URAKOV, A.L.,
MUSTAFIN, I.G.,
NABIULLINA, R.M.,
BASHIROVA, L.I.,
MOCHALOV, K.S.,
SAMORODOV, A.V.,
KHALIULLIN, F.A.,
LIPATOV, D.O.,
KORUNAS, V.I.,
KHALIMOV, A.R. (2020) activity, and physical–
mechanical properties of formed clots were determined from thromboelastograms
GAREEV, I.F.,
BEILERLI, O.A.,
ALIEV, G.M.,
PAVLOV, VALENTIN,
IZMAILOV, ADEL,
ZHANG, YIWEI,
LIANG, YANCHAO,
YANG, GUANG (2020) mortality among patients. Unfortunately, the molecular
mechanisms of the development and rupture of IAs
FACHAL, L.,
KAR, S.,
TYRER, J.P.,
GHOUSSAINI, M.,
HARRINGTON, P.A.,
HEALEY, C.S.,
MAYES, R.,
SHAH, M.,
PHAROAH, P.D.P.,
EASTON, D.F.,
DUNNING, A.M.,
ASCHARD, H.,
JIANG, X.,
TAMIMI, R.M.,
KHUSNUTDINOVA, E.,
BIAŁKOWSKA, K.,
и др. соавторы (2020) regions, but the
mechanisms underlying risk remain largely unknown. These regions were explored
BEYLERLI, OZAL,
BEERAKA, NARASIMHA M.,
GAREEV, ILGIZ,
PAVLOV, VALENTIN,
YANG, GUANG,
LIANG, YANCHAO,
ALIEV, GJUMRAKCH (2020) proteins are regulated by miRNAs, which ultimately control basic cellular
mechanisms, including cell
Yagudin, T.,
Zhao, Y.,
Gao, H.,
Zhang, Y.,
Yang, Y.,
Zhang, X.,
Ma, W.,
Daba, T.M.,
Ishmetov, V.,
Kang, K.,
Yang, B.,
Pan, Z. (2020) Currently, there remains a great need to elucidate the molecular
mechanism of acute myocardial
LV, L.,
ZHANG, L.,
LI, R.,
LI, Y.,
YANG, R.,
LI, C.,
FANG, R.,
SHABANOVA, A.,
LI, X.,
LIU, Y.,
LIANG, H.,
ZHOU, Y.,
SHAN, H.,
ZHENG, N. (2020) potential
mechanism. Cardiac-specific microRNA-1 (miR-1) transgenic (TG) and myocardial infarction (MI