G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845","Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.ru":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.en":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8932"],"dc.date.accessioned_dt":"2025-07-09T13:59:02Z","dc.date.accessioned":["2025-07-09T13:59:02Z"],"dc.date.available":["2025-07-09T13:59:02Z"],"publication_grp":["123456789/8932"],"bi_4_dis_filter":["madelung’s disease\n|||\nMadelung’s disease","lipectomy\n|||\nlipectomy","диффузный симметричный липоматоз\n|||\nдиффузный симметричный липоматоз","шеи новообразования\n|||\nшеи новообразования","липэктомия\n|||\nлипэктомия","diffuse symmetric lipomatosis\n|||\ndiffuse symmetric lipomatosis","adipose tissue proliferation\n|||\nadipose tissue proliferation","жировой ткани разрастание\n|||\nжировой ткани разрастание","болезнь маделунга\n|||\nболезнь Маделунга","neck neoplasms\n|||\nneck neoplasms"],"bi_4_dis_partial":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_4_dis_value_filter":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_sort_1_sort":"systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case","bi_sort_3_sort":"2025-07-09T13:59:02Z","read":["g0"],"_version_":1837178072511545344},{"SolrIndexer.lastIndexed":"2025-07-09T13:59:01.289Z","search.uniqueid":"2-8041","search.resourcetype":2,"search.resourceid":8041,"handle":"123456789/8930","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-90-96"],"dc.abstract":["

Introduction. Squamous cell carcinoma (SCC) is the second most prevalent form of skin cancer, following basal cell carcinoma. The development of SCC on scarred tissue leads to a more aggressive form of the disease, characterized by a high metastatic potential. Surgical excision remains the primary treatment modality, with advanced reconstructive surgery techniques employed for defect repair. Materials and methods. We present the following clinical case. A 60-yearold female patient exhibited an extensive post-burn scar on her back, which was sustained at the age of fifteen. A clinical examination revealed an infiltrative-ulcerative tumor measuring 27x21 cm located on the right scapular region. The diagnosis was squamous cell carcinoma of the back, stage T3N2M0, clinical stage IVa, group II. Treatment involved tumor excision with the subsequent defect repair using a free split-thickness skin graft. The postoperative period was uneventful. Results and discussion. The free skin graft achieved over 95% uptake, successfully covering the wound surface. Prophylactic lymph node dissection demonstrated no impact on recurrence-free survival in the absence of regional metastases. Conclusion. SCC arising within burn scars tends to exhibit a more aggressive clinical behavior and is often diagnosed at advanced stages. To prevent malignant transformation of burn scars, we recommend meticulous wound care with protection against trauma and early skin grafting. Any alterations indicating a potential malignant transformation warrant excisional biopsy or radical excision. Patients require close monitoring post-treatment for the early detection of metastases.

","

Введение. Плоскоклеточный рак кожи (ПКРК) — второй по распространенности рак кожи после базальноклеточного. Развитие ПРК на фоне рубцовых поражений приводит к появлению более агрессивной формы рака, характеризующейся большим метастатическим потенциалом. Основным методом лечения является хирургический с использованием современных возможностей реконструктивной хирургии для закрытия раневого дефекта. Материалы и методы. Клинический случай: у пациентки 60 лет в анамнезе обширный ожог кожи спины, полученный в возрасте 15 лет. При осмотре: на коже спины справа в лопаточной области определяется инфильтративно-язвенная опухоль размерами 27×21 см. Выставлен диагноз: плоскоклеточный рак кожи спины сT3N2M0 ст. IVa гр. II. Произведено иссечение опухоли кожи (пластика дефекта свободным расщепленным кожным лоскутом). Послеоперационный период протекал без осложнений. Результаты и обсуждение. Иссечение опухоли кожи с пластикой свободным кожным лоскутом позволило успешно закрыть раневую поверхность и добиться приживления лоскута более 95 %. Проведение профилактической лимфодиссекции при отсутствии регионарных метастазов не влияет на безрецидивную выживаемость. Заключение. ПКРК на фоне ожоговых рубцов протекает более агрессивно и чаще всего диагностируется на поздних стадиях заболевания. Чтобы предотвратить развитие рака на месте ожогового рубца, мы должны тщательно ухаживать за ожоговым рубцом, защищать его от травм, обеспечивать эпителизацию и раннюю трансплантацию кожи на обожженном участке, а в случае обнаружения изменений, указывающих на перерождение, следует провести эксцизионную биопсию или радикальное иссечение. После радикального лечения ПКРК пациент также должен находиться под тщательным наблюдением для раннего выявления метастазов.

"],"dc.abstract.en":["

Introduction. Squamous cell carcinoma (SCC) is the second most prevalent form of skin cancer, following basal cell carcinoma. The development of SCC on scarred tissue leads to a more aggressive form of the disease, characterized by a high metastatic potential. Surgical excision remains the primary treatment modality, with advanced reconstructive surgery techniques employed for defect repair. Materials and methods. We present the following clinical case. A 60-yearold female patient exhibited an extensive post-burn scar on her back, which was sustained at the age of fifteen. A clinical examination revealed an infiltrative-ulcerative tumor measuring 27x21 cm located on the right scapular region. The diagnosis was squamous cell carcinoma of the back, stage T3N2M0, clinical stage IVa, group II. Treatment involved tumor excision with the subsequent defect repair using a free split-thickness skin graft. The postoperative period was uneventful. Results and discussion. The free skin graft achieved over 95% uptake, successfully covering the wound surface. Prophylactic lymph node dissection demonstrated no impact on recurrence-free survival in the absence of regional metastases. Conclusion. SCC arising within burn scars tends to exhibit a more aggressive clinical behavior and is often diagnosed at advanced stages. To prevent malignant transformation of burn scars, we recommend meticulous wound care with protection against trauma and early skin grafting. Any alterations indicating a potential malignant transformation warrant excisional biopsy or radical excision. Patients require close monitoring post-treatment for the early detection of metastases.

"],"subject":["squamous cell carcinoma","burns","hypertrophic scar","post-burn complications","lymph node dissection","skin graft","reconstructive surgery","плоскоклеточный рак кожи","ожоги","гипертрофический рубец","послеожоговые осложнения","лимфодиссекция","кожный лоскут","реконструктивная хирургия"],"subject_keyword":["squamous cell carcinoma","squamous cell carcinoma","burns","burns","hypertrophic scar","hypertrophic scar","post-burn complications","post-burn complications","lymph node dissection","lymph node dissection","skin graft","skin graft","reconstructive surgery","reconstructive surgery","плоскоклеточный рак кожи","плоскоклеточный рак кожи","ожоги","ожоги","гипертрофический рубец","гипертрофический рубец","послеожоговые осложнения","послеожоговые осложнения","лимфодиссекция","лимфодиссекция","кожный лоскут","кожный лоскут","реконструктивная хирургия","реконструктивная хирургия"],"subject_ac":["squamous cell carcinoma\n|||\nsquamous cell carcinoma","burns\n|||\nburns","hypertrophic scar\n|||\nhypertrophic scar","post-burn complications\n|||\npost-burn complications","lymph node dissection\n|||\nlymph node dissection","skin graft\n|||\nskin graft","reconstructive surgery\n|||\nreconstructive surgery","плоскоклеточный рак кожи\n|||\nплоскоклеточный рак кожи","ожоги\n|||\nожоги","гипертрофический рубец\n|||\nгипертрофический рубец","послеожоговые осложнения\n|||\nпослеожоговые осложнения","лимфодиссекция\n|||\nлимфодиссекция","кожный лоскут\n|||\nкожный лоскут","реконструктивная хирургия\n|||\nреконструктивная хирургия"],"subject_tax_0_filter":["squamous cell carcinoma\n|||\nsquamous cell carcinoma","burns\n|||\nburns","hypertrophic scar\n|||\nhypertrophic scar","post-burn complications\n|||\npost-burn complications","lymph node dissection\n|||\nlymph node dissection","skin graft\n|||\nskin graft","reconstructive surgery\n|||\nreconstructive surgery","плоскоклеточный рак кожи\n|||\nплоскоклеточный рак кожи","ожоги\n|||\nожоги","гипертрофический рубец\n|||\nгипертрофический рубец","послеожоговые осложнения\n|||\nпослеожоговые осложнения","лимфодиссекция\n|||\nлимфодиссекция","кожный лоскут\n|||\nкожный лоскут","реконструктивная хирургия\n|||\nреконструктивная хирургия"],"subject_filter":["squamous cell carcinoma\n|||\nsquamous cell carcinoma","burns\n|||\nburns","hypertrophic scar\n|||\nhypertrophic scar","post-burn complications\n|||\npost-burn complications","lymph node dissection\n|||\nlymph node dissection","skin graft\n|||\nskin graft","reconstructive surgery\n|||\nreconstructive surgery","плоскоклеточный рак кожи\n|||\nплоскоклеточный рак кожи","ожоги\n|||\nожоги","гипертрофический рубец\n|||\nгипертрофический рубец","послеожоговые осложнения\n|||\nпослеожоговые осложнения","лимфодиссекция\n|||\nлимфодиссекция","кожный лоскут\n|||\nкожный лоскут","реконструктивная хирургия\n|||\nреконструктивная хирургия"],"dc.subject_mlt":["squamous cell carcinoma","burns","hypertrophic scar","post-burn complications","lymph node dissection","skin graft","reconstructive surgery","плоскоклеточный рак кожи","ожоги","гипертрофический рубец","послеожоговые осложнения","лимфодиссекция","кожный лоскут","реконструктивная хирургия"],"dc.subject":["squamous cell carcinoma","burns","hypertrophic scar","post-burn complications","lymph node dissection","skin graft","reconstructive surgery","плоскоклеточный рак кожи","ожоги","гипертрофический рубец","послеожоговые осложнения","лимфодиссекция","кожный лоскут","реконструктивная хирургия"],"dc.subject.en":["squamous cell carcinoma","burns","hypertrophic scar","post-burn complications","lymph node dissection","skin graft","reconstructive surgery"],"title":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"title_keyword":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"title_ac":["advanced squamous cell carcinoma arising from an extensive post‑burn scar: clinical case\n|||\nAdvanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)\n|||\nРаспространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"dc.title_sort":"Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","dc.title_hl":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"dc.title_mlt":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"dc.title":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case","Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"dc.title_stored":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Advanced Squamous Cell Carcinoma Arising from an Extensive Post‑Burn Scar: Clinical Case"],"dc.abstract.ru":["

Введение. Плоскоклеточный рак кожи (ПКРК) — второй по распространенности рак кожи после базальноклеточного. Развитие ПРК на фоне рубцовых поражений приводит к появлению более агрессивной формы рака, характеризующейся большим метастатическим потенциалом. Основным методом лечения является хирургический с использованием современных возможностей реконструктивной хирургии для закрытия раневого дефекта. Материалы и методы. Клинический случай: у пациентки 60 лет в анамнезе обширный ожог кожи спины, полученный в возрасте 15 лет. При осмотре: на коже спины справа в лопаточной области определяется инфильтративно-язвенная опухоль размерами 27×21 см. Выставлен диагноз: плоскоклеточный рак кожи спины сT3N2M0 ст. IVa гр. II. Произведено иссечение опухоли кожи (пластика дефекта свободным расщепленным кожным лоскутом). Послеоперационный период протекал без осложнений. Результаты и обсуждение. Иссечение опухоли кожи с пластикой свободным кожным лоскутом позволило успешно закрыть раневую поверхность и добиться приживления лоскута более 95 %. Проведение профилактической лимфодиссекции при отсутствии регионарных метастазов не влияет на безрецидивную выживаемость. Заключение. ПКРК на фоне ожоговых рубцов протекает более агрессивно и чаще всего диагностируется на поздних стадиях заболевания. Чтобы предотвратить развитие рака на месте ожогового рубца, мы должны тщательно ухаживать за ожоговым рубцом, защищать его от травм, обеспечивать эпителизацию и раннюю трансплантацию кожи на обожженном участке, а в случае обнаружения изменений, указывающих на перерождение, следует провести эксцизионную биопсию или радикальное иссечение. После радикального лечения ПКРК пациент также должен находиться под тщательным наблюдением для раннего выявления метастазов.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nОдну из ведущих локализаций в структуре заболеваемости среди обоих полов занимает рак кожи (РК)\n(11,8 %). У мужчин он встречается несколько чаще, чем\nу женщин (соотношение 3:1) [1, 2]. Чаще всего поражается область головы и шеи (70 %), в 5–10 % рак развивается на коже конечностей и туловища [3]. Несмотря\nна достаточно простую диагностику рака кожи, в 1,5 %\nопухоль определяется уже на III и IV стадиях. В Республике Башкортостан за 2022 год выявлено 1302 новых\nслучая заболеваний (население 3,9 млн человек). Преимущественно это пациенты с I (82,3 %) и II (15,4 %) стадиями, на долю III и IV стадий приходится 2,2 и 0,4 %\nсоответственно.\nНаиболее значимыми факторами риска, приводящими\nк развитию РК, являются воздействие ультрафиолетовых лучей, пожилой возраст, светлая кожа (I–III типы\nкожи по Фитцпатрику) и иммуносупрессивное состояние организма [2]. Заболеваемость увеличивается\nс возрастом, при этом пик заболеваемости приходится\nна 60 лет.\nИммуносупрессивное состояние также является важным фактором возникновения РК; у пациентов, перенесших трансплантацию органов, риск развития РК\nвозрастает в 65–250 раз по сравнению с общей популяцией.\nТакже к развитию РК могут приводить токсические\nи термические повреждения кожи, приводящие к развитию рубцов. Аналогично к развитию рубцовой\nткани на коже приводят отморожения, ранения различной этиологии и операции. Плоскоклеточный рак\nкожи (ПКРК) — это злокачественная опухоль, которая\nразвивается из клеток эпидермиса. ПКРК обычно появляется на фоне предраковых поражений, таких как\nактинический кератоз, болезнь Боуэна или склерозирующий и атрофический лишай [4–6]. Кроме того, иногда\nон развивается из-за ожоговых рубцов (1–2 % случаев\nот всей группы пациентов с ожогами). При массивном\nповреждении кожных покровов на фоне ожога развиваются рубцовые контрактуры, которые являются местом хронического воспаления. Считается, что в рубцовых тканях снижается иммунная функция клеток,\nчто приводит к развитию РК.\nНет определенных данных, через какое время может\nразвиться РК на фоне рубца, в среднем манифестация\nзаболевания наступает через 10 лет [7]. Для описания\nрубцов в момент осмотра и в динамике может использоваться Ванкуверская шкала оценки рубцов (Vancouver\nScar Scale, 1990). Она включает в себя 4 параметра: васкуляризация, высота или толщина, эластичность и наличие пигментации рубца. Также используется оценочная шкала пациента и наблюдателя (Patient and observer\nscar assessment scale, POSAS), которая включает в себя\nне только внешние параметры рубца, но и жалобы пациента (дискомфорт, зуд, жжение в области рубца). Чем\nвыше балл в системе этих шкал, тем хуже состояние\nрубца [8].\nОтмечается, что ПКРК на фоне ожоговых рубцов имеет\nагрессивное течение с ранним появлением метастазов\nв регионарные лимфоузлы [7, 8]. Частота метастазирования данной формы рака составляет около 30 %.\nСреди всех случаев метастазирования 85 % составляют\nметастазы в регионарные лимфоузлы и 15 % — в висцеральные органы (легкие) и кости [3, 5]. Также стоит\nотметить, что наличие рубцовой контрактуры может\nмаскировать развитие ПКРК, что затрудняет раннюю\nдиагностику.\nУчитывая вышеуказанные факторы, выбор тактики\nлечения пациентов со злокачественными новообразованиями кожи, возникших на фоне ожоговых рубцов,\nможет представлять определенную проблему. Необходимо учитывать распространенность и локализацию\nпервичной опухоли, высокий риск наличия метастазов\nв регионарные лимфоузлы, возраст, риск повторного\nрецидива и возможные функциональные и косметические результаты после лечения.\nПоказатели смертности от ПКРК недостаточно тщательно документированы [9]. По данным онкологического реестра Норвегии, в 2000–2011 гг. 5-летняя общая\nвыживаемость при локализованном ПКРК составила\n88 % у женщин и 82 % у мужчин, при распространенном\nПКРК — 64 и 51 % соответственно [10].\nОсновным методом лечения на сегодняшний день остается хирургическое удаление. При этом отступ от видимых краев опухоли должен составлять не менее 2 см\n[11–13]. При локализации опухоли в сложной анатомической зоне или больших размерах опухоли подходит\nкомбинированный подход лечения. В этом случае проводится предоперационный дистанционный курс лучевой терапии для уменьшения размеров самой опухоли\nи инфильтрации вокруг нее. В дальнейшем это облегчает хирургический этап и приводит к лучшим функциональным результатам. В случае нерезектабельной\nопухоли и наличии противопоказаний к проведению\nлучевой терапии опцией лечения остается назначение\nсистемной терапии, такой как терапия моноклональными антителами, блокирующими взаимодействие\nмежду рецептором программируемой смерти (PD-1)\nи его лигандами (PD- L1 и PD-L2) (ниволумаб, пембролизумаб) [11].\nВ запущенных случаях, когда есть угроза здоровью\nпациента или распад опухоли, остается только опция\nхирургического лечения. В качестве примера представляем клиническое наблюдение успешно пролеченного местнораспространенного плоскоклеточного рака\nкожи спины с метастазами в регионарные лимфоузлы.\nМАТЕРИАЛЫ И МЕТОДЫ\nВ феврале 2024 г. в Республиканский онкологический\nдиспансер г. Уфы обратилась пациентка 1964 г. р. с жалобами на незаживающее и постепенно увеличивающееся\nв течение 2 лет образование на коже спины. В январе\n2024 пациентка находилась на стационарном лечении\nв хирургическом отделении ЦРБ по месту жительства\nпо поводу кровотечения из опухоли кожи спины, где\nпроводилась консервативная терапия и перевязки.\nВ анамнезе: обширный ожог кожи спины, полученный\nв возрасте 15 лет. При осмотре: на коже спины справа в лопаточной и поясничной областях определяется\nинфильтративно-язвенная опухоль с экзофитным ростом размерами 27×21 см (рис. 1). Вокруг опухоли визуально определяется зона старых ожоговых рубцов.\nВыполнена морфологическая верификация диагноза\nпутем инцизионной биопсии опухоли краевого участка\nновообразования. Гистологическое заключение: высокодифференцированная плоскоклеточная карцинома\nкожи. В правой подмышечной области пальпируются увеличенные лимфоузлы до 3 см в диаметре. Под\nконтролем УЗИ выполнена тонкоигольная пункция\nправого подмышечного лимфоузла, цитологическое заключение: метастаз плоскоклеточного рака. По данным\nкомпьютерной томографии органов грудной клетки,\nбрюшной полости, а также УЗИ периферических лимфоузлов других метастазов не обнаружено. Таким образом, выставлен диагноз: плоскоклеточный рак кожи\nспины сT3N2M0 ст. IVa гр. II.\nПроведен онкологический консилиум в составе хирурга, химиотерапевта и радиолога. Первоначально\nобсуждалось применение комбинированного способа\nлечения: предоперационной лучевой терапии с последующим хирургическим лечением.\nНо, учитывая наличие множественных регионарных\nметастазов и частичный распад опухоли, угрозу повторного кровотечения, методом выбора остается\nтолько хирургическое лечение.\n28.03.2024 произведено широкое иссечение опухоли\nкожи спины с минимальным отступом от краев опухоли 2 см, с реконструктивно-пластическим компонентом\n(пластика дефекта свободным расщепленным кожным лоскутом). Размеры дефекта составили 32×26 см.\nДля закрытия дефекта на коже правого бедра по наружной поверхности с помощью дискового дерматома были\nмобилизованы 3 кожных лоскута, перфорированы\nи уложены на дно дефекта. Лоскуты фиксированы степлером. Вторым этапом пациентка уложена на левый\nбок, выполнена подмышечная лимфодиссекция справа.\nГистологическое заключение операционного материала: высокодифференцированная плоскоклеточная\nкарцинома кожи. Лимфоваскулярная инвазия определяется. Венозная инвазия достоверно не определяется. Периневральная инвазия не определяется. Линии\nрезекции свободны от опухолевого роста. Метастазы\nплоскоклеточного рака в 3 лимфоузла из 12 исследованных.\nПослеоперационный период протекал без осложнений.\nФиксирующие скобы сняты на 20 сутки. Приживление\nлоскута составило более 95 % (рис. 2).\nОдним из противопоказаний к проведению адъювантной лучевой терапии является локализация опухоли\nв области послеожогового рубца [11, 14]. Учитывая\nнеблагоприятные прогностические факторы (наличие\nлимфоваскулярной инвазии, размеры опухоли, наличие метастазов в регионарных лимфоузлах), пациентке\nназначена терапия ингибиторами PD-1 (пембролизумаб, 2 мг/кг массы 1 раз в 21 день) [11, 12]. В данный\nмомент пациентка продолжает лечение, по данным визуального осмотра и инструментальных обследований\nрецидива заболевания не наблюдаетсяРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nВ представленном клиническом случае ПКРК развился через 40 лет после полученной ожоговой травмы.\nНа момент постановки диагноза у пациентки обнаружены регионарные метастазы, что говорит об агрессивном характере опухоли. Проведенное оперативное\nвмешательство с пластикой свободным кожным лоскутом позволило радикально удалить опухоль, и удалось\nдостигнуть приживления лоскута свыше 95 %.\nИз-за агрессивного развития ПКРК на фоне рубцов\nи диагностики на поздних стадиях заболевания данная\nгруппа пациентов требует индивидуального подхода.\nВсе рубцовые изменения кожи нуждаются в динамическом наблюдении у дерматологов или онкологов. Необходимо учитывать не только внешние параметры рубцового поражения, но и жалобы и наличие возможных\nсимптомов у пациентов.\nМанифестация заболевания может проявиться через разное время после ожога, по данным мировой литературы\nПКРК чаще всего развивается в промежуток 53–57 лет\n[14]. Среднее время развития ПКРК после получения\nожога составляет 20–40 лет [15]. Также стоит отметить\nанатомическую локализацию стандартного ПКРК: чаще\nвсего он развивается в области головы и шеи (70%),\nв то время как ПКРК в ожоговых рубцах чаще появляется\nв области нижних конечностей, где хуже кровоснабжение\nи выше риск получения ожога [6, 16, 17]. В исследовании\nUlker Gül и др. [18] у 20 из 36 пациентов ПКРК на фоне\nожогового рубца развился на нижних конечностях\n(55,5%), в области головы и шеи у 8 пациентов (22,2%).\nНа сегодняшний день лучшей методикой выбора является хирургическое лечение. Широкое иссечение с отступом в 2 см и исследованием краев резекции остается общепринятым стандартом. Несмотря на высокий\nриск регионарного метастазирования, большинство\nавторов сходятся во мнении, что выполнять лимфодиссекцию необходимо только при подтвержденных\nметастазах в лимфоузлы [17, 19, 20]. Выполнение профилактической лимфодиссекции не приводит к достоверному увеличению общей выживаемости. Показаниями к ампутации может быть поражение опухолью\nсуставов, костей или обширная инфильтрация мягких\nтканей. Использование предоперационной лучевой\nтерапии с целью уменьшения размеров опухоли является утвержденной опцией в клинических рекомендациях, что в некоторых случаях может позволить\nобойтись без ампутации или облегчить проведение\nхирургического этапа за счет уменьшения размеров\nдефекта. С развитием реконструктивно-пластических\nметодик достижение хирургической радикальности\nи хороших функциональных результатов становится\nзначительно проще. В представленном клиническом\nслучае расположение и размеры опухоли, наличие\nмножественных метастазов в подмышечные лимфоузлы и угроза кровотечения ограничивали нас в выборе методик, поэтому хирургический метод оказался\nпредпочтительнее. Использование пластики свободными расщепленными кожными лоскутами позволило добиться хорошего эффекта в виде приживления\nлоскутов более 95 %.ЗАКЛЮЧЕНИЕ\nПациенты с рубцовыми поражениями кожи, сопровождающимися дискомфортом, болевыми ощущениями,\nзудом, должны находиться под пристальным наблюдением дерматологов. При наличии эрозий или язв\nв области рубца необходима консультация онколога.\nВ некоторых случаях диагностика может быть затруднена и может потребоваться несколько биопсий для\nверификации диагноза (особенно эксцизионная биопсия).\nПо данным мировой литературы, наличие рубцовых\nизменений кожи различной этиологии может приводить к развитию РК. Чаще всего развивается плосклеточная форма рака кожи, которая может протекать\nзаметно агрессивнее. Для лечения распространенного\nрака кожи необходимо применять комбинированные\nметодики лечения, даже на ранних стадиях заболевания, в связи с его агрессивным течением.\nЧтобы предотвратить развитие рака на месте ожогового рубца, мы должны тщательно ухаживать за ожоговым рубцом, защищать его от травм, обеспечивать\nэпителизацию и раннюю трансплантацию кожи на обожженном участке, а в случае обнаружения изменений,\nуказывающих на злокачественную трансформацию,\nследует провести радикальное иссечение. После радикального лечения ПКРК пациент также должен находиться под тщательным наблюдением для раннего выявления метастазов."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nОдну из ведущих локализаций в структуре заболеваемости среди обоих полов занимает рак кожи (РК)\n(11,8 %). У мужчин он встречается несколько чаще, чем\nу женщин (соотношение 3:1) [1, 2]. Чаще всего поражается область головы и шеи (70 %), в 5–10 % рак развивается на коже конечностей и туловища [3]. Несмотря\nна достаточно простую диагностику рака кожи, в 1,5 %\nопухоль определяется уже на III и IV стадиях. В Республике Башкортостан за 2022 год выявлено 1302 новых\nслучая заболеваний (население 3,9 млн человек). Преимущественно это пациенты с I (82,3 %) и II (15,4 %) стадиями, на долю III и IV стадий приходится 2,2 и 0,4 %\nсоответственно.\nНаиболее значимыми факторами риска, приводящими\nк развитию РК, являются воздействие ультрафиолетовых лучей, пожилой возраст, светлая кожа (I–III типы\nкожи по Фитцпатрику) и иммуносупрессивное состояние организма [2]. Заболеваемость увеличивается\nс возрастом, при этом пик заболеваемости приходится\nна 60 лет.\nИммуносупрессивное состояние также является важным фактором возникновения РК; у пациентов, перенесших трансплантацию органов, риск развития РК\nвозрастает в 65–250 раз по сравнению с общей популяцией.\nТакже к развитию РК могут приводить токсические\nи термические повреждения кожи, приводящие к развитию рубцов. Аналогично к развитию рубцовой\nткани на коже приводят отморожения, ранения различной этиологии и операции. Плоскоклеточный рак\nкожи (ПКРК) — это злокачественная опухоль, которая\nразвивается из клеток эпидермиса. ПКРК обычно появляется на фоне предраковых поражений, таких как\nактинический кератоз, болезнь Боуэна или склерозирующий и атрофический лишай [4–6]. Кроме того, иногда\nон развивается из-за ожоговых рубцов (1–2 % случаев\nот всей группы пациентов с ожогами). При массивном\nповреждении кожных покровов на фоне ожога развиваются рубцовые контрактуры, которые являются местом хронического воспаления. Считается, что в рубцовых тканях снижается иммунная функция клеток,\nчто приводит к развитию РК.\nНет определенных данных, через какое время может\nразвиться РК на фоне рубца, в среднем манифестация\nзаболевания наступает через 10 лет [7]. Для описания\nрубцов в момент осмотра и в динамике может использоваться Ванкуверская шкала оценки рубцов (Vancouver\nScar Scale, 1990). Она включает в себя 4 параметра: васкуляризация, высота или толщина, эластичность и наличие пигментации рубца. Также используется оценочная шкала пациента и наблюдателя (Patient and observer\nscar assessment scale, POSAS), которая включает в себя\nне только внешние параметры рубца, но и жалобы пациента (дискомфорт, зуд, жжение в области рубца). Чем\nвыше балл в системе этих шкал, тем хуже состояние\nрубца [8].\nОтмечается, что ПКРК на фоне ожоговых рубцов имеет\nагрессивное течение с ранним появлением метастазов\nв регионарные лимфоузлы [7, 8]. Частота метастазирования данной формы рака составляет около 30 %.\nСреди всех случаев метастазирования 85 % составляют\nметастазы в регионарные лимфоузлы и 15 % — в висцеральные органы (легкие) и кости [3, 5]. Также стоит\nотметить, что наличие рубцовой контрактуры может\nмаскировать развитие ПКРК, что затрудняет раннюю\nдиагностику.\nУчитывая вышеуказанные факторы, выбор тактики\nлечения пациентов со злокачественными новообразованиями кожи, возникших на фоне ожоговых рубцов,\nможет представлять определенную проблему. Необходимо учитывать распространенность и локализацию\nпервичной опухоли, высокий риск наличия метастазов\nв регионарные лимфоузлы, возраст, риск повторного\nрецидива и возможные функциональные и косметические результаты после лечения.\nПоказатели смертности от ПКРК недостаточно тщательно документированы [9]. По данным онкологического реестра Норвегии, в 2000–2011 гг. 5-летняя общая\nвыживаемость при локализованном ПКРК составила\n88 % у женщин и 82 % у мужчин, при распространенном\nПКРК — 64 и 51 % соответственно [10].\nОсновным методом лечения на сегодняшний день остается хирургическое удаление. При этом отступ от видимых краев опухоли должен составлять не менее 2 см\n[11–13]. При локализации опухоли в сложной анатомической зоне или больших размерах опухоли подходит\nкомбинированный подход лечения. В этом случае проводится предоперационный дистанционный курс лучевой терапии для уменьшения размеров самой опухоли\nи инфильтрации вокруг нее. В дальнейшем это облегчает хирургический этап и приводит к лучшим функциональным результатам. В случае нерезектабельной\nопухоли и наличии противопоказаний к проведению\nлучевой терапии опцией лечения остается назначение\nсистемной терапии, такой как терапия моноклональными антителами, блокирующими взаимодействие\nмежду рецептором программируемой смерти (PD-1)\nи его лигандами (PD- L1 и PD-L2) (ниволумаб, пембролизумаб) [11].\nВ запущенных случаях, когда есть угроза здоровью\nпациента или распад опухоли, остается только опция\nхирургического лечения. В качестве примера представляем клиническое наблюдение успешно пролеченного местнораспространенного плоскоклеточного рака\nкожи спины с метастазами в регионарные лимфоузлы.\nМАТЕРИАЛЫ И МЕТОДЫ\nВ феврале 2024 г. в Республиканский онкологический\nдиспансер г. Уфы обратилась пациентка 1964 г. р. с жалобами на незаживающее и постепенно увеличивающееся\nв течение 2 лет образование на коже спины. В январе\n2024 пациентка находилась на стационарном лечении\nв хирургическом отделении ЦРБ по месту жительства\nпо поводу кровотечения из опухоли кожи спины, где\nпроводилась консервативная терапия и перевязки.\nВ анамнезе: обширный ожог кожи спины, полученный\nв возрасте 15 лет. При осмотре: на коже спины справа в лопаточной и поясничной областях определяется\nинфильтративно-язвенная опухоль с экзофитным ростом размерами 27×21 см (рис. 1). Вокруг опухоли визуально определяется зона старых ожоговых рубцов.\nВыполнена морфологическая верификация диагноза\nпутем инцизионной биопсии опухоли краевого участка\nновообразования. Гистологическое заключение: высокодифференцированная плоскоклеточная карцинома\nкожи. В правой подмышечной области пальпируются увеличенные лимфоузлы до 3 см в диаметре. Под\nконтролем УЗИ выполнена тонкоигольная пункция\nправого подмышечного лимфоузла, цитологическое заключение: метастаз плоскоклеточного рака. По данным\nкомпьютерной томографии органов грудной клетки,\nбрюшной полости, а также УЗИ периферических лимфоузлов других метастазов не обнаружено. Таким образом, выставлен диагноз: плоскоклеточный рак кожи\nспины сT3N2M0 ст. IVa гр. II.\nПроведен онкологический консилиум в составе хирурга, химиотерапевта и радиолога. Первоначально\nобсуждалось применение комбинированного способа\nлечения: предоперационной лучевой терапии с последующим хирургическим лечением.\nНо, учитывая наличие множественных регионарных\nметастазов и частичный распад опухоли, угрозу повторного кровотечения, методом выбора остается\nтолько хирургическое лечение.\n28.03.2024 произведено широкое иссечение опухоли\nкожи спины с минимальным отступом от краев опухоли 2 см, с реконструктивно-пластическим компонентом\n(пластика дефекта свободным расщепленным кожным лоскутом). Размеры дефекта составили 32×26 см.\nДля закрытия дефекта на коже правого бедра по наружной поверхности с помощью дискового дерматома были\nмобилизованы 3 кожных лоскута, перфорированы\nи уложены на дно дефекта. Лоскуты фиксированы степлером. Вторым этапом пациентка уложена на левый\nбок, выполнена подмышечная лимфодиссекция справа.\nГистологическое заключение операционного материала: высокодифференцированная плоскоклеточная\nкарцинома кожи. Лимфоваскулярная инвазия определяется. Венозная инвазия достоверно не определяется. Периневральная инвазия не определяется. Линии\nрезекции свободны от опухолевого роста. Метастазы\nплоскоклеточного рака в 3 лимфоузла из 12 исследованных.\nПослеоперационный период протекал без осложнений.\nФиксирующие скобы сняты на 20 сутки. Приживление\nлоскута составило более 95 % (рис. 2).\nОдним из противопоказаний к проведению адъювантной лучевой терапии является локализация опухоли\nв области послеожогового рубца [11, 14]. Учитывая\nнеблагоприятные прогностические факторы (наличие\nлимфоваскулярной инвазии, размеры опухоли, наличие метастазов в регионарных лимфоузлах), пациентке\nназначена терапия ингибиторами PD-1 (пембролизумаб, 2 мг/кг массы 1 раз в 21 день) [11, 12]. В данный\nмомент пациентка продолжает лечение, по данным визуального осмотра и инструментальных обследований\nрецидива заболевания не наблюдаетсяРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nВ представленном клиническом случае ПКРК развился через 40 лет после полученной ожоговой травмы.\nНа момент постановки диагноза у пациентки обнаружены регионарные метастазы, что говорит об агрессивном характере опухоли. Проведенное оперативное\nвмешательство с пластикой свободным кожным лоскутом позволило радикально удалить опухоль, и удалось\nдостигнуть приживления лоскута свыше 95 %.\nИз-за агрессивного развития ПКРК на фоне рубцов\nи диагностики на поздних стадиях заболевания данная\nгруппа пациентов требует индивидуального подхода.\nВсе рубцовые изменения кожи нуждаются в динамическом наблюдении у дерматологов или онкологов. Необходимо учитывать не только внешние параметры рубцового поражения, но и жалобы и наличие возможных\nсимптомов у пациентов.\nМанифестация заболевания может проявиться через разное время после ожога, по данным мировой литературы\nПКРК чаще всего развивается в промежуток 53–57 лет\n[14]. Среднее время развития ПКРК после получения\nожога составляет 20–40 лет [15]. Также стоит отметить\nанатомическую локализацию стандартного ПКРК: чаще\nвсего он развивается в области головы и шеи (70%),\nв то время как ПКРК в ожоговых рубцах чаще появляется\nв области нижних конечностей, где хуже кровоснабжение\nи выше риск получения ожога [6, 16, 17]. В исследовании\nUlker Gül и др. [18] у 20 из 36 пациентов ПКРК на фоне\nожогового рубца развился на нижних конечностях\n(55,5%), в области головы и шеи у 8 пациентов (22,2%).\nНа сегодняшний день лучшей методикой выбора является хирургическое лечение. Широкое иссечение с отступом в 2 см и исследованием краев резекции остается общепринятым стандартом. Несмотря на высокий\nриск регионарного метастазирования, большинство\nавторов сходятся во мнении, что выполнять лимфодиссекцию необходимо только при подтвержденных\nметастазах в лимфоузлы [17, 19, 20]. Выполнение профилактической лимфодиссекции не приводит к достоверному увеличению общей выживаемости. Показаниями к ампутации может быть поражение опухолью\nсуставов, костей или обширная инфильтрация мягких\nтканей. Использование предоперационной лучевой\nтерапии с целью уменьшения размеров опухоли является утвержденной опцией в клинических рекомендациях, что в некоторых случаях может позволить\nобойтись без ампутации или облегчить проведение\nхирургического этапа за счет уменьшения размеров\nдефекта. С развитием реконструктивно-пластических\nметодик достижение хирургической радикальности\nи хороших функциональных результатов становится\nзначительно проще. В представленном клиническом\nслучае расположение и размеры опухоли, наличие\nмножественных метастазов в подмышечные лимфоузлы и угроза кровотечения ограничивали нас в выборе методик, поэтому хирургический метод оказался\nпредпочтительнее. Использование пластики свободными расщепленными кожными лоскутами позволило добиться хорошего эффекта в виде приживления\nлоскутов более 95 %.ЗАКЛЮЧЕНИЕ\nПациенты с рубцовыми поражениями кожи, сопровождающимися дискомфортом, болевыми ощущениями,\nзудом, должны находиться под пристальным наблюдением дерматологов. При наличии эрозий или язв\nв области рубца необходима консультация онколога.\nВ некоторых случаях диагностика может быть затруднена и может потребоваться несколько биопсий для\nверификации диагноза (особенно эксцизионная биопсия).\nПо данным мировой литературы, наличие рубцовых\nизменений кожи различной этиологии может приводить к развитию РК. Чаще всего развивается плосклеточная форма рака кожи, которая может протекать\nзаметно агрессивнее. Для лечения распространенного\nрака кожи необходимо применять комбинированные\nметодики лечения, даже на ранних стадиях заболевания, в связи с его агрессивным течением.\nЧтобы предотвратить развитие рака на месте ожогового рубца, мы должны тщательно ухаживать за ожоговым рубцом, защищать его от травм, обеспечивать\nэпителизацию и раннюю трансплантацию кожи на обожженном участке, а в случае обнаружения изменений,\nуказывающих на злокачественную трансформацию,\nследует провести радикальное иссечение. После радикального лечения ПКРК пациент также должен находиться под тщательным наблюдением для раннего выявления метастазов."],"dc.subject.ru":["плоскоклеточный рак кожи","ожоги","гипертрофический рубец","послеожоговые осложнения","лимфодиссекция","кожный лоскут","реконструктивная хирургия"],"dc.title.ru":["Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["90-96"],"dc.rights":["CC BY 4.0"],"dc.section":["CLINICAL CASE","КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.section.en":["CLINICAL CASE"],"dc.section.ru":["КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["М. М. Замилов","M. M. Zamilov","К. В. Меньшиков","K. V. Menshikov","Р. И. Латыпов","R. I. Latypov","Д. Р. Ахмеров","D. R. Akhmerov","Р. И. Гиматдинов","R. I. Gimatdinov","Ш. И. Мусин","S. I. Musin","Г. И. Замилова","G. I. Zamilova","Р. Т. Аюпов","R. T. Ayupov"],"author_keyword":["М. М. Замилов","M. M. Zamilov","К. В. Меньшиков","K. V. Menshikov","Р. И. Латыпов","R. I. Latypov","Д. Р. Ахмеров","D. R. Akhmerov","Р. И. Гиматдинов","R. I. Gimatdinov","Ш. И. Мусин","S. I. Musin","Г. И. Замилова","G. I. Zamilova","Р. Т. Аюпов","R. T. Ayupov"],"author_ac":["м. м. замилов\n|||\nМ. М. Замилов","m. m. zamilov\n|||\nM. M. Zamilov","к. в. меньшиков\n|||\nК. В. Меньшиков","k. v. menshikov\n|||\nK. V. Menshikov","р. и. латыпов\n|||\nР. И. Латыпов","r. i. latypov\n|||\nR. I. Latypov","д. р. ахмеров\n|||\nД. Р. Ахмеров","d. r. akhmerov\n|||\nD. R. Akhmerov","р. и. гиматдинов\n|||\nР. И. Гиматдинов","r. i. gimatdinov\n|||\nR. I. Gimatdinov","ш. и. мусин\n|||\nШ. И. Мусин","s. i. musin\n|||\nS. I. Musin","г. и. замилова\n|||\nГ. И. Замилова","g. i. zamilova\n|||\nG. I. Zamilova","р. т. аюпов\n|||\nР. Т. Аюпов","r. t. ayupov\n|||\nR. T. Ayupov"],"author_filter":["м. м. замилов\n|||\nМ. М. Замилов","m. m. zamilov\n|||\nM. M. Zamilov","к. в. меньшиков\n|||\nК. В. Меньшиков","k. v. menshikov\n|||\nK. V. Menshikov","р. и. латыпов\n|||\nР. И. Латыпов","r. i. latypov\n|||\nR. I. Latypov","д. р. ахмеров\n|||\nД. Р. Ахмеров","d. r. akhmerov\n|||\nD. R. Akhmerov","р. и. гиматдинов\n|||\nР. И. Гиматдинов","r. i. gimatdinov\n|||\nR. I. Gimatdinov","ш. и. мусин\n|||\nШ. И. Мусин","s. i. musin\n|||\nS. I. Musin","г. и. замилова\n|||\nГ. И. Замилова","g. i. zamilova\n|||\nG. I. Zamilova","р. т. аюпов\n|||\nР. Т. Аюпов","r. t. ayupov\n|||\nR. T. Ayupov"],"dc.author.name":["М. М. Замилов","M. M. Zamilov","К. В. Меньшиков","K. V. Menshikov","Р. И. Латыпов","R. I. Latypov","Д. Р. Ахмеров","D. R. Akhmerov","Р. И. Гиматдинов","R. I. Gimatdinov","Ш. И. Мусин","S. I. Musin","Г. И. Замилова","G. I. Zamilova","Р. Т. Аюпов","R. T. Ayupov"],"dc.author.name.ru":["М. М. Замилов","К. В. Меньшиков","Р. И. Латыпов","Д. Р. Ахмеров","Р. И. Гиматдинов","Ш. И. Мусин","Г. И. Замилова","Р. Т. Аюпов"],"dc.author.affiliation":["Республиканский клинический онкологический диспансер","Republican Clinical Oncology Dispensary","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Republican Clinical Oncology Dispensary ; Bashkir State Medical University","Республиканский ожоговый центр","Republican Burn Center","Республиканский ожоговый центр","Republican Burn Center","Республиканский ожоговый центр","Republican Burn Center","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Republican Clinical Oncology Dispensary ; Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Республиканский клинический онкологический диспансер","Republican Clinical Oncology Dispensary"],"dc.author.affiliation.ru":["Республиканский клинический онкологический диспансер","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Республиканский ожоговый центр","Республиканский ожоговый центр","Республиканский ожоговый центр","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Республиканский клинический онкологический диспансер"],"dc.author.full":["М. М. Замилов | Республиканский клинический онкологический диспансер","M. M. Zamilov | Republican Clinical Oncology Dispensary","К. В. Меньшиков | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","K. V. Menshikov | Republican Clinical Oncology Dispensary ; Bashkir State Medical University","Р. И. Латыпов | Республиканский ожоговый центр","R. I. Latypov | Republican Burn Center","Д. Р. Ахмеров | Республиканский ожоговый центр","D. R. Akhmerov | Republican Burn Center","Р. И. Гиматдинов | Республиканский ожоговый центр","R. I. Gimatdinov | Republican Burn Center","Ш. И. Мусин | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","S. I. Musin | Republican Clinical Oncology Dispensary ; Bashkir State Medical University","Г. И. Замилова | Башкирский государственный медицинский университет","G. I. Zamilova | Bashkir State Medical University","Р. Т. Аюпов | Республиканский клинический онкологический диспансер","R. T. Ayupov | Republican Clinical Oncology Dispensary"],"dc.author.full.ru":["М. М. Замилов | Республиканский клинический онкологический диспансер","К. В. Меньшиков | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Р. И. Латыпов | Республиканский ожоговый центр","Д. Р. Ахмеров | Республиканский ожоговый центр","Р. И. Гиматдинов | Республиканский ожоговый центр","Ш. И. Мусин | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Г. И. Замилова | Башкирский государственный медицинский университет","Р. Т. Аюпов | Республиканский клинический онкологический диспансер"],"dc.author.name.en":["M. M. Zamilov","K. V. Menshikov","R. I. Latypov","D. R. Akhmerov","R. I. Gimatdinov","S. I. Musin","G. I. Zamilova","R. T. Ayupov"],"dc.author.affiliation.en":["Republican Clinical Oncology Dispensary","Republican Clinical Oncology Dispensary ; Bashkir State Medical University","Republican Burn Center","Republican Burn Center","Republican Burn Center","Republican Clinical Oncology Dispensary ; Bashkir State Medical University","Bashkir State Medical University","Republican Clinical Oncology Dispensary"],"dc.author.full.en":["M. M. Zamilov | Republican Clinical Oncology Dispensary","K. V. Menshikov | Republican Clinical Oncology Dispensary ; Bashkir State Medical University","R. I. Latypov | Republican Burn Center","D. R. Akhmerov | Republican Burn Center","R. I. Gimatdinov | Republican Burn Center","S. I. Musin | Republican Clinical Oncology Dispensary ; Bashkir State Medical University","G. I. Zamilova | Bashkir State Medical University","R. T. Ayupov | Republican Clinical Oncology Dispensary"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-0918-3993\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u041c. \\u041c. \\u0417\\u0430\\u043c\\u0438\\u043b\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0918-3993\", \"affiliation\": \"Republican Clinical Oncology Dispensary\", \"full_name\": \"M. M. Zamilov\"}}, {\"ru\": {\"orcid\": \"0000-0003-3734-2779\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440 ; \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041a. \\u0412. \\u041c\\u0435\\u043d\\u044c\\u0448\\u0438\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-3734-2779\", \"affiliation\": \"Republican Clinical Oncology Dispensary ; Bashkir State Medical University\", \"full_name\": \"K. V. Menshikov\"}}, {\"ru\": {\"orcid\": \"0009-0008-8100-6792\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043e\\u0436\\u043e\\u0433\\u043e\\u0432\\u044b\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440\", \"full_name\": \"\\u0420. \\u0418. \\u041b\\u0430\\u0442\\u044b\\u043f\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0009-0008-8100-6792\", \"affiliation\": \"Republican Burn Center\", \"full_name\": \"R. I. Latypov\"}}, {\"ru\": {\"orcid\": \"0000-0002-2302-3745\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043e\\u0436\\u043e\\u0433\\u043e\\u0432\\u044b\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440\", \"full_name\": \"\\u0414. \\u0420. \\u0410\\u0445\\u043c\\u0435\\u0440\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-2302-3745\", \"affiliation\": \"Republican Burn Center\", \"full_name\": \"D. R. Akhmerov\"}}, {\"ru\": {\"orcid\": \"0009-0009-4246-6371\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043e\\u0436\\u043e\\u0433\\u043e\\u0432\\u044b\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440\", \"full_name\": \"\\u0420. \\u0418. \\u0413\\u0438\\u043c\\u0430\\u0442\\u0434\\u0438\\u043d\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0009-0009-4246-6371\", \"affiliation\": \"Republican Burn Center\", \"full_name\": \"R. I. Gimatdinov\"}}, {\"ru\": {\"orcid\": \"0000-0003-1185-977X\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440 ; \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0428. \\u0418. \\u041c\\u0443\\u0441\\u0438\\u043d\"}, \"en\": {\"orcid\": \"0000-0003-1185-977X\", \"affiliation\": \"Republican Clinical Oncology Dispensary ; Bashkir State Medical University\", \"full_name\": \"S. I. Musin\"}}, {\"ru\": {\"orcid\": \"0009-0005-1017-2564\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0413. \\u0418. \\u0417\\u0430\\u043c\\u0438\\u043b\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0009-0005-1017-2564\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"G. I. Zamilova\"}}, {\"ru\": {\"orcid\": \"0000-0002-6769-7194\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u0420. \\u0422. \\u0410\\u044e\\u043f\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-6769-7194\", \"affiliation\": \"Republican Clinical Oncology Dispensary\", \"full_name\": \"R. T. Ayupov\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1091"],"dc.citation":["Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Состояние онкологической помощи населению России в 2021 году. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России; 2022.","Waldman A., Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am. 2019:33(1);1–12. DOI: 10.1016/j.hoc.2018.08.001","Киреева Т.А., Гуменецкая Ю.В., Кудрявцев Д.В., Стародубцев А.Л., Курильчик А.А., Куприянова Е.И. Клинический случай лечения пациента с местнораспространенным плоскоклеточным раком кожи, возникшим на фоне обширного послеожогового рубца. Cаркомы костей, мягких тканей и опухоли кожи. 2019;11(1):51–5.","Федоркевич И.В., Нестерович Т.Н., Ганусевич О.Н., Иванов С.А., Ачинович С.Л., Лось Д.М. Лечение рака кожи на фоне послеожоговых рубцов (клинический случай). Сибирский онкологический журнал. 2022;21(2):160–6. DOI: 10.21294/1814-4861-2022-21-2-160-166","Matsui Y., Makino T., Takemoto K., Kagoyama K., Shimizu T. Coexistence of basal cell carcinoma and squamous cell carcinoma in a single burn scar region. Burns Open. 2020;4:64–6. DOI: 10.1016/j.burnso.2020.03.001","Игнатова А.В. Актуальные проблемы лечения местнораспространенного и метастатического плоскоклеточного рака кожи. Современная онкология. 2021;23(1):94–8. DOI: 10.26442/18151434.2021.1.200694","Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer arising in a chronic ulcer (Marjolin’s ulcer) of the skin. JCO Glob Oncol. 2020;6:809–18. DOI: 10.1200/GO.20.00094","Зикиряходжаев Д.З., Сайфутдинова М.Б., Орифов Б.М. Особенности рака кожи, развившегося в области рубцовых изменений: обзор литературы. Саркомы костей, мягких тканей и опухоли кожи 2022;14(1):25–32. DOI: 10.17650/2782-3687-2022-14-1-25-32","Green A.C., Olsen C.M. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177(2):373–81. DOI: 10.1111/bjd.15324","Robsahm T.E., Helsing P., Veierod M.B. Cutaneous squamous cell carcinoma in Norway 19632011: increasing incidence and stable mortality. Cancer Med. 2015;4(3):472–80. DOI: 10.1002/cam4.404","Поляков А.П., Геворков А.Р., Степанова А.А. Современная стратегия диагностики и лечения плоскоклеточного рака кожи. Опухоли головы и шеи. 2021;11(1):51–72. DOI: 10.17650/2222-1468-2021-11-1-51-72","Утяшев И.А., Орлова К.В., Зиновьев Г.В., Трофимова О.П., Петенко Н.Н., Назарова В.В. и др. Практические рекомендации по лекарственному лечению злокачественных дрнемеланоцитарных опухолей кожи (базальноклеточного рака кожи, плоскоклеточного рака кожи, карциномы Меркеля). Практические рекомендации RUSSCO. 2022;12:672–96. DOI: 10.18027/2224-5057-2022-12-3s2-672-696","Brougham N.D., Dennett E.R., Came ron R., Tan S.T. The incidence of meta-stasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J Surg Oncol. 2012;106:811e5. DOI: 10.1002/jso.23155","Huang C.Y., Feng C.H., Hsiao Y.C., Chuang S.S., Yang J.Y. Burn scar carcinoma. J Dermatolog Treat. 2010;21(6):350–6. DOI: 10.3109/09546630903386580","Sisti A., Pica Alfieri E., Cuomo R., Grimaldi L., Brandi C., Nisi G. Marjolin’s ulcer arising in a burn scar. J Burn Care Res. 2018;39(4):636–9. DOI: 10.1097/BCR.0000000000000619","Mousa A.K., Elshenawy A.A., Maklad S.M., Bebars S.M.M., Burezq H.A., Sayed S.E. Post-burn scar malignancy: 5-year management review and experience. Int Wound J. 2022;19(4):895–909. DOI: 10.1111/iwj.13690","Ozek C., Celik N., Bilkay U., Akalin T., Erdem O., Cagdas A. Marjolin’s ulcer of the scalp: report of 5 cases and review of the literature. J Burn Care Rehabil. 2001;22(1):65–9. DOI: 10.1097/00004630-200101000-00013","Gül U., Kiliç A. Squamous cell carcinoma developing on burn scar. Ann Plast Surg. 2006;56(4):406–8. DOI: 10.1097/01.sap.0000200734.74303.d5","Sabin S.R., Goldstein G., Rosenthal H.G., Haynes K.K. Aggressive squamous cell carcinoma originating as a Marjolin’s ulcer. Dermatol Surg. 2004;30(2 Pt 1):229–30. DOI: 10.1111/j.1524-4725.2004.30072.x","Work Group, Invited Reviewers, Kim J.Y.S., Kozlow J.H., Mittal B., Moyer J., Olenecki T., Rodgers P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 2018;78(3):560–78. DOI: 10.1016/j.jaad.2017.10.007","Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Состояние онкологической помощи населению России в 2021 году. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России; 2022.","Waldman A., Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am. 2019:33(1);1–12. DOI: 10.1016/j.hoc.2018.08.001","Киреева Т.А., Гуменецкая Ю.В., Кудрявцев Д.В., Стародубцев А.Л., Курильчик А.А., Куприянова Е.И. Клинический случай лечения пациента с местнораспространенным плоскоклеточным раком кожи, возникшим на фоне обширного послеожогового рубца. Cаркомы костей, мягких тканей и опухоли кожи. 2019;11(1):51–5.","Федоркевич И.В., Нестерович Т.Н., Ганусевич О.Н., Иванов С.А., Ачинович С.Л., Лось Д.М. Лечение рака кожи на фоне послеожоговых рубцов (клинический случай). Сибирский онкологический журнал. 2022;21(2):160–6. DOI: 10.21294/1814-4861-2022-21-2-160-166","Matsui Y., Makino T., Takemoto K., Kagoyama K., Shimizu T. Coexistence of basal cell carcinoma and squamous cell carcinoma in a single burn scar region. Burns Open. 2020;4:64–6. DOI: 10.1016/j.burnso.2020.03.001","Игнатова А.В. Актуальные проблемы лечения местнораспространенного и метастатического плоскоклеточного рака кожи. Современная онкология. 2021;23(1):94–8. DOI: 10.26442/18151434.2021.1.200694","Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer arising in a chronic ulcer (Marjolin’s ulcer) of the skin. JCO Glob Oncol. 2020;6:809–18. DOI: 10.1200/GO.20.00094","Зикиряходжаев Д.З., Сайфутдинова М.Б., Орифов Б.М. Особенности рака кожи, развившегося в области рубцовых изменений: обзор литературы. Саркомы костей, мягких тканей и опухоли кожи 2022;14(1):25–32. DOI: 10.17650/2782-3687-2022-14-1-25-32","Green A.C., Olsen C.M. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177(2):373–81. DOI: 10.1111/bjd.15324","Robsahm T.E., Helsing P., Veierod M.B. Cutaneous squamous cell carcinoma in Norway 19632011: increasing incidence and stable mortality. Cancer Med. 2015;4(3):472–80. DOI: 10.1002/cam4.404","Поляков А.П., Геворков А.Р., Степанова А.А. Современная стратегия диагностики и лечения плоскоклеточного рака кожи. Опухоли головы и шеи. 2021;11(1):51–72. DOI: 10.17650/2222-1468-2021-11-1-51-72","Утяшев И.А., Орлова К.В., Зиновьев Г.В., Трофимова О.П., Петенко Н.Н., Назарова В.В. и др. Практические рекомендации по лекарственному лечению злокачественных дрнемеланоцитарных опухолей кожи (базальноклеточного рака кожи, плоскоклеточного рака кожи, карциномы Меркеля). Практические рекомендации RUSSCO. 2022;12:672–96. DOI: 10.18027/2224-5057-2022-12-3s2-672-696","Brougham N.D., Dennett E.R., Came ron R., Tan S.T. The incidence of meta-stasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J Surg Oncol. 2012;106:811e5. DOI: 10.1002/jso.23155","Huang C.Y., Feng C.H., Hsiao Y.C., Chuang S.S., Yang J.Y. Burn scar carcinoma. J Dermatolog Treat. 2010;21(6):350–6. DOI: 10.3109/09546630903386580","Sisti A., Pica Alfieri E., Cuomo R., Grimaldi L., Brandi C., Nisi G. Marjolin’s ulcer arising in a burn scar. J Burn Care Res. 2018;39(4):636–9. DOI: 10.1097/BCR.0000000000000619","Mousa A.K., Elshenawy A.A., Maklad S.M., Bebars S.M.M., Burezq H.A., Sayed S.E. Post-burn scar malignancy: 5-year management review and experience. Int Wound J. 2022;19(4):895–909. DOI: 10.1111/iwj.13690","Ozek C., Celik N., Bilkay U., Akalin T., Erdem O., Cagdas A. Marjolin’s ulcer of the scalp: report of 5 cases and review of the literature. J Burn Care Rehabil. 2001;22(1):65–9. DOI: 10.1097/00004630-200101000-00013","Gül U., Kiliç A. Squamous cell carcinoma developing on burn scar. Ann Plast Surg. 2006;56(4):406–8. DOI: 10.1097/01.sap.0000200734.74303.d5","Sabin S.R., Goldstein G., Rosenthal H.G., Haynes K.K. Aggressive squamous cell carcinoma originating as a Marjolin’s ulcer. Dermatol Surg. 2004;30(2 Pt 1):229–30. DOI: 10.1111/j.1524-4725.2004.30072.x","Work Group, Invited Reviewers, Kim J.Y.S., Kozlow J.H., Mittal B., Moyer J., Olenecki T., Rodgers P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 2018;78(3):560–78. DOI: 10.1016/j.jaad.2017.10.007"],"dc.citation.ru":["Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Состояние онкологической помощи населению России в 2021 году. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России; 2022.","Waldman A., Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am. 2019:33(1);1–12. DOI: 10.1016/j.hoc.2018.08.001","Киреева Т.А., Гуменецкая Ю.В., Кудрявцев Д.В., Стародубцев А.Л., Курильчик А.А., Куприянова Е.И. Клинический случай лечения пациента с местнораспространенным плоскоклеточным раком кожи, возникшим на фоне обширного послеожогового рубца. Cаркомы костей, мягких тканей и опухоли кожи. 2019;11(1):51–5.","Федоркевич И.В., Нестерович Т.Н., Ганусевич О.Н., Иванов С.А., Ачинович С.Л., Лось Д.М. Лечение рака кожи на фоне послеожоговых рубцов (клинический случай). Сибирский онкологический журнал. 2022;21(2):160–6. DOI: 10.21294/1814-4861-2022-21-2-160-166","Matsui Y., Makino T., Takemoto K., Kagoyama K., Shimizu T. Coexistence of basal cell carcinoma and squamous cell carcinoma in a single burn scar region. Burns Open. 2020;4:64–6. DOI: 10.1016/j.burnso.2020.03.001","Игнатова А.В. Актуальные проблемы лечения местнораспространенного и метастатического плоскоклеточного рака кожи. Современная онкология. 2021;23(1):94–8. DOI: 10.26442/18151434.2021.1.200694","Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer arising in a chronic ulcer (Marjolin’s ulcer) of the skin. JCO Glob Oncol. 2020;6:809–18. DOI: 10.1200/GO.20.00094","Зикиряходжаев Д.З., Сайфутдинова М.Б., Орифов Б.М. Особенности рака кожи, развившегося в области рубцовых изменений: обзор литературы. Саркомы костей, мягких тканей и опухоли кожи 2022;14(1):25–32. DOI: 10.17650/2782-3687-2022-14-1-25-32","Green A.C., Olsen C.M. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177(2):373–81. DOI: 10.1111/bjd.15324","Robsahm T.E., Helsing P., Veierod M.B. Cutaneous squamous cell carcinoma in Norway 19632011: increasing incidence and stable mortality. Cancer Med. 2015;4(3):472–80. DOI: 10.1002/cam4.404","Поляков А.П., Геворков А.Р., Степанова А.А. Современная стратегия диагностики и лечения плоскоклеточного рака кожи. Опухоли головы и шеи. 2021;11(1):51–72. DOI: 10.17650/2222-1468-2021-11-1-51-72","Утяшев И.А., Орлова К.В., Зиновьев Г.В., Трофимова О.П., Петенко Н.Н., Назарова В.В. и др. Практические рекомендации по лекарственному лечению злокачественных дрнемеланоцитарных опухолей кожи (базальноклеточного рака кожи, плоскоклеточного рака кожи, карциномы Меркеля). Практические рекомендации RUSSCO. 2022;12:672–96. DOI: 10.18027/2224-5057-2022-12-3s2-672-696","Brougham N.D., Dennett E.R., Came ron R., Tan S.T. The incidence of meta-stasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J Surg Oncol. 2012;106:811e5. DOI: 10.1002/jso.23155","Huang C.Y., Feng C.H., Hsiao Y.C., Chuang S.S., Yang J.Y. Burn scar carcinoma. J Dermatolog Treat. 2010;21(6):350–6. DOI: 10.3109/09546630903386580","Sisti A., Pica Alfieri E., Cuomo R., Grimaldi L., Brandi C., Nisi G. Marjolin’s ulcer arising in a burn scar. J Burn Care Res. 2018;39(4):636–9. DOI: 10.1097/BCR.0000000000000619","Mousa A.K., Elshenawy A.A., Maklad S.M., Bebars S.M.M., Burezq H.A., Sayed S.E. Post-burn scar malignancy: 5-year management review and experience. Int Wound J. 2022;19(4):895–909. DOI: 10.1111/iwj.13690","Ozek C., Celik N., Bilkay U., Akalin T., Erdem O., Cagdas A. Marjolin’s ulcer of the scalp: report of 5 cases and review of the literature. J Burn Care Rehabil. 2001;22(1):65–9. DOI: 10.1097/00004630-200101000-00013","Gül U., Kiliç A. Squamous cell carcinoma developing on burn scar. Ann Plast Surg. 2006;56(4):406–8. DOI: 10.1097/01.sap.0000200734.74303.d5","Sabin S.R., Goldstein G., Rosenthal H.G., Haynes K.K. Aggressive squamous cell carcinoma originating as a Marjolin’s ulcer. Dermatol Surg. 2004;30(2 Pt 1):229–30. DOI: 10.1111/j.1524-4725.2004.30072.x","Work Group, Invited Reviewers, Kim J.Y.S., Kozlow J.H., Mittal B., Moyer J., Olenecki T., Rodgers P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 2018;78(3):560–78. DOI: 10.1016/j.jaad.2017.10.007"],"dc.citation.en":["Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Состояние онкологической помощи населению России в 2021 году. М.: ФГБУ «МНИОИ им. П.А. Герцена» Минздрава России; 2022.","Waldman A., Schmults C. Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am. 2019:33(1);1–12. DOI: 10.1016/j.hoc.2018.08.001","Киреева Т.А., Гуменецкая Ю.В., Кудрявцев Д.В., Стародубцев А.Л., Курильчик А.А., Куприянова Е.И. Клинический случай лечения пациента с местнораспространенным плоскоклеточным раком кожи, возникшим на фоне обширного послеожогового рубца. Cаркомы костей, мягких тканей и опухоли кожи. 2019;11(1):51–5.","Федоркевич И.В., Нестерович Т.Н., Ганусевич О.Н., Иванов С.А., Ачинович С.Л., Лось Д.М. Лечение рака кожи на фоне послеожоговых рубцов (клинический случай). Сибирский онкологический журнал. 2022;21(2):160–6. DOI: 10.21294/1814-4861-2022-21-2-160-166","Matsui Y., Makino T., Takemoto K., Kagoyama K., Shimizu T. Coexistence of basal cell carcinoma and squamous cell carcinoma in a single burn scar region. Burns Open. 2020;4:64–6. DOI: 10.1016/j.burnso.2020.03.001","Игнатова А.В. Актуальные проблемы лечения местнораспространенного и метастатического плоскоклеточного рака кожи. Современная онкология. 2021;23(1):94–8. DOI: 10.26442/18151434.2021.1.200694","Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer arising in a chronic ulcer (Marjolin’s ulcer) of the skin. JCO Glob Oncol. 2020;6:809–18. DOI: 10.1200/GO.20.00094","Зикиряходжаев Д.З., Сайфутдинова М.Б., Орифов Б.М. Особенности рака кожи, развившегося в области рубцовых изменений: обзор литературы. Саркомы костей, мягких тканей и опухоли кожи 2022;14(1):25–32. DOI: 10.17650/2782-3687-2022-14-1-25-32","Green A.C., Olsen C.M. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177(2):373–81. DOI: 10.1111/bjd.15324","Robsahm T.E., Helsing P., Veierod M.B. Cutaneous squamous cell carcinoma in Norway 19632011: increasing incidence and stable mortality. Cancer Med. 2015;4(3):472–80. DOI: 10.1002/cam4.404","Поляков А.П., Геворков А.Р., Степанова А.А. Современная стратегия диагностики и лечения плоскоклеточного рака кожи. Опухоли головы и шеи. 2021;11(1):51–72. DOI: 10.17650/2222-1468-2021-11-1-51-72","Утяшев И.А., Орлова К.В., Зиновьев Г.В., Трофимова О.П., Петенко Н.Н., Назарова В.В. и др. Практические рекомендации по лекарственному лечению злокачественных дрнемеланоцитарных опухолей кожи (базальноклеточного рака кожи, плоскоклеточного рака кожи, карциномы Меркеля). Практические рекомендации RUSSCO. 2022;12:672–96. DOI: 10.18027/2224-5057-2022-12-3s2-672-696","Brougham N.D., Dennett E.R., Came ron R., Tan S.T. The incidence of meta-stasis from cutaneous squamous cell carcinoma and the impact of its risk factors. J Surg Oncol. 2012;106:811e5. DOI: 10.1002/jso.23155","Huang C.Y., Feng C.H., Hsiao Y.C., Chuang S.S., Yang J.Y. Burn scar carcinoma. J Dermatolog Treat. 2010;21(6):350–6. DOI: 10.3109/09546630903386580","Sisti A., Pica Alfieri E., Cuomo R., Grimaldi L., Brandi C., Nisi G. Marjolin’s ulcer arising in a burn scar. J Burn Care Res. 2018;39(4):636–9. DOI: 10.1097/BCR.0000000000000619","Mousa A.K., Elshenawy A.A., Maklad S.M., Bebars S.M.M., Burezq H.A., Sayed S.E. Post-burn scar malignancy: 5-year management review and experience. Int Wound J. 2022;19(4):895–909. DOI: 10.1111/iwj.13690","Ozek C., Celik N., Bilkay U., Akalin T., Erdem O., Cagdas A. Marjolin’s ulcer of the scalp: report of 5 cases and review of the literature. J Burn Care Rehabil. 2001;22(1):65–9. DOI: 10.1097/00004630-200101000-00013","Gül U., Kiliç A. Squamous cell carcinoma developing on burn scar. Ann Plast Surg. 2006;56(4):406–8. DOI: 10.1097/01.sap.0000200734.74303.d5","Sabin S.R., Goldstein G., Rosenthal H.G., Haynes K.K. Aggressive squamous cell carcinoma originating as a Marjolin’s ulcer. Dermatol Surg. 2004;30(2 Pt 1):229–30. DOI: 10.1111/j.1524-4725.2004.30072.x","Work Group, Invited Reviewers, Kim J.Y.S., Kozlow J.H., Mittal B., Moyer J., Olenecki T., Rodgers P. Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol. 2018;78(3):560–78. DOI: 10.1016/j.jaad.2017.10.007"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8930"],"dc.date.accessioned_dt":"2025-07-09T13:59:01Z","dc.date.accessioned":["2025-07-09T13:59:01Z"],"dc.date.available":["2025-07-09T13:59:01Z"],"publication_grp":["123456789/8930"],"bi_4_dis_filter":["lymph node dissection\n|||\nlymph node dissection","reconstructive surgery\n|||\nreconstructive surgery","лимфодиссекция\n|||\nлимфодиссекция","гипертрофический рубец\n|||\nгипертрофический рубец","skin graft\n|||\nskin graft","плоскоклеточный рак кожи\n|||\nплоскоклеточный рак кожи","hypertrophic scar\n|||\nhypertrophic scar","реконструктивная хирургия\n|||\nреконструктивная хирургия","post-burn complications\n|||\npost-burn complications","послеожоговые осложнения\n|||\nпослеожоговые осложнения","ожоги\n|||\nожоги","кожный лоскут\n|||\nкожный лоскут","squamous cell carcinoma\n|||\nsquamous cell carcinoma","burns\n|||\nburns"],"bi_4_dis_partial":["гипертрофический рубец","ожоги","lymph node dissection","reconstructive surgery","реконструктивная хирургия","послеожоговые осложнения","кожный лоскут","hypertrophic scar","skin graft","post-burn complications","squamous cell carcinoma","burns","плоскоклеточный рак кожи","лимфодиссекция"],"bi_4_dis_value_filter":["гипертрофический рубец","ожоги","lymph node dissection","reconstructive surgery","реконструктивная хирургия","послеожоговые осложнения","кожный лоскут","hypertrophic scar","skin graft","post-burn complications","squamous cell carcinoma","burns","плоскоклеточный рак кожи","лимфодиссекция"],"bi_sort_1_sort":"advanced squamous cell carcinoma arising from an extensive post‑burn scar: clinical case","bi_sort_3_sort":"2025-07-09T13:59:01Z","read":["g0"],"_version_":1837178071337140224},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:58.18Z","search.uniqueid":"2-8034","search.resourcetype":2,"search.resourceid":8034,"handle":"123456789/8923","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-19-27"],"dc.abstract":["

Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.

","

Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными механизмами формирования лекарственной резистентности. Белок 1, ассоциированный с рецептором TNF (TRAP1), задействован в регуляции метаболических процессов и устойчивости опухолевых клеток к апоптозу, однако его роль в глиобластоме остается недостаточно изученной. Материалы и методы. Использовали клеточные линии глиомы T98G и астроциты головного мозга человека (HBA) в качестве контроля. Подавление экспрессии TRAP1 осуществляли методом лентивирусной трансдукции короткой шпилечной РНК (кшРНК). Экзосомы выделяли ультрацентрифугированием из культуральной среды и подтверждали их идентификацию по типичным маркерам (TSG101, CD63 и ALIX). Уровень экспрессии TRAP1 на уровне белка и ключевых гликолитических ферментов анализировали методом вестерн-блот анализа. Оценку жизнеспособности опухолевых клеток проводили с помощью МТТ-теста, уровень апоптоза — с помощью аннексина V-FITC/PI и продукцию АТФ — методом биолюминесцентного анализа. Результаты и обсуждение. Показано, что в клетках T98G TRAP1 сверхэкспрессирован, в том числе и в экзосомах, тогда как в HBA уровень TRAP1 был умеренным или низким. Подавление TRAP1 у T98G приводило к снижению экспрессии гликолитических ферментов, росту уровня апоптоза и уменьшению жизнеспособности опухолевых клеток. Повышенная экспрессия TRAP1 усиливала метаболическое перепрограммирование опухолевых клеток в сторону аэробного гликолиза и снижала синтез АТФ. Экзосомальный TRAP1, вероятно, участвует в межклеточной коммуникации, способствуя адаптации опухоли к стрессовым условиям и формированию проопухолевого микроокружения. Заключение. Результаты исследования подтверждают важность TRAP1 в регуляции метаболического статуса глиобластомы и поддержании ее агрессивного фенотипа. Таргетное подавление TRAP1 может рассматриваться как перспективная стратегия терапии глиобластомы, направленная на снижение жизнеспособности опухолевых клеток и ограничение их метаболической гибкости.

"],"dc.abstract.en":["

Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms of therapy resistance. Tumor necrosis factor receptor-associated protein 1 (TRAP1) participates in metabolic regulation and tumor cell resistance to apoptosis; however, its role in glioblastoma remains understudied. Materials and methods. Glioma cell lines T98G and human brain astrocytes (HBA) were used as controls. TRAP1 expression was suppressed via the lentiviral transduction method using short hairpin RNA (shRNA). Exosomes were isolated from culture medium by ultracentrifugation and subsequently identified by typical markers (TSG101, CD63, and ALIX). The protein-level expression of TRAP1 and key glycolytic enzymes was analyzed by western blot analysis. Cell viability was assessed using the MTT assay, while apoptosis levels were measured using Annexin V-FITC/PI staining. In addition, ATP production was analyzed using bioluminescent methods. Results and discussion. TRAP1 was overexpressed in T98G cells, including in exosomes, while HBA exhibited moderate to low TRAP1 levels. The suppression of TRAP1 in T98G cells resulted in a decrease in glycolytic enzyme expression, an increase in apoptosis, and a decrease in cell viability. TRAP1 overexpression facilitated metabolic reprogramming toward aerobic glycolysis, along with reducing ATP synthesis. Exosomal TRAP1 likely participates in intercellular communication, promoting tumor adaptation to stress and the formation of a pro-tumor microenvironment. Conclusion. These findings support the pivotal role of TRAP1 in regulating metabolic status and maintaining aggressive phenotypes in glioblastoma. The targeted inhibition of TRAP1 may become a promising therapeutic strategy for glioblastoma, aimed at reducing tumor cell viability and limiting metabolic flexibility.

"],"subject":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"subject_keyword":["glioblastoma","glioblastoma","TRAP1","TRAP1","metabolic reprogramming","metabolic reprogramming","shRNA","shRNA","exosomes","exosomes","glycolysis","glycolysis","apoptosis","apoptosis","глиобластома","глиобластома","TRAP1","TRAP1","метаболическое перепрограммирование","метаболическое перепрограммирование","кшРНК","кшРНК","экзосомы","экзосомы","гликолиз","гликолиз","апоптоз","апоптоз"],"subject_ac":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"subject_tax_0_filter":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"subject_filter":["glioblastoma\n|||\nglioblastoma","trap1\n|||\nTRAP1","metabolic reprogramming\n|||\nmetabolic reprogramming","shrna\n|||\nshRNA","exosomes\n|||\nexosomes","glycolysis\n|||\nglycolysis","apoptosis\n|||\napoptosis","глиобластома\n|||\nглиобластома","trap1\n|||\nTRAP1","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","кшрнк\n|||\nкшРНК","экзосомы\n|||\nэкзосомы","гликолиз\n|||\nгликолиз","апоптоз\n|||\nапоптоз"],"dc.subject_mlt":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.subject":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis","глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.subject.en":["glioblastoma","TRAP1","metabolic reprogramming","shRNA","exosomes","glycolysis","apoptosis"],"title":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"title_keyword":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"title_ac":["analysis and functional significance of trap1 in glioblastoma\n|||\nAnalysis and Functional Significance of TRAP1 in Glioblastoma","анализ и функциональная значимость белка trap1 при глиобластоме\n|||\nАнализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_sort":"Analysis and Functional Significance of TRAP1 in Glioblastoma","dc.title_hl":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_mlt":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title":["Analysis and Functional Significance of TRAP1 in Glioblastoma","Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.title_stored":["Analysis and Functional Significance of TRAP1 in Glioblastoma\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Анализ и функциональная значимость белка TRAP1 при глиобластоме\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Analysis and Functional Significance of TRAP1 in Glioblastoma"],"dc.abstract.ru":["

Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными механизмами формирования лекарственной резистентности. Белок 1, ассоциированный с рецептором TNF (TRAP1), задействован в регуляции метаболических процессов и устойчивости опухолевых клеток к апоптозу, однако его роль в глиобластоме остается недостаточно изученной. Материалы и методы. Использовали клеточные линии глиомы T98G и астроциты головного мозга человека (HBA) в качестве контроля. Подавление экспрессии TRAP1 осуществляли методом лентивирусной трансдукции короткой шпилечной РНК (кшРНК). Экзосомы выделяли ультрацентрифугированием из культуральной среды и подтверждали их идентификацию по типичным маркерам (TSG101, CD63 и ALIX). Уровень экспрессии TRAP1 на уровне белка и ключевых гликолитических ферментов анализировали методом вестерн-блот анализа. Оценку жизнеспособности опухолевых клеток проводили с помощью МТТ-теста, уровень апоптоза — с помощью аннексина V-FITC/PI и продукцию АТФ — методом биолюминесцентного анализа. Результаты и обсуждение. Показано, что в клетках T98G TRAP1 сверхэкспрессирован, в том числе и в экзосомах, тогда как в HBA уровень TRAP1 был умеренным или низким. Подавление TRAP1 у T98G приводило к снижению экспрессии гликолитических ферментов, росту уровня апоптоза и уменьшению жизнеспособности опухолевых клеток. Повышенная экспрессия TRAP1 усиливала метаболическое перепрограммирование опухолевых клеток в сторону аэробного гликолиза и снижала синтез АТФ. Экзосомальный TRAP1, вероятно, участвует в межклеточной коммуникации, способствуя адаптации опухоли к стрессовым условиям и формированию проопухолевого микроокружения. Заключение. Результаты исследования подтверждают важность TRAP1 в регуляции метаболического статуса глиобластомы и поддержании ее агрессивного фенотипа. Таргетное подавление TRAP1 может рассматриваться как перспективная стратегия терапии глиобластомы, направленная на снижение жизнеспособности опухолевых клеток и ограничение их метаболической гибкости.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nГлиобластома по-прежнему остается одной из наиболее злокачественных опухолей центральной нервной\nсистемы (ЦНС), характеризуясь крайне неблагоприятным прогнозом, несмотря на достижения в области\nдиагностики и лечения [1, 2]. Успехи в изучении молекулярной природы глиобластомы позволили выявить\nряд ключевых сигнальных путей и генетических изменений, однако гетерогенность опухоли, а также сложность ее микроокружения затрудняют разработку универсальных и высокоэффективных терапевтических\nстратегий [3, 4]. Ключевым аспектом прогрессирования глиобластомы является способность опухолевых\nклеток к быстрому метаболическому переориентированию и адаптации к изменяющимся условиям среды,\nв частности к гипоксии, характерной для обширных\nнекротических зон внутри самой опухоли [5–7]. Такое\nперепрограммирование метаболизма обеспечивает\nинтенсивный рост и пролиферацию клеток, а также\nнередко ведет к формированию лекарственной устойчивости. В контексте этих процессов возрастающий\nинтерес вызывает семейство шаперонов HSP90, к которому относится белок 1, ассоциированный с рецептором TNF (TRAP1) [8–10]. TRAP1 изначально рассматривался как регулятор митохондриального гомеостаза\nи апоптоза, однако последующие исследования показали, что он обладает гораздо более широкими функциями, включая участие в процессах трансдукции сигнала,\nподдержании энергетического баланса, а также формировании резистентности опухолевых клеток к химиои лучевой терапии [11, 12]. Многие работы указывают\nна то, что TRAP1 может переключать метаболизм опухолевых клеток с окислительного фосфорилирования\nна аэробный гликолиз, давая опухоли дополнительные\nпреимущества в условиях гипоксии и ограниченных\nэнергетических ресурсов [13, 14]. Особенно интересно,\nчто данная перестройка метаболического статуса часто\nсопровождается повышением устойчивости к апоптотическим сигналам, что еще более усугубляет проблему\nлечения глиобластомы [11].\nЭкзосомы являются наиболее широко изученной группой среди двух основных подгрупп (экзосомы и микровезикулы) внеклеточных везикул (ВВ), высвобождаемых из клеток млекопитающих. Экзосомы возникают\nиз мембран мультивезикулярных телец (МВТ) и имеют\nчашеобразную морфологию под электронным микроскопом с диаметром от 50 до 150 нм. Экзосомы широко изучались на предмет их роли во внутриклеточной\nкоммуникации, особенно во время развития и прогрессирования опухоли. Ассоциированные с экзосомами\nРНК, некодирующие РНК, белки, ДНК и даже метаболиты могут изменять судьбу клеток-реципиентов посредством аутокринной и паракринной сигнализации.\nДоставляемые опухолевыми экзосомами биологические компоненты взаимодействуют со стромальными\nклетками в микроокружении опухоли, модулируют\nпрогрессирование опухоли, ангиогенез, метастазирование и уклонение от иммунного ответа. Измененный метаболизм клеток является одним из признаков злокачественных новообразований, в том числе глиобластома.\nЭкзогенные экзосомы могут вызывать метаболическое\nперепрограммирование и тем самым поддерживать\nрост опухоли. Экзосомальный TRAP1, модулирующий\nопухолевый метаболизм, представляет интерес как потенциальная терапевтическая мишень для изучения его\nроли в онкогенезе глиобластомы, а также для улучшения диагностики и терапии. Более того, повышенное\nсодержание TRAP1 в экзосомах может служить маркером прогрессирования глиобластомы и коррелировать\nс неблагоприятным клиническим исходом. В этой связи\nблокирование TRAP1 или воздействие на механизмы\nэкзосомального транспорта могут стать перспективными направлениями в создании новых противоопухолевых препаратов.\nНастоящее исследование нацелено на углубленный анализ роли TRAP1 в метаболическом перепрограммировании клеток глиобластомы и изучение вклада экзосомального TRAP1 в агрессивность опухоли. Выявление\nключевых молекулярных взаимодействий, лежащих\nв основе метаболической пластичности глиобластомы, может способствовать разработке новых методов\nтерапии, направленных на снижение резистентности\nопухоли к лечению, а также на подавление межклеточных коммуникационных механизмов, способствующих\nпрогрессированию глиобластомы.\nМАТЕРИАЛЫ И МЕТОДЫ\nКультивирование клеток\nКлеточная линия глиом T98G и клеточная линия астроцитов головного мозга человека (HBA) были получены\nиз Китайской национальной инфраструктуры ресурсов\nклеточных линий (http://www.cellresource.cn/, Китай).\nКлеточные линии хранили в Модифицированной среде\nОрла Дульбекко (DMEM) с высоким содержанием глюкозы, дополненной 10 % фетальной бычьей сывороткой\n(FBS) и 100 ЕД/мл пенициллина или 0,1 мг/мл стрептомицина, а также было подтверждено отсутствие контаминации микоплазмой. Клетки хранили во влажном\nинкубаторе, содержащем 5 % атмосферу CO2, при температуре 37 °C в колбе для культивирования клеток,\nстандартной для адгезивных клеток. Клетки обычно\nсубкультивировали при достижении 80 %-го слияния\nс использованием 0,25 %-го раствора трипсина-ЭДТА.\nОбразование сфероидов опухоли наблюдалось в течение 4 дней для T98G. Формирование опухолевых сфероидов ежедневно подтверждали визуально с помощью\nтринокулярного обратного микроскопа Optika XDS-2,\nоснащенного камерой ISH500, а их средние диаметры\nанализировали с помощью программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация\nУльтрацентрифугирование является «золотым стандартом» выделения экзосом из клеток. Основное преимущество этого современного метода заключается\nв том, что он производит высокообогащенные фракции\nэкзосом, а также позволяет собирать дополнительные\nфракции ВВ, а затем супернатант, не содержащий экзосомы, который образуется после высокоскоростного\nотжима. Первые шаги предназначены для лизиса клеток и удаления мертвых клеток их остатков путем последовательного центрифугирования с возрастающей\nскоростью. На каждом из этих этапов осадок выбрасывают, а надосадочную жидкость используют на следующем этапе. Конечный супернатант затем подвергают\nультрацентрифугированию при 100 000 × g для осаждения небольших везикул, соответствующих экзосомам.\nОсадок промывают большим объемом натрий-фосфатного буфера (PBS) для удаления примесей белков и центрифугируют последний раз на той же высокой скорости. Основная часть экзосом, полученных из T98G или\nHBA, имела размеры около 100 нм и морфологические\nособенности сферических, двухслойных, связанных\nс мембраной экзосом, что соответствует морфологическим характеристикам экзосом.\nЭкстракция белка из экзосом\nНабор Total Exosome RNA & Protein Isolation Kit\n(Invitrogen), номер каталога 4478545, для экстракции\nтотальной РНК и белка из экзосом предназначен для\nвыделения белков из одного обогащенного препарата\nэкзосом. Процедура экстракция белка TRAP1 из экзосом, полученных из клеточной линии глиомы T98G\nили HBA, была проведена согласно инструкции Total\nExosome RNA & Protein Isolation Kit (Invitrogen).\nАнализ жизнеспособности клеток\nПосев клеточной линии глиомы T98G подсчитывали через 2, 3 и 4 дня под инвертированным фазово-контрастным микроскопом. Для анализа\n3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид (МТТ)-теста в каждую лунку добавляли реагент МТТ в дозе 5 мг/мл (Roche Diagnostics, Шанхай,\nКитай) и дополнительно инкубировали в течение 2 ч\nпри 37 °C. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1 % DMSO для растворения фиолетовых\nкристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопии.\nРезультаты представлены как средние значения из трех\nнезависимых экспериментов, проведенных в трех повторах.\nАнализ гибели клеток с помощью\nаннексина V‑FITC/PI\nНабор для определения апоптоза клеток аннексин V-флуоресцеин-5-изотиоцианат (FITC) (5 мкл)\nи пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай)\nбыл использован для измерения апоптоза клеточной\nлинии глиом T98G. Опухолевые клетки с плотностью\n3×10 5 клеток были высеяны на 6-луночные планшеты\nв течение 24 ч. Как плавающие, так и адгезивные клетки\nсобирали и дважды промывали холодным PBS. Затем\nклетки ресуспендировали в 500 мкл связывающего буфера и инкубировали с 5 мкл Annexin V-FITC и 5 мкл PI\nв течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США)\nи скорость апоптоза клеток анализировали с помощью\nпакета програмного обеспечения FLOWJO для анализа\nданных проточной цитометрии (v10; BD Biosciences).\nАТФ-мониторинг\nАТФ определяли с помощью набора ATP Bioluminescence\nAssay Kit HS II от компании Roshe в соответствии с инструкциями производителя и нормализовали уровень\nАТФ на микрограмм белка.\nВестерн-блот анализ\nДля проведения вестерн-блот анализа использовали\nследующие антитела: 1) β-актин (1:1000; Zhongshan,\nПекин, Китай); 2) первичное мышиное анти-TRAP1\n(1:1000; OriGene Technologies Inc., Роквилл, Мэриленд, США), антитело против гена предрасположенности к опухолям 101 (англ. tumor susceptibility\ngene 101, TSG101) [EPR7130 (B)] (1:1000); ab125011,\nAbcam), антитело против белка, взаимодействующее\nс ALG-2 (связанный с апоптозом ген 2) X (англ. ALG-2\n(apoptosis-linked gene 2)-interacting protein X, ALIX))\n[EPR23653–32] (1:1000; ab275377, Abcam), антитело\nпротив CD63 [EPR5702] (1:1000; ab134045, Abcam),\nмоноклональные антитела к гексокиназе I (C35C4)\nкролика (1:1000; #2024, Cell Signaling Technology), кроличьи mAb к гексокиназе II (C64G5) (1:1000; #2867, Cell\nSignaling Technology), PKM1 и PKM2 (C103A3) кроличьи mAb (1: 1000; #3190, Cell Signaling Technology),\nPKM2 (D78A4) Кроличьи mAb XP® (1:1000; # 4053S,\nCell Signaling Technology), кроличьи mAb LDHA\n(C4B5) (1:1000; #3582, Cell Signaling Technology), моноклональные антитела кролика фосфофруктокиназа,\nтромбоциты (англ. phosphofructokinase, platelet, PFKP)\n(D4B2) (1:1000; #8164, Cell Signaling Technology), кроличьи моноклональные антитела к пируватдегидрогеназе (C54G1) (1:1000; #3205, Cell Signaling Technology)\nи β-актин (1:1000; Zhongshan, Пекин, Китай). Количественную оценку полос вестерн-блот анализа проводили с использованием программного обеспечения\nOdyssey v1.2 (Gene Company Limited, Гонконг, Китай)\nпутем измерения интенсивности полосы для каждой\nгруппы и нормализации ее по β-актину в качестве внутреннего контроля.\nЛентивирусная трансдукция\nСтабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц (pGFPC-shLenti), содержащих гены, кодирующие короткую\nшпилечную РНК (кшРНК), нацеленные на TRAP1\n(#1: 5′-CGACATGAAACCGTCCATGTT-3′; #2:\n5′-AAACATGAGTTCCAGGCCGAG-3′) (GenePharma Co.,\nШанхай, Китай). Трансдукцию лентивирусных частиц\nпроводили с клетками в среде, содержащей 8 мкг/мл\nполибрена (Solarbio). Через 18 часов эффективность\nтрансдукции проверяли методом проточной цитометрии. Трансдуцированные клетки культивировали\nв среде, свободной от лентивирусных частиц, в течение\nеще 72 часов, а затем использовали 1 мкг/мл пуромицина (Solarbio) для отбора клонов со стабильной экспрессией кшРНК. Вестерн-блот использовали для подтверждения снижения экспрессии белка TRAP1.\nСтатистический анализ\nСтатистический анализ проводился с использованием программного обеспечения SPSS версии 22.0 и различных пакетов программного обеспечения R (версия v.3.6.1). Графики были построены с использованием\nпрограммного обеспечения GraphPad Prism версии 8.0.\nПри необходимости применяли t-критерий Стьюдента,\nANOVA, анализ хи-квадрат или критерий Манна —\nУитни. Вероятность p < 0,05 (*) или p < 0,001 (**) считалась статистически значимой.\nРЕЗУЛЬТАТЫ\nИзменение уровня экспрессии\nTRAP1 на уровне белка при глиобластоме\nЧтобы изучить взаимосвязь между экспрессией эндогенного (клеточного) TRAP1 и экзосомальным\nTRAP1 на уровне белка, мы использовали клеточную\nлинию глиомы T98G и HBA как негативный контроль\nс помощью вестерн-блот анализа. Стабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц, содержащих гены, кодирующие\nкшРНК, нацеленные на TRAP1 (кшРНК TRAP1). Экзосомы были очищены из супернатанта клеточной культуры T98G для наблюдения за морфологией с помощью\nтрансмиссионной электронной микроскопии. Кроме\nтого, вестерн-блот анализ был проведен для выявления экспрессии типичных поверхностных маркеров\nэкзосом (кластер дифференцировки 63 (CD63), ALIX\nи TSG101) и выявления экспрессии TRAP1 на уровне\nбелка. Результаты продемонстрировали, что в клеточной линии HBA (негативный контроль) TRAP1 имел\nумеренный уровень экспрессии, а экзосомы —\ncниженный уровень экспрессии TRAP1. Более того,\nприменение кшTRAP1 по отношению к клеточной линии T98G продемонстрировало снижение экспрессии\nTRAP1 в клетках. Кроме того, экзосомы, изолированные из клеточной линии T98G, также содержали низкий уровень экспрессии TRAP1 после трансфекции\nкшTRAP1 (рис. 1). Данные результаты показывают, что\nнормальные клетки HBA демонстрируют умеренный\nуровень экспрессии или его практическое отсутствие\nв выделяемых ими экзосомах. Тем не менее использование кшTRAP1 практически полностью инактивирует\nTRAP1 как в опухолевых клетках, так и в выделяемых\nими экзосомах. Это говорит о том, что TRAP1 сверхэкспрессирован.\nTRAP1 как потенциальный ключевой\nрегулятор метаболического\nперепрограммирования при глиобластоме\nЧтобы исследовать функцию экзосом с высокой экспрессией белка TRAP1, мы провели результаты\nвестерн-блот анализа для выбранных гликолитических ферментов. Экспрессия гексокиназы 1 (HK1/2),\nМ1/2 пируваткиназы (PKM1/2), лактатдегидрогеназы А\n(ЛДГА), фосфофруктокиназы тромбоцитов (PFKP)\nи пируватдегидрогеназы в пути гликолиза была обнаружена с помощью вестерн-блот анализа (рис. 2). Результаты показали, что высокая экспрессия TRAP1 способствует экспрессии этих гликолитических ферментов,\nтогда как снижение экспрессии TRAP1 с помощью\nкшРНК TRAP1 снижает их экспрессию. Обработка\nклеток экзосомами с высокой экспрессией TRAP1 повышала экспрессию этих гликолитических ферментов\n(рис. 2).\nСледовательно, высокая экспрессия TRAP1 способствует гликолизу. Чтобы выяснить, входит ли пируват\nв результате гликолиза непосредственно в цикл трикарбоновых кислот (ЦТК) или катализируется лактатдегидрогеназой с образованием молочной кислоты,\nмы измерили АТФ, вырабатываемый этими клетками\n(рис. 3).\nМы обнаружили, что высвобождение АТФ уменьшалось в клетках глиомы с высокой экспрессией\nTRAP1 и увеличивалось после снижения экспрессии\nTRAP1, а обработка клеток экзосомами с высокой\nэкспрессией TRAP1 также снижала высвобождение\nАТФ. Таким образом, TRAP1 усиливает пути гликолиза\nв клетках глиобластомы.\nИнгибирование TRAP1 и анализ\nжизнеспособности опухолевых клеток\nС помощью MTT-анализа мы провели оценку влияния\nэкспрессии эндогенного (клеточного) TRAP1 на жизнеспособность клеточной линии глиом T98G в течение\n12, 24, 36 и 48 часов. Было выяснено, что по сравнению\nс HBA (негативный контроль) трансфекция клеток\nT98G кшРНК TRAP1 привела к значительному снижению жизнеспособности опухолевых клеток в районе\n36 и 48 часов (рис. 4 А). Более того, понижение экспрессии TRAP1 в клетках T98G коррелировало с усилением\nапоптоза (рис. 4 Б). Мы считаем, что нарушение регуляции экспрессии TRAP1 является отличительной чертой\nглиобластомы, включая устойчивость опухолевых клеток к гибели и перепрогррамирование энергетического\nметаболизма. Это указывает на то, что возможно и эффективно регулировать развитие и прогрессирование\nглиобластомы путем ингибирования TRAP1.\nОБСУЖДЕНИЕ\nПолученные нами данные подтверждают ключевую\nроль белка TRAP1 в регуляции метаболических процессов и устойчивости клеток глиобластомы к индуцированному апоптозу. Во-первых, мы продемонстрировали, что в клеточной линии глиом T98G TRAP1 обладает\nвыраженной сверхэкспрессией по сравнению с HBA,\nчто согласуется с ранее опубликованными результатами, указывающими на тесную связь между высоким\nуровнем TRAP1 и агрессивным фенотипом опухоли\n[11, 12]. Во-вторых, обнаружение TRAP1 в составе экзосом, выделяемых T98G, указывает на возможную вовлеченность этого белка в межклеточную коммуникацию, которая, согласно ряду работ, играет решающую\nроль в метаболической перестройке опухолевых клеток\nи их взаимодействии со стромальными элементами\nмикроокружения [15–17].\nВысокий уровень TRAP1 в сочетании с повышенной\nэкспрессией гликолитических ферментов, таких как\nHK1/2, PKM1/2, LDHA и PFKP, и сниженным синтезом\nАТФ демонстрирует, что глиобластома активно переключается на аэробный гликолиз (эффект Варбурга),\nчто обеспечивает быстрый рост и пролиферацию,\nа также формирует условия для развития лекарственной устойчивости [5, 6, 13, 14]. При этом подавление\nэкспрессии TRAP1 методами генетического нокдауна\nприводило к снижению жизнеспособности опухолевых\nклеток и к возрастанию уровня апоптоза, что отражает\nвысокую зависимость глиобластомы от этого шаперона\nдля поддержания энергетического баланса и выживания [7, 11]. Данные результаты согласуются с утверждением, что TRAP1 способен регулировать митохондриальные функции и метаболические пути, влияя\nна баланс между окислительным фосфорилированием\nи гликолизом [8–10, 12].\nПрисутствие TRAP1 в экзосомах согласуется с современными представлениями о том, что ВВ активно вовлечены в формирование опухолевого микроокружения и могут транспортировать широкий спектр белков,\nмикроРНК и других сигнальных молекул [15, 16, 18].\nПодобный перенос биоматериала через экзосомы способен усиливать проопухолевые сигналы и способствовать инвазии, ангиогенезу и развитию резистентности\nклеток к терапии [17, 19]. Более того, ряд современных\nисследований подчеркивает растущую значимость экзосом в контексте таргетной терапии глиобластомы,\nвключая использование ингибиторов Hsp90-семействаи подавление передачи различных метаболических\nфакторов [20, 21].\nНаши данные свидетельствуют, что TRAP1 может быть\nодной из ключевых молекул в этих процессах, поскольку\nон непосредственно задействован в поддержании митохондриального гомеостаза и регуляции энергетического\nметаболизма [22–24]. Особо стоит отметить, что перекрестная регуляция TRAP1 и гликолитических ферментов не только формирует «быстрый» способ получения\nэнергии в условиях гипоксии, но и обеспечивает опухолевым клеткам дополнительные строительные блоки для\nсинтеза нуклеотидов, белков и липидов, необходимых\nдля их активного размножения [13, 14]. Это объясняет,\nпочему нарушение экспрессии TRAP1 может приводить\nк быстрому подавлению роста опухолевых клеток и усилению проапоптотических сигналов. С другой стороны,\nсверхэкспрессия TRAP1, вероятно, способствует поддержанию клеточного гомеостаза в условиях терапевтического воздействия, что может объяснять возникновение резистентности к химио- и лучевой терапии [11,\n25]. Современные работы подчеркивают, что модуляция\nактивности TRAP1 способна влиять на ряд сигнальных\nкаскадов, формирующих устойчивость опухоли и ее\nспособность к быстрому метаболическому переключению [26]. Наконец, учитывая, что одна из возможных\nстратегий борьбы с глиобластомой — это подавление\nметаболических путей опухоли, блокирование функции TRAP1 или снижение его уровня экспрессии может рассматриваться как потенциально перспективный\nподход к терапии [5, 23]. В ряде экспериментальных исследований показано, что ингибиторы Hsp90-семейства,\nа также вмешательства, влияющие на биогенез экзосом,\nспособны снижать опухолевую агрессивность и уменьшать риск метастазирования ряда опухолей [15, 16, 18,\n24]. С учетом полученных нами результатов воздействие\nна активность TRAP1 может сочетаться с существующими методами лечения, повышая их эффективность\nза счет нарушения метаболической адаптации и межклеточной коммуникации [27, 28].\nТаким образом, результаты данного исследования\nподтверждают информацию о центральной роли белка TRAP1 в метаболическом перепрограммировании\nи устойчивости клеток глиобластомы. Обнаруженный\nнами факт участия TRAP1 в составе экзосом указывает на дополнительные механизмы поддержания проопухолевого фенотипа, включающие межклеточный\nтранспорт шаперона и модуляцию микроокружения.\nУглубленное понимание этих процессов может способствовать разработке новых таргетных препаратов,\nнаправленных на подавление TRAP1 и блокировку\nключевых этапов межклеточной коммуникации в глиобластоме.\nЗАКЛЮЧЕНИЕ\nПроведенное исследование демонстрирует, что белок\nTRAP1 играет значимую роль в развитии и прогрессировании глиобластомы за счет регуляции метаболического перепрограммирования и поддержания\nвыживаемости опухолевых клеток. Сверхэкспрессия\nTRAP1 в клетках глиомы T98G сопровождается повышением уровня гликолитических ферментов, снижением синтеза АТФ и, как следствие, усилением «гликолитического» фенотипа. Подавление экспрессии\nTRAP1 с помощью кшРНК приводит к снижению выживаемости опухолевых клеток и активации апоптоза,\nчто подтверждает важность данной мишени для роста\nи сохранения метаболического статуса глиобластомы.\nДополнительно выявлено, что TRAP1 присутствует\nв экзосомах, что дает основания полагать, что экзосомальный TRAP1 вовлечен в межклеточную коммуникацию и может способствовать опухолевому метаболическому перепрограммированию в микроокружении.\nВ нашем исследовании есть некоторые ограничения.\nВ нашем будущем исследовании мы подтвердим эти\nрезультаты с помощью экспериментальных методов\nна животных моделях, других линиях клеток человека\nи тканях/жидкостях. Все полученные результаты указывают на потенциальную терапевтическую ценность\nингибирования TRAP1 как стратегии борьбы с глиобластомой, позволяющей существенно снизить ее агрессивность и повысить эффективность существующих\nметодов лечения. В дальнейшем изучение механизмов,\nпосредством которых экзосомальный TRAP1 влияет\nна клетки-реципиенты, а также разработка специфических ингибиторов TRAP1 могут открыть новые подходы к диагностике и терапии данного заболевания."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nГлиобластома по-прежнему остается одной из наиболее злокачественных опухолей центральной нервной\nсистемы (ЦНС), характеризуясь крайне неблагоприятным прогнозом, несмотря на достижения в области\nдиагностики и лечения [1, 2]. Успехи в изучении молекулярной природы глиобластомы позволили выявить\nряд ключевых сигнальных путей и генетических изменений, однако гетерогенность опухоли, а также сложность ее микроокружения затрудняют разработку универсальных и высокоэффективных терапевтических\nстратегий [3, 4]. Ключевым аспектом прогрессирования глиобластомы является способность опухолевых\nклеток к быстрому метаболическому переориентированию и адаптации к изменяющимся условиям среды,\nв частности к гипоксии, характерной для обширных\nнекротических зон внутри самой опухоли [5–7]. Такое\nперепрограммирование метаболизма обеспечивает\nинтенсивный рост и пролиферацию клеток, а также\nнередко ведет к формированию лекарственной устойчивости. В контексте этих процессов возрастающий\nинтерес вызывает семейство шаперонов HSP90, к которому относится белок 1, ассоциированный с рецептором TNF (TRAP1) [8–10]. TRAP1 изначально рассматривался как регулятор митохондриального гомеостаза\nи апоптоза, однако последующие исследования показали, что он обладает гораздо более широкими функциями, включая участие в процессах трансдукции сигнала,\nподдержании энергетического баланса, а также формировании резистентности опухолевых клеток к химиои лучевой терапии [11, 12]. Многие работы указывают\nна то, что TRAP1 может переключать метаболизм опухолевых клеток с окислительного фосфорилирования\nна аэробный гликолиз, давая опухоли дополнительные\nпреимущества в условиях гипоксии и ограниченных\nэнергетических ресурсов [13, 14]. Особенно интересно,\nчто данная перестройка метаболического статуса часто\nсопровождается повышением устойчивости к апоптотическим сигналам, что еще более усугубляет проблему\nлечения глиобластомы [11].\nЭкзосомы являются наиболее широко изученной группой среди двух основных подгрупп (экзосомы и микровезикулы) внеклеточных везикул (ВВ), высвобождаемых из клеток млекопитающих. Экзосомы возникают\nиз мембран мультивезикулярных телец (МВТ) и имеют\nчашеобразную морфологию под электронным микроскопом с диаметром от 50 до 150 нм. Экзосомы широко изучались на предмет их роли во внутриклеточной\nкоммуникации, особенно во время развития и прогрессирования опухоли. Ассоциированные с экзосомами\nРНК, некодирующие РНК, белки, ДНК и даже метаболиты могут изменять судьбу клеток-реципиентов посредством аутокринной и паракринной сигнализации.\nДоставляемые опухолевыми экзосомами биологические компоненты взаимодействуют со стромальными\nклетками в микроокружении опухоли, модулируют\nпрогрессирование опухоли, ангиогенез, метастазирование и уклонение от иммунного ответа. Измененный метаболизм клеток является одним из признаков злокачественных новообразований, в том числе глиобластома.\nЭкзогенные экзосомы могут вызывать метаболическое\nперепрограммирование и тем самым поддерживать\nрост опухоли. Экзосомальный TRAP1, модулирующий\nопухолевый метаболизм, представляет интерес как потенциальная терапевтическая мишень для изучения его\nроли в онкогенезе глиобластомы, а также для улучшения диагностики и терапии. Более того, повышенное\nсодержание TRAP1 в экзосомах может служить маркером прогрессирования глиобластомы и коррелировать\nс неблагоприятным клиническим исходом. В этой связи\nблокирование TRAP1 или воздействие на механизмы\nэкзосомального транспорта могут стать перспективными направлениями в создании новых противоопухолевых препаратов.\nНастоящее исследование нацелено на углубленный анализ роли TRAP1 в метаболическом перепрограммировании клеток глиобластомы и изучение вклада экзосомального TRAP1 в агрессивность опухоли. Выявление\nключевых молекулярных взаимодействий, лежащих\nв основе метаболической пластичности глиобластомы, может способствовать разработке новых методов\nтерапии, направленных на снижение резистентности\nопухоли к лечению, а также на подавление межклеточных коммуникационных механизмов, способствующих\nпрогрессированию глиобластомы.\nМАТЕРИАЛЫ И МЕТОДЫ\nКультивирование клеток\nКлеточная линия глиом T98G и клеточная линия астроцитов головного мозга человека (HBA) были получены\nиз Китайской национальной инфраструктуры ресурсов\nклеточных линий (http://www.cellresource.cn/, Китай).\nКлеточные линии хранили в Модифицированной среде\nОрла Дульбекко (DMEM) с высоким содержанием глюкозы, дополненной 10 % фетальной бычьей сывороткой\n(FBS) и 100 ЕД/мл пенициллина или 0,1 мг/мл стрептомицина, а также было подтверждено отсутствие контаминации микоплазмой. Клетки хранили во влажном\nинкубаторе, содержащем 5 % атмосферу CO2, при температуре 37 °C в колбе для культивирования клеток,\nстандартной для адгезивных клеток. Клетки обычно\nсубкультивировали при достижении 80 %-го слияния\nс использованием 0,25 %-го раствора трипсина-ЭДТА.\nОбразование сфероидов опухоли наблюдалось в течение 4 дней для T98G. Формирование опухолевых сфероидов ежедневно подтверждали визуально с помощью\nтринокулярного обратного микроскопа Optika XDS-2,\nоснащенного камерой ISH500, а их средние диаметры\nанализировали с помощью программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация\nУльтрацентрифугирование является «золотым стандартом» выделения экзосом из клеток. Основное преимущество этого современного метода заключается\nв том, что он производит высокообогащенные фракции\nэкзосом, а также позволяет собирать дополнительные\nфракции ВВ, а затем супернатант, не содержащий экзосомы, который образуется после высокоскоростного\nотжима. Первые шаги предназначены для лизиса клеток и удаления мертвых клеток их остатков путем последовательного центрифугирования с возрастающей\nскоростью. На каждом из этих этапов осадок выбрасывают, а надосадочную жидкость используют на следующем этапе. Конечный супернатант затем подвергают\nультрацентрифугированию при 100 000 × g для осаждения небольших везикул, соответствующих экзосомам.\nОсадок промывают большим объемом натрий-фосфатного буфера (PBS) для удаления примесей белков и центрифугируют последний раз на той же высокой скорости. Основная часть экзосом, полученных из T98G или\nHBA, имела размеры около 100 нм и морфологические\nособенности сферических, двухслойных, связанных\nс мембраной экзосом, что соответствует морфологическим характеристикам экзосом.\nЭкстракция белка из экзосом\nНабор Total Exosome RNA & Protein Isolation Kit\n(Invitrogen), номер каталога 4478545, для экстракции\nтотальной РНК и белка из экзосом предназначен для\nвыделения белков из одного обогащенного препарата\nэкзосом. Процедура экстракция белка TRAP1 из экзосом, полученных из клеточной линии глиомы T98G\nили HBA, была проведена согласно инструкции Total\nExosome RNA & Protein Isolation Kit (Invitrogen).\nАнализ жизнеспособности клеток\nПосев клеточной линии глиомы T98G подсчитывали через 2, 3 и 4 дня под инвертированным фазово-контрастным микроскопом. Для анализа\n3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид (МТТ)-теста в каждую лунку добавляли реагент МТТ в дозе 5 мг/мл (Roche Diagnostics, Шанхай,\nКитай) и дополнительно инкубировали в течение 2 ч\nпри 37 °C. Супернатант удаляли, и в лунки добавляли 200 мкл 0,1 % DMSO для растворения фиолетовых\nкристаллов формазана. Количественную оценку проводили путем измерения поглощения при 540 нм с помощью просвечивающей электронной микроскопии.\nРезультаты представлены как средние значения из трех\nнезависимых экспериментов, проведенных в трех повторах.\nАнализ гибели клеток с помощью\nаннексина V‑FITC/PI\nНабор для определения апоптоза клеток аннексин V-флуоресцеин-5-изотиоцианат (FITC) (5 мкл)\nи пропидий йодид (PI) (5 мкл) (KeyGen Biotech, Китай)\nбыл использован для измерения апоптоза клеточной\nлинии глиом T98G. Опухолевые клетки с плотностью\n3×10 5 клеток были высеяны на 6-луночные планшеты\nв течение 24 ч. Как плавающие, так и адгезивные клетки\nсобирали и дважды промывали холодным PBS. Затем\nклетки ресуспендировали в 500 мкл связывающего буфера и инкубировали с 5 мкл Annexin V-FITC и 5 мкл PI\nв течение 15 мин при комнатной температуре в темноте. Клетки анализировали с помощью проточной цитометрии (BD Biosciences, Сан-Хосе, Калифорния, США)\nи скорость апоптоза клеток анализировали с помощью\nпакета програмного обеспечения FLOWJO для анализа\nданных проточной цитометрии (v10; BD Biosciences).\nАТФ-мониторинг\nАТФ определяли с помощью набора ATP Bioluminescence\nAssay Kit HS II от компании Roshe в соответствии с инструкциями производителя и нормализовали уровень\nАТФ на микрограмм белка.\nВестерн-блот анализ\nДля проведения вестерн-блот анализа использовали\nследующие антитела: 1) β-актин (1:1000; Zhongshan,\nПекин, Китай); 2) первичное мышиное анти-TRAP1\n(1:1000; OriGene Technologies Inc., Роквилл, Мэриленд, США), антитело против гена предрасположенности к опухолям 101 (англ. tumor susceptibility\ngene 101, TSG101) [EPR7130 (B)] (1:1000); ab125011,\nAbcam), антитело против белка, взаимодействующее\nс ALG-2 (связанный с апоптозом ген 2) X (англ. ALG-2\n(apoptosis-linked gene 2)-interacting protein X, ALIX))\n[EPR23653–32] (1:1000; ab275377, Abcam), антитело\nпротив CD63 [EPR5702] (1:1000; ab134045, Abcam),\nмоноклональные антитела к гексокиназе I (C35C4)\nкролика (1:1000; #2024, Cell Signaling Technology), кроличьи mAb к гексокиназе II (C64G5) (1:1000; #2867, Cell\nSignaling Technology), PKM1 и PKM2 (C103A3) кроличьи mAb (1: 1000; #3190, Cell Signaling Technology),\nPKM2 (D78A4) Кроличьи mAb XP® (1:1000; # 4053S,\nCell Signaling Technology), кроличьи mAb LDHA\n(C4B5) (1:1000; #3582, Cell Signaling Technology), моноклональные антитела кролика фосфофруктокиназа,\nтромбоциты (англ. phosphofructokinase, platelet, PFKP)\n(D4B2) (1:1000; #8164, Cell Signaling Technology), кроличьи моноклональные антитела к пируватдегидрогеназе (C54G1) (1:1000; #3205, Cell Signaling Technology)\nи β-актин (1:1000; Zhongshan, Пекин, Китай). Количественную оценку полос вестерн-блот анализа проводили с использованием программного обеспечения\nOdyssey v1.2 (Gene Company Limited, Гонконг, Китай)\nпутем измерения интенсивности полосы для каждой\nгруппы и нормализации ее по β-актину в качестве внутреннего контроля.\nЛентивирусная трансдукция\nСтабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц (pGFPC-shLenti), содержащих гены, кодирующие короткую\nшпилечную РНК (кшРНК), нацеленные на TRAP1\n(#1: 5′-CGACATGAAACCGTCCATGTT-3′; #2:\n5′-AAACATGAGTTCCAGGCCGAG-3′) (GenePharma Co.,\nШанхай, Китай). Трансдукцию лентивирусных частиц\nпроводили с клетками в среде, содержащей 8 мкг/мл\nполибрена (Solarbio). Через 18 часов эффективность\nтрансдукции проверяли методом проточной цитометрии. Трансдуцированные клетки культивировали\nв среде, свободной от лентивирусных частиц, в течение\nеще 72 часов, а затем использовали 1 мкг/мл пуромицина (Solarbio) для отбора клонов со стабильной экспрессией кшРНК. Вестерн-блот использовали для подтверждения снижения экспрессии белка TRAP1.\nСтатистический анализ\nСтатистический анализ проводился с использованием программного обеспечения SPSS версии 22.0 и различных пакетов программного обеспечения R (версия v.3.6.1). Графики были построены с использованием\nпрограммного обеспечения GraphPad Prism версии 8.0.\nПри необходимости применяли t-критерий Стьюдента,\nANOVA, анализ хи-квадрат или критерий Манна —\nУитни. Вероятность p < 0,05 (*) или p < 0,001 (**) считалась статистически значимой.\nРЕЗУЛЬТАТЫ\nИзменение уровня экспрессии\nTRAP1 на уровне белка при глиобластоме\nЧтобы изучить взаимосвязь между экспрессией эндогенного (клеточного) TRAP1 и экзосомальным\nTRAP1 на уровне белка, мы использовали клеточную\nлинию глиомы T98G и HBA как негативный контроль\nс помощью вестерн-блот анализа. Стабильное снижение экспрессии TRAP1 осуществляли с помощью лентивирусных частиц, содержащих гены, кодирующие\nкшРНК, нацеленные на TRAP1 (кшРНК TRAP1). Экзосомы были очищены из супернатанта клеточной культуры T98G для наблюдения за морфологией с помощью\nтрансмиссионной электронной микроскопии. Кроме\nтого, вестерн-блот анализ был проведен для выявления экспрессии типичных поверхностных маркеров\nэкзосом (кластер дифференцировки 63 (CD63), ALIX\nи TSG101) и выявления экспрессии TRAP1 на уровне\nбелка. Результаты продемонстрировали, что в клеточной линии HBA (негативный контроль) TRAP1 имел\nумеренный уровень экспрессии, а экзосомы —\ncниженный уровень экспрессии TRAP1. Более того,\nприменение кшTRAP1 по отношению к клеточной линии T98G продемонстрировало снижение экспрессии\nTRAP1 в клетках. Кроме того, экзосомы, изолированные из клеточной линии T98G, также содержали низкий уровень экспрессии TRAP1 после трансфекции\nкшTRAP1 (рис. 1). Данные результаты показывают, что\nнормальные клетки HBA демонстрируют умеренный\nуровень экспрессии или его практическое отсутствие\nв выделяемых ими экзосомах. Тем не менее использование кшTRAP1 практически полностью инактивирует\nTRAP1 как в опухолевых клетках, так и в выделяемых\nими экзосомах. Это говорит о том, что TRAP1 сверхэкспрессирован.\nTRAP1 как потенциальный ключевой\nрегулятор метаболического\nперепрограммирования при глиобластоме\nЧтобы исследовать функцию экзосом с высокой экспрессией белка TRAP1, мы провели результаты\nвестерн-блот анализа для выбранных гликолитических ферментов. Экспрессия гексокиназы 1 (HK1/2),\nМ1/2 пируваткиназы (PKM1/2), лактатдегидрогеназы А\n(ЛДГА), фосфофруктокиназы тромбоцитов (PFKP)\nи пируватдегидрогеназы в пути гликолиза была обнаружена с помощью вестерн-блот анализа (рис. 2). Результаты показали, что высокая экспрессия TRAP1 способствует экспрессии этих гликолитических ферментов,\nтогда как снижение экспрессии TRAP1 с помощью\nкшРНК TRAP1 снижает их экспрессию. Обработка\nклеток экзосомами с высокой экспрессией TRAP1 повышала экспрессию этих гликолитических ферментов\n(рис. 2).\nСледовательно, высокая экспрессия TRAP1 способствует гликолизу. Чтобы выяснить, входит ли пируват\nв результате гликолиза непосредственно в цикл трикарбоновых кислот (ЦТК) или катализируется лактатдегидрогеназой с образованием молочной кислоты,\nмы измерили АТФ, вырабатываемый этими клетками\n(рис. 3).\nМы обнаружили, что высвобождение АТФ уменьшалось в клетках глиомы с высокой экспрессией\nTRAP1 и увеличивалось после снижения экспрессии\nTRAP1, а обработка клеток экзосомами с высокой\nэкспрессией TRAP1 также снижала высвобождение\nАТФ. Таким образом, TRAP1 усиливает пути гликолиза\nв клетках глиобластомы.\nИнгибирование TRAP1 и анализ\nжизнеспособности опухолевых клеток\nС помощью MTT-анализа мы провели оценку влияния\nэкспрессии эндогенного (клеточного) TRAP1 на жизнеспособность клеточной линии глиом T98G в течение\n12, 24, 36 и 48 часов. Было выяснено, что по сравнению\nс HBA (негативный контроль) трансфекция клеток\nT98G кшРНК TRAP1 привела к значительному снижению жизнеспособности опухолевых клеток в районе\n36 и 48 часов (рис. 4 А). Более того, понижение экспрессии TRAP1 в клетках T98G коррелировало с усилением\nапоптоза (рис. 4 Б). Мы считаем, что нарушение регуляции экспрессии TRAP1 является отличительной чертой\nглиобластомы, включая устойчивость опухолевых клеток к гибели и перепрогррамирование энергетического\nметаболизма. Это указывает на то, что возможно и эффективно регулировать развитие и прогрессирование\nглиобластомы путем ингибирования TRAP1.\nОБСУЖДЕНИЕ\nПолученные нами данные подтверждают ключевую\nроль белка TRAP1 в регуляции метаболических процессов и устойчивости клеток глиобластомы к индуцированному апоптозу. Во-первых, мы продемонстрировали, что в клеточной линии глиом T98G TRAP1 обладает\nвыраженной сверхэкспрессией по сравнению с HBA,\nчто согласуется с ранее опубликованными результатами, указывающими на тесную связь между высоким\nуровнем TRAP1 и агрессивным фенотипом опухоли\n[11, 12]. Во-вторых, обнаружение TRAP1 в составе экзосом, выделяемых T98G, указывает на возможную вовлеченность этого белка в межклеточную коммуникацию, которая, согласно ряду работ, играет решающую\nроль в метаболической перестройке опухолевых клеток\nи их взаимодействии со стромальными элементами\nмикроокружения [15–17].\nВысокий уровень TRAP1 в сочетании с повышенной\nэкспрессией гликолитических ферментов, таких как\nHK1/2, PKM1/2, LDHA и PFKP, и сниженным синтезом\nАТФ демонстрирует, что глиобластома активно переключается на аэробный гликолиз (эффект Варбурга),\nчто обеспечивает быстрый рост и пролиферацию,\nа также формирует условия для развития лекарственной устойчивости [5, 6, 13, 14]. При этом подавление\nэкспрессии TRAP1 методами генетического нокдауна\nприводило к снижению жизнеспособности опухолевых\nклеток и к возрастанию уровня апоптоза, что отражает\nвысокую зависимость глиобластомы от этого шаперона\nдля поддержания энергетического баланса и выживания [7, 11]. Данные результаты согласуются с утверждением, что TRAP1 способен регулировать митохондриальные функции и метаболические пути, влияя\nна баланс между окислительным фосфорилированием\nи гликолизом [8–10, 12].\nПрисутствие TRAP1 в экзосомах согласуется с современными представлениями о том, что ВВ активно вовлечены в формирование опухолевого микроокружения и могут транспортировать широкий спектр белков,\nмикроРНК и других сигнальных молекул [15, 16, 18].\nПодобный перенос биоматериала через экзосомы способен усиливать проопухолевые сигналы и способствовать инвазии, ангиогенезу и развитию резистентности\nклеток к терапии [17, 19]. Более того, ряд современных\nисследований подчеркивает растущую значимость экзосом в контексте таргетной терапии глиобластомы,\nвключая использование ингибиторов Hsp90-семействаи подавление передачи различных метаболических\nфакторов [20, 21].\nНаши данные свидетельствуют, что TRAP1 может быть\nодной из ключевых молекул в этих процессах, поскольку\nон непосредственно задействован в поддержании митохондриального гомеостаза и регуляции энергетического\nметаболизма [22–24]. Особо стоит отметить, что перекрестная регуляция TRAP1 и гликолитических ферментов не только формирует «быстрый» способ получения\nэнергии в условиях гипоксии, но и обеспечивает опухолевым клеткам дополнительные строительные блоки для\nсинтеза нуклеотидов, белков и липидов, необходимых\nдля их активного размножения [13, 14]. Это объясняет,\nпочему нарушение экспрессии TRAP1 может приводить\nк быстрому подавлению роста опухолевых клеток и усилению проапоптотических сигналов. С другой стороны,\nсверхэкспрессия TRAP1, вероятно, способствует поддержанию клеточного гомеостаза в условиях терапевтического воздействия, что может объяснять возникновение резистентности к химио- и лучевой терапии [11,\n25]. Современные работы подчеркивают, что модуляция\nактивности TRAP1 способна влиять на ряд сигнальных\nкаскадов, формирующих устойчивость опухоли и ее\nспособность к быстрому метаболическому переключению [26]. Наконец, учитывая, что одна из возможных\nстратегий борьбы с глиобластомой — это подавление\nметаболических путей опухоли, блокирование функции TRAP1 или снижение его уровня экспрессии может рассматриваться как потенциально перспективный\nподход к терапии [5, 23]. В ряде экспериментальных исследований показано, что ингибиторы Hsp90-семейства,\nа также вмешательства, влияющие на биогенез экзосом,\nспособны снижать опухолевую агрессивность и уменьшать риск метастазирования ряда опухолей [15, 16, 18,\n24]. С учетом полученных нами результатов воздействие\nна активность TRAP1 может сочетаться с существующими методами лечения, повышая их эффективность\nза счет нарушения метаболической адаптации и межклеточной коммуникации [27, 28].\nТаким образом, результаты данного исследования\nподтверждают информацию о центральной роли белка TRAP1 в метаболическом перепрограммировании\nи устойчивости клеток глиобластомы. Обнаруженный\nнами факт участия TRAP1 в составе экзосом указывает на дополнительные механизмы поддержания проопухолевого фенотипа, включающие межклеточный\nтранспорт шаперона и модуляцию микроокружения.\nУглубленное понимание этих процессов может способствовать разработке новых таргетных препаратов,\nнаправленных на подавление TRAP1 и блокировку\nключевых этапов межклеточной коммуникации в глиобластоме.\nЗАКЛЮЧЕНИЕ\nПроведенное исследование демонстрирует, что белок\nTRAP1 играет значимую роль в развитии и прогрессировании глиобластомы за счет регуляции метаболического перепрограммирования и поддержания\nвыживаемости опухолевых клеток. Сверхэкспрессия\nTRAP1 в клетках глиомы T98G сопровождается повышением уровня гликолитических ферментов, снижением синтеза АТФ и, как следствие, усилением «гликолитического» фенотипа. Подавление экспрессии\nTRAP1 с помощью кшРНК приводит к снижению выживаемости опухолевых клеток и активации апоптоза,\nчто подтверждает важность данной мишени для роста\nи сохранения метаболического статуса глиобластомы.\nДополнительно выявлено, что TRAP1 присутствует\nв экзосомах, что дает основания полагать, что экзосомальный TRAP1 вовлечен в межклеточную коммуникацию и может способствовать опухолевому метаболическому перепрограммированию в микроокружении.\nВ нашем исследовании есть некоторые ограничения.\nВ нашем будущем исследовании мы подтвердим эти\nрезультаты с помощью экспериментальных методов\nна животных моделях, других линиях клеток человека\nи тканях/жидкостях. Все полученные результаты указывают на потенциальную терапевтическую ценность\nингибирования TRAP1 как стратегии борьбы с глиобластомой, позволяющей существенно снизить ее агрессивность и повысить эффективность существующих\nметодов лечения. В дальнейшем изучение механизмов,\nпосредством которых экзосомальный TRAP1 влияет\nна клетки-реципиенты, а также разработка специфических ингибиторов TRAP1 могут открыть новые подходы к диагностике и терапии данного заболевания."],"dc.subject.ru":["глиобластома","TRAP1","метаболическое перепрограммирование","кшРНК","экзосомы","гликолиз","апоптоз"],"dc.title.ru":["Анализ и функциональная значимость белка TRAP1 при глиобластоме"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["19-27"],"dc.rights":["CC BY 4.0"],"dc.section":["ORIGINAL STUDIES","ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.section.en":["ORIGINAL STUDIES"],"dc.section.ru":["ОРИГИНАЛЬНЫЕ ИССЛЕДОВАНИЯ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"author_keyword":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"author_ac":["и. ф. гареев\n|||\nИ. Ф. Гареев","i. f. gareev\n|||\nI. F. Gareev","о. а. бейлерли\n|||\nО. А. Бейлерли","o.a. beylerli\n|||\nO.A. Beylerli","жанг хонгли\n|||\nЖанг Хонгли","zhang hongli\n|||\nZhang Hongli","с. а. румянцев\n|||\nС. А. Румянцев","s. a. roumiantsev\n|||\nS. A. Roumiantsev"],"author_filter":["и. ф. гареев\n|||\nИ. Ф. Гареев","i. f. gareev\n|||\nI. F. Gareev","о. а. бейлерли\n|||\nО. А. Бейлерли","o.a. beylerli\n|||\nO.A. Beylerli","жанг хонгли\n|||\nЖанг Хонгли","zhang hongli\n|||\nZhang Hongli","с. а. румянцев\n|||\nС. А. Румянцев","s. a. roumiantsev\n|||\nS. A. Roumiantsev"],"dc.author.name":["И. Ф. Гареев","I. F. Gareev","О. А. Бейлерли","O.A. Beylerli","Жанг Хонгли","Zhang Hongli","С. А. Румянцев","S. A. Roumiantsev"],"dc.author.name.ru":["И. Ф. Гареев","О. А. Бейлерли","Жанг Хонгли","С. А. Румянцев"],"dc.author.affiliation":["Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Central Research Laboratory, Bashkir State Medical University ; RUDN University","Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии","Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.affiliation.ru":["Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии"],"dc.author.full":["И. Ф. Гареев | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","I. F. Gareev | Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","О. А. Бейлерли | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","O.A. Beylerli | Central Research Laboratory, Bashkir State Medical University ; RUDN University","Жанг Хонгли | Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","Zhang Hongli | First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","С. А. Румянцев | Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии","S. A. Roumiantsev | Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.full.ru":["И. Ф. Гареев | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова","О. А. Бейлерли | Центральная научно-исследовательская лаборатория, Башкирский государственный медицинский университет ; Российский университет дружбы народов имени Патриса Лумумбы","Жанг Хонгли | Первый аффилированный госпиталь Харбинского медицинского университета ; Институт нейронаук провинции Хэйлунцзян","С. А. Румянцев | Российский национальный исследовательский медицинский университет имени Н.И. Пирогова ; Национальный медицинский исследовательский центр эндокринологии"],"dc.author.name.en":["I. F. Gareev","O.A. Beylerli","Zhang Hongli","S. A. Roumiantsev"],"dc.author.affiliation.en":["Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","Central Research Laboratory, Bashkir State Medical University ; RUDN University","First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.author.full.en":["I. F. Gareev | Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University","O.A. Beylerli | Central Research Laboratory, Bashkir State Medical University ; RUDN University","Zhang Hongli | First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute","S. A. Roumiantsev | Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0002-4965-0835\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440\\u0430\\u043b\\u044c\\u043d\\u0430\\u044f \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0430\\u044f \\u043b\\u0430\\u0431\\u043e\\u0440\\u0430\\u0442\\u043e\\u0440\\u0438\\u044f, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041d.\\u0418. \\u041f\\u0438\\u0440\\u043e\\u0433\\u043e\\u0432\\u0430\", \"full_name\": \"\\u0418. \\u0424. \\u0413\\u0430\\u0440\\u0435\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4965-0835\", \"affiliation\": \"Central Research Laboratory, Bashkir State Medical University ; Pirogov Russian National Research Medical University\", \"full_name\": \"I. F. Gareev\"}}, {\"ru\": {\"orcid\": \"0000-0002-6149-5460\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440\\u0430\\u043b\\u044c\\u043d\\u0430\\u044f \\u043d\\u0430\\u0443\\u0447\\u043d\\u043e-\\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0430\\u044f \\u043b\\u0430\\u0431\\u043e\\u0440\\u0430\\u0442\\u043e\\u0440\\u0438\\u044f, \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0434\\u0440\\u0443\\u0436\\u0431\\u044b \\u043d\\u0430\\u0440\\u043e\\u0434\\u043e\\u0432 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041f\\u0430\\u0442\\u0440\\u0438\\u0441\\u0430 \\u041b\\u0443\\u043c\\u0443\\u043c\\u0431\\u044b\", \"full_name\": \"\\u041e. \\u0410. \\u0411\\u0435\\u0439\\u043b\\u0435\\u0440\\u043b\\u0438\"}, \"en\": {\"orcid\": \"0000-0002-6149-5460\", \"affiliation\": \"Central Research Laboratory, Bashkir State Medical University ; RUDN University\", \"full_name\": \"O.A. Beylerli\"}}, {\"ru\": {\"orcid\": \"0009-0001-4036-519X\", \"affiliation\": \"\\u041f\\u0435\\u0440\\u0432\\u044b\\u0439 \\u0430\\u0444\\u0444\\u0438\\u043b\\u0438\\u0440\\u043e\\u0432\\u0430\\u043d\\u043d\\u044b\\u0439 \\u0433\\u043e\\u0441\\u043f\\u0438\\u0442\\u0430\\u043b\\u044c \\u0425\\u0430\\u0440\\u0431\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\\u0430 ; \\u0418\\u043d\\u0441\\u0442\\u0438\\u0442\\u0443\\u0442 \\u043d\\u0435\\u0439\\u0440\\u043e\\u043d\\u0430\\u0443\\u043a \\u043f\\u0440\\u043e\\u0432\\u0438\\u043d\\u0446\\u0438\\u0438 \\u0425\\u044d\\u0439\\u043b\\u0443\\u043d\\u0446\\u0437\\u044f\\u043d\", \"full_name\": \"\\u0416\\u0430\\u043d\\u0433 \\u0425\\u043e\\u043d\\u0433\\u043b\\u0438\"}, \"en\": {\"orcid\": \"0009-0001-4036-519X\", \"affiliation\": \"First Affiliated Hospital of Harbin Medical University ; Heilongjiang Province Neuroscience Institute\", \"full_name\": \"Zhang Hongli\"}}, {\"ru\": {\"orcid\": \"0000-0002-7418-0222\", \"affiliation\": \"\\u0420\\u043e\\u0441\\u0441\\u0438\\u0439\\u0441\\u043a\\u0438\\u0439 \\u043d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u041d.\\u0418. \\u041f\\u0438\\u0440\\u043e\\u0433\\u043e\\u0432\\u0430 ; \\u041d\\u0430\\u0446\\u0438\\u043e\\u043d\\u0430\\u043b\\u044c\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0438\\u0441\\u0441\\u043b\\u0435\\u0434\\u043e\\u0432\\u0430\\u0442\\u0435\\u043b\\u044c\\u0441\\u043a\\u0438\\u0439 \\u0446\\u0435\\u043d\\u0442\\u0440 \\u044d\\u043d\\u0434\\u043e\\u043a\\u0440\\u0438\\u043d\\u043e\\u043b\\u043e\\u0433\\u0438\\u0438\", \"full_name\": \"\\u0421. \\u0410. \\u0420\\u0443\\u043c\\u044f\\u043d\\u0446\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-7418-0222\", \"affiliation\": \"Pirogov Russian National Research Medical University ; National Medical Endocrinology Research Centre\", \"full_name\": \"S. A. Roumiantsev\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1084"],"dc.citation":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2","Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.citation.ru":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.citation.en":["Bush N.A., Chang S.M., Berger M.S. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):1–14. DOI: 10.1007/s10143-016-0709-8","Lim M., Xia Y., Bettegowda C., Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42. DOI: 10.1038/s41571-018-0003-5","Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R., et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. DOI: 10.1016/j.cell.2013.09.034","Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299–312. DOI: 10.3322/caac.21613","Yilmaz S., Cizmecioglu O. PI3K signaling at the crossroads of lipid metabolism and cancer. Adv Exp Med Biol. 2025;1479:139–64. DOI: 10.1007/5584_2024_832","Chinopoulos C. Mitochondrial consumption of cytosolic ATP: not so fast. FEBS Lett. 2011;585(9):1255–9. DOI: 10.1016/j.febslet.2011.04.004","Wang S.F., Tseng L.M., Lee H.C. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci. 2023;30(1):61. DOI: 10.1186/s12929-023-00956-w","Altieri D.C. Survivin and IAP proteins in cell-death mechanisms. Biochem J. 2010;430(2):199–205. DOI: 10.1042/BJ20100814","Hoter A., El-Sabban M.E., Naim H.Y. The HSP90 Family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19(9):2560. DOI: 10.3390/ijms19092560","Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion. 2020;50:42– 50. DOI: 10.1016/j.mito.2019.09.011.","Chae Y.C., Angelin A., Lisanti S., Kossenkov A.V., Speicher K.D., Wang H., et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139. DOI: 10.1038/ncomms3139","Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a modulator of the mitochondrial adaptations in cancer cells. Front Oncol. 2017;7:58. DOI: 10.3389/fonc.2017.00058","Matassa D.S., Agliarulo I., Avolio R., Landriscina M., Esposito F. TRAP1 Regulation of cancer metabolism: dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4):195 DOI: 10.3390/genes9040195","Wengert L.A., Backe S.J., Bourboulia D., Mollapour M., Woodford M.R. TRAP1 chaperones the metabolic switch in cancer. Biomolecules. 2022;12(6):786. DOI: 10.3390/biom12060786","Kalluri R., McAndrews K.M. The role of extracellular vesicles in cancer. Cell. 2023;186(8):1610–26. DOI: 10.1016/j.cell.2023.03.010","Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. DOI: 10.1016/j.smim.2017.12.003","Akers J.C., Gonda D., Kim R., Carter B.S., Chen C.C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1–11. DOI: 10.1007/s11060-013-1084-8","Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. DOI: 10.1126/science.aau6977","Fridman E.S., Ginini L., Gil Z. The role of extracellular vesicles in metabolic reprogramming of the tumor microenvironment. Cells. 2022;11(9):1433. DOI: 10.3390/cells11091433","Yang E., Wang X., Gong Z., Yu M., Wu H., Zhang D. Exosomemediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5(1):242. DOI: 10.1038/s41392-020-00359-5","van Ommeren R., Staudt M.D., Xu H., Hebb M.O. Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol. 2016;127(2):209–19. DOI: 10.1007/s11060-016-2070-8","Li X., Jing Z., Li X., Liu L., Xiao X., Zhong Y., et al. The role of exosomes in cancer-related programmed cell death. Immunol Rev. 2024;321(1):169–80. DOI: 10.1111/imr.13286","Matassa D.S., Amoroso M.R., Lu H., Avolio R., Arzeni D., Procaccini C., et al. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ. 2016;23(9):1542–54. DOI: 10.1038/cdd.2016.39","Chen S., Cao G., Wu W., Lu Y., He X., Yang L., et al. Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients. Biosci Rep. 2020;40(8):BSR20201427. DOI: 10.1042/BSR20201427","Jhaveri K., Modi S. HSP90 inhibitors for cancer therapy and overcoming drug resistance. Adv Pharmacol. 2012;65:471–517. DOI: 10.1016/B978-0-12-397927-8.00015-4","Karami Fath M., Azami J., Masoudi A., Mosaddeghi Heris R., Rahmani E., Alavi F., et al. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int. 2022;22(1):262. DOI: 10.1186/s12935-022-02642-7","Porporato P.E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28(3):265–80. DOI: 10.1038/cr.2017.155","Indira Chandran V., Gopala S., Venkat E.H., Kjolby M., Nejsum P. Extracellular vesicles in glioblastoma: a challenge and an opportunity. NPJ Precis Oncol. 2024;8(1):103. DOI: 10.1038/s41698-024-00600-2"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8923"],"dc.date.accessioned_dt":"2025-07-09T13:58:57Z","dc.date.accessioned":["2025-07-09T13:58:57Z"],"dc.date.available":["2025-07-09T13:58:57Z"],"publication_grp":["123456789/8923"],"bi_4_dis_filter":["exosomes\n|||\nexosomes","гликолиз\n|||\nгликолиз","глиобластома\n|||\nглиобластома","кшрнк\n|||\nкшРНК","апоптоз\n|||\nапоптоз","apoptosis\n|||\napoptosis","trap1\n|||\nTRAP1","экзосомы\n|||\nэкзосомы","shrna\n|||\nshRNA","метаболическое перепрограммирование\n|||\nметаболическое перепрограммирование","glioblastoma\n|||\nglioblastoma","metabolic reprogramming\n|||\nmetabolic reprogramming","glycolysis\n|||\nglycolysis"],"bi_4_dis_partial":["TRAP1","glycolysis","экзосомы","apoptosis","апоптоз","гликолиз","glioblastoma","shRNA","exosomes","глиобластома","metabolic reprogramming","кшРНК","метаболическое перепрограммирование"],"bi_4_dis_value_filter":["TRAP1","glycolysis","экзосомы","apoptosis","апоптоз","гликолиз","glioblastoma","shRNA","exosomes","глиобластома","metabolic reprogramming","кшРНК","метаболическое перепрограммирование"],"bi_sort_1_sort":"analysis and functional significance of trap1 in glioblastoma","bi_sort_3_sort":"2025-07-09T13:58:57Z","read":["g0"],"_version_":1837178068080263168},{"SolrIndexer.lastIndexed":"2025-04-23T07:42:51.756Z","search.uniqueid":"2-7883","search.resourcetype":2,"search.resourceid":7883,"handle":"123456789/8773","location":["m229","l684"],"location.comm":["229"],"location.coll":["684"],"withdrawn":"false","discoverable":"true","author":["Mustafin, Rustam Nailevich"],"author_keyword":["Mustafin, Rustam Nailevich"],"author_ac":["mustafin, rustam nailevich\n|||\nMustafin, Rustam Nailevich"],"author_filter":["mustafin, rustam nailevich\n|||\nMustafin, Rustam Nailevich"],"dc.contributor.author_hl":["Mustafin, Rustam Nailevich"],"dc.contributor.author_mlt":["Mustafin, Rustam Nailevich"],"dc.contributor.author":["Mustafin, Rustam Nailevich"],"dc.contributor.author_stored":["Mustafin, Rustam Nailevich\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen"],"dc.contributor.author.en":["Mustafin, Rustam Nailevich"],"dc.date.accessioned_dt":"2025-04-23T07:41:34Z","dc.date.accessioned":["2025-04-23T07:41:34Z"],"dc.date.accessioned.en":["2025-04-23T07:41:34Z"],"dc.date.available":["2025-04-23T07:41:34Z"],"dateIssued":["2025-01-01"],"dateIssued_keyword":["2025-01-01","2025"],"dateIssued_ac":["2025-01-01\n|||\n2025-01-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.issued_dt":"2025-01-01T00:00:00Z","dc.date.issued":["2025-01-01"],"dc.date.issued_stored":["2025-01-01\n|||\nnull\n|||\nnull\n|||\nnull\n|||\n"],"dc.description.abstract_hl":["Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887). © 2025 The Author(s)."],"dc.description.abstract":["Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887). © 2025 The Author(s)."],"dc.description.abstract.en":["Frontotemporal dementia (FTD) develops in proteinopathies involving TDP-43 (transactive response DNA-binding protein 43 kDa), tau, and FUS (fused in sarcoma) proteins, which possess antiviral properties and exert inhibitory effects on human transposable elements. Viruses and aging have been suggested to trigger FTD by activating specific retroelements. FTD is associated with multiple single nucleotide polymorphisms (SNPs), most located in intergenic and regulatory regions where many transposable element genes are found. Therefore, genetic predisposition to FTD may influence the interaction between retroelements and the TDP-43, tau, and FUS proteins, causing pathological conformation changes and aggregate formation. Subsequently, these aggregates lose their ability to inhibit retroelements, leading to the activation of transposable elements. This creates a harmful negative feedback loop in which TDP-43, tau, and FUS protein expressions are further enhanced by retroelement transcripts and proteins, resulting in protein aggregate accumulation and pathological disease progression. Hence, epigenetic inhibition of pathologically activated retroelements using micro-ribonucleic acids (microRNAs) derived from transposable elements has been proposed as a potential treatment for FTD. Finally, a review of the current scientific literature identified 13 appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p, -708-3p, -887). © 2025 The Author(s)."],"dc.doi":["10.31083/FBS25922"],"dc.identifier.issn":["1945-0516"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8773"],"dc.language.iso":["en"],"dc.language.iso.en":["en"],"dc.publisher":["IMR Press Limited"],"dc.publisher.en":["IMR Press Limited"],"dc.relation.ispartofseries":["Frontiers in Bioscience - Scholar;v. 17 № 1"],"dc.relation.ispartofseries.en":["Frontiers in Bioscience - Scholar;v. 17 № 1"],"subject":["aging","antiviral proteins","frontotemporal dementia (FTD)","microRNA","retroelements","viruses","Scopus"],"subject_keyword":["aging","aging","antiviral proteins","antiviral proteins","frontotemporal dementia (FTD)","frontotemporal dementia (FTD)","microRNA","microRNA","retroelements","retroelements","viruses","viruses","Scopus","Scopus"],"subject_ac":["aging\n|||\naging","antiviral proteins\n|||\nantiviral proteins","frontotemporal dementia (ftd)\n|||\nfrontotemporal dementia (FTD)","microrna\n|||\nmicroRNA","retroelements\n|||\nretroelements","viruses\n|||\nviruses","scopus\n|||\nScopus"],"subject_tax_0_filter":["aging\n|||\naging","antiviral proteins\n|||\nantiviral proteins","frontotemporal dementia (ftd)\n|||\nfrontotemporal dementia (FTD)","microrna\n|||\nmicroRNA","retroelements\n|||\nretroelements","viruses\n|||\nviruses","scopus\n|||\nScopus"],"subject_filter":["aging\n|||\naging","antiviral proteins\n|||\nantiviral proteins","frontotemporal dementia (ftd)\n|||\nfrontotemporal dementia (FTD)","microrna\n|||\nmicroRNA","retroelements\n|||\nretroelements","viruses\n|||\nviruses","scopus\n|||\nScopus"],"dc.subject_mlt":["aging","antiviral proteins","frontotemporal dementia (FTD)","microRNA","retroelements","viruses","Scopus"],"dc.subject":["aging","antiviral proteins","frontotemporal dementia (FTD)","microRNA","retroelements","viruses","Scopus"],"dc.subject.en":["aging","antiviral proteins","frontotemporal dementia (FTD)","microRNA","retroelements","viruses","Scopus"],"title":["Role of Retroelements in Frontotemporal Dementia Development"],"title_keyword":["Role of Retroelements in Frontotemporal Dementia Development"],"title_ac":["role of retroelements in frontotemporal dementia development\n|||\nRole of Retroelements in Frontotemporal Dementia Development"],"dc.title_sort":"Role of Retroelements in Frontotemporal Dementia Development","dc.title_hl":["Role of Retroelements in Frontotemporal Dementia Development"],"dc.title_mlt":["Role of Retroelements in Frontotemporal Dementia Development"],"dc.title":["Role of Retroelements in Frontotemporal Dementia Development"],"dc.title_stored":["Role of Retroelements in Frontotemporal Dementia Development\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen"],"dc.title.en":["Role of Retroelements in Frontotemporal Dementia Development"],"dc.title.alternative":["Role of Retroelements in Frontotemporal Dementia Development"],"dc.title.alternative.en":["Role of Retroelements in Frontotemporal Dementia Development"],"dc.type":["Article"],"dc.type.en":["Article"],"publication_grp":["123456789/8773"],"bi_2_dis_filter":["mustafin, rustam nailevich\n|||\nMustafin, Rustam Nailevich"],"bi_2_dis_partial":["Mustafin, Rustam Nailevich"],"bi_2_dis_value_filter":["Mustafin, Rustam Nailevich"],"bi_4_dis_filter":["frontotemporal dementia (ftd)\n|||\nfrontotemporal dementia (FTD)","retroelements\n|||\nretroelements","antiviral proteins\n|||\nantiviral proteins","aging\n|||\naging","microrna\n|||\nmicroRNA","scopus\n|||\nScopus","viruses\n|||\nviruses"],"bi_4_dis_partial":["viruses","retroelements","Scopus","frontotemporal dementia (FTD)","microRNA","aging","antiviral proteins"],"bi_4_dis_value_filter":["viruses","retroelements","Scopus","frontotemporal dementia (FTD)","microRNA","aging","antiviral proteins"],"bi_sort_1_sort":"role of retroelements in frontotemporal dementia development","bi_sort_2_sort":"2025","bi_sort_3_sort":"2025-04-23T07:41:34Z","read":["g0"],"_version_":1830178439054753792}]},"facet_counts":{"facet_queries":{},"facet_fields":{},"facet_dates":{},"facet_ranges":{},"facet_intervals":{}},"highlighting":{"2-8032":{"dc.fullRISC.ru":[" варьировал от 23 до 78 лет и в среднем составил 53,2 ±\n6,9 года. Возраст пациентов женского пола варьировал"],"dc.citation.en":["Rasslan R., de Oliveira Ferreira F., Parra J.A.P., da Costa Ferreira Novo F., Menegozzo C"],"dc.abstract.ru":["<p>Введение. Перитонит является одним из наиболее часто встречающихся тяжелых"],"dc.fullRISC":[" варьировал от 23 до 78 лет и в среднем составил 53,2 ±\n6,9 года. Возраст пациентов женского пола варьировал"],"dc.citation.ru":["Rasslan R., de Oliveira Ferreira F., Parra J.A.P., da Costa Ferreira Novo F., Menegozzo C"],"dc.abstract.en":["<p>Introduction. Diffuse purulent peritonitis is considered a prevalent and severe"],"dc.citation":["Rasslan R., de Oliveira Ferreira F., Parra J.A.P., da Costa Ferreira Novo F., Menegozzo C"],"dc.abstract":["<p>Introduction. Diffuse purulent peritonitis is considered a prevalent and severe"]},"2-8021":{"dc.fullHTML":["

ВВЕДЕНИЕ

<p>В 2022 г. в мире рак ободочной и прямой кишок был впервые выявлен более чем у 1"],"dc.fullRISC.ru":[" шансов (ОШ) при многофакторном анализе 1,84, p = 0,07) и является неблагоприятным фактором в отношении"],"dc.citation.en":["Tonino R.P.B, Wilson M., Zwaginga J.J., Schipperus M.R. Prevalence of iron deficiency and red blood"],"dc.abstract.ru":["<p>Введение. Частота развития анемии при колоректальном раке достигает 30–67 % в"],"dc.fullHTML.ru":["

ВВЕДЕНИЕ

<p>В 2022 г. в мире рак ободочной и прямой кишок был впервые выявлен более чем у 1"],"dc.fullRISC":[" шансов (ОШ) при многофакторном анализе 1,84, p = 0,07) и является неблагоприятным фактором в отношении"],"dc.citation.ru":["Tonino R.P.B, Wilson M., Zwaginga J.J., Schipperus M.R. Prevalence of iron deficiency and red blood"],"dc.abstract.en":["<p>Introduction. The incidence of anemia in colorectal cancer patients reaches 30"],"dc.citation":["Tonino R.P.B, Wilson M., Zwaginga J.J., Schipperus M.R. Prevalence of iron deficiency and red blood"],"dc.abstract":["<p>Introduction. The incidence of anemia in colorectal cancer patients reaches 30"]},"2-7806":{"dc.contributor.author_hl":["Zadrozniak, P."],"dc.contributor.author":["Zadrozniak, P."],"bi_2_dis_partial":["Meyre, P.B."],"dc.contributor.author.en":["Zadrozniak, P."],"author":["Zadrozniak, P."],"dc.contributor.author_mlt":["Zadrozniak, P."]},"2-8024":{"dc.fullHTML":["

ВВЕДЕНИЕ

<p>История хирургических вмешательств на печени насчитывает не одно десятилетие"],"dc.fullRISC.ru":["-критерия Манна — Уитни. При обработке статистических данных уровень значимости считался достоверным при p < 0"],"dc.abstract.ru":["<p>Введение. Билиарные осложнения являются серьезными и жизнеугрожающими"],"dc.fullHTML.ru":["

ВВЕДЕНИЕ

<p>История хирургических вмешательств на печени насчитывает не одно десятилетие"],"dc.fullRISC":["-критерия Манна — Уитни. При обработке статистических данных уровень значимости считался достоверным при p < 0"],"dc.abstract.en":["<p>Introduction. Biliary complications are serious and life"],"dc.abstract":["<p>Introduction. Biliary complications are serious and life"]},"2-8037":{"dc.pages":["53-63"],"dc.fullRISC.ru":[" относительно простой, однако имеет существенные недостатки. По данным K.P White et\nal., при применении данного"],"dc.citation.en":["Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence"],"dc.abstract.ru":["<p>В России рак молочной железы является наиболее распространенной онкологической патологией среди"],"dc.fullRISC":[" относительно простой, однако имеет существенные недостатки. По данным K.P White et\nal., при применении данного"],"dc.citation.ru":["Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence"],"dc.doi":["10.24060/2076-3093-2025-15-2-53-63"],"dc.abstract.en":["<p>In Russia, breast cancer is the most prevalent oncological pathology among female patients"],"dc.citation":["Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence"],"dc.abstract":["<p>In Russia, breast cancer is the most prevalent oncological pathology among female patients"]},"2-8038":{"dc.fullRISC.ru":[" специалистов рекомендуют проводить ЧББЛ под рентгеноскопическим контролем. Исследование P. G. Simpson\nи коллег"],"dc.citation.en":["Archer J.M., Mendoza D.P., Hung Y.P., Lanuti M., Digumarthy S.R. Surgical resection of benign"],"dc.abstract.ru":["<p>В статье проанализированы 63 научные работы, посвященные диагностике периферических образований"],"dc.fullRISC":[" специалистов рекомендуют проводить ЧББЛ под рентгеноскопическим контролем. Исследование P. G. Simpson\nи коллег"],"dc.citation.ru":["Archer J.M., Mendoza D.P., Hung Y.P., Lanuti M., Digumarthy S.R. Surgical resection of benign"],"dc.abstract.en":["<p>This article analyzes 63 scientific works dedicated to the diagnosis of peripheral lung lesions"],"dc.citation":["Archer J.M., Mendoza D.P., Hung Y.P., Lanuti M., Digumarthy S.R. Surgical resection of benign"],"dc.abstract":["<p>This article analyzes 63 scientific works dedicated to the diagnosis of peripheral lung lesions"]},"2-8043":{"dc.fullRISC.ru":[" год. Средний возраст — 53 года, а соотношение мужского и женского пола составило 93:13.\nОсновными"],"dc.citation.en":["Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review"],"dc.abstract.ru":["<p>Введение. Множественный симметричный липоматоз (болезнь Маделунга) является"],"dc.fullRISC":[" год. Средний возраст — 53 года, а соотношение мужского и женского пола составило 93:13.\nОсновными"],"dc.citation.ru":["Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review"],"dc.abstract.en":["<p>Introduction. Diffuse symmetric lipomatosis (Madelung’s disease) is a rare"],"dc.citation":["Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review"],"dc.abstract":["<p>Introduction. Diffuse symmetric lipomatosis (Madelung’s disease) is a rare"]},"2-8041":{"dc.fullRISC.ru":[", по данным мировой литературы\nПКРК чаще всего развивается в промежуток 53–57 лет\n[14]. Среднее время"],"dc.citation.en":["Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer"],"dc.abstract.ru":["<p>Введение. Плоскоклеточный рак кожи (ПКРК) — второй по распространенности рак"],"dc.fullRISC":[", по данным мировой литературы\nПКРК чаще всего развивается в промежуток 53–57 лет\n[14]. Среднее время"],"dc.citation.ru":["Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer"],"dc.abstract.en":["<p>Introduction. Squamous cell carcinoma (SCC) is the second most prevalent form"],"dc.citation":["Abdi M.A., Yan M., Hanna T.P. Systematic review of modern case series of squamous cell cancer"],"dc.abstract":["<p>Introduction. Squamous cell carcinoma (SCC) is the second most prevalent form"]},"2-8034":{"dc.fullRISC.ru":[" программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация"],"dc.citation.en":["Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP"],"dc.abstract.ru":["<p>Введение. Глиобластома характеризуется высоким уровнем агрессивности и сложными"],"dc.fullRISC":[" программного обеспечения\n«ImageJ версии 1.53.e».\nИзоляция экзосом из клеток\nи их идентификация"],"dc.citation.ru":["Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP"],"dc.abstract.en":["<p>Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms"],"dc.citation":["Ramkumar B., Dharaskar S.P., Mounika G., Paithankar K., Sreedhar A.S. Mitochondrial chaperone, TRAP"],"dc.abstract":["<p>Introduction. Glioblastoma exhibits high aggressiveness and complex mechanisms"]},"2-7883":{"dc.description.abstract":[" appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p"],"dc.description.abstract.en":[" appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p"],"dc.description.abstract_hl":[" appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p"]}}} -->

По вашему запросу найдено документов: 53

Страница 2 из 6

Распространенный гнойный перитонит: современные возможности лечения
М. Р. Гараев, M. R. Garaev, М. А. Нартайлаков, M. A. Nartailakov, В. Д. Дорофеев, V. D. Dorofeev (Креативная хирургия и онкология, №2, 2025)

Карбоксимальтозат железа в лечении анемии при местно-распространенном раке толстой кишки


Профилактика билиарных осложнений после обширных резекций печени: опыт одного центра

Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления

Дифференциальная диагностика периферического образования легкого: обзор возможностей и ограничений современных методов

G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" [21]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [22]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [23]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [24]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [25]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [26]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [27]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [28]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [29]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [30]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [31]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [32]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [33]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [34]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [35]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [36]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [37]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [38]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [39]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [40]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [41]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.ru"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.en"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.identifier.uri"]=> array(1) { [0]=> string(36) "http://hdl.handle.net/123456789/8932" } ["dc.date.accessioned_dt"]=> string(20) "2025-07-09T13:59:02Z" ["dc.date.accessioned"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["dc.date.available"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["publication_grp"]=> array(1) { [0]=> string(14) "123456789/8932" } ["bi_4_dis_filter"]=> array(10) { [0]=> string(45) "madelung’s disease ||| Madelung’s disease" [1]=> string(23) "lipectomy ||| lipectomy" [2]=> string(133) "диффузный симметричный липоматоз ||| диффузный симметричный липоматоз" [3]=> string(79) "шеи новообразования ||| шеи новообразования" [4]=> string(45) "липэктомия ||| липэктомия" [5]=> string(63) "diffuse symmetric lipomatosis ||| diffuse symmetric lipomatosis" [6]=> string(61) "adipose tissue proliferation ||| adipose tissue proliferation" [7]=> string(103) "жировой ткани разрастание ||| жировой ткани разрастание" [8]=> string(71) "болезнь маделунга ||| болезнь Маделунга" [9]=> string(33) "neck neoplasms ||| neck neoplasms" } ["bi_4_dis_partial"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_4_dis_value_filter"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_sort_1_sort"]=> string(99) "systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case" ["bi_sort_3_sort"]=> string(20) "2025-07-09T13:59:02Z" ["read"]=> array(1) { [0]=> string(2) "g0" } ["_version_"]=> int(1837178072511545344) } -->
Системный доброкачественный липоматоз (болезнь Маделунга): опыт хирургического лечения (клинический случай)

Распространенный плоскоклеточный рак кожи, возникший на фоне обширного послеожогового рубца (клинический случай)

Анализ и функциональная значимость белка TRAP1 при глиобластоме

appropriate microRNAs (miR-1246, -181c, -330, -345-5p, -361, -548a-3p, -548b-5p, -548c-5p, -571, -588, -659-3p

Страница 2 из 6