M. M. Bikbov","И. Р. Кабиров","I. R. Kabirov","А. Р. Халимов","A. R. Khalimov","А. Д. Неряхин","A. D. Neryakhin","П. Н. Шмелькова","P. N. Shmelkova","Д. Х. Гайнуллина","D. Kh. Gainullina","Л. С. Гумерова","L. S. Gumerova","А. А. Тухбатуллин","A. A. Tukhbatullin","А. А. Ахунзянов","A. A. Akhunzyanov","Е. А. Надеждина","E. A. Nadezhdina"],"author_keyword":["М. М. Бикбов","M. M. Bikbov","И. Р. Кабиров","I. R. Kabirov","А. Р. Халимов","A. R. Khalimov","А. Д. Неряхин","A. D. Neryakhin","П. Н. Шмелькова","P. N. Shmelkova","Д. Х. Гайнуллина","D. Kh. Gainullina","Л. С. Гумерова","L. S. Gumerova","А. А. Тухбатуллин","A. A. Tukhbatullin","А. А. Ахунзянов","A. A. Akhunzyanov","Е. А. Надеждина","E. A. Nadezhdina"],"author_ac":["м. м. бикбов\n|||\nМ. М. Бикбов","m. m. bikbov\n|||\nM. M. Bikbov","и. р. кабиров\n|||\nИ. Р. Кабиров","i. r. kabirov\n|||\nI. R. Kabirov","а. р. халимов\n|||\nА. Р. Халимов","a. r. khalimov\n|||\nA. R. Khalimov","а. д. неряхин\n|||\nА. Д. Неряхин","a. d. neryakhin\n|||\nA. D. Neryakhin","п. н. шмелькова\n|||\nП. Н. Шмелькова","p. n. shmelkova\n|||\nP. N. Shmelkova","д. х. гайнуллина\n|||\nД. Х. Гайнуллина","d. kh. gainullina\n|||\nD. Kh. Gainullina","л. с. гумерова\n|||\nЛ. С. Гумерова","l. s. gumerova\n|||\nL. S. Gumerova","а. а. тухбатуллин\n|||\nА. А. Тухбатуллин","a. a. tukhbatullin\n|||\nA. A. Tukhbatullin","а. а. ахунзянов\n|||\nА. А. Ахунзянов","a. a. akhunzyanov\n|||\nA. A. Akhunzyanov","е. а. надеждина\n|||\nЕ. А. Надеждина","e. a. nadezhdina\n|||\nE. A. Nadezhdina"],"author_filter":["м. м. бикбов\n|||\nМ. М. Бикбов","m. m. bikbov\n|||\nM. M. Bikbov","и. р. кабиров\n|||\nИ. Р. Кабиров","i. r. kabirov\n|||\nI. R. Kabirov","а. р. халимов\n|||\nА. Р. Халимов","a. r. khalimov\n|||\nA. R. Khalimov","а. д. неряхин\n|||\nА. Д. Неряхин","a. d. neryakhin\n|||\nA. D. Neryakhin","п. н. шмелькова\n|||\nП. Н. Шмелькова","p. n. shmelkova\n|||\nP. N. Shmelkova","д. х. гайнуллина\n|||\nД. Х. Гайнуллина","d. kh. gainullina\n|||\nD. Kh. Gainullina","л. с. гумерова\n|||\nЛ. С. Гумерова","l. s. gumerova\n|||\nL. S. Gumerova","а. а. тухбатуллин\n|||\nА. А. Тухбатуллин","a. a. tukhbatullin\n|||\nA. A. Tukhbatullin","а. а. ахунзянов\n|||\nА. А. Ахунзянов","a. a. akhunzyanov\n|||\nA. A. Akhunzyanov","е. а. надеждина\n|||\nЕ. А. Надеждина","e. a. nadezhdina\n|||\nE. A. Nadezhdina"],"dc.author.name":["М. М. Бикбов","M. M. Bikbov","И. Р. Кабиров","I. R. Kabirov","А. Р. Халимов","A. R. Khalimov","А. Д. Неряхин","A. D. Neryakhin","П. Н. Шмелькова","P. N. Shmelkova","Д. Х. Гайнуллина","D. Kh. Gainullina","Л. С. Гумерова","L. S. Gumerova","А. А. Тухбатуллин","A. A. Tukhbatullin","А. А. Ахунзянов","A. A. Akhunzyanov","Е. А. Надеждина","E. A. Nadezhdina"],"dc.author.name.ru":["М. М. Бикбов","И. Р. Кабиров","А. Р. Халимов","А. Д. Неряхин","П. Н. Шмелькова","Д. Х. Гайнуллина","Л. С. Гумерова","А. А. Тухбатуллин","А. А. Ахунзянов","Е. А. Надеждина"],"dc.author.affiliation":["Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","Ufa Eye Research Institute, Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","Ufa Eye Research Institute, Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University"],"dc.author.affiliation.ru":["Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет"],"dc.author.full":["М. М. Бикбов | Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","M. M. Bikbov | Ufa Eye Research Institute, Bashkir State Medical University","И. Р. Кабиров | Башкирский государственный медицинский университет","I. R. Kabirov | Bashkir State Medical University","А. Р. Халимов | Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","A. R. Khalimov | Ufa Eye Research Institute, Bashkir State Medical University","А. Д. Неряхин | Башкирский государственный медицинский университет","A. D. Neryakhin | Bashkir State Medical University","П. Н. Шмелькова | Башкирский государственный медицинский университет","P. N. Shmelkova | Bashkir State Medical University","Д. Х. Гайнуллина | Башкирский государственный медицинский университет","D. Kh. Gainullina | Bashkir State Medical University","Л. С. Гумерова | Башкирский государственный медицинский университет","L. S. Gumerova | Bashkir State Medical University","А. А. Тухбатуллин | Башкирский государственный медицинский университет","A. A. Tukhbatullin | Bashkir State Medical University","А. А. Ахунзянов | Башкирский государственный медицинский университет","A. A. Akhunzyanov | Bashkir State Medical University","Е. А. Надеждина | Башкирский государственный медицинский университет","E. A. Nadezhdina | Bashkir State Medical University"],"dc.author.full.ru":["М. М. Бикбов | Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","И. Р. Кабиров | Башкирский государственный медицинский университет","А. Р. Халимов | Уфимский научно-исследовательский институт глазных болезней, Башкирский государственный медицинский университет","А. Д. Неряхин | Башкирский государственный медицинский университет","П. Н. Шмелькова | Башкирский государственный медицинский университет","Д. Х. Гайнуллина | Башкирский государственный медицинский университет","Л. С. Гумерова | Башкирский государственный медицинский университет","А. А. Тухбатуллин | Башкирский государственный медицинский университет","А. А. Ахунзянов | Башкирский государственный медицинский университет","Е. А. Надеждина | Башкирский государственный медицинский университет"],"dc.author.name.en":["M. M. Bikbov","I. R. Kabirov","A. R. Khalimov","A. D. Neryakhin","P. N. Shmelkova","D. Kh. Gainullina","L. S. Gumerova","A. A. Tukhbatullin","A. A. Akhunzyanov","E. A. Nadezhdina"],"dc.author.affiliation.en":["Ufa Eye Research Institute, Bashkir State Medical University","Bashkir State Medical University","Ufa Eye Research Institute, Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University"],"dc.author.full.en":["M. M. Bikbov | Ufa Eye Research Institute, Bashkir State Medical University","I. R. Kabirov | Bashkir State Medical University","A. R. Khalimov | Ufa Eye Research Institute, Bashkir State Medical University","A. D. Neryakhin | Bashkir State Medical University","P. N. Shmelkova | Bashkir State Medical University","D. Kh. Gainullina | Bashkir State Medical University","L. S. Gumerova | Bashkir State Medical University","A. A. Tukhbatullin | Bashkir State Medical University","A. A. Akhunzyanov | Bashkir State Medical University","E. A. Nadezhdina | Bashkir State Medical University"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0002-9476-8883\", \"affiliation\": \"\\u0423\\u0444\\u0438\\u043c\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u0438\\u043d\\u0441\\u0442\\u0438\\u0442\\u0443\\u0442 \\u0433\\u043b\\u0430\\u0437\\u043d\\u044b\\u0445 \\u0431\\u043e\\u043b\\u0435\\u0437\\u043d\\u0435\\u0439, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041c. \\u041c. \\u0411\\u0438\\u043a\\u0431\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-9476-8883\", \"affiliation\": \"Ufa Eye Research Institute, Bashkir State Medical University\", \"full_name\": \"M. M. Bikbov\"}}, {\"ru\": {\"orcid\": \"0000-0002-9581-8918\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0418. \\u0420. \\u041a\\u0430\\u0431\\u0438\\u0440\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-9581-8918\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"I. R. Kabirov\"}}, {\"ru\": {\"orcid\": \"0000-0001-7470-7330\", \"affiliation\": \"\\u0423\\u0444\\u0438\\u043c\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u0438\\u043d\\u0441\\u0442\\u0438\\u0442\\u0443\\u0442 \\u0433\\u043b\\u0430\\u0437\\u043d\\u044b\\u0445 \\u0431\\u043e\\u043b\\u0435\\u0437\\u043d\\u0435\\u0439, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0410. \\u0420. \\u0425\\u0430\\u043b\\u0438\\u043c\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0001-7470-7330\", \"affiliation\": \"Ufa Eye Research Institute, Bashkir State Medical University\", \"full_name\": \"A. R. Khalimov\"}}, {\"ru\": {\"orcid\": \"0009-0007-8246-3699\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0410. \\u0414. \\u041d\\u0435\\u0440\\u044f\\u0445\\u0438\\u043d\"}, \"en\": {\"orcid\": \"0009-0007-8246-3699\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"A. D. Neryakhin\"}}, {\"ru\": {\"orcid\": \"0009-0001-3298-3895\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041f. \\u041d. \\u0428\\u043c\\u0435\\u043b\\u044c\\u043a\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0009-0001-3298-3895\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"P. N. Shmelkova\"}}, {\"ru\": {\"orcid\": \"0009-0002-9174-4824\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0414. \\u0425. \\u0413\\u0430\\u0439\\u043d\\u0443\\u043b\\u043b\\u0438\\u043d\\u0430\"}, \"en\": {\"orcid\": \"0009-0002-9174-4824\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"D. Kh. Gainullina\"}}, {\"ru\": {\"orcid\": \"\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041b. \\u0421. \\u0413\\u0443\\u043c\\u0435\\u0440\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"L. S. Gumerova\"}}, {\"ru\": {\"orcid\": \"0009-0000-3633-7148\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0410. \\u0410. \\u0422\\u0443\\u0445\\u0431\\u0430\\u0442\\u0443\\u043b\\u043b\\u0438\\u043d\"}, \"en\": {\"orcid\": \"0009-0000-3633-7148\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"A. A. Tukhbatullin\"}}, {\"ru\": {\"orcid\": \"0009-0000-9519-3084\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0410. \\u0410. \\u0410\\u0445\\u0443\\u043d\\u0437\\u044f\\u043d\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0009-0000-9519-3084\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"A. A. Akhunzyanov\"}}, {\"ru\": {\"orcid\": \"0000-0002-8129-0665\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0415. \\u0410. \\u041d\\u0430\\u0434\\u0435\\u0436\\u0434\\u0438\\u043d\\u0430\"}, \"en\": {\"orcid\": \"0000-0002-8129-0665\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"E. A. Nadezhdina\"}}]}"],"dateIssued":["2025-04-01"],"dateIssued_keyword":["2025-04-01","2025"],"dateIssued_ac":["2025-04-01\n|||\n2025-04-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-04-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1052"],"dc.citation":["Нащекина Ю.А., Луконина О.А., Михайлова Н.А. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология. 2020;62(7):459–72. DOI: 10.31857/S0041377120070044","Raiskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74. DOI: 10.1016/j.jtos.2013.01.002","Phillips H. Cross-linkage formation in keratins. Nature. 1936;138(327):121–2. DOI: 10.1038/138327a0","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994;59(3):343–9. DOI: 10.1111/j.1751-1097.1994.tb05045.x","Spoerl E., Huhle M., Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103. DOI: 10.1006/exer.1997.0410","Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003 135(5):620–7. DOI: 10.1016/s0002-9394(02)02220-1","Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5. DOI: 10.4103/0974-9233.159755","Бикбов М.М., Бикбова Г.М. Эктазии роговицы (патогенез, патоморфология, клиника, диагностика, лечение). М.; 2011.","Бикбов М.М., Шевчук Н.Е., Халимов А.Р. Влияние ультрафиолетового кросслинкинга на уровень цитокинов в слезной жидкости у пациентов с кератэктазиями. Цитокины и воспаление. 2015;14(2):54–7.","Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросслинкинг роговицы. Вестник РАМН. 2016;71(3):224–32. DOI: 10.15690/vramn562","Бикбов М.М., Шевчук Н.Е., Халимов А.Р., Бикбова Г.М. Динамика уровня рибофлавина во влаге передней камеры глаза экспериментальных животных при стандартном насыщении стромы растворами для УФ-кросслинкинга роговицы. Вестник офтальмологии. 2016;132(6):29–35. DOI: 10.17116/oftalma2016132629-35","Бикбов М.М., Суркова В.К., Халимов А.Р., Усубов Э.Л. Результаты лечения пеллюцидной маргинальной дегенерации роговицы методом роговичного кросслинкинга. Вестник офтальмологии. 2017;133(3):58–64. DOI: 10.17116/oftalma2017133358-64","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Dodda J.M., Azar M.G., Sadiku R. Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci. 2021;21(12):e2100232. DOI: 10.1002/mabi.202100232","Gu H., He L., Liu L., Jin Y.C. Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation. Zhonghua Shao Shang Za Zhi. 2008;24(2):114–7. PMID: 18785411","Saito M., Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97(3):242–61. DOI: 10.1007/s00223-015-9985-5","Cornette P., Jaabar I.L., Dupres V., Werthel J.D., Berenbaum F., Houard X., et al. Impact of collagen crosslinking on dislocated human shoulder capsules-effect on structural and mechanical properties. Int J Mol Sci. 2022;23(4):2297. DOI: 10.3390/ijms23042297","Shweta A., Pahuja S. Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. International Research Journal of Pharmacy. 2013;4:45–51.","Ruixue L., Yang S., Zhengwei C., Yang L., Jian S., Wei B., et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem Engin J. 2021;415:129015. DOI: 10.1016/j.cej.2021.129015","Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Carvalho I.C., Chagas P., de Oliveira L.C.A., et al. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym. 2018;195:401–12. DOI: 10.1016/j.carbpol.2018.04.105","Zhao J., Zhu Y., Ye C., Chen Y., Wang Sh., Zou D., et al. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine. 2019;14:3893–909. DOI: 10.2147/IJN.S202876","Ma H., Peng Y., Zhang S., Zhang Y., Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. DOI: 10.3390/gels8100609","Zou C.Y., Lei X.X., Hu J.J., Jiang Y.L., Li Q.J., Song Y.T., et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402. DOI: 10.1016/j.bioactmat.2022.02.034","Mao H., Zhao S., He Y., Feng M., Wu L., He Y., et al. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr Polym. 2022;285:119254. DOI: 10.1016/j.carbpol.2022.119254","Wang J., Kong L., Gafur A., Peng X., Kristi N., Xu J., et al. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater. 2021;8(2):rbaa058. DOI: 10.1093/rb/rbaa058. PMID: 33738112","Schneider K.H., Rohringer S., Kapeller B., Grasl C., Kiss H., Heber S., et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58. DOI: 10.1016/j.actbio.2020.08.037. PMID: 32871281","Munger K.A., Downey T.M., Haberer B., Pohlson K., Marshall L.L., Utecht R.E. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater. 2016;104(2):375–84. DOI: 10.1002/jbm.b.33373. PMID: 25823876","Wang X., Ma B., Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng. 2015;26(1–2):19–30. DOI: 10.3233/BME-151548. PMID: 26484552","Brasselet C., Durand E., Addad F., Al Haj Zen A., Smeets M.B., Laurent-Maquin D., et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33. DOI: 10.1152/ajpheart.00410.2005","Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., et al. Crosslin­king of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J Biomed Mater Res B Appl Biomater. 2014;102(6):1190–8. DOI: 10.1002/jbm.b.33102","Shortliffe L.M., Freiha F.S., Kessler R., Stamey T.A., Constantinou C.E. Treatment of urinary incontinence by the periurethral implantation of glutaraldehyde cross-linked collagen. J Urol. 1989;141(3):538–41. DOI: 10.1016/s0022-5347(17)40885-8","Richardson T.D., Kennelly M.J., Faerber G.J. Endoscopic injection of glutaraldehyde cross-linked collagen for the treatment of intrinsic sphincter deficiency in women. Urology. 1995;46(3):378–81. DOI: 10.1016/S0090-4295(99)80223-4","Frey P., Gudinchet F., Jenny P. GAX 65: new injectable cross-linked collagen for the endoscopic treatment of vesicoureteral reflux—a double-blind study evaluating its efficiency in children. J Urol. 1997;158(3 Pt 2):1210–2. PMID: 9258175","Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. DOI: 10.1007/s13277-013-1511-7","Iselin C.E. Periurethral collagen injections for incontinence following radical prostatectomy: does the patient benefit? Curr Opin Urol. 1999;9(3):209–12. DOI: 10.1097/00042307-199905000-00003","Appell R.A. Collagen injection therapy for urinary incontinence. Urol Clin North Am. 1994;21(1):177–82. PMID: 8284841","Glynn J.J., Polsin E.G., Hinds M.T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. DOI: 10.1016/j.actbio.2014.11.038","Kumar D., Benson M.J., Bland J.E. Glutaraldehyde cross-linked collagen in the treatment of faecal incontinence. Br J Surg. 1998;85(7):978–9. DOI: 10.1046/j.1365-2168.1998.00751.x","Versteegden L.R., van Kampen K.A., Janke H.P., Tiemessen D.M., Hoogenkamp H.R., Hafmans T.G., et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1–8. DOI: 10.1016/j.actbio.2017.02.005","Versteegden L.R., Hoogenkamp H.R., Lomme R.M., Van Goor H., Tiemessen D.M., Geutjes P.J., et al. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein. Acta Biomater. 2016;15(44):277–85. DOI: 10.1016/j.actbio.2016.08.038","Lin H., Tang Y., Lozito T.P., Oyster N., Kang R.B., Fritch M.R., et al. Projection stereolithographic fabrication of BMP-2 gene-activated matrix for bone tissue engineering. Sci Rep. 2017;7(1):11327. DOI: 10.1038/s41598-017-11051-0","Wang Z., Kumar H., Tian Z., Jin X., Holzman J.F., Menard F., et al. Vi­sible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–69. DOI: 10.1021/acsami.8b06607","Нащекина Ю.А., Луконина О.А., Михайлова Н.А. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология. 2020;62(7):459–72. DOI: 10.31857/S0041377120070044","Raiskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74. DOI: 10.1016/j.jtos.2013.01.002","Phillips H. Cross-linkage formation in keratins. Nature. 1936;138(327):121–2. DOI: 10.1038/138327a0","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994;59(3):343–9. DOI: 10.1111/j.1751-1097.1994.tb05045.x","Spoerl E., Huhle M., Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103. DOI: 10.1006/exer.1997.0410","Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003 135(5):620–7. DOI: 10.1016/s0002-9394(02)02220-1","Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5. DOI: 10.4103/0974-9233.159755","Бикбов М.М., Бикбова Г.М. Эктазии роговицы (патогенез, патоморфология, клиника, диагностика, лечение). М.; 2011.","Бикбов М.М., Шевчук Н.Е., Халимов А.Р. Влияние ультрафиолетового кросслинкинга на уровень цитокинов в слезной жидкости у пациентов с кератэктазиями. Цитокины и воспаление. 2015;14(2):54–7.","Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросслинкинг роговицы. Вестник РАМН. 2016;71(3):224–32. DOI: 10.15690/vramn562","Бикбов М.М., Шевчук Н.Е., Халимов А.Р., Бикбова Г.М. Динамика уровня рибофлавина во влаге передней камеры глаза экспериментальных животных при стандартном насыщении стромы растворами для УФ-кросслинкинга роговицы. Вестник офтальмологии. 2016;132(6):29–35. DOI: 10.17116/oftalma2016132629-35","Бикбов М.М., Суркова В.К., Халимов А.Р., Усубов Э.Л. Результаты лечения пеллюцидной маргинальной дегенерации роговицы методом роговичного кросслинкинга. Вестник офтальмологии. 2017;133(3):58–64. DOI: 10.17116/oftalma2017133358-64","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Dodda J.M., Azar M.G., Sadiku R. Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci. 2021;21(12):e2100232. DOI: 10.1002/mabi.202100232","Gu H., He L., Liu L., Jin Y.C. Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation. Zhonghua Shao Shang Za Zhi. 2008;24(2):114–7. PMID: 18785411","Saito M., Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97(3):242–61. DOI: 10.1007/s00223-015-9985-5","Cornette P., Jaabar I.L., Dupres V., Werthel J.D., Berenbaum F., Houard X., et al. Impact of collagen crosslinking on dislocated human shoulder capsules-effect on structural and mechanical properties. Int J Mol Sci. 2022;23(4):2297. DOI: 10.3390/ijms23042297","Shweta A., Pahuja S. Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. International Research Journal of Pharmacy. 2013;4:45–51.","Ruixue L., Yang S., Zhengwei C., Yang L., Jian S., Wei B., et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem Engin J. 2021;415:129015. DOI: 10.1016/j.cej.2021.129015","Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Carvalho I.C., Chagas P., de Oliveira L.C.A., et al. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym. 2018;195:401–12. DOI: 10.1016/j.carbpol.2018.04.105","Zhao J., Zhu Y., Ye C., Chen Y., Wang Sh., Zou D., et al. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine. 2019;14:3893–909. DOI: 10.2147/IJN.S202876","Ma H., Peng Y., Zhang S., Zhang Y., Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. DOI: 10.3390/gels8100609","Zou C.Y., Lei X.X., Hu J.J., Jiang Y.L., Li Q.J., Song Y.T., et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402. DOI: 10.1016/j.bioactmat.2022.02.034","Mao H., Zhao S., He Y., Feng M., Wu L., He Y., et al. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr Polym. 2022;285:119254. DOI: 10.1016/j.carbpol.2022.119254","Wang J., Kong L., Gafur A., Peng X., Kristi N., Xu J., et al. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater. 2021;8(2):rbaa058. DOI: 10.1093/rb/rbaa058. PMID: 33738112","Schneider K.H., Rohringer S., Kapeller B., Grasl C., Kiss H., Heber S., et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58. DOI: 10.1016/j.actbio.2020.08.037. PMID: 32871281","Munger K.A., Downey T.M., Haberer B., Pohlson K., Marshall L.L., Utecht R.E. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater. 2016;104(2):375–84. DOI: 10.1002/jbm.b.33373. PMID: 25823876","Wang X., Ma B., Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng. 2015;26(1–2):19–30. DOI: 10.3233/BME-151548. PMID: 26484552","Brasselet C., Durand E., Addad F., Al Haj Zen A., Smeets M.B., Laurent-Maquin D., et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33. DOI: 10.1152/ajpheart.00410.2005","Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., et al. Crosslin­king of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J Biomed Mater Res B Appl Biomater. 2014;102(6):1190–8. DOI: 10.1002/jbm.b.33102","Shortliffe L.M., Freiha F.S., Kessler R., Stamey T.A., Constantinou C.E. Treatment of urinary incontinence by the periurethral implantation of glutaraldehyde cross-linked collagen. J Urol. 1989;141(3):538–41. DOI: 10.1016/s0022-5347(17)40885-8","Richardson T.D., Kennelly M.J., Faerber G.J. Endoscopic injection of glutaraldehyde cross-linked collagen for the treatment of intrinsic sphincter deficiency in women. Urology. 1995;46(3):378–81. DOI: 10.1016/S0090-4295(99)80223-4","Frey P., Gudinchet F., Jenny P. GAX 65: new injectable cross-linked collagen for the endoscopic treatment of vesicoureteral reflux—a double-blind study evaluating its efficiency in children. J Urol. 1997;158(3 Pt 2):1210–2. PMID: 9258175","Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. DOI: 10.1007/s13277-013-1511-7","Iselin C.E. Periurethral collagen injections for incontinence following radical prostatectomy: does the patient benefit? Curr Opin Urol. 1999;9(3):209–12. DOI: 10.1097/00042307-199905000-00003","Appell R.A. Collagen injection therapy for urinary incontinence. Urol Clin North Am. 1994;21(1):177–82. PMID: 8284841","Glynn J.J., Polsin E.G., Hinds M.T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. DOI: 10.1016/j.actbio.2014.11.038","Kumar D., Benson M.J., Bland J.E. Glutaraldehyde cross-linked collagen in the treatment of faecal incontinence. Br J Surg. 1998;85(7):978–9. DOI: 10.1046/j.1365-2168.1998.00751.x","Versteegden L.R., van Kampen K.A., Janke H.P., Tiemessen D.M., Hoogenkamp H.R., Hafmans T.G., et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1–8. DOI: 10.1016/j.actbio.2017.02.005","Versteegden L.R., Hoogenkamp H.R., Lomme R.M., Van Goor H., Tiemessen D.M., Geutjes P.J., et al. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein. Acta Biomater. 2016;15(44):277–85. DOI: 10.1016/j.actbio.2016.08.038","Lin H., Tang Y., Lozito T.P., Oyster N., Kang R.B., Fritch M.R., et al. Projection stereolithographic fabrication of BMP-2 gene-activated matrix for bone tissue engineering. Sci Rep. 2017;7(1):11327. DOI: 10.1038/s41598-017-11051-0","Wang Z., Kumar H., Tian Z., Jin X., Holzman J.F., Menard F., et al. Vi­sible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–69. DOI: 10.1021/acsami.8b06607"],"dc.citation.ru":["Нащекина Ю.А., Луконина О.А., Михайлова Н.А. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология. 2020;62(7):459–72. DOI: 10.31857/S0041377120070044","Raiskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74. DOI: 10.1016/j.jtos.2013.01.002","Phillips H. Cross-linkage formation in keratins. Nature. 1936;138(327):121–2. DOI: 10.1038/138327a0","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994;59(3):343–9. DOI: 10.1111/j.1751-1097.1994.tb05045.x","Spoerl E., Huhle M., Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103. DOI: 10.1006/exer.1997.0410","Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003 135(5):620–7. DOI: 10.1016/s0002-9394(02)02220-1","Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5. DOI: 10.4103/0974-9233.159755","Бикбов М.М., Бикбова Г.М. Эктазии роговицы (патогенез, патоморфология, клиника, диагностика, лечение). М.; 2011.","Бикбов М.М., Шевчук Н.Е., Халимов А.Р. Влияние ультрафиолетового кросслинкинга на уровень цитокинов в слезной жидкости у пациентов с кератэктазиями. Цитокины и воспаление. 2015;14(2):54–7.","Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросслинкинг роговицы. Вестник РАМН. 2016;71(3):224–32. DOI: 10.15690/vramn562","Бикбов М.М., Шевчук Н.Е., Халимов А.Р., Бикбова Г.М. Динамика уровня рибофлавина во влаге передней камеры глаза экспериментальных животных при стандартном насыщении стромы растворами для УФ-кросслинкинга роговицы. Вестник офтальмологии. 2016;132(6):29–35. DOI: 10.17116/oftalma2016132629-35","Бикбов М.М., Суркова В.К., Халимов А.Р., Усубов Э.Л. Результаты лечения пеллюцидной маргинальной дегенерации роговицы методом роговичного кросслинкинга. Вестник офтальмологии. 2017;133(3):58–64. DOI: 10.17116/oftalma2017133358-64","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Dodda J.M., Azar M.G., Sadiku R. Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci. 2021;21(12):e2100232. DOI: 10.1002/mabi.202100232","Gu H., He L., Liu L., Jin Y.C. Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation. Zhonghua Shao Shang Za Zhi. 2008;24(2):114–7. PMID: 18785411","Saito M., Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97(3):242–61. DOI: 10.1007/s00223-015-9985-5","Cornette P., Jaabar I.L., Dupres V., Werthel J.D., Berenbaum F., Houard X., et al. Impact of collagen crosslinking on dislocated human shoulder capsules-effect on structural and mechanical properties. Int J Mol Sci. 2022;23(4):2297. DOI: 10.3390/ijms23042297","Shweta A., Pahuja S. Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. International Research Journal of Pharmacy. 2013;4:45–51.","Ruixue L., Yang S., Zhengwei C., Yang L., Jian S., Wei B., et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem Engin J. 2021;415:129015. DOI: 10.1016/j.cej.2021.129015","Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Carvalho I.C., Chagas P., de Oliveira L.C.A., et al. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym. 2018;195:401–12. DOI: 10.1016/j.carbpol.2018.04.105","Zhao J., Zhu Y., Ye C., Chen Y., Wang Sh., Zou D., et al. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine. 2019;14:3893–909. DOI: 10.2147/IJN.S202876","Ma H., Peng Y., Zhang S., Zhang Y., Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. DOI: 10.3390/gels8100609","Zou C.Y., Lei X.X., Hu J.J., Jiang Y.L., Li Q.J., Song Y.T., et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402. DOI: 10.1016/j.bioactmat.2022.02.034","Mao H., Zhao S., He Y., Feng M., Wu L., He Y., et al. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr Polym. 2022;285:119254. DOI: 10.1016/j.carbpol.2022.119254","Wang J., Kong L., Gafur A., Peng X., Kristi N., Xu J., et al. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater. 2021;8(2):rbaa058. DOI: 10.1093/rb/rbaa058. PMID: 33738112","Schneider K.H., Rohringer S., Kapeller B., Grasl C., Kiss H., Heber S., et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58. DOI: 10.1016/j.actbio.2020.08.037. PMID: 32871281","Munger K.A., Downey T.M., Haberer B., Pohlson K., Marshall L.L., Utecht R.E. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater. 2016;104(2):375–84. DOI: 10.1002/jbm.b.33373. PMID: 25823876","Wang X., Ma B., Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng. 2015;26(1–2):19–30. DOI: 10.3233/BME-151548. PMID: 26484552","Brasselet C., Durand E., Addad F., Al Haj Zen A., Smeets M.B., Laurent-Maquin D., et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33. DOI: 10.1152/ajpheart.00410.2005","Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., et al. Crosslin­king of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J Biomed Mater Res B Appl Biomater. 2014;102(6):1190–8. DOI: 10.1002/jbm.b.33102","Shortliffe L.M., Freiha F.S., Kessler R., Stamey T.A., Constantinou C.E. Treatment of urinary incontinence by the periurethral implantation of glutaraldehyde cross-linked collagen. J Urol. 1989;141(3):538–41. DOI: 10.1016/s0022-5347(17)40885-8","Richardson T.D., Kennelly M.J., Faerber G.J. Endoscopic injection of glutaraldehyde cross-linked collagen for the treatment of intrinsic sphincter deficiency in women. Urology. 1995;46(3):378–81. DOI: 10.1016/S0090-4295(99)80223-4","Frey P., Gudinchet F., Jenny P. GAX 65: new injectable cross-linked collagen for the endoscopic treatment of vesicoureteral reflux—a double-blind study evaluating its efficiency in children. J Urol. 1997;158(3 Pt 2):1210–2. PMID: 9258175","Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. DOI: 10.1007/s13277-013-1511-7","Iselin C.E. Periurethral collagen injections for incontinence following radical prostatectomy: does the patient benefit? Curr Opin Urol. 1999;9(3):209–12. DOI: 10.1097/00042307-199905000-00003","Appell R.A. Collagen injection therapy for urinary incontinence. Urol Clin North Am. 1994;21(1):177–82. PMID: 8284841","Glynn J.J., Polsin E.G., Hinds M.T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. DOI: 10.1016/j.actbio.2014.11.038","Kumar D., Benson M.J., Bland J.E. Glutaraldehyde cross-linked collagen in the treatment of faecal incontinence. Br J Surg. 1998;85(7):978–9. DOI: 10.1046/j.1365-2168.1998.00751.x","Versteegden L.R., van Kampen K.A., Janke H.P., Tiemessen D.M., Hoogenkamp H.R., Hafmans T.G., et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1–8. DOI: 10.1016/j.actbio.2017.02.005","Versteegden L.R., Hoogenkamp H.R., Lomme R.M., Van Goor H., Tiemessen D.M., Geutjes P.J., et al. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein. Acta Biomater. 2016;15(44):277–85. DOI: 10.1016/j.actbio.2016.08.038","Lin H., Tang Y., Lozito T.P., Oyster N., Kang R.B., Fritch M.R., et al. Projection stereolithographic fabrication of BMP-2 gene-activated matrix for bone tissue engineering. Sci Rep. 2017;7(1):11327. DOI: 10.1038/s41598-017-11051-0","Wang Z., Kumar H., Tian Z., Jin X., Holzman J.F., Menard F., et al. Vi­sible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–69. DOI: 10.1021/acsami.8b06607"],"dc.citation.en":["Нащекина Ю.А., Луконина О.А., Михайлова Н.А. Химические сшивающие агенты для коллагена: механизмы взаимодействия и перспективность применения в регенеративной медицине. Цитология. 2020;62(7):459–72. DOI: 10.31857/S0041377120070044","Raiskup F., Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. I. Principles. Ocul Surf. 2013;11(2):65–74. DOI: 10.1016/j.jtos.2013.01.002","Phillips H. Cross-linkage formation in keratins. Nature. 1936;138(327):121–2. DOI: 10.1038/138327a0","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Kato Y., Uchida K., Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification. Photochem Photobiol. 1994;59(3):343–9. DOI: 10.1111/j.1751-1097.1994.tb05045.x","Spoerl E., Huhle M., Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66:97–103. DOI: 10.1006/exer.1997.0410","Wollensak G., Spoerl E., Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 2003 135(5):620–7. DOI: 10.1016/s0002-9394(02)02220-1","Seyedian M.A., Aliakbari S., Miraftab M., Hashemi H., Asgari S., Khabazkhoob M. Corneal collagen cross-linking in the treatment of progressive keratoconus: a randomized controlled contralateral eye study. Middle East Afr J Ophthalmol. 2015;22(3):340–5. DOI: 10.4103/0974-9233.159755","Бикбов М.М., Бикбова Г.М. Эктазии роговицы (патогенез, патоморфология, клиника, диагностика, лечение). М.; 2011.","Бикбов М.М., Шевчук Н.Е., Халимов А.Р. Влияние ультрафиолетового кросслинкинга на уровень цитокинов в слезной жидкости у пациентов с кератэктазиями. Цитокины и воспаление. 2015;14(2):54–7.","Бикбов М.М., Халимов А.Р., Усубов Э.Л. Ультрафиолетовый кросслинкинг роговицы. Вестник РАМН. 2016;71(3):224–32. DOI: 10.15690/vramn562","Бикбов М.М., Шевчук Н.Е., Халимов А.Р., Бикбова Г.М. Динамика уровня рибофлавина во влаге передней камеры глаза экспериментальных животных при стандартном насыщении стромы растворами для УФ-кросслинкинга роговицы. Вестник офтальмологии. 2016;132(6):29–35. DOI: 10.17116/oftalma2016132629-35","Бикбов М.М., Суркова В.К., Халимов А.Р., Усубов Э.Л. Результаты лечения пеллюцидной маргинальной дегенерации роговицы методом роговичного кросслинкинга. Вестник офтальмологии. 2017;133(3):58–64. DOI: 10.17116/oftalma2017133358-64","Zigman S., Paxhia T., Waldron W. Effects of near-UV radiation on the protein of the grey squirrel lens. Curr Eye Res. 1988;7(6):531–7. DOI: 10.3109/02713688809031808","Dodda J.M., Azar M.G., Sadiku R. Crosslinking trends in multicomponent hydrogels for biomedical applications. Macromol Biosci. 2021;21(12):e2100232. DOI: 10.1002/mabi.202100232","Gu H., He L., Liu L., Jin Y.C. Construction of dermal skeleton by double cross-linking with glutaraldehyde and ultraviolet radiation. Zhonghua Shao Shang Za Zhi. 2008;24(2):114–7. PMID: 18785411","Saito M., Marumo K. Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int. 2015;97(3):242–61. DOI: 10.1007/s00223-015-9985-5","Cornette P., Jaabar I.L., Dupres V., Werthel J.D., Berenbaum F., Houard X., et al. Impact of collagen crosslinking on dislocated human shoulder capsules-effect on structural and mechanical properties. Int J Mol Sci. 2022;23(4):2297. DOI: 10.3390/ijms23042297","Shweta A., Pahuja S. Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. International Research Journal of Pharmacy. 2013;4:45–51.","Ruixue L., Yang S., Zhengwei C., Yang L., Jian S., Wei B., et al. Highly bioactive peptide-HA photo-crosslinking hydrogel for sustained promoting bone regeneration. Chem Engin J. 2021;415:129015. DOI: 10.1016/j.cej.2021.129015","Capanema N.S.V., Mansur A.A.P., Carvalho S.M., Carvalho I.C., Chagas P., de Oliveira L.C.A., et al. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym. 2018;195:401–12. DOI: 10.1016/j.carbpol.2018.04.105","Zhao J., Zhu Y., Ye C., Chen Y., Wang Sh., Zou D., et al. Photothermal transforming agent and chemotherapeutic co-loaded electrospun nanofibers for tumor treatment. Int J Nanomedicine. 2019;14:3893–909. DOI: 10.2147/IJN.S202876","Ma H., Peng Y., Zhang S., Zhang Y., Min P. Effects and progress of photo-crosslinking hydrogels in wound healing improvement. Gels. 2022;8(10):609. DOI: 10.3390/gels8100609","Zou C.Y., Lei X.X., Hu J.J., Jiang Y.L., Li Q.J., Song Y.T., et al. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402. DOI: 10.1016/j.bioactmat.2022.02.034","Mao H., Zhao S., He Y., Feng M., Wu L., He Y., et al. Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free crosslinking. Carbohydr Polym. 2022;285:119254. DOI: 10.1016/j.carbpol.2022.119254","Wang J., Kong L., Gafur A., Peng X., Kristi N., Xu J., et al. Photooxidation crosslinking to recover residual stress in decellularized blood vessel. Regen Biomater. 2021;8(2):rbaa058. DOI: 10.1093/rb/rbaa058. PMID: 33738112","Schneider K.H., Rohringer S., Kapeller B., Grasl C., Kiss H., Heber S., et al. Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial small diameter vascular grafts. Acta Biomater. 2020;116:246–58. DOI: 10.1016/j.actbio.2020.08.037. PMID: 32871281","Munger K.A., Downey T.M., Haberer B., Pohlson K., Marshall L.L., Utecht R.E. A novel photochemical cross-linking technology to improve luminal gain, vessel compliance, and buckling post-angioplasty in porcine arteries. J Biomed Mater Res B Appl Biomater. 2016;104(2):375–84. DOI: 10.1002/jbm.b.33373. PMID: 25823876","Wang X., Ma B., Chang J. Preparation of decellularized vascular matrix by co-crosslinking of procyanidins and glutaraldehyde. Biomed Mater Eng. 2015;26(1–2):19–30. DOI: 10.3233/BME-151548. PMID: 26484552","Brasselet C., Durand E., Addad F., Al Haj Zen A., Smeets M.B., Laurent-Maquin D., et al. Collagen and elastin cross-linking: a mechanism of constrictive remodeling after arterial injury. Am J Physiol Heart Circ Physiol. 2005;289(5):H2228–33. DOI: 10.1152/ajpheart.00410.2005","Zhai W., Zhang H., Wu C., Zhang J., Sun X., Zhang H., et al. Crosslin­king of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. J Biomed Mater Res B Appl Biomater. 2014;102(6):1190–8. DOI: 10.1002/jbm.b.33102","Shortliffe L.M., Freiha F.S., Kessler R., Stamey T.A., Constantinou C.E. Treatment of urinary incontinence by the periurethral implantation of glutaraldehyde cross-linked collagen. J Urol. 1989;141(3):538–41. DOI: 10.1016/s0022-5347(17)40885-8","Richardson T.D., Kennelly M.J., Faerber G.J. Endoscopic injection of glutaraldehyde cross-linked collagen for the treatment of intrinsic sphincter deficiency in women. Urology. 1995;46(3):378–81. DOI: 10.1016/S0090-4295(99)80223-4","Frey P., Gudinchet F., Jenny P. GAX 65: new injectable cross-linked collagen for the endoscopic treatment of vesicoureteral reflux—a double-blind study evaluating its efficiency in children. J Urol. 1997;158(3 Pt 2):1210–2. PMID: 9258175","Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol. 2014;35(4):2871–82. DOI: 10.1007/s13277-013-1511-7","Iselin C.E. Periurethral collagen injections for incontinence following radical prostatectomy: does the patient benefit? Curr Opin Urol. 1999;9(3):209–12. DOI: 10.1097/00042307-199905000-00003","Appell R.A. Collagen injection therapy for urinary incontinence. Urol Clin North Am. 1994;21(1):177–82. PMID: 8284841","Glynn J.J., Polsin E.G., Hinds M.T. Crosslinking decreases the hemocompatibility of decellularized, porcine small intestinal submucosa. Acta Biomater. 2015;14:96–103. DOI: 10.1016/j.actbio.2014.11.038","Kumar D., Benson M.J., Bland J.E. Glutaraldehyde cross-linked collagen in the treatment of faecal incontinence. Br J Surg. 1998;85(7):978–9. DOI: 10.1046/j.1365-2168.1998.00751.x","Versteegden L.R., van Kampen K.A., Janke H.P., Tiemessen D.M., Hoogenkamp H.R., Hafmans T.G., et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater. 2017;52:1–8. DOI: 10.1016/j.actbio.2017.02.005","Versteegden L.R., Hoogenkamp H.R., Lomme R.M., Van Goor H., Tiemessen D.M., Geutjes P.J., et al. Design of an elasticized collagen scaffold: A method to induce elasticity in a rigid protein. Acta Biomater. 2016;15(44):277–85. DOI: 10.1016/j.actbio.2016.08.038","Lin H., Tang Y., Lozito T.P., Oyster N., Kang R.B., Fritch M.R., et al. Projection stereolithographic fabrication of BMP-2 gene-activated matrix for bone tissue engineering. Sci Rep. 2017;7(1):11327. DOI: 10.1038/s41598-017-11051-0","Wang Z., Kumar H., Tian Z., Jin X., Holzman J.F., Menard F., et al. Vi­sible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl Mater Interfaces. 2018;10(32):26859–69. DOI: 10.1021/acsami.8b06607"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8915"],"dc.date.accessioned_dt":"2025-07-09T13:58:55Z","dc.date.accessioned":["2025-07-09T13:58:55Z"],"dc.date.available":["2025-07-09T13:58:55Z"],"publication_grp":["123456789/8915"],"bi_4_dis_filter":["hydrogel\n|||\nhydrogel","гидрогель\n|||\nгидрогель","polymers\n|||\npolymers","перекрестно-сшивающие реагенты\n|||\nперекрестно-сшивающие реагенты","биосовместимые материалы\n|||\nбиосовместимые материалы","crosslinking\n|||\ncrosslinking","полимеры\n|||\nполимеры","bioprinting\n|||\nbioprinting","collagen\n|||\ncollagen","кросслинкинг\n|||\nкросслинкинг","crosslinking reagents\n|||\ncrosslinking reagents","biocompatible materials\n|||\nbiocompatible materials","биопечать\n|||\nбиопечать","коллаген\n|||\nколлаген"],"bi_4_dis_partial":["коллаген","кросслинкинг","collagen","биопечать","биосовместимые материалы","полимеры","bioprinting","hydrogel","crosslinking reagents","перекрестно-сшивающие реагенты","biocompatible materials","polymers","crosslinking","гидрогель"],"bi_4_dis_value_filter":["коллаген","кросслинкинг","collagen","биопечать","биосовместимые материалы","полимеры","bioprinting","hydrogel","crosslinking reagents","перекрестно-сшивающие реагенты","biocompatible materials","polymers","crosslinking","гидрогель"],"bi_sort_1_sort":"biopolymer crosslinking: application and prospects","bi_sort_3_sort":"2025-07-09T13:58:55Z","read":["g0"],"_version_":1837178065061412864},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:55.718Z","search.uniqueid":"2-8027","search.resourcetype":2,"search.resourceid":8027,"handle":"123456789/8916","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-1-57-65"],"dc.abstract":["

This paper presents a review of the state-of-the-art in skin melanoma treatment with a particular focus on immunotherapy and checkpoint inhibitors. Melanoma as a malignant neoplasm presents a serious threat given its high mortality rate, which emphasizes the need for further research and development of effective treatment strategies. Immune checkpoint inhibitors have shown a significant increase in the survival rate for skin melanoma patients. Nevertheless, the problem of drug resistance remains unresolved as a reaction to treatment differs from one patient to another even with high mutational burden. Obviously, immunotherapy may be accompanied by complications, which also emphasizes the need for an individualized approach to therapy. In order to predict treatment efficacy and understand possible resistance, mutation burden, T-cell receptor diversity, and specific antigens should be taken into account. All the above confirms the importance of a systematic approach to melanoma treatment including the use of modern drugs as well as a deep understanding of the patient’s immune status. Thus, this paper outlines the need for further research in the mechanisms of action of immunotherapeutic drugs as well as for the identification of biomarkers that may serve as predictors of response to therapy. This may lead to the development of more effective treatment strategies given the available advances in molecular biology and genetics. Addressing issues related to individualization of therapy based on immune status should become an important part of clinical practice.

","

Данная работа представляет обзор современного состояния проблемы лечения меланомы кожи, особое внимание уделяется иммунотерапии ингибиторами контрольных точек иммунитета. Меланома как злокачественное новообразование представляет серьезную угрозу с учетом ее высокой смертности, что подчеркивает необходимость дальнейших исследований и разработок эффективных стратегий лечения. Препараты контроля точек иммунного ответа показывают значительное улучшение выживаемости у пациентов. Тем не менее проблема резистентности к препаратам остается нерешенной, так как не у всех пациентов наблюдается одинаковый ответ на лечение даже при высоких уровнях мутационной нагрузки. Очевидно, что использование иммунотерапии может сопровождаться осложнениями, что также подчеркивает необходимость индивидуализированного подхода к терапии. Необходимо учитывать мутационную нагрузку, разнообразие Т-клеточных рецепторов и наличие специфических антигенов для предсказания эффективности лечения и понимания возможной резистентности. Результаты сказанного подтверждают важность системного подхода в лечении меланомы, включающего не только применение современных препаратов, но и глубокое понимание иммунного статуса пациента. Таким образом, в работе отмечена необходимость дальнейшего изучения механизмов действия иммунотерапевтических препаратов, а также выявление биомаркеров, которые могут служить предикторами ответа на терапию. Учитывая имеющиеся достижения в области молекулярной биологии и генетики, это может привести к разработке более эффективных лечебных стратегий. Решение вопросов, связанных с индивидуализацией терапии на основании иммунного статуса, должно стать важной частью клинической практики.

"],"dc.abstract.en":["

This paper presents a review of the state-of-the-art in skin melanoma treatment with a particular focus on immunotherapy and checkpoint inhibitors. Melanoma as a malignant neoplasm presents a serious threat given its high mortality rate, which emphasizes the need for further research and development of effective treatment strategies. Immune checkpoint inhibitors have shown a significant increase in the survival rate for skin melanoma patients. Nevertheless, the problem of drug resistance remains unresolved as a reaction to treatment differs from one patient to another even with high mutational burden. Obviously, immunotherapy may be accompanied by complications, which also emphasizes the need for an individualized approach to therapy. In order to predict treatment efficacy and understand possible resistance, mutation burden, T-cell receptor diversity, and specific antigens should be taken into account. All the above confirms the importance of a systematic approach to melanoma treatment including the use of modern drugs as well as a deep understanding of the patient’s immune status. Thus, this paper outlines the need for further research in the mechanisms of action of immunotherapeutic drugs as well as for the identification of biomarkers that may serve as predictors of response to therapy. This may lead to the development of more effective treatment strategies given the available advances in molecular biology and genetics. Addressing issues related to individualization of therapy based on immune status should become an important part of clinical practice.

"],"subject":["melanoma","TREC","T-cell receptor excision circles","immunotherapy","mutations","PD1","PDL1","immune checkpoint inhibitors","меланома","TREC","Т-рецепторные эксцизионные кольца","иммунотерапия","мутации","PD1","PDL1","ингибиторы иммунных контрольных точек"],"subject_keyword":["melanoma","melanoma","TREC","TREC","T-cell receptor excision circles","T-cell receptor excision circles","immunotherapy","immunotherapy","mutations","mutations","PD1","PD1","PDL1","PDL1","immune checkpoint inhibitors","immune checkpoint inhibitors","меланома","меланома","TREC","TREC","Т-рецепторные эксцизионные кольца","Т-рецепторные эксцизионные кольца","иммунотерапия","иммунотерапия","мутации","мутации","PD1","PD1","PDL1","PDL1","ингибиторы иммунных контрольных точек","ингибиторы иммунных контрольных точек"],"subject_ac":["melanoma\n|||\nmelanoma","trec\n|||\nTREC","t-cell receptor excision circles\n|||\nT-cell receptor excision circles","immunotherapy\n|||\nimmunotherapy","mutations\n|||\nmutations","pd1\n|||\nPD1","pdl1\n|||\nPDL1","immune checkpoint inhibitors\n|||\nimmune checkpoint inhibitors","меланома\n|||\nмеланома","trec\n|||\nTREC","т-рецепторные эксцизионные кольца\n|||\nТ-рецепторные эксцизионные кольца","иммунотерапия\n|||\nиммунотерапия","мутации\n|||\nмутации","pd1\n|||\nPD1","pdl1\n|||\nPDL1","ингибиторы иммунных контрольных точек\n|||\nингибиторы иммунных контрольных точек"],"subject_tax_0_filter":["melanoma\n|||\nmelanoma","trec\n|||\nTREC","t-cell receptor excision circles\n|||\nT-cell receptor excision circles","immunotherapy\n|||\nimmunotherapy","mutations\n|||\nmutations","pd1\n|||\nPD1","pdl1\n|||\nPDL1","immune checkpoint inhibitors\n|||\nimmune checkpoint inhibitors","меланома\n|||\nмеланома","trec\n|||\nTREC","т-рецепторные эксцизионные кольца\n|||\nТ-рецепторные эксцизионные кольца","иммунотерапия\n|||\nиммунотерапия","мутации\n|||\nмутации","pd1\n|||\nPD1","pdl1\n|||\nPDL1","ингибиторы иммунных контрольных точек\n|||\nингибиторы иммунных контрольных точек"],"subject_filter":["melanoma\n|||\nmelanoma","trec\n|||\nTREC","t-cell receptor excision circles\n|||\nT-cell receptor excision circles","immunotherapy\n|||\nimmunotherapy","mutations\n|||\nmutations","pd1\n|||\nPD1","pdl1\n|||\nPDL1","immune checkpoint inhibitors\n|||\nimmune checkpoint inhibitors","меланома\n|||\nмеланома","trec\n|||\nTREC","т-рецепторные эксцизионные кольца\n|||\nТ-рецепторные эксцизионные кольца","иммунотерапия\n|||\nиммунотерапия","мутации\n|||\nмутации","pd1\n|||\nPD1","pdl1\n|||\nPDL1","ингибиторы иммунных контрольных точек\n|||\nингибиторы иммунных контрольных точек"],"dc.subject_mlt":["melanoma","TREC","T-cell receptor excision circles","immunotherapy","mutations","PD1","PDL1","immune checkpoint inhibitors","меланома","TREC","Т-рецепторные эксцизионные кольца","иммунотерапия","мутации","PD1","PDL1","ингибиторы иммунных контрольных точек"],"dc.subject":["melanoma","TREC","T-cell receptor excision circles","immunotherapy","mutations","PD1","PDL1","immune checkpoint inhibitors","меланома","TREC","Т-рецепторные эксцизионные кольца","иммунотерапия","мутации","PD1","PDL1","ингибиторы иммунных контрольных точек"],"dc.subject.en":["melanoma","TREC","T-cell receptor excision circles","immunotherapy","mutations","PD1","PDL1","immune checkpoint inhibitors"],"title":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"title_keyword":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"title_ac":["immune checkpoint inhibitors in melanoma treatment: advances and obstacles\n|||\nImmune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия\n|||\nПрименение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"dc.title_sort":"Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","dc.title_hl":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"dc.title_mlt":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"dc.title":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles","Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"dc.title_stored":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Immune Checkpoint Inhibitors in Melanoma Treatment: Advances and Obstacles"],"dc.abstract.ru":["

Данная работа представляет обзор современного состояния проблемы лечения меланомы кожи, особое внимание уделяется иммунотерапии ингибиторами контрольных точек иммунитета. Меланома как злокачественное новообразование представляет серьезную угрозу с учетом ее высокой смертности, что подчеркивает необходимость дальнейших исследований и разработок эффективных стратегий лечения. Препараты контроля точек иммунного ответа показывают значительное улучшение выживаемости у пациентов. Тем не менее проблема резистентности к препаратам остается нерешенной, так как не у всех пациентов наблюдается одинаковый ответ на лечение даже при высоких уровнях мутационной нагрузки. Очевидно, что использование иммунотерапии может сопровождаться осложнениями, что также подчеркивает необходимость индивидуализированного подхода к терапии. Необходимо учитывать мутационную нагрузку, разнообразие Т-клеточных рецепторов и наличие специфических антигенов для предсказания эффективности лечения и понимания возможной резистентности. Результаты сказанного подтверждают важность системного подхода в лечении меланомы, включающего не только применение современных препаратов, но и глубокое понимание иммунного статуса пациента. Таким образом, в работе отмечена необходимость дальнейшего изучения механизмов действия иммунотерапевтических препаратов, а также выявление биомаркеров, которые могут служить предикторами ответа на терапию. Учитывая имеющиеся достижения в области молекулярной биологии и генетики, это может привести к разработке более эффективных лечебных стратегий. Решение вопросов, связанных с индивидуализацией терапии на основании иммунного статуса, должно стать важной частью клинической практики.

"],"dc.fullHTML":["

ВВЕДЕНИЕ

\n

Меланома кожи относится к злокачественным новообразованиям кожи нейроэктодермального происхождения из меланоцитов [1]. Пациенты с генерализованной формой демонстрируют 5-летнюю выживаемость в 23 %, что делает метастазирование меланомы основной причиной смертности [2]. На протяжении последних нескольких лет во всем мире наблюдается стабильный и неуклонный рост заболеваемости меланомой, что делает эту проблему актуальной [3].

\n

С внедрением молекулярно-генетических методов диагностики, а также значительным прогрессом в области иммуноонкологии у пациентов с генерализованными формами злокачественных новообразований наблюдается заметное улучшение результатов лечения. Достижения в области фундаментальной медицины стали основой для создания инновационных высокоэффективных противоопухолевых препаратов, которые, в свою очередь, значительно повлияли на улучшение показателей выживаемости пациентов. Последние достижения в онкологии привели к заметному сдвигу в сторону таргетной терапии, что обусловлено более глубоким пониманием патогенеза опухолей кожи. Но при этом иммунотерапия позволила улучшить результаты лечения большинства пациентов независимо от наличия драйверных мутаций [4].

\n

Нужно отметить, что многие годы интерфероны и традиционная химиотерапия оставались основными методами терапии меланомы кожи. Однако используемые методы лечения демонстрировали скромные результаты, поскольку медиана общей выживаемости не превышала шести месяцев, но при этом только 25 % пациентов могли рассчитывать на одногодичную выживаемость. Важным шагом в терапии меланомы стало использование интерферона, который многие годы оставался единственным вариантом иммунотерапии. Однако применение данного препарата сопровождалось выраженной токсичностью и оказывало положительный эффект только у небольшой группы пациентов [5].

\n

Переход к более современным методам лечения меланомы стал возможен благодаря значительным достижениям в области иммунотерапии. Это связано с разработкой лекарственных препаратов, ингибирующих иммунные контрольные точки (ИКТ). Препараты, ингибирующие ИКТ, блокируют цитотоксический антиген-4, связанный с Т-лимфоцитами (CTLA-4), а также белок, способствующий программируемой гибели клеток (PD-1) или его лиганд PD-L1 [5–7]. Эти инновационные подходы к терапии существенно изменили парадигму лечения меланомы. В эру иммунотерапии такие препараты, как ипилимумаб, ниволумаб и пембролизумаб, стали первыми средствами, которые продемонстрировали значительное улучшение в показателях общей выживаемости у пациентов с меланомой. Эти достижения не только открыли новые горизонты в терапии, но и способствовали кардинальному изменению подходов к лечению и прогнозированию исходов заболевания у пациентов с меланомой [5].

\n

Целью данной работы является обзор данных научной литературы о перспективах применения ИКТ у больных меланомой.

\n

Роль ингибиторов иммунных контрольных точек в формировании спецефического противоопухолевого иммунитета

\n

В последнее время значительное внимание уделяется использованию ингибиторов контрольных точек иммунитета как одного из перспективных направлений лечения злокачественных новообразований. Их применение у определенной категории пациентов может привести к достижению полного ответа, что, в свою очередь, может способствовать долгосрочной ремиссии заболевания. Однако, несмотря на эти позитивные результаты, необходимо отметить, что не у всех пациентов можно добиться одинаково положительного ответа на терапию. У некоторых пациентов на фоне лечения наблюдается прогрессия заболевания, что подчеркивает сложность и индивидуальные особенности каждого клинического случая, требующего дальнейшего изучения механизмов формирования специфического противоопухолевого иммунитета и ускользания опухоли от иммунного надзора. Таким образом, дальнейшие исследования в этой области имеют ключевое значение для оптимизации стратегий и повышения эффективности лечения меланомы [8]. При этом необходимо отметить, что даже при одинаковой мутационной нагрузке и экспрессии PD-L наблюдаются разные ответы на терапию ИКТ, что указывает на влияние множества различных факторов на формирование специфического противоопухолевого иммунитета.

\n

Для становления противоопухолевого иммунитета необходимо формирование комплементарной связи между Т-клеточными рецепторами (TCR) и неоантигенами. Эта взаимосвязь играет ключевую роль в активации Т-клеток, что в последующем способствует распознаванию антигенов злокачественных клеток. Одним из критически важных факторов, способствующих успешному формированию специфического иммунного ответа, является разнообразие антигенов, представленных на поверхности опухолевых клеток. Это разнообразие, в свою очередь, коррелирует с мутационной нагрузкой, то есть количеством мутаций в геноме злокачественных клеток. В свою очередь, мутации ведут к образованию новых антигенов, которые могут быть распознаны иммунной системой как чужеродные. Чем выше мутационная нагрузка, тем больше вероятность формирования антигенов, которые могут запустить иммунный ответ. Из вышесказанного следует, что вероятность формирования противоопухолевого иммунитета зависит от вариабельности TCR и разнообразия неоантигенов. Таким образом, вторым важным компонентом в формировании спецефического противоопухолевого иммунитета является репертуар TCR [9][10].

\n

Использование препаратов ИКТ способствует достижению определенных клинических результатов, однако при изменениях антигенного профиля злокачественных клеток наблюдается утрата комплементарной связи с T-клеточным рецептором, что зачастую характерно для иммунодефицита. Из этого следует, что одной из главных причин уклонения от иммунного надзора злокачественных новообразований является наличие первичного или вторичного состояния иммунодефицита [9]. При этом в терапии меланомы применяются различные подходы для преодоления резистентности к ИКТ. Одной из стратегий, направленных на повышение эффективности иммунотерапии, является комбинированное использование ИКТ с разными противоопухолевыми препаратами. Эта стратегия позволяет усилить иммунный ответ и улучшить клинические результаты [11][12].

\n

Комбинированные методы лечения меланомы могут значительно увеличить разнообразие антигенов, что, в свою очередь, повышает вероятность формирования комплементарных связей с T-клеточными рецепторами. Это разнообразие становится ключевым фактором в формировании более эффективного иммунного ответа. Однако следует учитывать, что такая стратегия лечения хотя приводит к более высокой частоте объективных ответов, но сопряжена с риском развития нежелательных явлений. Увеличение интенсивности терапии может вызывать как иммуноопосредованные токсические реакции, так и системные побочные эффекты, которые требуют коррекции и мониторинга. Таким образом, для пациентов с меланомой необходимость баланса между эффективностью лечения и токсичностью становится важным аспектом в разработке индивидуализированных схем терапии [13][14].

\n

Маркеры эффективности применения ингибиторов иммунных контрольных точек и перспективы ремодуляции иммунной системы противоопухолевыми препаратами

\n

У больных со злокачественными новообразованиями для определения иммунодефицитных состояний можно использовать тест-системы для оценки уровня эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC) [12][15].

\n

В процессе применения различных схем химиотерапии у пациентов с онкологическими заболеваниями можно добиться ремодуляции иммунной системы, что сказывается на изменении их иммунного статуса [16]. Известно, что препараты, используемые для лечения меланомы, такие как интерфероны, оказывают позитивное влияние на иммунную систему, способствуя ее активации. [17][18]. Эти факты отражают результаты в лечении пациентов с меланомой. Интерферон-альфа (ИФН-α) был одобрен и включен в клинические рекомендации и многие годы оставался единственным препаратом для адъювантной терапии меланомы IIB/C стадии. Разными авторами установлено, что ИФН-α эффективно модулирует иммунный ответ и усиливает клинический эффект при терапии анти-PD-1 препаратами. Анализ результатов лечения пациентов с операбельной меланомой III/IV стадии, которым проводилась терапия ИФН-α, а в последующем назначали пембролизумаб, показал улучшение возможности контроля заболевания [17]. Результаты исследования Донг-Донг Цзя и соавторов при меланоме продемонстрировали эффективность применения пембролизумаба в комбинации с интерфероном ИФН-α [17]. Тем не менее у определенной группы пациентов при отсутствии ожидаемого эффекта от терапии ИКТ возникает потребность в других вариантах стимуляции иммунной системы, что требует разработки новых комбинаций лекарственной терапии.

\n

В таких ситуациях ключевым является поиск новых комбинаций лекарственных средств, которые помогут преодолеть резистентность и усилить ответ на терапию [19]. В рандомизированном клиническом исследовании III фазы, где анализировалась эффективность применения спартализумаба в комбинации с дабрафенибом и траметинибом в лечении генерализованной меланомы при наличии мутации V600 в гене BRAF, продемонстрировано улучшение как выживаемости без прогрессирования, так и объективного ответа. Тем не менее, несмотря на положительные результаты, данное исследование не достигло своей первичной конечной точки [19]. Это подчеркивает сложность и многофакторность лечения меланомы, где различные факторы могут повлиять на результаты. Из вышеизложенного следует, что необходимо дальнейшее исследование, чтобы лучше понять, как оптимизировать комбинации терапии для достижения максимального эффекта.

\n

Таким образом, хотя современные исследования значительно углубили наше понимание механизмов действия ИКТ и их роли в улучшении контроля над заболеванием, задача выявления предикторов чувствительности к этим препаратам остается актуальной. Необходимость в выявлении биомаркеров, способных прогнозировать ответ пациентов на иммунотерапию, становится все более очевидной, поскольку это позволит индивидуализировать подходы к лечению и избегать ненужных побочных эффектов у тех, кто, возможно, не получит ожидаемой выгоды от такой терапии. При терапии меланомы в клинической практике не принято определять уровень PD-L или мутационную нагрузку (TMB), что связано с высокой частотой ответа метастатической меланомы на иммунотерапию. В целом медиана мутационной нагрузки при всех вариантах меланомы составляет 6,5 мутации на мегабайт (Мб) (250,5 мутации на экзом), с меж­квартильным диапазоном (Q1Q3) от 2,0 до 14,4 мутаций на Мб (77,75–578,5 мутации на экзом). Несмотря на то что наблюдается прямая корреляционная зависимость между ответом на иммунотерапию и TMB, многие пациенты с высокой мутационной нагрузкой опухоли не отвечают на лечение, что убедительно свидетельствует о том, что TMB не может применяться в качестве прогностического биомаркера для терапии анти-PD1 препаратами [8].

\n

В связи с высокой мутационной нагрузкой иммунотерапия проявляет эффективность и является одним из основных методов лечения меланомы [20]. Высокая частота мутаций повышает вероятность образования неоантигенов, которые способствуют запуску специфического противоопухолевого иммунитета [21]. При назначении иммунотерапии препаратами контроля точек иммунного ответа предотвращается взаимодействие лигандов PD-L1 с рецепторами PD1, что в последующем отражается в их исключительной эффективности при меланоме [22]. Так что целью иммунотерапии является стимулирование иммунной системы к формированию специфического иммунитета против меланомы [23].

\n

Известно, что рецептор PD-1 и PD-L1 лиганд экспрессируются не только на Т-лимфоцитах, но и на различных других клетках иммунной системы, включая естественные киллерные клетки (NK), моноциты и дендритные клетки. Это расширяет понимание роли PD-1/PD-L1 в регуляции иммунного ответа и подчеркивает сложность взаимодействий между различными клетками [24–26]. Путь PD-1 влияет на иммунный ответ через ряд механизмов, включая угнетение активности Т-клеток, усиление пролиферации и супрессивной функции Т-регуляторных лимфоцитов (Treg), а также снижение цитотоксической активности как B-клеток, так и NK-клеток [27].

\n

Известно, что длительность и эффективность иммуносупрессии определяются силой взаимодействия лигандов с рецепторами. В свою очередь, взаимодействие PD-L-лигандов c PD-рецепторами позволяет не только опухоли уклоняться от иммунного надзора, но и предотвращает развитие аутоиммунных заболеваний. При этом сродство по силе между рецептором PD-1 и лигандом PD-L1 в три раза превосходит сродство, наблюдаемое между PD-1 и PD-L2. Когда PD-L1 взаимодействует с PD-1, находящимся на поверхности Т-клеток, это вызывает процессы, приводящие к истощению и дисфункции этих клеток, а также к их нейтрализации и продукции интерлейкина-10 в опухолевой ткани. Подобный механизм при сверхэкспрессии PD-L1 позволяет злокачественным новообразованиям защититься от цитотоксического воздействия Т-клеток CD8+ [28].

\n

Большая группа регуляторных белков, таких как интерлейкин-12 (IL-12) и интерферон-гамма (IFN-γ), способствуют усиленной экспрессии PD-1, а также PD-L1 и PD-L2. Этот процесс играет важную роль в регуляции иммунного ответа, предотвращая чрезмерную активацию Т-эффекторных клеток, которые могут способствовать развитию аутоиммунных реакций или хронических воспалительных процессов. Кроме того, исследования показали, что PD-L1 может ингибировать CD80, что отражает наличие сложных и многогранных взаимодействий между белками, такими как CTLA-4 и PD-1, а также другими сигнальными путями в контексте иммунной регуляции. Эти взаимодействия позволяют клеткам иммунного ответа адаптироваться к различным условиям и поддерживать баланс между активацией и подавлением, что весьма важно для поддержания гомеостаза в организме [29][30]. Основываясь на многообещающих результатах клинических исследований, антитела, ингибирующие PD-1, а также ингибиторы PD-L1 применяют в терапии метастатической меланомы.

\n

Отмечено, что ингибиторы PD-L1 не продемонстрировали значительного преимущества по сравнению с ингибиторами PD-1. Тем не менее известен механизм действия ингибиторов PD-1, которые, как правило, более эффективно восстанавливают активность Т-клеток, что может приводить к более выраженному противоопухолевому эффекту [31]. Это может быть связано с различиями в способности этих препаратов активировать иммунный ответ и блокировать сигналы, способствующие истощению Т-клеток.

\n

При генерализованной меланоме широко применяются такие препараты ИКТ, как ниволумаб и пембролизумаб. Пролголимаб как новый ингибитор PD-1 в терапии нерезектабельной и метастатической меланомы обладает рядом преимуществ перед другими препаратами. Эффективность пролголимаба у пациентов с метастатической или нерезектабельной меланомой была продемонстрирована в международном многоцентровом открытом рандомизированном исследовании MIRACULUM. Действия пролголимаба базируются на блокаде сигнальных путей, что позволяет реактивировать цитотоксические Т-лимфоциты, специфичные к опухоли. Это происходит благодаря взаимодействию пролголимаба с рецептором PD-1, который играет ключевую роль в подавлении иммунного ответа на опухоли. Пролголимаб — иммуноглобулин изотипа IgG1, гибрид лямбда-каппа с молекулярной массой 149 кДа. Модификация Fc-фрагмента пролголимаба предотвращает его цитотоксическое влияние на другие клетки, экспрессирующие PD-1, что помогает минимизировать потенциальные побочные эффекты и улучшить селективность действия лекарства. Высокая аффинность этого антитела к PD-1 рецепторам позволяет достичь значительного ингибирования взаимодействия между PD-1 с лигандами PD-L1 и PD-L2 на поверхности как опухолевых клеток, так и некоторых иммунокомпетентных клеток. Таким образом, использование пролголимаба не только способствует активации противоопухолевого иммунитета, но и формирует терапевтический потенциал для лечения злокачественных новообразований, которые ранее могли быть устойчивы к другим ИКТ. Это открывает новые горизонты для врачей и пациентов, способствуя повышению эффективности терапии [25][32–34].

\n

Выявление роли молекул иммунных контрольных точек, таких как CTLA-4 и PD1/PD-L1, в канцерогенезе меланомы привело к разработке новых препаратов. Ингибиторы иммунных контрольных точек, которые впервые в истории терапии злокачественных новообразований вызвали устойчивый ответ у пациентов с меланомой, изменили парадигму лечения. Однако, как обсуждается в этой статье, все еще существует неудовлетворенная потребность в поиске новых препаратов для лечения меланомы. Последнее обусловлено значительной долей пациентов, не отвечающих на терапию ингибиторами контрольных точек иммунного ответа. У другой группы пациентов, у которых наблюдается первоначальный ответ на лечение, в последующем может развиваться лекарственная устойчивость даже при добавлении других препаратов к лечению [35]. Несмотря на то что в области терапии меланомы достигнуты огромные успехи, особенно в иммунотерапии, она по-прежнему демонстрирует высокую смертность после метастазирования в различные органы. Кроме того, иммуноопосредованные нежелательные явления, связанные с применением иммунотерапии, остаются основными препятствиями на пути к достижению желаемой выживаемости среди пациентов [36].

\n

Экспрессируемый лиганд PD-L1 после связывания с PD-1 рецепторами на поверхности Т-клеток может вызывать запрограммированную гибель Т-клеток, что приводит к снижению иммунной активности и ускользанию меланомы от иммунного надзора, но при назначении препаратов контроля точек иммунного ответа реактивируется специфический противоопухолевый иммунитет [37]. И, тем не менее, из представленных результатов клинических исследований и реальной клинической практики следует, что не у всех пациентов со злокачественными новообразованиями одинаково эффективны препараты контроля иммунных точек, независимо от MSI-H и уровня экспрессии PD-L [38]. В течение продолжительного времени пациентам назначаются препараты, контролирующие иммунные точки, однако результаты многочисленных исследований не учитывают уровень TREC и KREC, которые могут служить предикторами как уровня, так и эффективности иммунотерапии [12][15]. Понимание патогенеза и клинической картины противоопухолевого иммунитета действительно представляет собой критически важный аспект в онкологии. Проведение исследований в этой области не только способствует более эффективному управлению этими процессами, но и предоставляет возможность прогнозирования эффективности применения препаратов, контролирующих иммунные точки [39]. При этом следует учитывать неоднородность группы пациентов и гетерогенность опухоли, поскольку данные факторы оказывают значительное влияние на эффективность применения различных противоопухолевых препаратов. Это подчеркивает, что подход к ведению пациентов с гетерогенным иммунным статусом зачастую выходит за пределы стандартных клинических рекомендаций и требует междисциплинарного подхода.

\n

Известно, что при иммунодефицитном состоянии могут наблюдаться неоплазии, что обусловлено дефицитом иммунного надзора. Кроме того, при иммунодефицитных состояниях ожидаема прогрессия меланомы и развитие резистентности к препаратам контроля иммунных точек. Из проведенного анализа можно сделать вывод о том, что у пациентов, страдающих злокачественными новообразованиями, могут возникать иммунодефицитные состояния различных степеней тяжести, которые возможно своевременно диагностировать, определяя уровни TREC/KREC [40][41].

\n

Существование вариаций в реакциях на терапию может быть обусловлено мутационной нагрузкой и разнообразием T-клеточных рецепторов (TCR), а также наличием специфичных антигенов, что указывает на необходимость индивидуализированного подхода в лечении каждого пациента [42]. Следует подчеркнуть важность изучения параметров, таких как уровень эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC), в контексте их возможного влияния на эффективность применения препаратов ИКТ. К сожалению, текущая клиническая практика часто игнорирует эти критерии, что может приводить к недостаточной персонализации терапии и снижению ее эффективности. Также следует обратить внимание на проблему токсичности, связанной с иммунотерапией. Хотя многие пациенты демонстрируют положительную динамику, другие сталкиваются с серьезными побочными эффектами, что также подчеркивает необходимость в разработке новых стратегий применения комбинаций препаратов, которые могут повысить терапевтическую эффективность при снижении общего риска для пациента [43][44].

\n

Из рассмотренных вариантов лечения особый интерес представляют комбинации иммунотерапии с цитокинами, такими как интерфероны [45]. Этот подход может стимулировать иммунный ответ и активировать противоопухолевые механизмы [41]. Однако требуются дополнительные исследования для оценки реальной клинической пользы подобных комплексных схем лечения. Высокий интерес остается к комбинации препаратов контроля точек иммунного ответа с BRAF-ингибиторами и MEK-ингибиторами [19][21][46][47], которые также демонстрируют улучшение результатов контроля над заболеванием. Данные исследований свидетельствуют о том, что комбинация ингибиторов иммунных контрольных точек в сочетании BRAF-ингибиторами и MEK-ингибиторами обладает более высокой противоопухолевой активностью по сравнению с BRAF-ингибиторами и MEK-ингибиторами в отдельности [19].

\n

На уровне клинических исследований наиболее актуальным в настоящий момент является определение предикторов ответа на терапию. Новый подход к объединению различных методов терапии и диагностики требует от клиницистов гибкости, что может стать ключевым элементом в борьбе с этой болезнью.

\n

Таким образом, данный обзор поднимает важные вопросы и предлагает направления для дальнейших исследований, направленных на улучшение качества жизни и выживаемости пациентов с меланомой.

\n

ЗАКЛЮЧЕНИЕ

\n

Современные подходы к лечению меланомы кожи изменились благодаря иммунотерапии ингибиторами контрольных точек, значительно улучшившей выживаемость пациентов с метастатической формой заболевания. Проблема резистентности остается актуальной, поскольку разные пациенты реагируют на лечение по-разному даже при высокой мутационной нагрузке. Важно учитывать иммунный статус пациента для предсказания эффективности терапии и понимания возможных осложнений. Таким образом, комплексный подход, включающий индивидуализацию лечения, остается ключевым в лечении меланомы.

"],"dc.fullHTML.ru":["

ВВЕДЕНИЕ

\n

Меланома кожи относится к злокачественным новообразованиям кожи нейроэктодермального происхождения из меланоцитов [1]. Пациенты с генерализованной формой демонстрируют 5-летнюю выживаемость в 23 %, что делает метастазирование меланомы основной причиной смертности [2]. На протяжении последних нескольких лет во всем мире наблюдается стабильный и неуклонный рост заболеваемости меланомой, что делает эту проблему актуальной [3].

\n

С внедрением молекулярно-генетических методов диагностики, а также значительным прогрессом в области иммуноонкологии у пациентов с генерализованными формами злокачественных новообразований наблюдается заметное улучшение результатов лечения. Достижения в области фундаментальной медицины стали основой для создания инновационных высокоэффективных противоопухолевых препаратов, которые, в свою очередь, значительно повлияли на улучшение показателей выживаемости пациентов. Последние достижения в онкологии привели к заметному сдвигу в сторону таргетной терапии, что обусловлено более глубоким пониманием патогенеза опухолей кожи. Но при этом иммунотерапия позволила улучшить результаты лечения большинства пациентов независимо от наличия драйверных мутаций [4].

\n

Нужно отметить, что многие годы интерфероны и традиционная химиотерапия оставались основными методами терапии меланомы кожи. Однако используемые методы лечения демонстрировали скромные результаты, поскольку медиана общей выживаемости не превышала шести месяцев, но при этом только 25 % пациентов могли рассчитывать на одногодичную выживаемость. Важным шагом в терапии меланомы стало использование интерферона, который многие годы оставался единственным вариантом иммунотерапии. Однако применение данного препарата сопровождалось выраженной токсичностью и оказывало положительный эффект только у небольшой группы пациентов [5].

\n

Переход к более современным методам лечения меланомы стал возможен благодаря значительным достижениям в области иммунотерапии. Это связано с разработкой лекарственных препаратов, ингибирующих иммунные контрольные точки (ИКТ). Препараты, ингибирующие ИКТ, блокируют цитотоксический антиген-4, связанный с Т-лимфоцитами (CTLA-4), а также белок, способствующий программируемой гибели клеток (PD-1) или его лиганд PD-L1 [5–7]. Эти инновационные подходы к терапии существенно изменили парадигму лечения меланомы. В эру иммунотерапии такие препараты, как ипилимумаб, ниволумаб и пембролизумаб, стали первыми средствами, которые продемонстрировали значительное улучшение в показателях общей выживаемости у пациентов с меланомой. Эти достижения не только открыли новые горизонты в терапии, но и способствовали кардинальному изменению подходов к лечению и прогнозированию исходов заболевания у пациентов с меланомой [5].

\n

Целью данной работы является обзор данных научной литературы о перспективах применения ИКТ у больных меланомой.

\n

Роль ингибиторов иммунных контрольных точек в формировании спецефического противоопухолевого иммунитета

\n

В последнее время значительное внимание уделяется использованию ингибиторов контрольных точек иммунитета как одного из перспективных направлений лечения злокачественных новообразований. Их применение у определенной категории пациентов может привести к достижению полного ответа, что, в свою очередь, может способствовать долгосрочной ремиссии заболевания. Однако, несмотря на эти позитивные результаты, необходимо отметить, что не у всех пациентов можно добиться одинаково положительного ответа на терапию. У некоторых пациентов на фоне лечения наблюдается прогрессия заболевания, что подчеркивает сложность и индивидуальные особенности каждого клинического случая, требующего дальнейшего изучения механизмов формирования специфического противоопухолевого иммунитета и ускользания опухоли от иммунного надзора. Таким образом, дальнейшие исследования в этой области имеют ключевое значение для оптимизации стратегий и повышения эффективности лечения меланомы [8]. При этом необходимо отметить, что даже при одинаковой мутационной нагрузке и экспрессии PD-L наблюдаются разные ответы на терапию ИКТ, что указывает на влияние множества различных факторов на формирование специфического противоопухолевого иммунитета.

\n

Для становления противоопухолевого иммунитета необходимо формирование комплементарной связи между Т-клеточными рецепторами (TCR) и неоантигенами. Эта взаимосвязь играет ключевую роль в активации Т-клеток, что в последующем способствует распознаванию антигенов злокачественных клеток. Одним из критически важных факторов, способствующих успешному формированию специфического иммунного ответа, является разнообразие антигенов, представленных на поверхности опухолевых клеток. Это разнообразие, в свою очередь, коррелирует с мутационной нагрузкой, то есть количеством мутаций в геноме злокачественных клеток. В свою очередь, мутации ведут к образованию новых антигенов, которые могут быть распознаны иммунной системой как чужеродные. Чем выше мутационная нагрузка, тем больше вероятность формирования антигенов, которые могут запустить иммунный ответ. Из вышесказанного следует, что вероятность формирования противоопухолевого иммунитета зависит от вариабельности TCR и разнообразия неоантигенов. Таким образом, вторым важным компонентом в формировании спецефического противоопухолевого иммунитета является репертуар TCR [9][10].

\n

Использование препаратов ИКТ способствует достижению определенных клинических результатов, однако при изменениях антигенного профиля злокачественных клеток наблюдается утрата комплементарной связи с T-клеточным рецептором, что зачастую характерно для иммунодефицита. Из этого следует, что одной из главных причин уклонения от иммунного надзора злокачественных новообразований является наличие первичного или вторичного состояния иммунодефицита [9]. При этом в терапии меланомы применяются различные подходы для преодоления резистентности к ИКТ. Одной из стратегий, направленных на повышение эффективности иммунотерапии, является комбинированное использование ИКТ с разными противоопухолевыми препаратами. Эта стратегия позволяет усилить иммунный ответ и улучшить клинические результаты [11][12].

\n

Комбинированные методы лечения меланомы могут значительно увеличить разнообразие антигенов, что, в свою очередь, повышает вероятность формирования комплементарных связей с T-клеточными рецепторами. Это разнообразие становится ключевым фактором в формировании более эффективного иммунного ответа. Однако следует учитывать, что такая стратегия лечения хотя приводит к более высокой частоте объективных ответов, но сопряжена с риском развития нежелательных явлений. Увеличение интенсивности терапии может вызывать как иммуноопосредованные токсические реакции, так и системные побочные эффекты, которые требуют коррекции и мониторинга. Таким образом, для пациентов с меланомой необходимость баланса между эффективностью лечения и токсичностью становится важным аспектом в разработке индивидуализированных схем терапии [13][14].

\n

Маркеры эффективности применения ингибиторов иммунных контрольных точек и перспективы ремодуляции иммунной системы противоопухолевыми препаратами

\n

У больных со злокачественными новообразованиями для определения иммунодефицитных состояний можно использовать тест-системы для оценки уровня эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC) [12][15].

\n

В процессе применения различных схем химиотерапии у пациентов с онкологическими заболеваниями можно добиться ремодуляции иммунной системы, что сказывается на изменении их иммунного статуса [16]. Известно, что препараты, используемые для лечения меланомы, такие как интерфероны, оказывают позитивное влияние на иммунную систему, способствуя ее активации. [17][18]. Эти факты отражают результаты в лечении пациентов с меланомой. Интерферон-альфа (ИФН-α) был одобрен и включен в клинические рекомендации и многие годы оставался единственным препаратом для адъювантной терапии меланомы IIB/C стадии. Разными авторами установлено, что ИФН-α эффективно модулирует иммунный ответ и усиливает клинический эффект при терапии анти-PD-1 препаратами. Анализ результатов лечения пациентов с операбельной меланомой III/IV стадии, которым проводилась терапия ИФН-α, а в последующем назначали пембролизумаб, показал улучшение возможности контроля заболевания [17]. Результаты исследования Донг-Донг Цзя и соавторов при меланоме продемонстрировали эффективность применения пембролизумаба в комбинации с интерфероном ИФН-α [17]. Тем не менее у определенной группы пациентов при отсутствии ожидаемого эффекта от терапии ИКТ возникает потребность в других вариантах стимуляции иммунной системы, что требует разработки новых комбинаций лекарственной терапии.

\n

В таких ситуациях ключевым является поиск новых комбинаций лекарственных средств, которые помогут преодолеть резистентность и усилить ответ на терапию [19]. В рандомизированном клиническом исследовании III фазы, где анализировалась эффективность применения спартализумаба в комбинации с дабрафенибом и траметинибом в лечении генерализованной меланомы при наличии мутации V600 в гене BRAF, продемонстрировано улучшение как выживаемости без прогрессирования, так и объективного ответа. Тем не менее, несмотря на положительные результаты, данное исследование не достигло своей первичной конечной точки [19]. Это подчеркивает сложность и многофакторность лечения меланомы, где различные факторы могут повлиять на результаты. Из вышеизложенного следует, что необходимо дальнейшее исследование, чтобы лучше понять, как оптимизировать комбинации терапии для достижения максимального эффекта.

\n

Таким образом, хотя современные исследования значительно углубили наше понимание механизмов действия ИКТ и их роли в улучшении контроля над заболеванием, задача выявления предикторов чувствительности к этим препаратам остается актуальной. Необходимость в выявлении биомаркеров, способных прогнозировать ответ пациентов на иммунотерапию, становится все более очевидной, поскольку это позволит индивидуализировать подходы к лечению и избегать ненужных побочных эффектов у тех, кто, возможно, не получит ожидаемой выгоды от такой терапии. При терапии меланомы в клинической практике не принято определять уровень PD-L или мутационную нагрузку (TMB), что связано с высокой частотой ответа метастатической меланомы на иммунотерапию. В целом медиана мутационной нагрузки при всех вариантах меланомы составляет 6,5 мутации на мегабайт (Мб) (250,5 мутации на экзом), с меж­квартильным диапазоном (Q1Q3) от 2,0 до 14,4 мутаций на Мб (77,75–578,5 мутации на экзом). Несмотря на то что наблюдается прямая корреляционная зависимость между ответом на иммунотерапию и TMB, многие пациенты с высокой мутационной нагрузкой опухоли не отвечают на лечение, что убедительно свидетельствует о том, что TMB не может применяться в качестве прогностического биомаркера для терапии анти-PD1 препаратами [8].

\n

В связи с высокой мутационной нагрузкой иммунотерапия проявляет эффективность и является одним из основных методов лечения меланомы [20]. Высокая частота мутаций повышает вероятность образования неоантигенов, которые способствуют запуску специфического противоопухолевого иммунитета [21]. При назначении иммунотерапии препаратами контроля точек иммунного ответа предотвращается взаимодействие лигандов PD-L1 с рецепторами PD1, что в последующем отражается в их исключительной эффективности при меланоме [22]. Так что целью иммунотерапии является стимулирование иммунной системы к формированию специфического иммунитета против меланомы [23].

\n

Известно, что рецептор PD-1 и PD-L1 лиганд экспрессируются не только на Т-лимфоцитах, но и на различных других клетках иммунной системы, включая естественные киллерные клетки (NK), моноциты и дендритные клетки. Это расширяет понимание роли PD-1/PD-L1 в регуляции иммунного ответа и подчеркивает сложность взаимодействий между различными клетками [24–26]. Путь PD-1 влияет на иммунный ответ через ряд механизмов, включая угнетение активности Т-клеток, усиление пролиферации и супрессивной функции Т-регуляторных лимфоцитов (Treg), а также снижение цитотоксической активности как B-клеток, так и NK-клеток [27].

\n

Известно, что длительность и эффективность иммуносупрессии определяются силой взаимодействия лигандов с рецепторами. В свою очередь, взаимодействие PD-L-лигандов c PD-рецепторами позволяет не только опухоли уклоняться от иммунного надзора, но и предотвращает развитие аутоиммунных заболеваний. При этом сродство по силе между рецептором PD-1 и лигандом PD-L1 в три раза превосходит сродство, наблюдаемое между PD-1 и PD-L2. Когда PD-L1 взаимодействует с PD-1, находящимся на поверхности Т-клеток, это вызывает процессы, приводящие к истощению и дисфункции этих клеток, а также к их нейтрализации и продукции интерлейкина-10 в опухолевой ткани. Подобный механизм при сверхэкспрессии PD-L1 позволяет злокачественным новообразованиям защититься от цитотоксического воздействия Т-клеток CD8+ [28].

\n

Большая группа регуляторных белков, таких как интерлейкин-12 (IL-12) и интерферон-гамма (IFN-γ), способствуют усиленной экспрессии PD-1, а также PD-L1 и PD-L2. Этот процесс играет важную роль в регуляции иммунного ответа, предотвращая чрезмерную активацию Т-эффекторных клеток, которые могут способствовать развитию аутоиммунных реакций или хронических воспалительных процессов. Кроме того, исследования показали, что PD-L1 может ингибировать CD80, что отражает наличие сложных и многогранных взаимодействий между белками, такими как CTLA-4 и PD-1, а также другими сигнальными путями в контексте иммунной регуляции. Эти взаимодействия позволяют клеткам иммунного ответа адаптироваться к различным условиям и поддерживать баланс между активацией и подавлением, что весьма важно для поддержания гомеостаза в организме [29][30]. Основываясь на многообещающих результатах клинических исследований, антитела, ингибирующие PD-1, а также ингибиторы PD-L1 применяют в терапии метастатической меланомы.

\n

Отмечено, что ингибиторы PD-L1 не продемонстрировали значительного преимущества по сравнению с ингибиторами PD-1. Тем не менее известен механизм действия ингибиторов PD-1, которые, как правило, более эффективно восстанавливают активность Т-клеток, что может приводить к более выраженному противоопухолевому эффекту [31]. Это может быть связано с различиями в способности этих препаратов активировать иммунный ответ и блокировать сигналы, способствующие истощению Т-клеток.

\n

При генерализованной меланоме широко применяются такие препараты ИКТ, как ниволумаб и пембролизумаб. Пролголимаб как новый ингибитор PD-1 в терапии нерезектабельной и метастатической меланомы обладает рядом преимуществ перед другими препаратами. Эффективность пролголимаба у пациентов с метастатической или нерезектабельной меланомой была продемонстрирована в международном многоцентровом открытом рандомизированном исследовании MIRACULUM. Действия пролголимаба базируются на блокаде сигнальных путей, что позволяет реактивировать цитотоксические Т-лимфоциты, специфичные к опухоли. Это происходит благодаря взаимодействию пролголимаба с рецептором PD-1, который играет ключевую роль в подавлении иммунного ответа на опухоли. Пролголимаб — иммуноглобулин изотипа IgG1, гибрид лямбда-каппа с молекулярной массой 149 кДа. Модификация Fc-фрагмента пролголимаба предотвращает его цитотоксическое влияние на другие клетки, экспрессирующие PD-1, что помогает минимизировать потенциальные побочные эффекты и улучшить селективность действия лекарства. Высокая аффинность этого антитела к PD-1 рецепторам позволяет достичь значительного ингибирования взаимодействия между PD-1 с лигандами PD-L1 и PD-L2 на поверхности как опухолевых клеток, так и некоторых иммунокомпетентных клеток. Таким образом, использование пролголимаба не только способствует активации противоопухолевого иммунитета, но и формирует терапевтический потенциал для лечения злокачественных новообразований, которые ранее могли быть устойчивы к другим ИКТ. Это открывает новые горизонты для врачей и пациентов, способствуя повышению эффективности терапии [25][32–34].

\n

Выявление роли молекул иммунных контрольных точек, таких как CTLA-4 и PD1/PD-L1, в канцерогенезе меланомы привело к разработке новых препаратов. Ингибиторы иммунных контрольных точек, которые впервые в истории терапии злокачественных новообразований вызвали устойчивый ответ у пациентов с меланомой, изменили парадигму лечения. Однако, как обсуждается в этой статье, все еще существует неудовлетворенная потребность в поиске новых препаратов для лечения меланомы. Последнее обусловлено значительной долей пациентов, не отвечающих на терапию ингибиторами контрольных точек иммунного ответа. У другой группы пациентов, у которых наблюдается первоначальный ответ на лечение, в последующем может развиваться лекарственная устойчивость даже при добавлении других препаратов к лечению [35]. Несмотря на то что в области терапии меланомы достигнуты огромные успехи, особенно в иммунотерапии, она по-прежнему демонстрирует высокую смертность после метастазирования в различные органы. Кроме того, иммуноопосредованные нежелательные явления, связанные с применением иммунотерапии, остаются основными препятствиями на пути к достижению желаемой выживаемости среди пациентов [36].

\n

Экспрессируемый лиганд PD-L1 после связывания с PD-1 рецепторами на поверхности Т-клеток может вызывать запрограммированную гибель Т-клеток, что приводит к снижению иммунной активности и ускользанию меланомы от иммунного надзора, но при назначении препаратов контроля точек иммунного ответа реактивируется специфический противоопухолевый иммунитет [37]. И, тем не менее, из представленных результатов клинических исследований и реальной клинической практики следует, что не у всех пациентов со злокачественными новообразованиями одинаково эффективны препараты контроля иммунных точек, независимо от MSI-H и уровня экспрессии PD-L [38]. В течение продолжительного времени пациентам назначаются препараты, контролирующие иммунные точки, однако результаты многочисленных исследований не учитывают уровень TREC и KREC, которые могут служить предикторами как уровня, так и эффективности иммунотерапии [12][15]. Понимание патогенеза и клинической картины противоопухолевого иммунитета действительно представляет собой критически важный аспект в онкологии. Проведение исследований в этой области не только способствует более эффективному управлению этими процессами, но и предоставляет возможность прогнозирования эффективности применения препаратов, контролирующих иммунные точки [39]. При этом следует учитывать неоднородность группы пациентов и гетерогенность опухоли, поскольку данные факторы оказывают значительное влияние на эффективность применения различных противоопухолевых препаратов. Это подчеркивает, что подход к ведению пациентов с гетерогенным иммунным статусом зачастую выходит за пределы стандартных клинических рекомендаций и требует междисциплинарного подхода.

\n

Известно, что при иммунодефицитном состоянии могут наблюдаться неоплазии, что обусловлено дефицитом иммунного надзора. Кроме того, при иммунодефицитных состояниях ожидаема прогрессия меланомы и развитие резистентности к препаратам контроля иммунных точек. Из проведенного анализа можно сделать вывод о том, что у пациентов, страдающих злокачественными новообразованиями, могут возникать иммунодефицитные состояния различных степеней тяжести, которые возможно своевременно диагностировать, определяя уровни TREC/KREC [40][41].

\n

Существование вариаций в реакциях на терапию может быть обусловлено мутационной нагрузкой и разнообразием T-клеточных рецепторов (TCR), а также наличием специфичных антигенов, что указывает на необходимость индивидуализированного подхода в лечении каждого пациента [42]. Следует подчеркнуть важность изучения параметров, таких как уровень эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC), в контексте их возможного влияния на эффективность применения препаратов ИКТ. К сожалению, текущая клиническая практика часто игнорирует эти критерии, что может приводить к недостаточной персонализации терапии и снижению ее эффективности. Также следует обратить внимание на проблему токсичности, связанной с иммунотерапией. Хотя многие пациенты демонстрируют положительную динамику, другие сталкиваются с серьезными побочными эффектами, что также подчеркивает необходимость в разработке новых стратегий применения комбинаций препаратов, которые могут повысить терапевтическую эффективность при снижении общего риска для пациента [43][44].

\n

Из рассмотренных вариантов лечения особый интерес представляют комбинации иммунотерапии с цитокинами, такими как интерфероны [45]. Этот подход может стимулировать иммунный ответ и активировать противоопухолевые механизмы [41]. Однако требуются дополнительные исследования для оценки реальной клинической пользы подобных комплексных схем лечения. Высокий интерес остается к комбинации препаратов контроля точек иммунного ответа с BRAF-ингибиторами и MEK-ингибиторами [19][21][46][47], которые также демонстрируют улучшение результатов контроля над заболеванием. Данные исследований свидетельствуют о том, что комбинация ингибиторов иммунных контрольных точек в сочетании BRAF-ингибиторами и MEK-ингибиторами обладает более высокой противоопухолевой активностью по сравнению с BRAF-ингибиторами и MEK-ингибиторами в отдельности [19].

\n

На уровне клинических исследований наиболее актуальным в настоящий момент является определение предикторов ответа на терапию. Новый подход к объединению различных методов терапии и диагностики требует от клиницистов гибкости, что может стать ключевым элементом в борьбе с этой болезнью.

\n

Таким образом, данный обзор поднимает важные вопросы и предлагает направления для дальнейших исследований, направленных на улучшение качества жизни и выживаемости пациентов с меланомой.

\n

ЗАКЛЮЧЕНИЕ

\n

Современные подходы к лечению меланомы кожи изменились благодаря иммунотерапии ингибиторами контрольных точек, значительно улучшившей выживаемость пациентов с метастатической формой заболевания. Проблема резистентности остается актуальной, поскольку разные пациенты реагируют на лечение по-разному даже при высокой мутационной нагрузке. Важно учитывать иммунный статус пациента для предсказания эффективности терапии и понимания возможных осложнений. Таким образом, комплексный подход, включающий индивидуализацию лечения, остается ключевым в лечении меланомы.

"],"dc.fullRISC":["еланома кожи относится к злокачественным новообразованиям кожи нейроэктодермального происхождения из меланоцитов [1]. Пациенты с генерализованной формой демонстрируют 5-летнюю выживаемость в 23 %, что делает метастазирование меланомы основной причиной смертности [2]. На протяжении последних нескольких лет во всем мире наблюдается стабильный и неуклонный рост заболеваемости меланомой, что делает эту проблему актуальной [3].\n\nС внедрением молекулярно-генетических методов диагностики, а также значительным прогрессом в области иммуноонкологии у пациентов с генерализованными формами злокачественных новообразований наблюдается заметное улучшение результатов лечения. Достижения в области фундаментальной медицины стали основой для создания инновационных высокоэффективных противоопухолевых препаратов, которые, в свою очередь, значительно повлияли на улучшение показателей выживаемости пациентов. Последние достижения в онкологии привели к заметному сдвигу в сторону таргетной терапии, что обусловлено более глубоким пониманием патогенеза опухолей кожи. Но при этом иммунотерапия позволила улучшить результаты лечения большинства пациентов независимо от наличия драйверных мутаций [4].\n\nНужно отметить, что многие годы интерфероны и традиционная химиотерапия оставались основными методами терапии меланомы кожи. Однако используемые методы лечения демонстрировали скромные результаты, поскольку медиана общей выживаемости не превышала шести месяцев, но при этом только 25 % пациентов могли рассчитывать на одногодичную выживаемость. Важным шагом в терапии меланомы стало использование интерферона, который многие годы оставался единственным вариантом иммунотерапии. Однако применение данного препарата сопровождалось выраженной токсичностью и оказывало положительный эффект только у небольшой группы пациентов [5].\n\nПереход к более современным методам лечения меланомы стал возможен благодаря значительным достижениям в области иммунотерапии. Это связано с разработкой лекарственных препаратов, ингибирующих иммунные контрольные точки (ИКТ). Препараты, ингибирующие ИКТ, блокируют цитотоксический антиген-4, связанный с Т-лимфоцитами (CTLA-4), а также белок, способствующий программируемой гибели клеток (PD-1) или его лиганд PD-L1 [5–7]. Эти инновационные подходы к терапии существенно изменили парадигму лечения меланомы. В эру иммунотерапии такие препараты, как ипилимумаб, ниволумаб и пембролизумаб, стали первыми средствами, которые продемонстрировали значительное улучшение в показателях общей выживаемости у пациентов с меланомой. Эти достижения не только открыли новые горизонты в терапии, но и способствовали кардинальному изменению подходов к лечению и прогнозированию исходов заболевания у пациентов с меланомой [5].\n\nЦелью данной работы является обзор данных научной литературы о перспективах применения ИКТ у больных меланомой.\n\nРоль ингибиторов иммунных контрольных точек в формировании спецефического противоопухолевого иммунитета\n\nВ последнее время значительное внимание уделяется использованию ингибиторов контрольных точек иммунитета как одного из перспективных направлений лечения злокачественных новообразований. Их применение у определенной категории пациентов может привести к достижению полного ответа, что, в свою очередь, может способствовать долгосрочной ремиссии заболевания. Однако, несмотря на эти позитивные результаты, необходимо отметить, что не у всех пациентов можно добиться одинаково положительного ответа на терапию. У некоторых пациентов на фоне лечения наблюдается прогрессия заболевания, что подчеркивает сложность и индивидуальные особенности каждого клинического случая, требующего дальнейшего изучения механизмов формирования специфического противоопухолевого иммунитета и ускользания опухоли от иммунного надзора. Таким образом, дальнейшие исследования в этой области имеют ключевое значение для оптимизации стратегий и повышения эффективности лечения меланомы [8]. При этом необходимо отметить, что даже при одинаковой мутационной нагрузке и экспрессии PD-L наблюдаются разные ответы на терапию ИКТ, что указывает на влияние множества различных факторов на формирование специфического противоопухолевого иммунитета.\n\nДля становления противоопухолевого иммунитета необходимо формирование комплементарной связи между Т-клеточными рецепторами (TCR) и неоантигенами. Эта взаимосвязь играет ключевую роль в активации Т-клеток, что в последующем способствует распознаванию антигенов злокачественных клеток. Одним из критически важных факторов, способствующих успешному формированию специфического иммунного ответа, является разнообразие антигенов, представленных на поверхности опухолевых клеток. Это разнообразие, в свою очередь, коррелирует с мутационной нагрузкой, то есть количеством мутаций в геноме злокачественных клеток. В свою очередь, мутации ведут к образованию новых антигенов, которые могут быть распознаны иммунной системой как чужеродные. Чем выше мутационная нагрузка, тем больше вероятность формирования антигенов, которые могут запустить иммунный ответ. Из вышесказанного следует, что вероятность формирования противоопухолевого иммунитета зависит от вариабельности TCR и разнообразия неоантигенов. Таким образом, вторым важным компонентом в формировании спецефического противоопухолевого иммунитета является репертуар TCR [9, 10].\n\nИспользование препаратов ИКТ способствует достижению определенных клинических результатов, однако при изменениях антигенного профиля злокачественных клеток наблюдается утрата комплементарной связи с T-клеточным рецептором, что зачастую характерно для иммунодефицита. Из этого следует, что одной из главных причин уклонения от иммунного надзора злокачественных новообразований является наличие первичного или вторичного состояния иммунодефицита [9]. При этом в терапии меланомы применяются различные подходы для преодоления резистентности к ИКТ. Одной из стратегий, направленных на повышение эффективности иммунотерапии, является комбинированное использование ИКТ с разными противоопухолевыми препаратами. Эта стратегия позволяет усилить иммунный ответ и улучшить клинические результаты [11, 12].\n\nКомбинированные методы лечения меланомы могут значительно увеличить разнообразие антигенов, что, в свою очередь, повышает вероятность формирования комплементарных связей с T-клеточными рецепторами. Это разнообразие становится ключевым фактором в формировании более эффективного иммунного ответа. Однако следует учитывать, что такая стратегия лечения хотя приводит к более высокой частоте объективных ответов, но сопряжена с риском развития нежелательных явлений. Увеличение интенсивности терапии может вызывать как иммуноопосредованные токсические реакции, так и системные побочные эффекты, которые требуют коррекции и мониторинга. Таким образом, для пациентов с меланомой необходимость баланса между эффективностью лечения и токсичностью становится важным аспектом в разработке индивидуализированных схем терапии [13, 14].\n\n \n\nМаркеры эффективности применения ингибиторов иммунных контрольных точек и перспективы ремодуляции иммунной системы противоопухолевыми препаратами\n\nУ больных со злокачественными новообразованиями для определения иммунодефицитных состояний можно использовать тест-системы для оценки уровня эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC) [12, 15].\n\nВ процессе применения различных схем химиотерапии у пациентов с онкологическими заболеваниями можно добиться ремодуляции иммунной системы, что сказывается на изменении их иммунного статуса [16]. Известно, что препараты, используемые для лечения меланомы, такие как интерфероны, оказывают позитивное влияние на иммунную систему, способствуя ее активации. [17, 18]. Эти факты отражают результаты в лечении пациентов с меланомой. Интерферон-альфа (ИФН-α) был одобрен и включен в клинические рекомендации и многие годы оставался единственным препаратом для адъювантной терапии меланомы IIB/C стадии. Разными авторами установлено, что ИФН-α эффективно модулирует иммунный ответ и усиливает клинический эффект при терапии анти-PD-1 препаратами. Анализ результатов лечения пациентов с операбельной меланомой III/IV стадии, которым проводилась терапия ИФН-α, а в последующем назначали пембролизумаб, показал улучшение возможности контроля заболевания [17]. Результаты исследования Донг-Донг Цзя и соавторов при меланоме продемонстрировали эффективность применения пембролизумаба в комбинации с интерфероном ИФН-α [17]. Тем не менее у определенной группы пациентов при отсутствии ожидаемого эффекта от терапии ИКТ возникает потребность в других вариантах стимуляции иммунной системы, что требует разработки новых комбинаций лекарственной терапии.\n\nВ таких ситуациях ключевым является поиск новых комбинаций лекарственных средств, которые помогут преодолеть резистентность и усилить ответ на терапию [19]. В рандомизированном клиническом исследовании III фазы, где анализировалась эффективность применения спартализумаба в комбинации с дабрафенибом и траметинибом в лечении генерализованной меланомы при наличии мутации V600 в гене BRAF, продемонстрировано улучшение как выживаемости без прогрессирования, так и объективного ответа. Тем не менее, несмотря на положительные результаты, данное исследование не достигло своей первичной конечной точки [19]. Это подчеркивает сложность и многофакторность лечения меланомы, где различные факторы могут повлиять на результаты. Из вышеизложенного следует, что необходимо дальнейшее исследование, чтобы лучше понять, как оптимизировать комбинации терапии для достижения максимального эффекта.\n\nТаким образом, хотя современные исследования значительно углубили наше понимание механизмов действия ИКТ и их роли в улучшении контроля над заболеванием, задача выявления предикторов чувствительности к этим препаратам остается актуальной. Необходимость в выявлении биомаркеров, способных прогнозировать ответ пациентов на иммунотерапию, становится все более очевидной, поскольку это позволит индивидуализировать подходы к лечению и избегать ненужных побочных эффектов у тех, кто, возможно, не получит ожидаемой выгоды от такой терапии. При терапии меланомы в клинической практике не принято определять уровень PD-L или мутационную нагрузку (TMB), что связано с высокой частотой ответа метастатической меланомы на иммунотерапию. В целом медиана мутационной нагрузки при всех вариантах меланомы составляет 6,5 мутации на мегабайт (Мб) (250,5 мутации на экзом), с меж­квартильным диапазоном (Q1–Q3) от 2,0 до 14,4 мутаций на Мб (77,75–578,5 мутации на экзом). Несмотря на то что наблюдается прямая корреляционная зависимость между ответом на иммунотерапию и TMB, многие пациенты с высокой мутационной нагрузкой опухоли не отвечают на лечение, что убедительно свидетельствует о том, что TMB не может применяться в качестве прогностического биомаркера для терапии анти-PD1 препаратами [8].\n\nВ связи с высокой мутационной нагрузкой иммунотерапия проявляет эффективность и является одним из основных методов лечения меланомы [20]. Высокая частота мутаций повышает вероятность образования неоантигенов, которые способствуют запуску специфического противоопухолевого иммунитета [21]. При назначении иммунотерапии препаратами контроля точек иммунного ответа предотвращается взаимодействие лигандов PD-L1 с рецепторами PD1, что в последующем отражается в их исключительной эффективности при меланоме [22]. Так что целью иммунотерапии является стимулирование иммунной системы к формированию специфического иммунитета против меланомы [23].\n\nИзвестно, что рецептор PD-1 и PD-L1 лиганд экспрессируются не только на Т-лимфоцитах, но и на различных других клетках иммунной системы, включая естественные киллерные клетки (NK), моноциты и дендритные клетки. Это расширяет понимание роли PD-1/PD-L1 в регуляции иммунного ответа и подчеркивает сложность взаимодействий между различными клетками [24–26]. Путь PD-1 влияет на иммунный ответ через ряд механизмов, включая угнетение активности Т-клеток, усиление пролиферации и супрессивной функции Т-регуляторных лимфоцитов (Treg), а также снижение цитотоксической активности как B-клеток, так и NK-клеток [27].\n\nИзвестно, что длительность и эффективность иммуносупрессии определяются силой взаимодействия лигандов с рецепторами. В свою очередь, взаимодействие PD-L-лигандов c PD-рецепторами позволяет не только опухоли уклоняться от иммунного надзора, но и предотвращает развитие аутоиммунных заболеваний. При этом сродство по силе между рецептором PD-1 и лигандом PD-L1 в три раза превосходит сродство, наблюдаемое между PD-1 и PD-L2. Когда PD-L1 взаимодействует с PD-1, находящимся на поверхности Т-клеток, это вызывает процессы, приводящие к истощению и дисфункции этих клеток, а также к их нейтрализации и продукции интерлейкина-10 в опухолевой ткани. Подобный механизм при сверхэкспрессии PD-L1 позволяет злокачественным новообразованиям защититься от цитотоксического воздействия Т-клеток CD8+ [28].\n\nБольшая группа регуляторных белков, таких как интерлейкин-12 (IL-12) и интерферон-гамма (IFN-γ), способствуют усиленной экспрессии PD-1, а также PD-L1 и PD-L2. Этот процесс играет важную роль в регуляции иммунного ответа, предотвращая чрезмерную активацию Т-эффекторных клеток, которые могут способствовать развитию аутоиммунных реакций или хронических воспалительных процессов. Кроме того, исследования показали, что PD-L1 может ингибировать CD80, что отражает наличие сложных и многогранных взаимодействий между белками, такими как CTLA-4 и PD-1, а также другими сигнальными путями в контексте иммунной регуляции. Эти взаимодействия позволяют клеткам иммунного ответа адаптироваться к различным условиям и поддерживать баланс между активацией и подавлением, что весьма важно для поддержания гомеостаза в организме [29, 30]. Основываясь на многообещающих результатах клинических исследований, антитела, ингибирующие PD-1, а также ингибиторы PD-L1 применяют в терапии метастатической меланомы.\n\nОтмечено, что ингибиторы PD-L1 не продемонстрировали значительного преимущества по сравнению с ингибиторами PD-1. Тем не менее известен механизм действия ингибиторов PD-1, которые, как правило, более эффективно восстанавливают активность Т-клеток, что может приводить к более выраженному противоопухолевому эффекту [31]. Это может быть связано с различиями в способности этих препаратов активировать иммунный ответ и блокировать сигналы, способствующие истощению Т-клеток.\n\nПри генерализованной меланоме широко применяются такие препараты ИКТ, как ниволумаб и пембролизумаб. Пролголимаб как новый ингибитор PD-1 в терапии нерезектабельной и метастатической меланомы обладает рядом преимуществ перед другими препаратами. Эффективность пролголимаба у пациентов с метастатической или нерезектабельной меланомой была продемонстрирована в международном многоцентровом открытом рандомизированном исследовании MIRACULUM. Действия пролголимаба базируются на блокаде сигнальных путей, что позволяет реактивировать цитотоксические Т-лимфоциты, специфичные к опухоли. Это происходит благодаря взаимодействию пролголимаба с рецептором PD-1, который играет ключевую роль в подавлении иммунного ответа на опухоли. Пролголимаб — иммуноглобулин изотипа IgG1, гибрид лямбда-каппа с молекулярной массой 149 кДа. Модификация Fc-фрагмента пролголимаба предотвращает его цитотоксическое влияние на другие клетки, экспрессирующие PD-1, что помогает минимизировать потенциальные побочные эффекты и улучшить селективность действия лекарства. Высокая аффинность этого антитела к PD-1 рецепторам позволяет достичь значительного ингибирования взаимодействия между PD-1 с лигандами PD-L1 и PD-L2 на поверхности как опухолевых клеток, так и некоторых иммунокомпетентных клеток. Таким образом, использование пролголимаба не только способствует активации противоопухолевого иммунитета, но и формирует терапевтический потенциал для лечения злокачественных новообразований, которые ранее могли быть устойчивы к другим ИКТ. Это открывает новые горизонты для врачей и пациентов, способствуя повышению эффективности терапии [25, 32–34].\n\nВыявление роли молекул иммунных контрольных точек, таких как CTLA-4 и PD1/PD-L1, в канцерогенезе меланомы привело к разработке новых препаратов. Ингибиторы иммунных контрольных точек, которые впервые в истории терапии злокачественных новообразований вызвали устойчивый ответ у пациентов с меланомой, изменили парадигму лечения. Однако, как обсуждается в этой статье, все еще существует неудовлетворенная потребность в поиске новых препаратов для лечения меланомы. Последнее обусловлено значительной долей пациентов, не отвечающих на терапию ингибиторами контрольных точек иммунного ответа. У другой группы пациентов, у которых наблюдается первоначальный ответ на лечение, в последующем может развиваться лекарственная устойчивость даже при добавлении других препаратов к лечению [35]. Несмотря на то что в области терапии меланомы достигнуты огромные успехи, особенно в иммунотерапии, она по-прежнему демонстрирует высокую смертность после метастазирования в различные органы. Кроме того, иммуноопосредованные нежелательные явления, связанные с применением иммунотерапии, остаются основными препятствиями на пути к достижению желаемой выживаемости среди пациентов [36].\n\nЭкспрессируемый лиганд PD-L1 после связывания с PD-1 рецепторами на поверхности Т-клеток может вызывать запрограммированную гибель Т-клеток, что приводит к снижению иммунной активности и ускользанию меланомы от иммунного надзора, но при назначении препаратов контроля точек иммунного ответа реактивируется специфический противоопухолевый иммунитет [37]. И, тем не менее, из представленных результатов клинических исследований и реальной клинической практики следует, что не у всех пациентов со злокачественными новообразованиями одинаково эффективны препараты контроля иммунных точек, независимо от MSI-H и уровня экспрессии PD-L [38]. В течение продолжительного времени пациентам назначаются препараты, контролирующие иммунные точки, однако результаты многочисленных исследований не учитывают уровень TREC и KREC, которые могут служить предикторами как уровня, так и эффективности иммунотерапии [12, 15]. Понимание патогенеза и клинической картины противоопухолевого иммунитета действительно представляет собой критически важный аспект в онкологии. Проведение исследований в этой области не только способствует более эффективному управлению этими процессами, но и предоставляет возможность прогнозирования эффективности применения препаратов, контролирующих иммунные точки [39]. При этом следует учитывать неоднородность группы пациентов и гетерогенность опухоли, поскольку данные факторы оказывают значительное влияние на эффективность применения различных противоопухолевых препаратов. Это подчеркивает, что подход к ведению пациентов с гетерогенным иммунным статусом зачастую выходит за пределы стандартных клинических рекомендаций и требует междисциплинарного подхода.\n\nИзвестно, что при иммунодефицитном состоянии могут наблюдаться неоплазии, что обусловлено дефицитом иммунного надзора. Кроме того, при иммунодефицитных состояниях ожидаема прогрессия меланомы и развитие резистентности к препаратам контроля иммунных точек. Из проведенного анализа можно сделать вывод о том, что у пациентов, страдающих злокачественными новообразованиями, могут возникать иммунодефицитные состояния различных степеней тяжести, которые возможно своевременно диагностировать, определяя уровни TREC/KREC [40, 41].\n\nСуществование вариаций в реакциях на терапию может быть обусловлено мутационной нагрузкой и разнообразием T-клеточных рецепторов (TCR), а также наличием специфичных антигенов, что указывает на необходимость индивидуализированного подхода в лечении каждого пациента [42]. Следует подчеркнуть важность изучения параметров, таких как уровень эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC), в контексте их возможного влияния на эффективность применения препаратов ИКТ. К сожалению, текущая клиническая практика часто игнорирует эти критерии, что может приводить к недостаточной персонализации терапии и снижению ее эффективности. Также следует обратить внимание на проблему токсичности, связанной с иммунотерапией. Хотя многие пациенты демонстрируют положительную динамику, другие сталкиваются с серьезными побочными эффектами, что также подчеркивает необходимость в разработке новых стратегий применения комбинаций препаратов, которые могут повысить терапевтическую эффективность при снижении общего риска для пациента [43, 44].\n\nИз рассмотренных вариантов лечения особый интерес представляют комбинации иммунотерапии с цитокинами, такими как интерфероны [45]. Этот подход может стимулировать иммунный ответ и активировать противоопухолевые механизмы [41]. Однако требуются дополнительные исследования для оценки реальной клинической пользы подобных комплексных схем лечения. Высокий интерес остается к комбинации препаратов контроля точек иммунного ответа с BRAF-ингибиторами и MEK-ингибиторами [19, 21, 46, 47], которые также демонстрируют улучшение результатов контроля над заболеванием. Данные исследований свидетельствуют о том, что комбинация ингибиторов иммунных контрольных точек в сочетании BRAF-ингибиторами и MEK-ингибиторами обладает более высокой противоопухолевой активностью по сравнению с BRAF-ингибиторами и MEK-ингибиторами в отдельности [19].\n\nНа уровне клинических исследований наиболее актуальным в настоящий момент является определение предикторов ответа на терапию. Новый подход к объединению различных методов терапии и диагностики требует от клиницистов гибкости, что может стать ключевым элементом в борьбе с этой болезнью.\n\nТаким образом, данный обзор поднимает важные вопросы и предлагает направления для дальнейших исследований, направленных на улучшение качества жизни и выживаемости пациентов с меланомой.\n\n \n\nЗАКЛЮЧЕНИЕ\n\nСовременные подходы к лечению меланомы кожи изменились благодаря иммунотерапии ингибиторами контрольных точек, значительно улучшившей выживаемость пациентов с метастатической формой заболевания. Проблема резистентности остается актуальной, поскольку разные пациенты реагируют на лечение по-разному даже при высокой мутационной нагрузке. Важно учитывать иммунный статус пациента для предсказания эффективности терапии и понимания возможных осложнений. Таким образом, комплексный подход, включающий индивидуализацию лечения, остается ключевым в лечении меланомы."],"dc.fullRISC.ru":["еланома кожи относится к злокачественным новообразованиям кожи нейроэктодермального происхождения из меланоцитов [1]. Пациенты с генерализованной формой демонстрируют 5-летнюю выживаемость в 23 %, что делает метастазирование меланомы основной причиной смертности [2]. На протяжении последних нескольких лет во всем мире наблюдается стабильный и неуклонный рост заболеваемости меланомой, что делает эту проблему актуальной [3].\n\nС внедрением молекулярно-генетических методов диагностики, а также значительным прогрессом в области иммуноонкологии у пациентов с генерализованными формами злокачественных новообразований наблюдается заметное улучшение результатов лечения. Достижения в области фундаментальной медицины стали основой для создания инновационных высокоэффективных противоопухолевых препаратов, которые, в свою очередь, значительно повлияли на улучшение показателей выживаемости пациентов. Последние достижения в онкологии привели к заметному сдвигу в сторону таргетной терапии, что обусловлено более глубоким пониманием патогенеза опухолей кожи. Но при этом иммунотерапия позволила улучшить результаты лечения большинства пациентов независимо от наличия драйверных мутаций [4].\n\nНужно отметить, что многие годы интерфероны и традиционная химиотерапия оставались основными методами терапии меланомы кожи. Однако используемые методы лечения демонстрировали скромные результаты, поскольку медиана общей выживаемости не превышала шести месяцев, но при этом только 25 % пациентов могли рассчитывать на одногодичную выживаемость. Важным шагом в терапии меланомы стало использование интерферона, который многие годы оставался единственным вариантом иммунотерапии. Однако применение данного препарата сопровождалось выраженной токсичностью и оказывало положительный эффект только у небольшой группы пациентов [5].\n\nПереход к более современным методам лечения меланомы стал возможен благодаря значительным достижениям в области иммунотерапии. Это связано с разработкой лекарственных препаратов, ингибирующих иммунные контрольные точки (ИКТ). Препараты, ингибирующие ИКТ, блокируют цитотоксический антиген-4, связанный с Т-лимфоцитами (CTLA-4), а также белок, способствующий программируемой гибели клеток (PD-1) или его лиганд PD-L1 [5–7]. Эти инновационные подходы к терапии существенно изменили парадигму лечения меланомы. В эру иммунотерапии такие препараты, как ипилимумаб, ниволумаб и пембролизумаб, стали первыми средствами, которые продемонстрировали значительное улучшение в показателях общей выживаемости у пациентов с меланомой. Эти достижения не только открыли новые горизонты в терапии, но и способствовали кардинальному изменению подходов к лечению и прогнозированию исходов заболевания у пациентов с меланомой [5].\n\nЦелью данной работы является обзор данных научной литературы о перспективах применения ИКТ у больных меланомой.\n\nРоль ингибиторов иммунных контрольных точек в формировании спецефического противоопухолевого иммунитета\n\nВ последнее время значительное внимание уделяется использованию ингибиторов контрольных точек иммунитета как одного из перспективных направлений лечения злокачественных новообразований. Их применение у определенной категории пациентов может привести к достижению полного ответа, что, в свою очередь, может способствовать долгосрочной ремиссии заболевания. Однако, несмотря на эти позитивные результаты, необходимо отметить, что не у всех пациентов можно добиться одинаково положительного ответа на терапию. У некоторых пациентов на фоне лечения наблюдается прогрессия заболевания, что подчеркивает сложность и индивидуальные особенности каждого клинического случая, требующего дальнейшего изучения механизмов формирования специфического противоопухолевого иммунитета и ускользания опухоли от иммунного надзора. Таким образом, дальнейшие исследования в этой области имеют ключевое значение для оптимизации стратегий и повышения эффективности лечения меланомы [8]. При этом необходимо отметить, что даже при одинаковой мутационной нагрузке и экспрессии PD-L наблюдаются разные ответы на терапию ИКТ, что указывает на влияние множества различных факторов на формирование специфического противоопухолевого иммунитета.\n\nДля становления противоопухолевого иммунитета необходимо формирование комплементарной связи между Т-клеточными рецепторами (TCR) и неоантигенами. Эта взаимосвязь играет ключевую роль в активации Т-клеток, что в последующем способствует распознаванию антигенов злокачественных клеток. Одним из критически важных факторов, способствующих успешному формированию специфического иммунного ответа, является разнообразие антигенов, представленных на поверхности опухолевых клеток. Это разнообразие, в свою очередь, коррелирует с мутационной нагрузкой, то есть количеством мутаций в геноме злокачественных клеток. В свою очередь, мутации ведут к образованию новых антигенов, которые могут быть распознаны иммунной системой как чужеродные. Чем выше мутационная нагрузка, тем больше вероятность формирования антигенов, которые могут запустить иммунный ответ. Из вышесказанного следует, что вероятность формирования противоопухолевого иммунитета зависит от вариабельности TCR и разнообразия неоантигенов. Таким образом, вторым важным компонентом в формировании спецефического противоопухолевого иммунитета является репертуар TCR [9, 10].\n\nИспользование препаратов ИКТ способствует достижению определенных клинических результатов, однако при изменениях антигенного профиля злокачественных клеток наблюдается утрата комплементарной связи с T-клеточным рецептором, что зачастую характерно для иммунодефицита. Из этого следует, что одной из главных причин уклонения от иммунного надзора злокачественных новообразований является наличие первичного или вторичного состояния иммунодефицита [9]. При этом в терапии меланомы применяются различные подходы для преодоления резистентности к ИКТ. Одной из стратегий, направленных на повышение эффективности иммунотерапии, является комбинированное использование ИКТ с разными противоопухолевыми препаратами. Эта стратегия позволяет усилить иммунный ответ и улучшить клинические результаты [11, 12].\n\nКомбинированные методы лечения меланомы могут значительно увеличить разнообразие антигенов, что, в свою очередь, повышает вероятность формирования комплементарных связей с T-клеточными рецепторами. Это разнообразие становится ключевым фактором в формировании более эффективного иммунного ответа. Однако следует учитывать, что такая стратегия лечения хотя приводит к более высокой частоте объективных ответов, но сопряжена с риском развития нежелательных явлений. Увеличение интенсивности терапии может вызывать как иммуноопосредованные токсические реакции, так и системные побочные эффекты, которые требуют коррекции и мониторинга. Таким образом, для пациентов с меланомой необходимость баланса между эффективностью лечения и токсичностью становится важным аспектом в разработке индивидуализированных схем терапии [13, 14].\n\n \n\nМаркеры эффективности применения ингибиторов иммунных контрольных точек и перспективы ремодуляции иммунной системы противоопухолевыми препаратами\n\nУ больных со злокачественными новообразованиями для определения иммунодефицитных состояний можно использовать тест-системы для оценки уровня эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC) [12, 15].\n\nВ процессе применения различных схем химиотерапии у пациентов с онкологическими заболеваниями можно добиться ремодуляции иммунной системы, что сказывается на изменении их иммунного статуса [16]. Известно, что препараты, используемые для лечения меланомы, такие как интерфероны, оказывают позитивное влияние на иммунную систему, способствуя ее активации. [17, 18]. Эти факты отражают результаты в лечении пациентов с меланомой. Интерферон-альфа (ИФН-α) был одобрен и включен в клинические рекомендации и многие годы оставался единственным препаратом для адъювантной терапии меланомы IIB/C стадии. Разными авторами установлено, что ИФН-α эффективно модулирует иммунный ответ и усиливает клинический эффект при терапии анти-PD-1 препаратами. Анализ результатов лечения пациентов с операбельной меланомой III/IV стадии, которым проводилась терапия ИФН-α, а в последующем назначали пембролизумаб, показал улучшение возможности контроля заболевания [17]. Результаты исследования Донг-Донг Цзя и соавторов при меланоме продемонстрировали эффективность применения пембролизумаба в комбинации с интерфероном ИФН-α [17]. Тем не менее у определенной группы пациентов при отсутствии ожидаемого эффекта от терапии ИКТ возникает потребность в других вариантах стимуляции иммунной системы, что требует разработки новых комбинаций лекарственной терапии.\n\nВ таких ситуациях ключевым является поиск новых комбинаций лекарственных средств, которые помогут преодолеть резистентность и усилить ответ на терапию [19]. В рандомизированном клиническом исследовании III фазы, где анализировалась эффективность применения спартализумаба в комбинации с дабрафенибом и траметинибом в лечении генерализованной меланомы при наличии мутации V600 в гене BRAF, продемонстрировано улучшение как выживаемости без прогрессирования, так и объективного ответа. Тем не менее, несмотря на положительные результаты, данное исследование не достигло своей первичной конечной точки [19]. Это подчеркивает сложность и многофакторность лечения меланомы, где различные факторы могут повлиять на результаты. Из вышеизложенного следует, что необходимо дальнейшее исследование, чтобы лучше понять, как оптимизировать комбинации терапии для достижения максимального эффекта.\n\nТаким образом, хотя современные исследования значительно углубили наше понимание механизмов действия ИКТ и их роли в улучшении контроля над заболеванием, задача выявления предикторов чувствительности к этим препаратам остается актуальной. Необходимость в выявлении биомаркеров, способных прогнозировать ответ пациентов на иммунотерапию, становится все более очевидной, поскольку это позволит индивидуализировать подходы к лечению и избегать ненужных побочных эффектов у тех, кто, возможно, не получит ожидаемой выгоды от такой терапии. При терапии меланомы в клинической практике не принято определять уровень PD-L или мутационную нагрузку (TMB), что связано с высокой частотой ответа метастатической меланомы на иммунотерапию. В целом медиана мутационной нагрузки при всех вариантах меланомы составляет 6,5 мутации на мегабайт (Мб) (250,5 мутации на экзом), с меж­квартильным диапазоном (Q1–Q3) от 2,0 до 14,4 мутаций на Мб (77,75–578,5 мутации на экзом). Несмотря на то что наблюдается прямая корреляционная зависимость между ответом на иммунотерапию и TMB, многие пациенты с высокой мутационной нагрузкой опухоли не отвечают на лечение, что убедительно свидетельствует о том, что TMB не может применяться в качестве прогностического биомаркера для терапии анти-PD1 препаратами [8].\n\nВ связи с высокой мутационной нагрузкой иммунотерапия проявляет эффективность и является одним из основных методов лечения меланомы [20]. Высокая частота мутаций повышает вероятность образования неоантигенов, которые способствуют запуску специфического противоопухолевого иммунитета [21]. При назначении иммунотерапии препаратами контроля точек иммунного ответа предотвращается взаимодействие лигандов PD-L1 с рецепторами PD1, что в последующем отражается в их исключительной эффективности при меланоме [22]. Так что целью иммунотерапии является стимулирование иммунной системы к формированию специфического иммунитета против меланомы [23].\n\nИзвестно, что рецептор PD-1 и PD-L1 лиганд экспрессируются не только на Т-лимфоцитах, но и на различных других клетках иммунной системы, включая естественные киллерные клетки (NK), моноциты и дендритные клетки. Это расширяет понимание роли PD-1/PD-L1 в регуляции иммунного ответа и подчеркивает сложность взаимодействий между различными клетками [24–26]. Путь PD-1 влияет на иммунный ответ через ряд механизмов, включая угнетение активности Т-клеток, усиление пролиферации и супрессивной функции Т-регуляторных лимфоцитов (Treg), а также снижение цитотоксической активности как B-клеток, так и NK-клеток [27].\n\nИзвестно, что длительность и эффективность иммуносупрессии определяются силой взаимодействия лигандов с рецепторами. В свою очередь, взаимодействие PD-L-лигандов c PD-рецепторами позволяет не только опухоли уклоняться от иммунного надзора, но и предотвращает развитие аутоиммунных заболеваний. При этом сродство по силе между рецептором PD-1 и лигандом PD-L1 в три раза превосходит сродство, наблюдаемое между PD-1 и PD-L2. Когда PD-L1 взаимодействует с PD-1, находящимся на поверхности Т-клеток, это вызывает процессы, приводящие к истощению и дисфункции этих клеток, а также к их нейтрализации и продукции интерлейкина-10 в опухолевой ткани. Подобный механизм при сверхэкспрессии PD-L1 позволяет злокачественным новообразованиям защититься от цитотоксического воздействия Т-клеток CD8+ [28].\n\nБольшая группа регуляторных белков, таких как интерлейкин-12 (IL-12) и интерферон-гамма (IFN-γ), способствуют усиленной экспрессии PD-1, а также PD-L1 и PD-L2. Этот процесс играет важную роль в регуляции иммунного ответа, предотвращая чрезмерную активацию Т-эффекторных клеток, которые могут способствовать развитию аутоиммунных реакций или хронических воспалительных процессов. Кроме того, исследования показали, что PD-L1 может ингибировать CD80, что отражает наличие сложных и многогранных взаимодействий между белками, такими как CTLA-4 и PD-1, а также другими сигнальными путями в контексте иммунной регуляции. Эти взаимодействия позволяют клеткам иммунного ответа адаптироваться к различным условиям и поддерживать баланс между активацией и подавлением, что весьма важно для поддержания гомеостаза в организме [29, 30]. Основываясь на многообещающих результатах клинических исследований, антитела, ингибирующие PD-1, а также ингибиторы PD-L1 применяют в терапии метастатической меланомы.\n\nОтмечено, что ингибиторы PD-L1 не продемонстрировали значительного преимущества по сравнению с ингибиторами PD-1. Тем не менее известен механизм действия ингибиторов PD-1, которые, как правило, более эффективно восстанавливают активность Т-клеток, что может приводить к более выраженному противоопухолевому эффекту [31]. Это может быть связано с различиями в способности этих препаратов активировать иммунный ответ и блокировать сигналы, способствующие истощению Т-клеток.\n\nПри генерализованной меланоме широко применяются такие препараты ИКТ, как ниволумаб и пембролизумаб. Пролголимаб как новый ингибитор PD-1 в терапии нерезектабельной и метастатической меланомы обладает рядом преимуществ перед другими препаратами. Эффективность пролголимаба у пациентов с метастатической или нерезектабельной меланомой была продемонстрирована в международном многоцентровом открытом рандомизированном исследовании MIRACULUM. Действия пролголимаба базируются на блокаде сигнальных путей, что позволяет реактивировать цитотоксические Т-лимфоциты, специфичные к опухоли. Это происходит благодаря взаимодействию пролголимаба с рецептором PD-1, который играет ключевую роль в подавлении иммунного ответа на опухоли. Пролголимаб — иммуноглобулин изотипа IgG1, гибрид лямбда-каппа с молекулярной массой 149 кДа. Модификация Fc-фрагмента пролголимаба предотвращает его цитотоксическое влияние на другие клетки, экспрессирующие PD-1, что помогает минимизировать потенциальные побочные эффекты и улучшить селективность действия лекарства. Высокая аффинность этого антитела к PD-1 рецепторам позволяет достичь значительного ингибирования взаимодействия между PD-1 с лигандами PD-L1 и PD-L2 на поверхности как опухолевых клеток, так и некоторых иммунокомпетентных клеток. Таким образом, использование пролголимаба не только способствует активации противоопухолевого иммунитета, но и формирует терапевтический потенциал для лечения злокачественных новообразований, которые ранее могли быть устойчивы к другим ИКТ. Это открывает новые горизонты для врачей и пациентов, способствуя повышению эффективности терапии [25, 32–34].\n\nВыявление роли молекул иммунных контрольных точек, таких как CTLA-4 и PD1/PD-L1, в канцерогенезе меланомы привело к разработке новых препаратов. Ингибиторы иммунных контрольных точек, которые впервые в истории терапии злокачественных новообразований вызвали устойчивый ответ у пациентов с меланомой, изменили парадигму лечения. Однако, как обсуждается в этой статье, все еще существует неудовлетворенная потребность в поиске новых препаратов для лечения меланомы. Последнее обусловлено значительной долей пациентов, не отвечающих на терапию ингибиторами контрольных точек иммунного ответа. У другой группы пациентов, у которых наблюдается первоначальный ответ на лечение, в последующем может развиваться лекарственная устойчивость даже при добавлении других препаратов к лечению [35]. Несмотря на то что в области терапии меланомы достигнуты огромные успехи, особенно в иммунотерапии, она по-прежнему демонстрирует высокую смертность после метастазирования в различные органы. Кроме того, иммуноопосредованные нежелательные явления, связанные с применением иммунотерапии, остаются основными препятствиями на пути к достижению желаемой выживаемости среди пациентов [36].\n\nЭкспрессируемый лиганд PD-L1 после связывания с PD-1 рецепторами на поверхности Т-клеток может вызывать запрограммированную гибель Т-клеток, что приводит к снижению иммунной активности и ускользанию меланомы от иммунного надзора, но при назначении препаратов контроля точек иммунного ответа реактивируется специфический противоопухолевый иммунитет [37]. И, тем не менее, из представленных результатов клинических исследований и реальной клинической практики следует, что не у всех пациентов со злокачественными новообразованиями одинаково эффективны препараты контроля иммунных точек, независимо от MSI-H и уровня экспрессии PD-L [38]. В течение продолжительного времени пациентам назначаются препараты, контролирующие иммунные точки, однако результаты многочисленных исследований не учитывают уровень TREC и KREC, которые могут служить предикторами как уровня, так и эффективности иммунотерапии [12, 15]. Понимание патогенеза и клинической картины противоопухолевого иммунитета действительно представляет собой критически важный аспект в онкологии. Проведение исследований в этой области не только способствует более эффективному управлению этими процессами, но и предоставляет возможность прогнозирования эффективности применения препаратов, контролирующих иммунные точки [39]. При этом следует учитывать неоднородность группы пациентов и гетерогенность опухоли, поскольку данные факторы оказывают значительное влияние на эффективность применения различных противоопухолевых препаратов. Это подчеркивает, что подход к ведению пациентов с гетерогенным иммунным статусом зачастую выходит за пределы стандартных клинических рекомендаций и требует междисциплинарного подхода.\n\nИзвестно, что при иммунодефицитном состоянии могут наблюдаться неоплазии, что обусловлено дефицитом иммунного надзора. Кроме того, при иммунодефицитных состояниях ожидаема прогрессия меланомы и развитие резистентности к препаратам контроля иммунных точек. Из проведенного анализа можно сделать вывод о том, что у пациентов, страдающих злокачественными новообразованиями, могут возникать иммунодефицитные состояния различных степеней тяжести, которые возможно своевременно диагностировать, определяя уровни TREC/KREC [40, 41].\n\nСуществование вариаций в реакциях на терапию может быть обусловлено мутационной нагрузкой и разнообразием T-клеточных рецепторов (TCR), а также наличием специфичных антигенов, что указывает на необходимость индивидуализированного подхода в лечении каждого пациента [42]. Следует подчеркнуть важность изучения параметров, таких как уровень эксцизионных колец Т-клеточного рецептора (TREC) и κ-делеционного элемента (KREC), в контексте их возможного влияния на эффективность применения препаратов ИКТ. К сожалению, текущая клиническая практика часто игнорирует эти критерии, что может приводить к недостаточной персонализации терапии и снижению ее эффективности. Также следует обратить внимание на проблему токсичности, связанной с иммунотерапией. Хотя многие пациенты демонстрируют положительную динамику, другие сталкиваются с серьезными побочными эффектами, что также подчеркивает необходимость в разработке новых стратегий применения комбинаций препаратов, которые могут повысить терапевтическую эффективность при снижении общего риска для пациента [43, 44].\n\nИз рассмотренных вариантов лечения особый интерес представляют комбинации иммунотерапии с цитокинами, такими как интерфероны [45]. Этот подход может стимулировать иммунный ответ и активировать противоопухолевые механизмы [41]. Однако требуются дополнительные исследования для оценки реальной клинической пользы подобных комплексных схем лечения. Высокий интерес остается к комбинации препаратов контроля точек иммунного ответа с BRAF-ингибиторами и MEK-ингибиторами [19, 21, 46, 47], которые также демонстрируют улучшение результатов контроля над заболеванием. Данные исследований свидетельствуют о том, что комбинация ингибиторов иммунных контрольных точек в сочетании BRAF-ингибиторами и MEK-ингибиторами обладает более высокой противоопухолевой активностью по сравнению с BRAF-ингибиторами и MEK-ингибиторами в отдельности [19].\n\nНа уровне клинических исследований наиболее актуальным в настоящий момент является определение предикторов ответа на терапию. Новый подход к объединению различных методов терапии и диагностики требует от клиницистов гибкости, что может стать ключевым элементом в борьбе с этой болезнью.\n\nТаким образом, данный обзор поднимает важные вопросы и предлагает направления для дальнейших исследований, направленных на улучшение качества жизни и выживаемости пациентов с меланомой.\n\n \n\nЗАКЛЮЧЕНИЕ\n\nСовременные подходы к лечению меланомы кожи изменились благодаря иммунотерапии ингибиторами контрольных точек, значительно улучшившей выживаемость пациентов с метастатической формой заболевания. Проблема резистентности остается актуальной, поскольку разные пациенты реагируют на лечение по-разному даже при высокой мутационной нагрузке. Важно учитывать иммунный статус пациента для предсказания эффективности терапии и понимания возможных осложнений. Таким образом, комплексный подход, включающий индивидуализацию лечения, остается ключевым в лечении меланомы."],"dc.subject.ru":["меланома","TREC","Т-рецепторные эксцизионные кольца","иммунотерапия","мутации","PD1","PDL1","ингибиторы иммунных контрольных точек"],"dc.title.ru":["Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия"],"dc.issue.volume":["15"],"dc.issue.number":["1"],"dc.pages":["57-65"],"dc.rights":["CC BY 4.0"],"dc.section":["LITERATURE REVIEW","ОБЗОР ЛИТЕРАТУРЫ"],"dc.section.en":["LITERATURE REVIEW"],"dc.section.ru":["ОБЗОР ЛИТЕРАТУРЫ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["А. В. Султанбаев","A. V. Sultanbaev"],"author_keyword":["А. В. Султанбаев","A. V. Sultanbaev"],"author_ac":["а. в. султанбаев\n|||\nА. В. Султанбаев","a. v. sultanbaev\n|||\nA. V. Sultanbaev"],"author_filter":["а. в. султанбаев\n|||\nА. В. Султанбаев","a. v. sultanbaev\n|||\nA. V. Sultanbaev"],"dc.author.name":["А. В. Султанбаев","A. V. Sultanbaev"],"dc.author.name.ru":["А. В. Султанбаев"],"dc.author.affiliation":["Республиканский клинический онкологический диспансер; Башкирский государственный медицинский университет; \nРеспубликанский медико-генетический центр","Republican Clinical Oncology Dispensary; Bashkir State Medical University; Republican Medical Genetic Centre"],"dc.author.affiliation.ru":["Республиканский клинический онкологический диспансер; Башкирский государственный медицинский университет; \nРеспубликанский медико-генетический центр"],"dc.author.full":["А. В. Султанбаев | Республиканский клинический онкологический диспансер; Башкирский государственный медицинский университет; \nРеспубликанский медико-генетический центр","A. V. Sultanbaev | Republican Clinical Oncology Dispensary; Bashkir State Medical University; Republican Medical Genetic Centre"],"dc.author.full.ru":["А. В. Султанбаев | Республиканский клинический онкологический диспансер; Башкирский государственный медицинский университет; \nРеспубликанский медико-генетический центр"],"dc.author.name.en":["A. V. Sultanbaev"],"dc.author.affiliation.en":["Republican Clinical Oncology Dispensary; Bashkir State Medical University; Republican Medical Genetic Centre"],"dc.author.full.en":["A. V. Sultanbaev | Republican Clinical Oncology Dispensary; Bashkir State Medical University; Republican Medical Genetic Centre"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-0996-5995\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440; \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442; \\r\\n\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u043a\\u043e-\\u0433\\u0435\\u043d\\u0435\\u0442\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440\", \"full_name\": \"\\u0410. \\u0412. \\u0421\\u0443\\u043b\\u0442\\u0430\\u043d\\u0431\\u0430\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0996-5995\", \"affiliation\": \"Republican Clinical Oncology Dispensary; Bashkir State Medical University; Republican Medical Genetic Centre\", \"full_name\": \"A. V. Sultanbaev\"}}]}"],"dateIssued":["2025-04-01"],"dateIssued_keyword":["2025-04-01","2025"],"dateIssued_ac":["2025-04-01\n|||\n2025-04-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-04-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1053"],"dc.citation":["Lopes J., Rodrigues C.M.P., Gaspar M.M., Reis C.P. Melanoma management: from epidemiology to treatment and latest advances. Cancers (Basel). 2022;14(19):4652. DOI: 10.3390/cancers14194652","Ralli M., Botticelli A., Visconti I.C., Angeletti D., Fiore M., Marchetti P., et al. Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res. 2020;2020:9235638. DOI: 10.1155/2020/9235638","Okobi O.E., Abreo E., Sams N.P., Chukwuebuni O.H., Tweneboa Amoako L.A., Wiredu B., et al. Trends in melanoma incidence, prevalence, stage at diagnosis, and survival: an analysis of the United States Cancer Statistics (USCS) Database. Cureus. 2024;16(10):e70697. DOI: 10.7759/cureus.70697","Shalata W., Attal Z.G., Solomon A., Shalata S., Abu Saleh O., Tourkey L., et al. Melanoma management: exploring staging, prognosis, and treatment innovations. Int J Mol Sci. 2024;25(11):5794. DOI: 10.3390/ijms25115794","Shah V., Panchal V., Shah A., Vyas B., Agrawal S., Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Med Int (Lond). 2024;4(2):13. DOI: 10.3892/mi.2024.137","Santos-Briz A., Cañueto J., Carmen S.D., Barrios B., Yuste M., Bellido L., et al. Value of PD-L1, PD-1, and CTLA-4 expression in the clinical practice as predictors of response to nivolumab and ipilimumab in monotherapy in patients with advanced stage melanoma. Am J Dermatopathol. 2021;43(6):423–8. DOI: 10.1097/DAD.0000000000001856","Gupta M., Stukalin I., Meyers D., Goutam S., Heng D.Y.C., Cheng T., et al. Treatment-free survival after nivolumab vs pembrolizumab vs nivolumab-ipilimumab for advanced melanoma. JAMA Netw Open. 2023;6(6):e2319607. DOI: 10.1001/jamanetworkopen.2023.19607","Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49. DOI: 10.1146/annurev-pathol-042020-042741","Robert C., Lebbé C., Lesimple T., Lundström E., Nicolas V., Gavillet B., et al. Phase I study of androgen deprivation therapy in combination with anti-PD-1 in melanoma patients pretreated with anti-PD-1. Clin Cancer Res. 2023;29(5):858–65. DOI: 10.1158/1078-0432.CCR-22-2812","Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. DOI: 10.1126/science.aar4060","Birnboim-Perach R., Benhar I. Using combination therapy to overcome diverse challenges of Immune Checkpoint Inhibitors treatment. Int J Biol Sci. 2024;20(10):3911–22. DOI: 10.7150/ijbs.93697","Султанбаев А.В., Тузанкина И.А., Мусин Ш.И., Колядина И.В., Меньшиков К.В., Султанбаев М.В. и др. Специфический противоопухолевый иммунитет и механизмы ускользания опухоли от иммунологического надзора. Онкология. Журнал им. П.А. Герцена. 2024;13(6):70–7. DOI: 10.17116/onkolog20241306170","Grote C., Bohne A.S., Blome C., Kähler K.C. Quality of life under treatment with the immune checkpoint inhibitors ipilimumab and nivolumab in melanoma patients. Real-world data from a prospective observational study at the Skin Cancer Center Kiel. J Cancer Res Clin Oncol. 2024;150(10):454. DOI: 10.1007/s00432-024-05981-2","Alrabadi N.N., Abushukair H.M., Ababneh O.E., Syaj S.S., Al-Horani S.S., Qarqash A.A., et al. Systematic review and meta-analysis efficacy and safety of immune checkpoint inhibitors in advanced melanoma patients with anti-PD-1 progression: a systematic review and meta-analysis. Clin Transl Oncol. 2021;23(9):1885–904. DOI: 10.1007/s12094-021-02598-6","Султанбаев А.В., Тузанкина И.А., Насретдинов А.Ф., Султанбаева Н.И., Мусин Ш.И., Меньшиков К.В. и др. Механизмы формирования специфического противоопухолевого иммунитета и резистентности к ингибиторам контрольных точек иммунного ответа. Вопросы онкологии. 2024;70(3):433–9. DOI: 10.37469/0507-3758-2024-70-3-433-439","Pabst L., Lopes S., Bertrand B., Creusot Q., Kotovskaya M., Pencreach E., et al. Prognostic and predictive biomarkers in the era of immunotherapy for lung cancer. Int J Mol Sci. 2023;24(8):7577. DOI: 10.3390/ijms24087577","Jia D.D., Niu Y., Zhu H., Wang S., Ma T., Li T. Prior therapy with pegylated-interferon alfa-2b improves the efficacy of adjuvant pembrolizumab in resectable advanced melanoma. Front Oncol. 2021;11:675873. DOI: 10.3389/fonc.2021.675873","Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol. 2019;11(3):a028480. DOI: 10.1101/cshperspect.a028480","Dummer R., Long G.V., Robert C., Tawbi H.A., Flaherty K.T., Ascierto P.A., et al. Randomized phase III trial evaluating spartalizumab plus dabrafenib and trametinib for BRAF V600-mutant unresectable or metastatic melanoma. J Clin Oncol. 2022;40(13):1428–38. DOI: 10.1200/JCO.21.01601","Tran K.B., Buchanan C.M., Shepherd P.R. Evolution of molecular targets in melanoma treatment. Curr Pharm Des. 2020;26(4):396–414. DOI: 10.2174/1381612826666200130091318","Addeo A., Friedlaender A., Banna G.L., Weiss G.J. TMB or not TMB as a biomarker: That is the question. Crit Rev Oncol Hematol. 2021;163:103374. DOI: 10.1016/j.critrevonc.2021.103374","Tímár J., Ladányi A. Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci. 2022;23(10):5384. DOI: 10.3390/ijms23105384","Trocchia M., Ventrici A., Modestino L., Cristinziano L., Ferrara A.L., Palestra F., et al. Innate immune cells in melanoma: implications for immunotherapy. Int J Mol Sci. 2024;25(15):8523. DOI: 10.3390/ijms25158523","Willsmore Z.N., Coumbe B.G.T., Crescioli S., Reci S., Gupta A., Harris R.J., et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur J Immunol. 2021;51(3):544–56. DOI: 10.1002/eji.202048747","Tjulandin S., Demidov L., Moiseyenko V., Protsenko S., Semiglazova T., Odintsova S., et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer. 2021;149:222–32. DOI: 10.1016/j.ejca.2021.02.030","Zhang A., Fan T., Liu Y., Yu G., Li C., Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer. 2024;23(1):251. DOI: 10.1186/s12943-024-02156-y","Ren Z., Yang K., Zhu L., Yin D., Zhou Y. Regulatory T cells as crucial trigger and potential target for hyperprogressive disease subsequent to PD-1/PD-L1 blockade for cancer treatment. Int Immunopharmacol. 2024;132:111934. DOI: 10.1016/j.intimp.2024.111934","Cheng W., Kang K., Zhao A., Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol. 2024;17(1):54. DOI: 10.1186/s13045-024-01581-2","Hakim M.S., Jariah R.O.A., Spaan M., Boonstra A. Interleukin 15 upregulates the expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells. Am J Clin Exp Immunol. 2020;9(3):10–21. PMID: 32704430","Yang J., Riella L.V., Chock S., Liu T., Zhao X., Yuan X., et al. The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. J Immunol. 2011;187(3):1113–9. DOI: 10.4049/jimmunol.1100056","Wang D., Wang T., Liu J., Yu H., Jiao S., Feng B., et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 2016;16(9):5503–13. DOI: 10.1021/acs.nanolett.6b01994","Yi M., Zheng X., Niu M., Zhu S., Ge H., Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. DOI: 10.1186/s12943-021-01489-2","Demidov L., Kharkevich G., Petenko N., Moiseenko V., Protsenko S., Semiglazova T., et al. A phase III study to access the safety and efficacy of prolgolimab 250 mg fixed dose administered every 3 weeks versus prolgolimab 1 mg/kg every 2 weeks in patients with metastatic melanoma (FLAT). Front Oncol. 2024;14:1385685. DOI: 10.3389/fonc.2024.1385685","Tjulandin S.A., Fedyanin M., Demidov L.V., Moiseyenko V., Protsen­ko S., Odintsova S., et al. Final results of phase II trial (MIRACULUM) of the novel PD-1 inhibitor prolgolimab in patients with advanced melanoma. Ann Oncol. 2019;(30):xi44. DOI: 10.1093/annonc/mdz451.027","Tran K.B., Kolekar S., Jabed A., Jaynes P., Shih J.H., Wang Q., et al. Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer. 2021;21(1):136. DOI: 10.1186/s12885-021-07826-4","Bahreyni A., Mohamud Y., Luo H. Recent advancements in immunotherapy of melanoma using nanotechnology-based strategies. Biomed Pharmacother. 2023;159:114243. DOI: 10.1016/j.biopha.2023.114243","Xie R., Wang N., Peng C., Zhang S., Zhong A., Chen J. Current application of immunotherapy in melanoma. Chin Med J (Engl). 2023;136(10):1174–6. DOI: 10.1097/CM9.0000000000002660","Liu D., Schilling B., Liu D., Sucker A., Livingstone E., Jerby-Arnon L., et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25(12):1916–27. DOI: 10.1038/s41591-019-0654-5","Hu H., Wang K., Jia R., Zeng Z.X., Zhu M., Deng Y.L., et al. Current status in rechallenge of immunotherapy. Int J Biol Sci. 2023;19(8):2428–42. DOI: 10.7150/ijbs.82776","Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Menshikova I., Fatikhova A., et al. 99P quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023;8(1, Suppl 2):100957. DOI: 10.1016/j.esmoop.2023.100957","Султанбаев А.В., Мусин Ш.И, Меньшиков К.В., Султанбаева Н.И., Тузанкина И.А., Кудлай Д.А. Стратегия усиления специфического противоопухолевого иммунитета у больных с меланомой. Эффективная фармакотерапия. 2024;20(5):116–21. DOI: 10.33978/2307-3586-2024-20-5-116-121","Kozyra P., Krasowska D., Pitucha M. New potential agents for malignant melanoma treatment-most recent studies 2020–2022. Int J Mol Sci. 2022;23(11):6084. DOI: 10.3390/ijms23116084","Schneider B.J., Naidoo J., Santomasso B.D., Lacchetti C., Adkins S., Anadkat M., et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021;39(36):4073–126. DOI: 10.1200/JCO.21.01440","Santomasso B.D., Nastoupil L.J., Adkins S., Lacchetti C., Schneider B.J., Anadkat M., et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. DOI: 10.1200/JCO.21.01992","Atkins M.B., Hodi F.S., Thompson J.A., McDermott D.F., Hwu W.J., Lawrence D.P., et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15. DOI: 10.1158/1078-0432.CCR-17-3436","Atkins M.B., Lee S.J., Chmielowski B., Tarhini A.A., Cohen G.I., Truong T.G., et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. J Clin Oncol. 2023;41(2):186–97. DOI: 10.1200/JCO.22.01763","Ascierto P.A., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023;24(1):33–44. DOI: 10.1016/S1470-2045(22)00687-8","Lopes J., Rodrigues C.M.P., Gaspar M.M., Reis C.P. Melanoma management: from epidemiology to treatment and latest advances. Cancers (Basel). 2022;14(19):4652. DOI: 10.3390/cancers14194652","Ralli M., Botticelli A., Visconti I.C., Angeletti D., Fiore M., Marchetti P., et al. Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res. 2020;2020:9235638. DOI: 10.1155/2020/9235638","Okobi O.E., Abreo E., Sams N.P., Chukwuebuni O.H., Tweneboa Amoako L.A., Wiredu B., et al. Trends in melanoma incidence, prevalence, stage at diagnosis, and survival: an analysis of the United States Cancer Statistics (USCS) Database. Cureus. 2024;16(10):e70697. DOI: 10.7759/cureus.70697","Shalata W., Attal Z.G., Solomon A., Shalata S., Abu Saleh O., Tourkey L., et al. Melanoma management: exploring staging, prognosis, and treatment innovations. Int J Mol Sci. 2024;25(11):5794. DOI: 10.3390/ijms25115794","Shah V., Panchal V., Shah A., Vyas B., Agrawal S., Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Med Int (Lond). 2024;4(2):13. DOI: 10.3892/mi.2024.137","Santos-Briz A., Cañueto J., Carmen S.D., Barrios B., Yuste M., Bellido L., et al. Value of PD-L1, PD-1, and CTLA-4 expression in the clinical practice as predictors of response to nivolumab and ipilimumab in monotherapy in patients with advanced stage melanoma. Am J Dermatopathol. 2021;43(6):423–8. DOI: 10.1097/DAD.0000000000001856","Gupta M., Stukalin I., Meyers D., Goutam S., Heng D.Y.C., Cheng T., et al. Treatment-free survival after nivolumab vs pembrolizumab vs nivolumab-ipilimumab for advanced melanoma. JAMA Netw Open. 2023;6(6):e2319607. DOI: 10.1001/jamanetworkopen.2023.19607","Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49. DOI: 10.1146/annurev-pathol-042020-042741","Robert C., Lebbé C., Lesimple T., Lundström E., Nicolas V., Gavillet B., et al. Phase I study of androgen deprivation therapy in combination with anti-PD-1 in melanoma patients pretreated with anti-PD-1. Clin Cancer Res. 2023;29(5):858–65. DOI: 10.1158/1078-0432.CCR-22-2812","Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. DOI: 10.1126/science.aar4060","Birnboim-Perach R., Benhar I. Using combination therapy to overcome diverse challenges of Immune Checkpoint Inhibitors treatment. Int J Biol Sci. 2024;20(10):3911–22. DOI: 10.7150/ijbs.93697","Султанбаев А.В., Тузанкина И.А., Мусин Ш.И., Колядина И.В., Меньшиков К.В., Султанбаев М.В. и др. Специфический противоопухолевый иммунитет и механизмы ускользания опухоли от иммунологического надзора. Онкология. Журнал им. П.А. Герцена. 2024;13(6):70–7. DOI: 10.17116/onkolog20241306170","Grote C., Bohne A.S., Blome C., Kähler K.C. Quality of life under treatment with the immune checkpoint inhibitors ipilimumab and nivolumab in melanoma patients. Real-world data from a prospective observational study at the Skin Cancer Center Kiel. J Cancer Res Clin Oncol. 2024;150(10):454. DOI: 10.1007/s00432-024-05981-2","Alrabadi N.N., Abushukair H.M., Ababneh O.E., Syaj S.S., Al-Horani S.S., Qarqash A.A., et al. Systematic review and meta-analysis efficacy and safety of immune checkpoint inhibitors in advanced melanoma patients with anti-PD-1 progression: a systematic review and meta-analysis. Clin Transl Oncol. 2021;23(9):1885–904. DOI: 10.1007/s12094-021-02598-6","Султанбаев А.В., Тузанкина И.А., Насретдинов А.Ф., Султанбаева Н.И., Мусин Ш.И., Меньшиков К.В. и др. Механизмы формирования специфического противоопухолевого иммунитета и резистентности к ингибиторам контрольных точек иммунного ответа. Вопросы онкологии. 2024;70(3):433–9. DOI: 10.37469/0507-3758-2024-70-3-433-439","Pabst L., Lopes S., Bertrand B., Creusot Q., Kotovskaya M., Pencreach E., et al. Prognostic and predictive biomarkers in the era of immunotherapy for lung cancer. Int J Mol Sci. 2023;24(8):7577. DOI: 10.3390/ijms24087577","Jia D.D., Niu Y., Zhu H., Wang S., Ma T., Li T. Prior therapy with pegylated-interferon alfa-2b improves the efficacy of adjuvant pembrolizumab in resectable advanced melanoma. Front Oncol. 2021;11:675873. DOI: 10.3389/fonc.2021.675873","Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol. 2019;11(3):a028480. DOI: 10.1101/cshperspect.a028480","Dummer R., Long G.V., Robert C., Tawbi H.A., Flaherty K.T., Ascierto P.A., et al. Randomized phase III trial evaluating spartalizumab plus dabrafenib and trametinib for BRAF V600-mutant unresectable or metastatic melanoma. J Clin Oncol. 2022;40(13):1428–38. DOI: 10.1200/JCO.21.01601","Tran K.B., Buchanan C.M., Shepherd P.R. Evolution of molecular targets in melanoma treatment. Curr Pharm Des. 2020;26(4):396–414. DOI: 10.2174/1381612826666200130091318","Addeo A., Friedlaender A., Banna G.L., Weiss G.J. TMB or not TMB as a biomarker: That is the question. Crit Rev Oncol Hematol. 2021;163:103374. DOI: 10.1016/j.critrevonc.2021.103374","Tímár J., Ladányi A. Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci. 2022;23(10):5384. DOI: 10.3390/ijms23105384","Trocchia M., Ventrici A., Modestino L., Cristinziano L., Ferrara A.L., Palestra F., et al. Innate immune cells in melanoma: implications for immunotherapy. Int J Mol Sci. 2024;25(15):8523. DOI: 10.3390/ijms25158523","Willsmore Z.N., Coumbe B.G.T., Crescioli S., Reci S., Gupta A., Harris R.J., et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur J Immunol. 2021;51(3):544–56. DOI: 10.1002/eji.202048747","Tjulandin S., Demidov L., Moiseyenko V., Protsenko S., Semiglazova T., Odintsova S., et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer. 2021;149:222–32. DOI: 10.1016/j.ejca.2021.02.030","Zhang A., Fan T., Liu Y., Yu G., Li C., Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer. 2024;23(1):251. DOI: 10.1186/s12943-024-02156-y","Ren Z., Yang K., Zhu L., Yin D., Zhou Y. Regulatory T cells as crucial trigger and potential target for hyperprogressive disease subsequent to PD-1/PD-L1 blockade for cancer treatment. Int Immunopharmacol. 2024;132:111934. DOI: 10.1016/j.intimp.2024.111934","Cheng W., Kang K., Zhao A., Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol. 2024;17(1):54. DOI: 10.1186/s13045-024-01581-2","Hakim M.S., Jariah R.O.A., Spaan M., Boonstra A. Interleukin 15 upregulates the expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells. Am J Clin Exp Immunol. 2020;9(3):10–21. PMID: 32704430","Yang J., Riella L.V., Chock S., Liu T., Zhao X., Yuan X., et al. The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. J Immunol. 2011;187(3):1113–9. DOI: 10.4049/jimmunol.1100056","Wang D., Wang T., Liu J., Yu H., Jiao S., Feng B., et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 2016;16(9):5503–13. DOI: 10.1021/acs.nanolett.6b01994","Yi M., Zheng X., Niu M., Zhu S., Ge H., Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. DOI: 10.1186/s12943-021-01489-2","Demidov L., Kharkevich G., Petenko N., Moiseenko V., Protsenko S., Semiglazova T., et al. A phase III study to access the safety and efficacy of prolgolimab 250 mg fixed dose administered every 3 weeks versus prolgolimab 1 mg/kg every 2 weeks in patients with metastatic melanoma (FLAT). Front Oncol. 2024;14:1385685. DOI: 10.3389/fonc.2024.1385685","Tjulandin S.A., Fedyanin M., Demidov L.V., Moiseyenko V., Protsen­ko S., Odintsova S., et al. Final results of phase II trial (MIRACULUM) of the novel PD-1 inhibitor prolgolimab in patients with advanced melanoma. Ann Oncol. 2019;(30):xi44. DOI: 10.1093/annonc/mdz451.027","Tran K.B., Kolekar S., Jabed A., Jaynes P., Shih J.H., Wang Q., et al. Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer. 2021;21(1):136. DOI: 10.1186/s12885-021-07826-4","Bahreyni A., Mohamud Y., Luo H. Recent advancements in immunotherapy of melanoma using nanotechnology-based strategies. Biomed Pharmacother. 2023;159:114243. DOI: 10.1016/j.biopha.2023.114243","Xie R., Wang N., Peng C., Zhang S., Zhong A., Chen J. Current application of immunotherapy in melanoma. Chin Med J (Engl). 2023;136(10):1174–6. DOI: 10.1097/CM9.0000000000002660","Liu D., Schilling B., Liu D., Sucker A., Livingstone E., Jerby-Arnon L., et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25(12):1916–27. DOI: 10.1038/s41591-019-0654-5","Hu H., Wang K., Jia R., Zeng Z.X., Zhu M., Deng Y.L., et al. Current status in rechallenge of immunotherapy. Int J Biol Sci. 2023;19(8):2428–42. DOI: 10.7150/ijbs.82776","Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Menshikova I., Fatikhova A., et al. 99P quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023;8(1, Suppl 2):100957. DOI: 10.1016/j.esmoop.2023.100957","Султанбаев А.В., Мусин Ш.И, Меньшиков К.В., Султанбаева Н.И., Тузанкина И.А., Кудлай Д.А. Стратегия усиления специфического противоопухолевого иммунитета у больных с меланомой. Эффективная фармакотерапия. 2024;20(5):116–21. DOI: 10.33978/2307-3586-2024-20-5-116-121","Kozyra P., Krasowska D., Pitucha M. New potential agents for malignant melanoma treatment-most recent studies 2020–2022. Int J Mol Sci. 2022;23(11):6084. DOI: 10.3390/ijms23116084","Schneider B.J., Naidoo J., Santomasso B.D., Lacchetti C., Adkins S., Anadkat M., et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021;39(36):4073–126. DOI: 10.1200/JCO.21.01440","Santomasso B.D., Nastoupil L.J., Adkins S., Lacchetti C., Schneider B.J., Anadkat M., et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. DOI: 10.1200/JCO.21.01992","Atkins M.B., Hodi F.S., Thompson J.A., McDermott D.F., Hwu W.J., Lawrence D.P., et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15. DOI: 10.1158/1078-0432.CCR-17-3436","Atkins M.B., Lee S.J., Chmielowski B., Tarhini A.A., Cohen G.I., Truong T.G., et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. J Clin Oncol. 2023;41(2):186–97. DOI: 10.1200/JCO.22.01763","Ascierto P.A., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023;24(1):33–44. DOI: 10.1016/S1470-2045(22)00687-8"],"dc.citation.ru":["Lopes J., Rodrigues C.M.P., Gaspar M.M., Reis C.P. Melanoma management: from epidemiology to treatment and latest advances. Cancers (Basel). 2022;14(19):4652. DOI: 10.3390/cancers14194652","Ralli M., Botticelli A., Visconti I.C., Angeletti D., Fiore M., Marchetti P., et al. Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res. 2020;2020:9235638. DOI: 10.1155/2020/9235638","Okobi O.E., Abreo E., Sams N.P., Chukwuebuni O.H., Tweneboa Amoako L.A., Wiredu B., et al. Trends in melanoma incidence, prevalence, stage at diagnosis, and survival: an analysis of the United States Cancer Statistics (USCS) Database. Cureus. 2024;16(10):e70697. DOI: 10.7759/cureus.70697","Shalata W., Attal Z.G., Solomon A., Shalata S., Abu Saleh O., Tourkey L., et al. Melanoma management: exploring staging, prognosis, and treatment innovations. Int J Mol Sci. 2024;25(11):5794. DOI: 10.3390/ijms25115794","Shah V., Panchal V., Shah A., Vyas B., Agrawal S., Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Med Int (Lond). 2024;4(2):13. DOI: 10.3892/mi.2024.137","Santos-Briz A., Cañueto J., Carmen S.D., Barrios B., Yuste M., Bellido L., et al. Value of PD-L1, PD-1, and CTLA-4 expression in the clinical practice as predictors of response to nivolumab and ipilimumab in monotherapy in patients with advanced stage melanoma. Am J Dermatopathol. 2021;43(6):423–8. DOI: 10.1097/DAD.0000000000001856","Gupta M., Stukalin I., Meyers D., Goutam S., Heng D.Y.C., Cheng T., et al. Treatment-free survival after nivolumab vs pembrolizumab vs nivolumab-ipilimumab for advanced melanoma. JAMA Netw Open. 2023;6(6):e2319607. DOI: 10.1001/jamanetworkopen.2023.19607","Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49. DOI: 10.1146/annurev-pathol-042020-042741","Robert C., Lebbé C., Lesimple T., Lundström E., Nicolas V., Gavillet B., et al. Phase I study of androgen deprivation therapy in combination with anti-PD-1 in melanoma patients pretreated with anti-PD-1. Clin Cancer Res. 2023;29(5):858–65. DOI: 10.1158/1078-0432.CCR-22-2812","Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. DOI: 10.1126/science.aar4060","Birnboim-Perach R., Benhar I. Using combination therapy to overcome diverse challenges of Immune Checkpoint Inhibitors treatment. Int J Biol Sci. 2024;20(10):3911–22. DOI: 10.7150/ijbs.93697","Султанбаев А.В., Тузанкина И.А., Мусин Ш.И., Колядина И.В., Меньшиков К.В., Султанбаев М.В. и др. Специфический противоопухолевый иммунитет и механизмы ускользания опухоли от иммунологического надзора. Онкология. Журнал им. П.А. Герцена. 2024;13(6):70–7. DOI: 10.17116/onkolog20241306170","Grote C., Bohne A.S., Blome C., Kähler K.C. Quality of life under treatment with the immune checkpoint inhibitors ipilimumab and nivolumab in melanoma patients. Real-world data from a prospective observational study at the Skin Cancer Center Kiel. J Cancer Res Clin Oncol. 2024;150(10):454. DOI: 10.1007/s00432-024-05981-2","Alrabadi N.N., Abushukair H.M., Ababneh O.E., Syaj S.S., Al-Horani S.S., Qarqash A.A., et al. Systematic review and meta-analysis efficacy and safety of immune checkpoint inhibitors in advanced melanoma patients with anti-PD-1 progression: a systematic review and meta-analysis. Clin Transl Oncol. 2021;23(9):1885–904. DOI: 10.1007/s12094-021-02598-6","Султанбаев А.В., Тузанкина И.А., Насретдинов А.Ф., Султанбаева Н.И., Мусин Ш.И., Меньшиков К.В. и др. Механизмы формирования специфического противоопухолевого иммунитета и резистентности к ингибиторам контрольных точек иммунного ответа. Вопросы онкологии. 2024;70(3):433–9. DOI: 10.37469/0507-3758-2024-70-3-433-439","Pabst L., Lopes S., Bertrand B., Creusot Q., Kotovskaya M., Pencreach E., et al. Prognostic and predictive biomarkers in the era of immunotherapy for lung cancer. Int J Mol Sci. 2023;24(8):7577. DOI: 10.3390/ijms24087577","Jia D.D., Niu Y., Zhu H., Wang S., Ma T., Li T. Prior therapy with pegylated-interferon alfa-2b improves the efficacy of adjuvant pembrolizumab in resectable advanced melanoma. Front Oncol. 2021;11:675873. DOI: 10.3389/fonc.2021.675873","Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol. 2019;11(3):a028480. DOI: 10.1101/cshperspect.a028480","Dummer R., Long G.V., Robert C., Tawbi H.A., Flaherty K.T., Ascierto P.A., et al. Randomized phase III trial evaluating spartalizumab plus dabrafenib and trametinib for BRAF V600-mutant unresectable or metastatic melanoma. J Clin Oncol. 2022;40(13):1428–38. DOI: 10.1200/JCO.21.01601","Tran K.B., Buchanan C.M., Shepherd P.R. Evolution of molecular targets in melanoma treatment. Curr Pharm Des. 2020;26(4):396–414. DOI: 10.2174/1381612826666200130091318","Addeo A., Friedlaender A., Banna G.L., Weiss G.J. TMB or not TMB as a biomarker: That is the question. Crit Rev Oncol Hematol. 2021;163:103374. DOI: 10.1016/j.critrevonc.2021.103374","Tímár J., Ladányi A. Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci. 2022;23(10):5384. DOI: 10.3390/ijms23105384","Trocchia M., Ventrici A., Modestino L., Cristinziano L., Ferrara A.L., Palestra F., et al. Innate immune cells in melanoma: implications for immunotherapy. Int J Mol Sci. 2024;25(15):8523. DOI: 10.3390/ijms25158523","Willsmore Z.N., Coumbe B.G.T., Crescioli S., Reci S., Gupta A., Harris R.J., et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur J Immunol. 2021;51(3):544–56. DOI: 10.1002/eji.202048747","Tjulandin S., Demidov L., Moiseyenko V., Protsenko S., Semiglazova T., Odintsova S., et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer. 2021;149:222–32. DOI: 10.1016/j.ejca.2021.02.030","Zhang A., Fan T., Liu Y., Yu G., Li C., Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer. 2024;23(1):251. DOI: 10.1186/s12943-024-02156-y","Ren Z., Yang K., Zhu L., Yin D., Zhou Y. Regulatory T cells as crucial trigger and potential target for hyperprogressive disease subsequent to PD-1/PD-L1 blockade for cancer treatment. Int Immunopharmacol. 2024;132:111934. DOI: 10.1016/j.intimp.2024.111934","Cheng W., Kang K., Zhao A., Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol. 2024;17(1):54. DOI: 10.1186/s13045-024-01581-2","Hakim M.S., Jariah R.O.A., Spaan M., Boonstra A. Interleukin 15 upregulates the expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells. Am J Clin Exp Immunol. 2020;9(3):10–21. PMID: 32704430","Yang J., Riella L.V., Chock S., Liu T., Zhao X., Yuan X., et al. The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. J Immunol. 2011;187(3):1113–9. DOI: 10.4049/jimmunol.1100056","Wang D., Wang T., Liu J., Yu H., Jiao S., Feng B., et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 2016;16(9):5503–13. DOI: 10.1021/acs.nanolett.6b01994","Yi M., Zheng X., Niu M., Zhu S., Ge H., Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. DOI: 10.1186/s12943-021-01489-2","Demidov L., Kharkevich G., Petenko N., Moiseenko V., Protsenko S., Semiglazova T., et al. A phase III study to access the safety and efficacy of prolgolimab 250 mg fixed dose administered every 3 weeks versus prolgolimab 1 mg/kg every 2 weeks in patients with metastatic melanoma (FLAT). Front Oncol. 2024;14:1385685. DOI: 10.3389/fonc.2024.1385685","Tjulandin S.A., Fedyanin M., Demidov L.V., Moiseyenko V., Protsen­ko S., Odintsova S., et al. Final results of phase II trial (MIRACULUM) of the novel PD-1 inhibitor prolgolimab in patients with advanced melanoma. Ann Oncol. 2019;(30):xi44. DOI: 10.1093/annonc/mdz451.027","Tran K.B., Kolekar S., Jabed A., Jaynes P., Shih J.H., Wang Q., et al. Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer. 2021;21(1):136. DOI: 10.1186/s12885-021-07826-4","Bahreyni A., Mohamud Y., Luo H. Recent advancements in immunotherapy of melanoma using nanotechnology-based strategies. Biomed Pharmacother. 2023;159:114243. DOI: 10.1016/j.biopha.2023.114243","Xie R., Wang N., Peng C., Zhang S., Zhong A., Chen J. Current application of immunotherapy in melanoma. Chin Med J (Engl). 2023;136(10):1174–6. DOI: 10.1097/CM9.0000000000002660","Liu D., Schilling B., Liu D., Sucker A., Livingstone E., Jerby-Arnon L., et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25(12):1916–27. DOI: 10.1038/s41591-019-0654-5","Hu H., Wang K., Jia R., Zeng Z.X., Zhu M., Deng Y.L., et al. Current status in rechallenge of immunotherapy. Int J Biol Sci. 2023;19(8):2428–42. DOI: 10.7150/ijbs.82776","Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Menshikova I., Fatikhova A., et al. 99P quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023;8(1, Suppl 2):100957. DOI: 10.1016/j.esmoop.2023.100957","Султанбаев А.В., Мусин Ш.И, Меньшиков К.В., Султанбаева Н.И., Тузанкина И.А., Кудлай Д.А. Стратегия усиления специфического противоопухолевого иммунитета у больных с меланомой. Эффективная фармакотерапия. 2024;20(5):116–21. DOI: 10.33978/2307-3586-2024-20-5-116-121","Kozyra P., Krasowska D., Pitucha M. New potential agents for malignant melanoma treatment-most recent studies 2020–2022. Int J Mol Sci. 2022;23(11):6084. DOI: 10.3390/ijms23116084","Schneider B.J., Naidoo J., Santomasso B.D., Lacchetti C., Adkins S., Anadkat M., et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021;39(36):4073–126. DOI: 10.1200/JCO.21.01440","Santomasso B.D., Nastoupil L.J., Adkins S., Lacchetti C., Schneider B.J., Anadkat M., et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. DOI: 10.1200/JCO.21.01992","Atkins M.B., Hodi F.S., Thompson J.A., McDermott D.F., Hwu W.J., Lawrence D.P., et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15. DOI: 10.1158/1078-0432.CCR-17-3436","Atkins M.B., Lee S.J., Chmielowski B., Tarhini A.A., Cohen G.I., Truong T.G., et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. J Clin Oncol. 2023;41(2):186–97. DOI: 10.1200/JCO.22.01763","Ascierto P.A., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023;24(1):33–44. DOI: 10.1016/S1470-2045(22)00687-8"],"dc.citation.en":["Lopes J., Rodrigues C.M.P., Gaspar M.M., Reis C.P. Melanoma management: from epidemiology to treatment and latest advances. Cancers (Basel). 2022;14(19):4652. DOI: 10.3390/cancers14194652","Ralli M., Botticelli A., Visconti I.C., Angeletti D., Fiore M., Marchetti P., et al. Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res. 2020;2020:9235638. DOI: 10.1155/2020/9235638","Okobi O.E., Abreo E., Sams N.P., Chukwuebuni O.H., Tweneboa Amoako L.A., Wiredu B., et al. Trends in melanoma incidence, prevalence, stage at diagnosis, and survival: an analysis of the United States Cancer Statistics (USCS) Database. Cureus. 2024;16(10):e70697. DOI: 10.7759/cureus.70697","Shalata W., Attal Z.G., Solomon A., Shalata S., Abu Saleh O., Tourkey L., et al. Melanoma management: exploring staging, prognosis, and treatment innovations. Int J Mol Sci. 2024;25(11):5794. DOI: 10.3390/ijms25115794","Shah V., Panchal V., Shah A., Vyas B., Agrawal S., Bharadwaj S. Immune checkpoint inhibitors in metastatic melanoma therapy (Review). Med Int (Lond). 2024;4(2):13. DOI: 10.3892/mi.2024.137","Santos-Briz A., Cañueto J., Carmen S.D., Barrios B., Yuste M., Bellido L., et al. Value of PD-L1, PD-1, and CTLA-4 expression in the clinical practice as predictors of response to nivolumab and ipilimumab in monotherapy in patients with advanced stage melanoma. Am J Dermatopathol. 2021;43(6):423–8. DOI: 10.1097/DAD.0000000000001856","Gupta M., Stukalin I., Meyers D., Goutam S., Heng D.Y.C., Cheng T., et al. Treatment-free survival after nivolumab vs pembrolizumab vs nivolumab-ipilimumab for advanced melanoma. JAMA Netw Open. 2023;6(6):e2319607. DOI: 10.1001/jamanetworkopen.2023.19607","Bagchi S., Yuan R., Engleman E.G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–49. DOI: 10.1146/annurev-pathol-042020-042741","Robert C., Lebbé C., Lesimple T., Lundström E., Nicolas V., Gavillet B., et al. Phase I study of androgen deprivation therapy in combination with anti-PD-1 in melanoma patients pretreated with anti-PD-1. Clin Cancer Res. 2023;29(5):858–65. DOI: 10.1158/1078-0432.CCR-22-2812","Ribas A., Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. DOI: 10.1126/science.aar4060","Birnboim-Perach R., Benhar I. Using combination therapy to overcome diverse challenges of Immune Checkpoint Inhibitors treatment. Int J Biol Sci. 2024;20(10):3911–22. DOI: 10.7150/ijbs.93697","Султанбаев А.В., Тузанкина И.А., Мусин Ш.И., Колядина И.В., Меньшиков К.В., Султанбаев М.В. и др. Специфический противоопухолевый иммунитет и механизмы ускользания опухоли от иммунологического надзора. Онкология. Журнал им. П.А. Герцена. 2024;13(6):70–7. DOI: 10.17116/onkolog20241306170","Grote C., Bohne A.S., Blome C., Kähler K.C. Quality of life under treatment with the immune checkpoint inhibitors ipilimumab and nivolumab in melanoma patients. Real-world data from a prospective observational study at the Skin Cancer Center Kiel. J Cancer Res Clin Oncol. 2024;150(10):454. DOI: 10.1007/s00432-024-05981-2","Alrabadi N.N., Abushukair H.M., Ababneh O.E., Syaj S.S., Al-Horani S.S., Qarqash A.A., et al. Systematic review and meta-analysis efficacy and safety of immune checkpoint inhibitors in advanced melanoma patients with anti-PD-1 progression: a systematic review and meta-analysis. Clin Transl Oncol. 2021;23(9):1885–904. DOI: 10.1007/s12094-021-02598-6","Султанбаев А.В., Тузанкина И.А., Насретдинов А.Ф., Султанбаева Н.И., Мусин Ш.И., Меньшиков К.В. и др. Механизмы формирования специфического противоопухолевого иммунитета и резистентности к ингибиторам контрольных точек иммунного ответа. Вопросы онкологии. 2024;70(3):433–9. DOI: 10.37469/0507-3758-2024-70-3-433-439","Pabst L., Lopes S., Bertrand B., Creusot Q., Kotovskaya M., Pencreach E., et al. Prognostic and predictive biomarkers in the era of immunotherapy for lung cancer. Int J Mol Sci. 2023;24(8):7577. DOI: 10.3390/ijms24087577","Jia D.D., Niu Y., Zhu H., Wang S., Ma T., Li T. Prior therapy with pegylated-interferon alfa-2b improves the efficacy of adjuvant pembrolizumab in resectable advanced melanoma. Front Oncol. 2021;11:675873. DOI: 10.3389/fonc.2021.675873","Alspach E., Lussier D.M., Schreiber R.D. Interferon γ and Its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb Perspect Biol. 2019;11(3):a028480. DOI: 10.1101/cshperspect.a028480","Dummer R., Long G.V., Robert C., Tawbi H.A., Flaherty K.T., Ascierto P.A., et al. Randomized phase III trial evaluating spartalizumab plus dabrafenib and trametinib for BRAF V600-mutant unresectable or metastatic melanoma. J Clin Oncol. 2022;40(13):1428–38. DOI: 10.1200/JCO.21.01601","Tran K.B., Buchanan C.M., Shepherd P.R. Evolution of molecular targets in melanoma treatment. Curr Pharm Des. 2020;26(4):396–414. DOI: 10.2174/1381612826666200130091318","Addeo A., Friedlaender A., Banna G.L., Weiss G.J. TMB or not TMB as a biomarker: That is the question. Crit Rev Oncol Hematol. 2021;163:103374. DOI: 10.1016/j.critrevonc.2021.103374","Tímár J., Ladányi A. Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci. 2022;23(10):5384. DOI: 10.3390/ijms23105384","Trocchia M., Ventrici A., Modestino L., Cristinziano L., Ferrara A.L., Palestra F., et al. Innate immune cells in melanoma: implications for immunotherapy. Int J Mol Sci. 2024;25(15):8523. DOI: 10.3390/ijms25158523","Willsmore Z.N., Coumbe B.G.T., Crescioli S., Reci S., Gupta A., Harris R.J., et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action. Eur J Immunol. 2021;51(3):544–56. DOI: 10.1002/eji.202048747","Tjulandin S., Demidov L., Moiseyenko V., Protsenko S., Semiglazova T., Odintsova S., et al. Novel PD-1 inhibitor prolgolimab: expanding non-resectable/metastatic melanoma therapy choice. Eur J Cancer. 2021;149:222–32. DOI: 10.1016/j.ejca.2021.02.030","Zhang A., Fan T., Liu Y., Yu G., Li C., Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer. 2024;23(1):251. DOI: 10.1186/s12943-024-02156-y","Ren Z., Yang K., Zhu L., Yin D., Zhou Y. Regulatory T cells as crucial trigger and potential target for hyperprogressive disease subsequent to PD-1/PD-L1 blockade for cancer treatment. Int Immunopharmacol. 2024;132:111934. DOI: 10.1016/j.intimp.2024.111934","Cheng W., Kang K., Zhao A., Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J Hematol Oncol. 2024;17(1):54. DOI: 10.1186/s13045-024-01581-2","Hakim M.S., Jariah R.O.A., Spaan M., Boonstra A. Interleukin 15 upregulates the expression of PD-1 and TIM-3 on CD4+ and CD8+ T cells. Am J Clin Exp Immunol. 2020;9(3):10–21. PMID: 32704430","Yang J., Riella L.V., Chock S., Liu T., Zhao X., Yuan X., et al. The novel costimulatory programmed death ligand 1/B7.1 pathway is functional in inhibiting alloimmune responses in vivo. J Immunol. 2011;187(3):1113–9. DOI: 10.4049/jimmunol.1100056","Wang D., Wang T., Liu J., Yu H., Jiao S., Feng B., et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 2016;16(9):5503–13. DOI: 10.1021/acs.nanolett.6b01994","Yi M., Zheng X., Niu M., Zhu S., Ge H., Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. DOI: 10.1186/s12943-021-01489-2","Demidov L., Kharkevich G., Petenko N., Moiseenko V., Protsenko S., Semiglazova T., et al. A phase III study to access the safety and efficacy of prolgolimab 250 mg fixed dose administered every 3 weeks versus prolgolimab 1 mg/kg every 2 weeks in patients with metastatic melanoma (FLAT). Front Oncol. 2024;14:1385685. DOI: 10.3389/fonc.2024.1385685","Tjulandin S.A., Fedyanin M., Demidov L.V., Moiseyenko V., Protsen­ko S., Odintsova S., et al. Final results of phase II trial (MIRACULUM) of the novel PD-1 inhibitor prolgolimab in patients with advanced melanoma. Ann Oncol. 2019;(30):xi44. DOI: 10.1093/annonc/mdz451.027","Tran K.B., Kolekar S., Jabed A., Jaynes P., Shih J.H., Wang Q., et al. Diverse mechanisms activate the PI 3-kinase/mTOR pathway in melanomas: implications for the use of PI 3-kinase inhibitors to overcome resistance to inhibitors of BRAF and MEK. BMC Cancer. 2021;21(1):136. DOI: 10.1186/s12885-021-07826-4","Bahreyni A., Mohamud Y., Luo H. Recent advancements in immunotherapy of melanoma using nanotechnology-based strategies. Biomed Pharmacother. 2023;159:114243. DOI: 10.1016/j.biopha.2023.114243","Xie R., Wang N., Peng C., Zhang S., Zhong A., Chen J. Current application of immunotherapy in melanoma. Chin Med J (Engl). 2023;136(10):1174–6. DOI: 10.1097/CM9.0000000000002660","Liu D., Schilling B., Liu D., Sucker A., Livingstone E., Jerby-Arnon L., et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25(12):1916–27. DOI: 10.1038/s41591-019-0654-5","Hu H., Wang K., Jia R., Zeng Z.X., Zhu M., Deng Y.L., et al. Current status in rechallenge of immunotherapy. Int J Biol Sci. 2023;19(8):2428–42. DOI: 10.7150/ijbs.82776","Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Menshikova I., Fatikhova A., et al. 99P quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023;8(1, Suppl 2):100957. DOI: 10.1016/j.esmoop.2023.100957","Султанбаев А.В., Мусин Ш.И, Меньшиков К.В., Султанбаева Н.И., Тузанкина И.А., Кудлай Д.А. Стратегия усиления специфического противоопухолевого иммунитета у больных с меланомой. Эффективная фармакотерапия. 2024;20(5):116–21. DOI: 10.33978/2307-3586-2024-20-5-116-121","Kozyra P., Krasowska D., Pitucha M. New potential agents for malignant melanoma treatment-most recent studies 2020–2022. Int J Mol Sci. 2022;23(11):6084. DOI: 10.3390/ijms23116084","Schneider B.J., Naidoo J., Santomasso B.D., Lacchetti C., Adkins S., Anadkat M., et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021;39(36):4073–126. DOI: 10.1200/JCO.21.01440","Santomasso B.D., Nastoupil L.J., Adkins S., Lacchetti C., Schneider B.J., Anadkat M., et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–92. DOI: 10.1200/JCO.21.01992","Atkins M.B., Hodi F.S., Thompson J.A., McDermott D.F., Hwu W.J., Lawrence D.P., et al. Pembrolizumab plus pegylated interferon alfa-2b or ipilimumab for advanced melanoma or renal cell carcinoma: dose-finding results from the phase Ib KEYNOTE-029 Study. Clin Cancer Res. 2018;24(8):1805–15. DOI: 10.1158/1078-0432.CCR-17-3436","Atkins M.B., Lee S.J., Chmielowski B., Tarhini A.A., Cohen G.I., Truong T.G., et al. Combination dabrafenib and trametinib versus combination nivolumab and ipilimumab for patients with advanced BRAF-mutant melanoma: The DREAMseq Trial-ECOG-ACRIN EA6134. J Clin Oncol. 2023;41(2):186–97. DOI: 10.1200/JCO.22.01763","Ascierto P.A., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023;24(1):33–44. DOI: 10.1016/S1470-2045(22)00687-8"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8916"],"dc.date.accessioned_dt":"2025-07-09T13:58:55Z","dc.date.accessioned":["2025-07-09T13:58:55Z"],"dc.date.available":["2025-07-09T13:58:55Z"],"publication_grp":["123456789/8916"],"bi_4_dis_filter":["иммунотерапия\n|||\nиммунотерапия","меланома\n|||\nмеланома","mutations\n|||\nmutations","immunotherapy\n|||\nimmunotherapy","immune checkpoint inhibitors\n|||\nimmune checkpoint inhibitors","ингибиторы иммунных контрольных точек\n|||\nингибиторы иммунных контрольных точек","т-рецепторные эксцизионные кольца\n|||\nТ-рецепторные эксцизионные кольца","мутации\n|||\nмутации","trec\n|||\nTREC","melanoma\n|||\nmelanoma","pdl1\n|||\nPDL1","t-cell receptor excision circles\n|||\nT-cell receptor excision circles","pd1\n|||\nPD1"],"bi_4_dis_partial":["меланома","мутации","melanoma","immune checkpoint inhibitors","ингибиторы иммунных контрольных точек","mutations","immunotherapy","TREC","PD1","PDL1","иммунотерапия","Т-рецепторные эксцизионные кольца","T-cell receptor excision circles"],"bi_4_dis_value_filter":["меланома","мутации","melanoma","immune checkpoint inhibitors","ингибиторы иммунных контрольных точек","mutations","immunotherapy","TREC","PD1","PDL1","иммунотерапия","Т-рецепторные эксцизионные кольца","T-cell receptor excision circles"],"bi_sort_1_sort":"immune checkpoint inhibitors in melanoma treatment: advances and obstacles","bi_sort_3_sort":"2025-07-09T13:58:55Z","read":["g0"],"_version_":1837178065498669056}]},"facet_counts":{"facet_queries":{},"facet_fields":{},"facet_dates":{},"facet_ranges":{},"facet_intervals":{}},"highlighting":{"2-8032":{"dc.citation.en":[".A.M., Alves P.H.F., et al. Damage control surgery in non-traumatic abdominal emergencies: prognostic value"],"dc.source":["Creative surgery and oncology"],"dc.citation.ru":[".A.M., Alves P.H.F., et al. Damage control surgery in non-traumatic abdominal emergencies: prognostic value"],"dc.source.en":["Creative surgery and oncology"],"dc.abstract.en":[" of Purulent Surgery) of the Republican Clinical Hospital named after G.G. Kuvatov. The therapeutic approach"],"dc.citation":[".A.M., Alves P.H.F., et al. Damage control surgery in non-traumatic abdominal emergencies: prognostic value"],"dc.abstract":[" of Purulent Surgery) of the Republican Clinical Hospital named after G.G. Kuvatov. The therapeutic approach"]},"2-8023":{"dc.citation.en":[" of primary hyperparathyroidism: Does parathyroidectomy improve clinical outcomes for all? Surgery. 2023"],"dc.source":["Creative surgery and oncology"],"dc.citation.ru":[" of primary hyperparathyroidism: Does parathyroidectomy improve clinical outcomes for all? Surgery. 2023"],"dc.source.en":["Creative surgery and oncology"],"dc.abstract.en":[" normalization of ionized calcium and iPTH was observed three months after the surgery. In Groups 2, 3, and 4"],"dc.citation":[" of primary hyperparathyroidism: Does parathyroidectomy improve clinical outcomes for all? Surgery. 2023"],"dc.abstract":[" normalization of ionized calcium and iPTH was observed three months after the surgery. In Groups 2, 3, and 4"]},"2-8029":{"dc.citation.en":[" surgery. Br J Surg. 2004;91(11):1390–7. DOI: 10.1002/bjs.4700"],"dc.source":["Creative surgery and oncology"],"dc.citation.ru":[" surgery. Br J Surg. 2004;91(11):1390–7. DOI: 10.1002/bjs.4700"],"dc.source.en":["Creative surgery and oncology"],"dc.citation":[" surgery. Br J Surg. 2004;91(11):1390–7. DOI: 10.1002/bjs.4700"]},"2-8043":{"dc.source":["Creative surgery and oncology"],"dc.source.en":["Creative surgery and oncology"],"dc.abstract.en":[" satisfactory cosmetic effect. However, disease recurrence was observed three years after surgery. surgery. surgery and oncology"],"dc.source.en":["Creative surgery and oncology"],"dc.abstract.en":[". It is also necessary to conduct a thorough differential diagnosis prior to surgery.

"],"dc.abstract":[". It is also necessary to conduct a thorough differential diagnosis prior to surgery.

"]},"2-8039":{"dc.source":["Creative surgery and oncology"],"dc.source.en":["Creative surgery and oncology"],"dc.abstract.en":[" with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first"],"dc.abstract":[" with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first"]},"2-8034":{"dc.source":["Creative surgery and oncology"],"dc.source.en":["Creative surgery and oncology"]},"2-8036":{"dc.source":["Creative surgery and oncology"],"dc.source.en":["Creative surgery and oncology"]},"2-8026":{"dc.source":["Creative surgery and oncology"],"dc.source.en":["Creative surgery and oncology"]},"2-8027":{"dc.source":["Creative surgery and oncology"],"dc.source.en":["Creative surgery and oncology"]}}} -->

По вашему запросу найдено документов: 31

Страница 3 из 4

Распространенный гнойный перитонит: современные возможности лечения
М. Р. Гараев, M. R. Garaev, М. А. Нартайлаков, M. A. Nartailakov, В. Д. Дорофеев, V. D. Dorofeev (Креативная хирургия и онкология, №2, 2025)

Обоснование нового подхода к хирургическому лечению пациентов с первичным гиперпаратиреозом на основании анализа динамики лабораторных показателей костного метаболизма
А. В. Величко, A. V. Velichko, Ю. И. Ярец, Yu. I. Yarets, З. А. Дундаров, Z. A. Dundarov (Креативная хирургия и онкология, №1, 2025)

Дермоидная киста у пожилого мужчины и ее успешное хирургическое лечение с применением роботических технологий: клинический случай
М. Ф. Урманцев, M. F. Urmantsev, А. И. Исмоилов, A. I. Ismoilov, М. Р. Бакеев, M. R. Bakeev (Креативная хирургия и онкология, №1, 2025)

G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" [21]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [22]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [23]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [24]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [25]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [26]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [27]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [28]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [29]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [30]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [31]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [32]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [33]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [34]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [35]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [36]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [37]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [38]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [39]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [40]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [41]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.ru"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.en"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.identifier.uri"]=> array(1) { [0]=> string(36) "http://hdl.handle.net/123456789/8932" } ["dc.date.accessioned_dt"]=> string(20) "2025-07-09T13:59:02Z" ["dc.date.accessioned"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["dc.date.available"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["publication_grp"]=> array(1) { [0]=> string(14) "123456789/8932" } ["bi_4_dis_filter"]=> array(10) { [0]=> string(45) "madelung’s disease ||| Madelung’s disease" [1]=> string(23) "lipectomy ||| lipectomy" [2]=> string(133) "диффузный симметричный липоматоз ||| диффузный симметричный липоматоз" [3]=> string(79) "шеи новообразования ||| шеи новообразования" [4]=> string(45) "липэктомия ||| липэктомия" [5]=> string(63) "diffuse symmetric lipomatosis ||| diffuse symmetric lipomatosis" [6]=> string(61) "adipose tissue proliferation ||| adipose tissue proliferation" [7]=> string(103) "жировой ткани разрастание ||| жировой ткани разрастание" [8]=> string(71) "болезнь маделунга ||| болезнь Маделунга" [9]=> string(33) "neck neoplasms ||| neck neoplasms" } ["bi_4_dis_partial"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_4_dis_value_filter"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_sort_1_sort"]=> string(99) "systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case" ["bi_sort_3_sort"]=> string(20) "2025-07-09T13:59:02Z" ["read"]=> array(1) { [0]=> string(2) "g0" } ["_version_"]=> int(1837178072511545344) } -->
Системный доброкачественный липоматоз (болезнь Маделунга): опыт хирургического лечения (клинический случай)

Лапароскопическое удаление мезотелиальной кисты большого сальника: клинический случай

Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)

Анализ и функциональная значимость белка TRAP1 при глиобластоме

Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы

Кросслинкинг биополимеров: применение и перспективы

Применение ингибиторов контрольных точек иммунитета в лечении меланомы: достижения и препятствия
А. В. Султанбаев, A. V. Sultanbaev (Креативная хирургия и онкология, №1, 2025)

Страница 3 из 4