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Artificial intelligence for direct-to-physician 
reporting of ambulatory electrocardiography
 

Developments in ambulatory electrocardiogram (ECG) technology have 
led to vast amounts of ECG data that currently need to be interpreted by 
human technicians. Here we tested an artificial intelligence (AI) algorithm 
for direct-to-physician reporting of ambulatory ECGs. Beat-by-beat 
annotation of 14,606 individual ambulatory ECG recordings (mean 
duration = 14 ± 10 days) was performed by certified ECG technicians 
(n = 167) and an ensemble AI model, called DeepRhythmAI. To compare the 
performance of the AI model and the technicians, a random sample of 5,235 
rhythm events identified by the AI model or by technicians, of which 2,236 
events were identified as critical arrhythmias, was selected for annotation by 
one of 17 cardiologist consensus panels. The mean sensitivity of the AI model 
for the identification of critical arrhythmias was 98.6% (95% confidence 
interval (CI) = 97.7–99.4), as compared to 80.3% (95% CI = 77.3–83.3%) for the 
technicians. False-negative findings were observed in 3.2/1,000 patients for 
the AI model versus 44.3/1,000 patients for the technicians. Accordingly, the 
relative risk of a missed diagnosis was 14.1 (95% CI = 10.4–19.0) times higher 
for the technicians. However, a higher false-positive event rate was observed 
for the AI model (12 (interquartile range (IQR) = 6–74)/1,000 patient days)  
as compared to the technicians (5 (IQR = 2–153)/1,000 patient days).  
We conclude that the DeepRhythmAI model has excellent negative 
predictive value for critical arrhythmias, substantially reducing 
false-negative findings, but at a modest cost of increased false-positive 
findings. AI-only analysis to facilitate direct-to-physician reporting could 
potentially reduce costs and improve access to care and outcomes in 
patients who need ambulatory ECG monitoring.

In recent years, there have been rapid developments in ambulatory 
electrocardiogram (ECG) technology that enable markedly increased 
use of ambulatory ECG monitoring. At the same time, the importance 
of detecting brief, infrequent arrhythmias, particularly atrial fibrilla-
tion (AF), has been recognized1,2. Longer ECG recording duration and 
frequency lead to higher detection rates of arrhythmia3–6, and extended 
ECG monitoring is recommended for patients with syncope7,8 and indi-
viduals in whom screening for AF to prevent new-onset or recurrent 
stroke could be beneficial9. The number of patients that may benefit 
from rhythm monitoring is also growing, particularly with evidence that 

short-duration subclinical AF10 may benefit from anticoagulation1,11. 
With the increasing availability of lower-cost devices, longer-term 
monitoring capabilities and the emergence of direct-to-consumer 
devices that provide irregular pulse notifications and record single-lead 
ECG intermittently, there has come a deluge of heart rhythm moni-
toring data that requires analysis12,13. Given the worldwide shortages 
of healthcare workers14, this increased workload may overburden 
human ECG technician resources, possibly reducing the quality of 
heart rhythm annotations15–18, leading to misdiagnosis, delayed treat-
ment and adverse patient outcomes.
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sinus arrest/asystole events lasting ≥3.5 s, third-degree AV block of 
any duration and ≥10 s of ventricular tachycardia (VT) ≥ 120 beats per 
minute. The AI model analysis had 3.2 false negatives per 1,000 patients, 
compared to 44.3 per 1,000 for technicians (Fig. 1), resulting in a relative 
risk (RR) of a false-negative finding of critical arrhythmias of 14.1 (95% 
CI = 10.4–19.0) for technician analysis compared to DeepRhythmAI 
model analysis. Extended Data Table 2 reports these results for indi-
vidual arrhythmias. The lower false-negative rate with the AI model was 
observed in both males and females (Extended Data Fig. 2). In a sensi-
tivity analysis where misclassifications between critical arrhythmias 
were not considered AI or technician false negatives, we saw largely 
unchanged results—2.3 false-negative findings per 1,000 patients using 
the AI model and 39.4 per 1,000 patients for technicians (RR = 16.9 
(95% CI = 12.0–23.9); Extended Data Fig. 3). This RR for false-negative 
findings over the full recording increased with increasing monitor-
ing duration (RR = 7.8 (95% CI = 3.1–19.8) for 1–2 days of monitoring, 
RR = 9.1 (95% CI = 3.9–21.1) for 3–7 days of monitoring and RR = 17.9 
(95% CI = 11.9–26.9) for ≥8 days of monitoring). Overall, the negative 
predictive value for critical arrhythmias was 99.9% (95% CI = 99.9–100%) 
for the AI model compared to 99.1% (95% CI = 98.9–99.2) for techni-
cians, and the AI model had superior negative predictive values for all 
individual critical arrhythmia classes (Table 1). The AI model detec-
tion rates of true-positive VTs, SVTs, asystoles and third-degree AV 
blocks were substantially higher than the technicians, and the AI model 
detected numerically more AF events (Fig. 2). Episode durations for 
false-negative events are reported in the Extended Data Table 3.

DeepRhythmAI model analysis resulted in more false-positive 
findings of asystoles, third-degree AV block and ≥10 s VT (Fig. 3). In sen-
sitivity analyses when misclassifications between critical arrhythmias 
were not considered false positives, the total false-positive event rate 
over the full recordings was 6.3% for the AI model and 2.3% for techni-
cians (Extended Data Fig. 4), corresponding to 12 (interquartile range 
(IQR) = 6–74) false-positive events per 1,000 patient days of recording 
for AI and 5 (IQR = 2–153) per 1,000 patient days of recording for techni-
cians. Panel classifications of patients for whom strips were extracted 
are reported in Fig. 4. The duration of false-positive detections by the 
AI model and technicians is reported in Extended Data Table 3.

Full confusion matrix statistics for individual critical arrhythmias 
for both the AI model and technicians compared to panel annotations 
are reported in Table 1. DeepRhythmAI model analysis was superior 
in terms of sensitivity but had lower specificity for ≥10 s VT, asystole 
and third-degree AV block. The AI model analysis had similar positive 
predictive value to technicians for AF and sustained SVTs but lower 

While it has widely been predicted that artificial intelligence (AI) 
will replace humans in some areas19, the nearest examples in health-
care are in mammography, where AI can replace a second physician 
reader for mammograms20–23, and in pathology, where AI tools improve 
pathologist accuracy and efficiency24,25. Implementation of an AI 
model that uses ECGs to alert physicians to high-risk hospitalized 
patients was recently shown to reduce mortality26, and several machine 
learning-based models that use ECG data to predict arrhythmia have 
been developed27,28. AI holds considerable promise for arrhythmia 
diagnostics as it can rapidly analyze a large amount of data at low cost, 
provide consistent annotations without risk of mental fatigue and 
provide results in near real time29. Previous studies indicate that AI algo-
rithms can be trained to detect and accurately classify arrhythmias on 
resting ECG and ambulatory ECG recordings30,31, but no study has evalu-
ated the role of AI in performing scanning and technical annotation of 
ambulatory ECG and providing results that can then be forwarded for 
physicians to review. Because AI-only reporting would mean that large 
amounts of ECG data would never be seen by a healthcare professional, 
such an AI model would need to have excellent negative predictive 
value for critical arrhythmias without generating unacceptable rates 
of false-positive annotations that would require physician review.

We designed the DeepRhythmAI for autonoMous Analysis of 
RhyThm INvestigatIon (DRAI MARTINI) study to test the DeepRhyth-
mAI model for direct-to-physician reporting of ambulatory ECG data. 
The aim was to report on the performance of the DeepRhythmAI com-
pared to technician analysis of ambulatory ECG data, including abso-
lute rates of false-negative and false-positive detection for both the AI 
model and ECG technicians.

Results
The study population consisted of 14,606 patients (mean age =  
65.5 ± 10 years, 42.8% males), who were monitored for a mean of 
14 ± 10 days (Extended Data Fig. 1). Monitoring indications were 
provided through the device for 14,596 patients and are reported in 
Extended Data Table 1. The most common monitoring indications were 
palpitations, syncope, dizziness and examination for AF.

Critical arrhythmias
The AI model had superior sensitivity for the primary endpoint of 
false-negative findings (all instances of the arrhythmia missed for the 
full recording) of critical arrhythmia (98.6% (95% confidence interval 
(CI) = 97.7–99.4) versus 80.3% (95% CI = 77.3–83.3%); Table 1). This cat-
egory includes ≥30 s of AF, ≥30 s of supraventricular tachycardia (SVT), 

Table 1 | Performance of DeepRhythmAI and ECG technicians compared to the consensus panel of cardiologists for critical 
arrhythmias

 
Accuracy (95% CI), %

True-positive rate/
sensitivity, % (95% CI)

True-negative rate/
specificity, % (95%CI)

 
PPV, % (95% CI)

 
NPV, %(95% CI)

 
F1 score, %

AI Technician AI Technician AI Technician AI Technician AI Technician AI Technician

Overall 
average  
critical 
arrhythmias

98.1 
(97.9–98.2)

98.4 
(98.1–98.5)

98.6 
(97.7–99.4)

80.3 
(77.3–83.3)

98.1 
(97.9–98.2)

99.2 
(99.0–99.3)

71.3 
(68.5–73.9)

82.7 
(79.4–85.6)

99.9 
(99.9–100)

99.1 
(98.9–99.2)

82.7 
(80.9–84.5)

81.5 
(79.0–83.6)

VT ≥ 10 s 98.2 
(98.1–98.3)

99.5 
(99.4–99.6)

98.0 
(94.8–100)

64.4 
(54.9–73.8)

98.2 
(98.1–98.3)

99.8 
(99.7–99.8)

27.2 
(22.8–32.3)

67.7 
(58.2–76.6)

99.98 
(99.96–100)

99.7 
(99.6–99.8)

42.6 
(37.1–48.6)

66.0 
(57.4–73.2)

AF ≥ 30 s 97.2 
(96.5–97.9)

97.4 
(96.6–98.0)

99.1 
(97.7–100)

90.5 
(86.8–94.0)

96.9 
(96.2–97.7)

98.4 
(97.8–98.9)

82.3 
(77.8–86.8)

88.9 
(84.7–92.6)

99.9 
(99.7–100)

98.6 
(98.0–99.2)

90.0 
(87.1–92.7)

89.7 
(86.7–92.3)

SVT ≥ 30 s 97.4 
(97.1–97.9)

96.1 
(95.5–96.7)

97.3 
(94.9–99.1)

62.9 
(56.6–69.3)

97.4 
(97.0–97.9)

98.1 
(97.7–98.4)

70.6 
(65.9–75.7)

65.8 
(59.3–72.2)

99.8 
(99.7–99.9)

97.8 
(97.2–98.3)

81.8 
(78.3–75.2)

64.3 
(58.7–69.8)

Asystole ≥ 3.5 s 98.5 
(98.2–98.7)

99.2 
(99.0–99.4)

100 
(100–100)

80.6 
(75.0–86.0)

98.4 
(98.2–98.6)

99.8 
(99.7–99.9)

65.7 
(60.5–70.4)

91.2 
(87.8–95.6)

100 
(100–100)

99.4 
(99.2–99.6)

79.2 
(75.4–82.6)

85.8 
(82.1–89.5)

Third-degree 
AV block

99.3 
(99.2–99.4)

99.5 
(99.3–99.6)

96.4 
(92.5–99.2)

52.6 
(44.0–61.6)

99.3 
(99.2–99.4)

99.9 
(99.8–99.9)

51.2 (44.6–
48.2)

76.3 
(67.1–85.4)

100 
(99.9–100)

99.6 
(99.5–99.7)

66.9 
(61.2–72.8)

62.2 
(53.9–70.0)

The bold values denote nonoverlapping CIs between methods. NPV, negative predictive value; PPV, positive predictive value.
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positive predictive values for sustained VT, third-degree AV block and 
asystoles. The overall F1 score, which is the harmonized mean of posi-
tive predictive value and sensitivity, was similar for the AI model and 
technicians. However, the F1 scores for AI were superior for sustained 
SVT, and the F1 score for technicians was better for VT.

Noncritical arrhythmias
Noncritical arrhythmias included premature atrial complexes and 
premature ventricular complexes, second-degree AV block, pauses of 
2.0–3.5 s, VT episodes <10 s, idioventricular/accelerated idioventricular 
rhythms, SVT episodes ≤30 s and ectopic atrial rhythm. Results for 
these rhythm classes are reported in Table 2. The AI model had superior 
sensitivity for all noncritical arrhythmias and a superior F1 score for 
pauses and idioventricular/accelerated idioventricular rhythms but 
lower specificity for all noncritical arrhythmias except SVT episodes 
<30 s and ectopic atrial rhythms.

Discussion
This large, carefully adjudicated analysis demonstrates that the Deep-
RhythmAI model could safely replace technician interpretation of 
ambulatory ECG recordings, with an impressive sensitivity for criti-
cal arrhythmias and a modest increase of false-positive detections. 
The DeepRhythmAI model had a negative predictive value for criti-
cal arrhythmias that exceeded 99.9% and, compared to technicians, 
resulted in 17 times fewer patients with a missed diagnosis of a critical 

arrhythmia. This was at a cost of 2.4 times more false-positive detec-
tions, which for critical arrhythmias occurred once every 6 recordings 
for AI and once every 14 recordings for technicians. Considering that 
the DeepRhythmAI model performance exceeds the benchmarks of 
99% negative predictive value and 70% positive predictive value that 
guidelines have recommended for accepting a single high-sensitive 
troponin to rule out major adverse cardiovascular events32–36, we con-
sider DeepRhythmAI model-only analysis to be safe for the analysis of 
ambulatory ECG data.

The current study differs fundamentally from previous studies 
of AI for arrhythmia classification in that we evaluate the use of AI as 
the only reader for the majority of the health data, with physician con-
firmation only of AI model-selected episodes. This may be necessary 
for the management of the rising volume of ECG that will need to be 
accurately adjudicated without missing critical events. The sample 
size in terms of annotated strips in this study is 6–16 times larger than 
previous studies30,31, and the patient population negative predictive 
value, absolute false-positive and false-negative rates for AI-only 
analysis have never been reported before. These data are necessary 
to determine whether an AI can safely be used for direct-to-physician 
reporting and have not been shown in previous studies evaluating AI 
for arrhythmia diagnostics. Direct-to-physician reporting of ambula-
tory ECG results could unburden strained healthcare environments 
and result in an appropriate expansion of access, which should result 
in more equitable access to testing and subsequent care. We used a 

AF ≥ 30 s
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5.6 (3.9–7.8)
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Asystole ≥ 3.5 s

VT ≥ 10 s
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Number of false negatives per 1,000 individuals
20 25

Third-degree AVB
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Fig. 1 | False-negative critical arrhythmias per 1,000 patients by AI and technician analysis. Error bars represent 95% CIs derived using bootstrapping. AVB, AV block.
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Fig. 2 | True-positive critical arrhythmias per 1,000 patients by AI and technician analysis. Error bars represent 95% CIs derived using bootstrapping.
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large, unselected clinical patient population to estimate how the use of 
the DeepRhythmAI model analysis instead of ECG technician analysis 
would affect the accurate detection and false-positive rates, using 
the beat-to-beat classification of a large and representative sample 
of arrhythmic events. Due to our sampling strategy, the measures of 
sensitivity that we report are not directly comparable to the sensitivity  
reported in selected rhythm strips in previous studies. We report as 
false negatives only patients in whom a diagnosis was missed for the 
full duration of the recording (that is, 14 ± 10 days of monitoring), 
arguably a more relevant evaluation metric. With this in mind, the AI 
model we evaluated had better sensitivity for all critical arrhythmias 
that were evaluated in both this study and a study assessing a deep 
neural network architecture for rhythm classification of single-lead 
ECGs31, a study evaluating a convolutional neural network for rhythm 
classification of 12-lead ECGs30 and a study comparing a deep neural 
network with physician over-reading of the full ECG to an electrophysi-
ologist review of a traditional Holter system37. While the technician 
sensitivity in this study is low, this finding is in line with previous 

studies that show a low average accuracy in ECG interpretation for 
technicians38.

The large difference in false-negative findings using the Deep-
RhythmAI model and technician analysis could be dependent on fac-
tors related to algorithms and factors related to causes of human error. 
The higher rate of technician false negatives is likely in part to be due to 
limitations of features-based algorithms compared to AI models, but 
because technician work also includes scanning the ECG manually and 
assessing heart rate trends, there could also be effects of time pressure, 
information overload15,17 and other factors related to limits in human 
perception and memory16,18, which do not affect AI models. Thus, with 
increasing data volume that will require analysis, the AI model increas-
ingly outperforms technician interpretation, giving consistent annota-
tions not subject to fatigue. Rhythm analysis by technicians depends 
on correctly identifying and retaining in memory a large number of 
visual features; for example, a single capture beat in a wide complex 
tachycardia is pathognomonic for VT, but the human working memory 
has a fixed upper limit, and high information loads, such as in the 

AF ≥ 30 s
26.7 (20.0–34.1)

14.3 (9.1–20.4)

18.1 (14.4–21.8)

24.1 (19.8–28.6)

15.4 (13.1–17.6)

2.1 (1.2–3.1)

7.0 (6.0–8.1)

17.7 (16.6–18.8)

1.3 (0.8–1.8)

2.2 (1.6–2.8)

SVT ≥ 30 s

Asystole ≥ 3.5 s

VT ≥ 10 s

0 5 10 15 20 25

Number of false positives per 1,000 individuals
30 35

Third-degree AVB

DRAI ECG technician

Fig. 3 | False-positive critical arrhythmias per 1,000 patients by AI and technician analysis. Error bars represent 95% CIs derived using bootstrapping.
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FN reported as other critical

FP reported as other critical

TP
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FP reported as noncritical/noise/NSR

FN reported as other critical
FP reported as other critical
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ECG technicianDeepRhythmAI

Asystole ≥ 3.5 s

Third-degree AVB

VT ≥ 10 s

Fig. 4 | Diagnoses of patients with critical arrhythmias by DeepRhythmAI 
and ECG technicians. Sankey diagram showing arrhythmic event durations for 
critical arrhythmias as detected by each of the two methods. Cardiologist panel 
annotations are used to classify DeepRhythmAI and ECG technician annotations 

into TP, FP or FN. For FP and FN detections, we also report whether these were 
annotated by the cardiologist panels as another critical arrhythmia class or  
as a noncritical arrhythmia/noise or NSR. TP, true positives; FP, false positives; 
FN, false negatives; NSR, normal sinus rhythm.
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analysis of ambulatory ECG recordings, can lead to reduced accuracy 
decision quality15,16.

Some limitations in study design should be considered. First of 
all, the technicians, but not the physician panels or the AI model, had 
access to clinical information such as monitoring indication, age and 
sex, which may have introduced a bias in favor of the technicians. At the 
same time, while the technicians were performing their analysis during 
paid clinical work hours, the cardiologist panels were performing their 
analysis as part of a research protocol, and therefore the panel annota-
tions do not exactly represent a clinical workflow. Panel cardiologists 
may have been either more or less careful than they would have been 
with clinical patients, which could have introduced misclassification 
bias. We have not differentiated between second-degree AV block types 
1 and 2, and we do not report subgroups by monitoring indication. 
Because monitoring indications were entered through the device, 
the absence of a reported indication should not be interpreted as a 
lack of that indication. The false-negative events in the study were 
patients in whom all episodes of arrhythmia were missed for the entire 
recording duration by one method, but at least one was detected by the 
other. While we consider this to be a robust method for false-negative 
estimation, it is possible that there are additional arrhythmic events 
that were undetected by both the AI model and technicians. If any 
arrhythmias were missed by both methods, this would imply a lower 
sensitivity and negative predictive value for both technicians and 
the AI model but not affect the results showing a superior sensitivity 
and negative predictive value for the AI model compared to techni-
cians. It is also important to point out that, while the technicians were 
aided by a Food and Drug Administration-approved algorithm and 
also performed a manual review and reannotation of the data, their 
use of a different algorithm may have yielded different results. The 
underlying ECG data were recorded by a device providing leads II and 
III. However, the use of devices with nonstandard lead configurations 
and single-lead recording is becoming more prevalent. The results 
cannot be generalized to other AI algorithms, and the DeepRhythmAI 
model may have different performances on other signals, although, in 
view of the accuracy that the DeepRhythmAI model demonstrated in 
this study, the model could be tested on other ECG recording signals 
in the future. Finally, while we used an unselected patient population 
and extracted a large representative sample of relevant arrhythmic 
episodes for evaluation, some evaluation metrics that we report, such 
as the negative predictive value, are dependent on the population 
prevalence of arrhythmia, which may differ between different popula-
tions and may change over time.

Direct-to-physician reporting of leads II and III ambulatory  
ECG recordings using the DeepRhythmAI model would result in  
17 times fewer missed diagnoses of critical arrhythmias than usual  
care with technician annotation and has a negative predictive value 
exceeding 99.9%. This would be at a cost of seven extra false-positive 
findings per 1,000 patient days of recording. AI analysis may substan-
tially reduce labor costs and could potentially report results in near 
real time.
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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(100.0–100.0)

58.3 
(48.8–67.7)

75.8 
(72.6–79.3)

95.7 
(93.6–97.8)

58.5 
(50.9–66.1)

84.8 
(76.8–92.4)

100.0 
(100.0–100.0)

84.7 
(79.2–89.0)

73.8 
(67.5–79.6)

69.1 
(61.3–76.7)

AIVR 85.5 
(82.6–88.4)

81.3 
(77.2–84.8)

100.0 
(100.0–100.0)

52.5 
(42.4–62.0)

81.1 
(78.1–84.3)

90.1 
(87.5–92.4)

61.6 
(53.8–69.2)

61.6 
(50.6–71.1)

100.0 
(100.0–100.0)

86.2 
(81.5–90.2)

76.2 
(70.0–81.8)

56.7 
(47.3–64.6)

IVR 93.0 
(92.0–94.1)

92.8 
(90.4–94.6)

100.0 
(100.0–100.0)

29.7 
(22.1–38.2)

92.4 
(91.4–93.5)

98.9 
(98.4–99.4)

54.0 
(47.5–61.1)

72.9 
(60.0–85.7)

100.0 
(100.0–100.0)

93.6 
(91.0–95.4)

70.1 
(64.4–75.9)

42.2 
(32.9–51.1)

SVT 3 
beats, 30s

79.1 
(73.1–84.6)

76.9 
(71.0–82.3)

100.0 
(100.0–100.0)

90.3 
(84.2–96.0)

55.8 
(49.6–62.9)

62.9 
(56.4–70.4)

71.6 
(63.4–79.1)

71.8 
(63.5–79.4)

100.0 
(100.0–100.0)

86.2 
(77.7–94.1)

83.5 
(77.6–88.4)

80.0 
(73.9–85.1)

EAR ≥ 3 
beats

83.0 
(78.7–87.6)

64.8 
(59.4–70.2)

99.1 
(96.8–100.0)

56.6 
(45.9–67.4)

70.1 
(65.0–75.9)

68.9 
(64.7–73.2)

72.7 
(65.7–79.7)

48.0 
(38.0–58.0)

99.0 
(96.5–100.0)

75.8 
(68.7–82.2)

83.8 
(78.9–88.7)

51.9 
(43.0–60.5)

The bold values denote nonoverlapping CIs between methods. AIVR, accelerated idioventricular rhythm; IVR, idioventricular rhythm; EAR, ectopic atrial rhythm.
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Methods
Data source
The source population for this study is an unselected patient popula-
tion of 14,606 individuals, consisting of a random sample of patients 
who had been monitored in the United States for clinical indications 
between 2016 and 2019. Recording durations varied from 1 to 31 days. 
The dataset consisted of 211,010 days of ambulatory monitoring col-
lected in these patients using PocketECG (Medicalgorithmics). Pocket-
ECG is a full-disclosure ECG device with limb lead configuration (leads 
II and III) and a sampling rate of 300 samples per second. The device 
can record and transmit ECG signals for up to 31 days. The patients were 
referred by 1,079 different physicians from 166 clinics, and the record-
ings were analyzed in clinical practice at an independent diagnostic 
testing facility by one of 167 certified ECG technicians working with a 
features-based algorithm using adaptive beat morphology template 
generation and comparison so that each QRS complex in the record-
ing was annotated beat-to-beat by the ECG technician. ECG technician 
work was extensive and included a review of the whole ECG recording 
and verification of all events detected by the algorithm, including 
pauses and asystoles, all bradycardia events, all missed heartbeats 
or second- and third-degree AV blocks, all ventricular and supraven-
tricular arrhythmias and all episodes detected as AF. In this process, 
artifacts and electrode dysfunction were re-annotated. The techni-
cians also inspected all regions of the recording marked as having a 
‘patient-triggered symptom’ flag and reviewed the recording at the time 
of the fastest, slowest and average minutely heart rate. They were aided 
in this process by software that allowed them to manually inspect heart 
rate trends for irregularities, filter beats by heart rate and group beats 
into morphologies. At the end of the review, episodes were selected for 
inclusion in a report to physicians.

Before inclusion in the study, all data were anonymized, and the 
Ethics Review Board of Sweden has therefore waived the need for 
approval (decision 2019-03227). As such, the Ethics Review Board did 
not consider that informed consent was necessary.

DeepRhythmAI
The DeepRhythmAI model (v3.1; Medicalgorithmics) is a proprietary 
mixed network ensemble for rhythm classification. The network per-
forms QRS and noise detection, beat classification and rhythm identifi-
cation using several algorithms based on convolutional neural networks 
and transformer architecture with custom-built components39–42.  
The main network components for QRS detection and rhythm  
classification have been pretrained on 1,716,141 5-min-long ECG  
strips and fine-tuned on 60,549 ≤30 s ECG strips. These were extracted 
from 69,706 anonymized clinical long-term recordings. Algorithm 
internal validation was performed using 15,188 ≤30 s strips from  
12,330 additional separate patient recordings. A high-level flowchart  
of the algorithm is presented in the Extended Data Fig. 5. The pre-
processing involves selecting desired ECG channels from input  
data, scaling the signal amplitude according to the input analog– 
digital conversion values and resampling to a frequency of 300 Hz.  
A deep learning model predicts the probability of QRS complex pres-
ence and signal readability, extracts signal features and predicts  
the probability of QRS complex presence and readable signal39.  
This output, together with the preprocessed signal, is passed to 
an ensemble combined from models of two structures. The first is 
intended for the analysis of information from a wide context and has 
a hybrid architecture of the convolutional neural network and trans-
former encoder layers40. The second is a pure-transformer imple-
mentation based on Vision Transformer41, allowing for a superior 
interpretation of signal within a relatively narrow window. Additionally, 
a specialized classifier was developed for the detection of asystole 
events.

The QRS complex detector uses custom residual modules 
inspired by MobileNetV2.42 Each module consists of the following 

three one-dimensional convolutional layers: a pointwise convolu-
tion to expand feature dimension; a convolutional layer with a kernel 
length of 3 and variable dilation rates; a pointwise convolution to 
reduce feature dimensions to their original size. The dilation rate 
doubles in each residual module during the first half of the model and 
then progressively decreases to a rate of 1 at the output layer. A final 
linear layer converts the output features into probabilities of QRS 
complex presence and signal readability for each sample. Threshold-
ing and morphological operations are subsequently applied to extract 
QRS positions and identify nondiagnostic ranges. The wide-context 
architecture comprises a series of submodules. Initially, features are 
extracted from heart rate trends, calculated based on QRS detections, 
using the same architecture as the QRS detector (excluding the final 
linear layer). Another submodule extracts features for each sample 
of the preprocessed ECG signal using residual modules from the QRS 
detector but with a fixed dilation rate progression. The signal is down-
sampled using strided convolutional layers. Subsequently, windows 
of downsampled features are extracted, and two-dimensional strided 
convolutional layers are applied, resulting in features for each beat. 
The resulting features are processed using transformer encoder lay-
ers, augmented by an additional convolutional layer inserted between 
the linear layers in the fully connected blocks. Finally, the features are 
converted to logits for each QRS complex class using two pointwise 
convolutional layers.

The signal-detail architecture is based on transformer encoder 
layers that process ECG signals split into patches. A linear layer embeds 
each patch. The transformer layers process the embedded patches, and 
logits for each QRS complex class are calculated using a linear layer. 
Only the patches containing QRS complexes are selected for predic-
tions. The asystole filter module shares the same architecture as the 
wide-context model but is trained with hyperparameters and a dataset 
tailored to the asystole detection task.

We used the same dataset for training the QRS complex and noise 
detector and the main components of the heartbeat classification 
ensemble (three wide-context models and three signal-detail models). 
Data augmentation techniques tailored to each of these tasks, like 
noise artifact generation or synthesis of heartbeats with rare features, 
were used to enhance training dataset diversity and mitigate overfit-
ting. In addition to that, a classifier specializing in the interpretation 
of asystole events was developed by feeding to a single model with 
wide-context analysis architecture a carefully selected 11,670 strips 
with asystole or sinus arrest and 20,292 strips with noise or elec-
trode dysfunction. The training process of this model encompassed 
methods from supervised and self-supervised learning domains. 
The ensemble model output is averaged or replaced by the asystole 
filter model output (for heartbeats with RR interval greater than 
the sinus arrest threshold of 2 s) to provide the probabilities of QRS 
complex classes. Finally, the heartbeat types that are the final output 
of the DeepRhythmAI model are translated to heart rhythm types. 
Optimization was performed using the AdamW algorithm. Models 
were internally evaluated by measuring the root mean squared error 
metric based on sensitivity, precision and F1 score calculated from 
predictions and ground truth of internal validation/test strips, follow-
ing the methodology provided by the International Electrotechnical 
Commission 60601-2-47 standard43.

The ECG recordings used in this study had never been presented 
to the DeepRhythmAI model or any AI model from which the Deep-
RhythmAI model was derived, but as part of the study protocol, we 
analyzed the entire raw ECG signal data from these same recordings 
using the DeepRhythmAI model to provide detection and beat-to-beat 
classification of all heartbeats.

Definition of critical and noncritical arrhythmias
Selection of representative arrhythmic episodes. Our strip selec-
tion method was designed to not introduce any bias toward using 
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ECG signals with less baseline noise or arrhythmic events presenting 
with typical ECG diagnoses. We did this by automation; fully random 
individual recordings were searched by an algorithm for the presence 
of arrhythmic events of each rhythm class, and 34-s strips containing 
arrhythmia events according to either the AI model annotations, the 
ECG technician annotations or both were selected, at a maximum of one 
per method and arrhythmia class per patient. The automated selection 
script ran until a total of 500 strips each had been selected for each of 
the critical arrhythmias and 250 strips each had been selected for the 
noncritical rhythm classes, or all recordings had been searched and no 
more arrhythmias were found. The number of individual recordings 
that had to be searched to yield the strips for each rhythm class was 
considered the source population size for that class. The strip selec-
tion is described in Extended Data Fig. 6. In addition to the critical and 
noncritical rhythm classes, we included sinus rhythm, sinus brady-
cardia and unreadable signals due to noise or electrode dysfunction 
to evaluate the AI model performance for these signals and to ensure 
that the physician annotators would be provided with a differentiated 
sample in which they did not know which strips would contain critical 
arrhythmias. In total, we selected 5,245 strips, of which 2,240 were 
critical arrhythmias, and after errors in uploading ten of these to the 
annotation platform, we had 5,235 strips, of which 2,236 were critical 
arrhythmias.

Consensus panel annotations. All 34-s strips were annotated 
beat-to-beat by 17 panels consisting of three expert annotators 
each—≥2 board-certified cardiologists and additionally including 
board-certified clinical physiologists (n = 2) or final-year cardiology 
residents. The physicians on the panels performed the annotation 
independently of AI and technician annotations and were blinded to 
the strip selection criteria. Strips were randomly distributed among 
panels and presented in random order and were annotated using a 
custom-built software platform in which QRS complex tags, without 
beat type classifications, as detected by the AI model, were present. 
We used DeepRhythmAI model-detected QRS complexes for strips 
detected by both the AI model and the technicians to minimize bias; 
technicians in clinical practice may not have bothered to correct QRS 
tags for all instances of arrhythmia, and differential methodology for 
strips could have resulted in unblinding. The QRS tags were highly 
concordant. For QRS complexes that resulted in technician false nega-
tives, there was a 98% overlap between the AI model and fixed features 
algorithm QRS positions. Physician annotators were asked to identify 
the beat type for each QRS complex according to an annotation manual 
(Supplemental Note), correct any mistaken QRS position placements, 
add any missed QRS complexes and mark areas that were unreadable 
due to poor signal or electrode dysfunction. Each physician annotated 
the entire strip beat by beat, and all discrepancies on the beat level were 
resolved by panel consensus. The resulting gold-standard annota-
tions were compared to the beat-to-beat annotations of the AI model 
and technicians according to prespecified acceptance criteria, where 
we considered arrhythmic events to be concordant with the panel 
annotation in case of ≥80% overlap in beat type and duration with the 
panel annotation for all sustained tachyarrhythmias and 90% overlap 
in duration for asystole events and pauses. For second- or third-degree 
AV block, we considered the presence of any such event within the 
strip to be a concordant annotation, and for ECG technicians, we also 
considered annotation of an unspecified ‘missed beat’ to be a concord-
ant annotation for second-degree AV block. Single ectopic atrial and 
ventricular beats were considered concordant within ±45 samples 
(150 ms). Noise annotations were considered concordant if within 
80% of the panel annotation as regards duration. Minor discrepancies 
between the AI/technician annotations and consensus panel annota-
tions, on the beat-to-beat level, were thus allowed, for example, low 
numbers of supraventricular beats or beats with unknown beat types 
within AF episodes.

Statistics. The primary analysis compares the frequency of 
false-negative, true-positive and false-positive critical arrhythmias 
per 1,000 individual patients over the full duration of the recordings 
for technicians and the AI model, along with full confusion matrix 
statistics for the AI model and technician performance compared 
to panel annotations. As a result of the sampling strategy, false 
negatives were only reported in patients in whom all instances of an 
arrhythmia type were missed for the entire duration of the recording. 
True-positive events were defined as episodes detected by the AI model 
or technician, with correct annotations according to the independent 
gold-standard consensus panel annotation. Descriptive statistics are 
reported as mean ± s.d. CIs were derived using bootstrapping with 
1,000 replications. Definitions for the confusion matrix statistics are 
reported in the Extended Data Table 4. We also performed subanalyses 
where misclassifications of critical arrhythmias were not considered 
false-negative or false-positive events because these events would 
have been reported to physicians. In these analyses also, we did not 
consider second-degree AV block to be a false-positive finding. For the 
analyses of total false-positive and false-negative findings of critical 
arrhythmias, the prevalence of all arrhythmias was weighted to the full 
population size according to the proportion of the population queried. 
Nonoverlapping CIs were considered evidence of the superiority of one 
method over the other. All analyses were performed in Python, except 
for the calculations of RR, which were done in Stata version 17.0 for Mac, 
using two-sided Fisher’s exact P values. Analyses were performed by 
L.S.J. and G.J., with involvement from the steering group, according to 
prespecified plans. The study steering group (L.S.J., J.S.H., A.P.B. and 
A.M.) met regularly throughout the conduct of the study without the 
presence of Medicalgorithmics employees.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that supports the findings of this study are derived from 
patient ECGs and are not publicly available due to privacy concerns but 
will be made available after a request for access to the corresponding 
author for the purpose of reviewing the study results and at the cost of 
a data preparation fee. No requests that include a commercial interest 
will be approved. Data are located in controlled access data storage at 
Medicalgorithmics. A response to a request to access the data can be 
expected within 2 months.

Code availability
The code for the DeepRhythmAI model is not available due to its pro-
prietary nature. The code used for statistical analyses will be made 
available upon request to the corresponding author for the purpose 
of reviewing the results in the paper, and a response can be expected 
within 2 months.
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Extended Data Fig. 1 | Age and sex distribution. Age and sex distribution of the patient sample included in the analyses.
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Extended Data Fig. 2 | False-negative findings in males and females. Error bars denote 95% confidence intervals and were derived using bootstrapping.
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Extended Data Fig. 3 | False-negative findings, excluding events reported as other critical arrhythmias. Error bars denote 95% confidence intervals and were 
derived using bootstrapping.
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Extended Data Fig. 4 | False-positive findings of critical arrhythmias. Error bars denote 95% confidence intervals and were derived using bootstrapping.
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Extended Data Fig. 5 | Schematic overview of the DeepRhythmAI model. 
The raw ECG signal (in timestamp + mV format) is pre-processed and fed to a 
single CNN classifier model that identifies the QRS complexes and segments of 
noisy (non-diagnostic) signals in the raw ECG data. The network components 
downstream to this module are fed both raw signal and the QRS/noise module 
output. This combined signal and QRS/noise data are processed by ensemble of a 
total of 7 models with both wide context (HR trend and morphology of beats) and 
narrow context (signal details). The wide context module is an ensemble of three 

custom deep neural network models with both CNN and transformer layers. The 
narrow context module is an ensemble of three transformer models all based 
on Vision Transformer ideas but with custom adaptations to 1D multichannel 
ECG signal. The output from these models is then combined with a wide context 
asystole filter that has the same architecture as wide context models but with 
hyperparameters tuned for asystole detection. The asystole filter overrides and 
replaces the other probabilities when asystoles are detected; otherwise, the 
output probabilities are averaged.
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Extended Data Fig. 6 | Description of the strip selection process. VT, ventricular tachycardia; AF, atrial fibrillation; SVT, supraventricular tachycardia; AIVR, 
accelerated idioventricular rhythm; IVR, idioventricular rhythm; EAR, ectopic atrial rhythm.
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Extended Data Table 1 | Monitoring indications reported on device

Several answers per patient possible.
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Extended Data Table 2 | Relative risks of false-negative findings for technicians compared to artificial intelligence

AI analysis resulted in no false negatives for asystoles ≥3.5 seconds, results are calculated with the addition of 1 false negative for AI in this category. Two-sided P values were derived using 
Fischer’s exact test. VT, ventricular tachycardia; AF, atrial fibrillation; SVT, supraventricular tachycardia.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03516-x

Extended Data Table 3 | Duration and heart rate of false-negative and false-positive findings by either method

All durations are presented as median (interquartile range) in seconds, and all heart rates are presented as means. SVT, supraventricular tachycardia; VT, ventricular tachycardia; HR, heart 
rate.
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Extended Data Table 4 | Confusion matrix definitions

Describes how the confusion matrix statistics are calculated from the annotated episodes.
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