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Fine-mapping of 150 breast cancer risk regions 
identifies 191 likely target genes

A full list of authors and affiliations appears at the end of the paper.

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms 
underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic 
feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each 
one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and 
enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants 
were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our 
INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression 
quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and 
genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-
represented among the highest-confidence target genes.

Genome-wide association studies (GWASs) have identified 
genetic variants associated with breast cancer risk in more 
than 150 genomic regions1,2. However, the variants and genes 

driving these associations are mostly unknown, with fewer than 20 
regions studied in detail3–20. Here, we aimed to fine-map all known 
breast cancer susceptibility regions using dense genotype data on 
>217,000 subjects participating in the Breast Cancer Association 
Consortium (BCAC) and the Consortium of Investigators of 
Modifiers of BRCA1/2 (CIMBA). All samples were genotyped  
using the OncoArray1,2,21 or the iCOGS chip22,23. Stepwise multi-
nomial logistic regression was used to identify independent asso-
ciation signals in each region and to define credible causal variants 
(CCVs) within each signal. We found genomic features signifi-
cantly overlapping the CCVs. We then used a Bayesian approach, 
integrating genomic features and genetic associations, to refine the  
set of likely causal variants and calculate their posterior probabili-
ties. Finally, we integrated genetic and in silico epigenetic expres-
sion and chromatin conformation data to infer the likely target 
genes of each signal.

Results
Most breast cancer genomic regions contain multiple indepen
dent riskassociated signals. We included 109,900 cases of breast 
cancer and 88,937 controls, all of European ancestry, from 75  
studies in the BCAC. Genotypes (directly observed or imputed) 
were available for 639,118 single nucleotide polymorphisms  
(SNPs), deletions/insertions and copy number variants (CNVs) 
with a minor allele frequency (MAF) ≥ 0.1% within 152 previously 
defined, risk-associated regions (Supplementary Table 1 and Fig. 1). 
Multivariate logistic regression confirmed associations for 150 out 
of 152 regions at a significance threshold of P < 10−4 (Supplementary 
Table 2a). To determine the number of independent risk signals 
within each region, we applied stepwise multinomial logistic regres-
sion, deriving the association of each variant, conditional on the 
more significant ones, in order of statistical significance. Finally,  
we defined CCVs in each signal as variants with conditional  
P values within two orders of magnitude of the index variant24.  
We classified the evidence for each independent signal, and its  
CCVs, as either strong (conditional P < 10−6) or moderate (10−6 <  
conditional P < 10−4).

From the 150 genomic regions, we identified 352 independent 
risk signals containing 13,367 CCVs, 7,394 of which were within 
the 196 strong-evidence signals across 129 regions (Fig. 2a,b). The 
number of signals per region ranged from 1 to 11, with 79 (53%) 
containing multiple signals. We noted a wide range of CCVs per 
signal, but in 42 signals there was only a single CCV: for these sig-
nals, the simplest hypothesis is that the CCV was causal (Fig. 2c,d 
and Table 1). Furthermore, within signals with few CCVs (<10), the 
mean scaled combined annotation-dependent depletion score was 
higher than in signals with more CCVs (13.1 versus 6.7 for CCVs 
in exons; Pt-test = 2.7 × 10−4), suggesting that these are more likely to 
be functional.

The majority of breast tumors express the estrogen receptor (ER 
positive), but ~20% do not (ER negative); these two tumor types 
have distinct biological and clinical characteristics25. Using a case-
only analysis for the 196 strong-evidence signals, we found 66 
signals (34%; containing 1,238 CCVs) where the lead variant con-
ferred a greater relative risk of developing ER-positive tumors (false 
discovery rate (FDR) = 5%), and 29 (15%; 646 CCVs) where the 
lead variant conferred a greater risk of ER-negative cancer tumors 
(FDR = 5%) (Supplementary Table 2b and Fig. 2e). The remaining 
101 signals (51%; 5,510 CCVs) showed no difference by ER status 
(referred to as ER neutral).

Patients with BRCA1 mutations are more likely to develop 
ER-negative tumors26. Hence, to increase our power to identify 
ER-negative signals, we performed a fixed-effects meta-analysis, 
combining association results from BRCA1 mutation carriers 
in CIMBA with the BCAC ER-negative association results. This 
meta-analysis identified ten additional signals (seven ER-negative 
and three ER-neutral), making 206 strong-evidence signals (17% 
ER negative) containing 7,652 CCVs in total (Fig. 2f). More than 
one-quarter of the CCVs (2,277) were accounted for by one sig-
nal, resulting from strong linkage disequilibrium with a CNV. The 
remaining analyses focused on the other 205 strong signals across 
128 regions (Supplementary Table 2c).

The proportion of the familial relative risk (FRR) of breast cancer 
explained by all 206 strong signals was 20.6%, compared with 17.6% 
when only the lead SNP for each region was considered. The pro-
portion of the FRR explained increased by a further 3% (to 23.6%) 
when all 352 signals were considered (Supplementary Table 2d).
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CCVs are overrepresented in active gene regulatory regions 
and transcription factor binding sites (TFBSs). We constructed 
a database of mapped genomic features in seven primary cells 
derived from normal breast and 19 breast cell lines using publicly 
available data, resulting in 811 annotation tracks in total. These 
ranged from general features (such as whether a variant was in an 
exon or in open chromatin) to more specific features (such as cell-
specific transcription factor binding or histone marks (determined 
through chromatin immunoprecipitation followed by sequencing 
(ChIP-Seq) experiments) in breast-derived cells or cell lines). Using 
logistic regression, we examined the overlap of these genomic fea-
tures with the positions of 5,117 CCVs in the 195 strong-evidence 
BCAC signals versus the positions of 622,903 variants excluded as 
credible candidates in the same regions (Supplementary Fig. 1a and 
Supplementary Table 3). We found significant enrichment of CCVs 
(FDR = 5%) in four genomic features (open chromatin, actively 
transcribed genes, gene regulatory regions and binding sites), as 
described below.

Open chromatin. As shown in Fig. 3a, DNase I hypersensitive sites 
sequencing and formaldehyde-assisted isolation of regulatory ele-
ments sequencing showed significant enrichment of CCVs in open 
chromatin in ER-positive breast cancer cell lines and normal breast. 

Conversely, we found depletion of CCVs within heterochromatin 
(determined by the H3K9me3 mark in normal breast, and by chro-
matin state in ER-positive cells27).

Actively transcribed genes. Significant enrichment of CCVs was also 
found in actively transcribed genes in normal breast and ER-positive 
cell lines (as defined by H3K36me3 or H3K79me2 histone marks; 
Fig. 3a). Enrichment was larger for ER-neutral CCVs than for those 
affecting either ER-positive or ER-negative tumors.

Gene regulatory regions. CCVs overlapped distal gene regula-
tory elements in ER-positive breast cancer cells lines (defined by 
H3K4me1 or H3K27ac marks; Fig. 3b). This was confirmed using 
the Encyclopedia of DNA Elements (ENCODE) definition of active 
enhancers in MCF-7 cells (enhancer-like regions defined by com-
bining DNase and H3K27ac marks), as well as the definition of  
refs. 27,28 (Supplementary Table 3). Under these more stringent 
definitions, enrichment among ER-positive CCVs was signifi-
cantly larger than ER-negative or ER-neutral CCVs. Data from 
ref. 27 showed that 73% of active enhancer regions overlapped by 
ER-positive CCVs in ER-positive cells (MCF-7) are inactive in the 
normal human mammary epithelial (HMEC) breast cell line; thus, 
these enhancers appear to be MCF-7 specific.
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Fig. 1 | Flowchart summarizing the study design. Logistic regression summary statistics were used to select the final set of variants to run stepwise 
multinomial regression. These results were meta-analyzed with CIMBA to provide the final set of strong independent signals and their CCVs. Through 
case-only analysis, we identified significant differences in effect sizes between Er-positive and Er-negative breast cancer and used this to classify the 
phenotype for each independent signal. With these strong CCVs, we ran the bio-features enrichment analysis, which identified the features to be included 
in the PAInTOr models, together with the OncoArray logistic regression summary statistics and the OncoArray linkage disequilibrium. Both multinomial 
regression CCVs and PAInTOr high-posterior-probability (PP) variants were analyzed with InQuISIT to determine high-confidence target genes. Finally, 
we used the set of high-confidence target genes to identify enriched pathways. iCOGS and OncoArray Cox regression was conditional on the index 
variants from BCAC strong signals.
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We also detected significant enrichment of CCVs in active pro-
moters in ER-positive cells (defined by H3K4me3 marks in T-47D), 
although the evidence for this effect was weaker than for distal 
regulatory elements (defined by H3K27ac marks in MCF-7; Fig. 
3b). Only ER-positive CCVs were significantly enriched in T-47D 
active promoters. Conversely, CCVs were depleted among repressed 
gene regulatory elements (defined by H3K27me3 marks) in normal 
breast (Fig. 3b). As a control, we performed similar analyses with 
autoimmune disease CCVs29 (Methods) and relevant B and T cells 
(Fig. 3b–e). The strongest evidence of enrichment of breast cancer 

CCVs was found at regulatory regions active in ER-positive cells 
(Fig. 3b), whereas enrichment of autoimmune CCVs was in regu-
latory regions active in B and T cells (Fig. 3e). We also compared 
the enrichment of our CCVs in enhancer-like and promoter-like 
regions (defined by ENCODE; Supplementary Fig. 1b). The stron-
gest evidence of enrichment of ER-positive CCVs in enhancer-like 
regions was found in MCF-7 cells—the only ER-positive cell line 
in ENCODE (Supplementary Fig. 1b). These results highlight both 
the tissue specificity and disease specificity of these histone-marked 
gene regulatory regions.
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Fig. 2 | Determining independent risk signals and ccVs. a, number of independent signals per region, identified through multinomial stepwise logistic 
regression. b, Signal classification as strong- or moderate-confidence signals. c,d, number of CCVs per signal in strong- (c) and moderate-confidence 
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thresholds. In total, 15 variants reached a posterior probability of ≥80% by at least one of the three models (Er all, Er positive or Er negative).
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Fig. 3 | Overlap of ccVs with gene regulatory regions, gene bodies and tFBss. a, Breast cancer CCVs overlap with chromatin states and broad breast  
cell epigenetic marks. HMEC, human mammary epithelial cells. Open chrom, open chromatin; heterochrom, heterochromatin b,c, Breast cancer CCVs  
(b) and autoimmune CCVs (c) overlap with breast cell epigenetic marks. vHMEC, variant HMEC. Luminal pr, luminal progenitor. d,e, Breast cancer CCVs 
(d) autoimmune CCVs (e) and overlap with autoimmune-related epigenetic marks. In a, b and d, the column ‘strong CCVs’ represents analysis with all 
CCVs at strong signals, while the remaining columns represent analysis of CCVs at strong signals stratified by phenotype. Logistic regression robust 
variance estimation for clustered observations was used, and Wald test Χ2 P values were estimated using 67,136 Er-positive and 17,506 Er-negative 
cases, together with 88,937 controls. non-significant P values are shown in dark gray. Significance was defined as an FDr of 5%, which corresponds to the 
following P value thresholds: P = 1.66 × 10−2 (strong signals); P = 2.42 × 10−2 (Er positive); P = 3.02 × 10−3 (Er negative); and P = 1.76 × 10−3 (Er neutral).  
f–h, Significant Er-positive (f), Er-negative (g) and Er-neutral CCVs (h) overlap with TFBSs. TFBSs found significant for Er-positive CCVs are highlighted 
in red (x axis labels).
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Binding sites. We observed significant enrichment of CCVs in the 
binding sites for 40 TFBSs determined by ChIP-Seq (Fig. 3f–h). 
The majority of the experiments were performed in ER-positive 
cell lines (90 TFBSs; 20 with data in ER-negative cell lines, 76 with 
data in ER-positive cell lines and 16 with data in normal breast). 
These TFBSs overlap each other and histone marks of active regu-
latory regions (Supplementary Fig. 2). Enrichment in five TFBSs 
(ESR1, FOXA1, GATA3, TCF7L2 and E2F1) has been reported pre-
viously2,30. All 40 TFBSs were significantly enriched in ER-positive 
CCVs (Fig. 3f), seven were also enriched in ER-negative CCVs and 

nine were enriched in ER-neutral CCVs (Fig. 3g–h). ESR1, FOXA1, 
GATA3 and EP300 TFBSs were enriched in all CCV ER subtypes. 
However, the enrichment for ESR1, FOXA1 and GATA3 was stron-
ger for ER-positive CCVs than for ER-negative or ER-neutral CCVs.

CCVs significantly overlap consensus transcription factor bind
ing motifs. We investigated whether CCVs were also enriched 
within consensus transcription factor binding motifs by conducting 
a motif search within active regulatory regions (ER-positive CCVs 
at H3K4me1 marks in MCF-7). We identified 30 motifs from eight 
transcription factor families, with enrichment in ER-positive CCVs 
(FDR = 10%; Supplementary Table 4a) and a further five motifs 
depleted among ER-positive CCVs. To assess whether the motifs 
appeared more frequently than by chance at active regulatory regions 
overlapped by our ER-positive CCVs, we compared motif presence 
in a set of randomized control sequences (Methods). Thirteen of 
30 motifs were more frequent at active regulatory regions with 
ER-positive CCV enrichment; these included seven homeodomain 
motifs and two forkhead factors (Supplementary Table 4b).

When we looked at the change in predicted binding affinity,  
57 ER-positive signals (86%) included at least one CCV predicted  
to modify the binding affinity of the enriched TFBSs (at least two-
fold; Supplementary Table 4c). Forty-eight ER-positive signals 
(73%) had at least one CCV predicted to modify the binding affin-
ity greater than tenfold. This analysis validates previous reports of 
breast cancer causal variants that alter the DNA binding affinity for 
FOXA1 (refs. 3,30).

Bayesian finemapping incorporating functional annotations and 
linkage disequilibrium. As an alternative statistical approach for 
inferring likely causal variants, we applied PAINTOR31 to the same 
128 regions (Fig. 1). In brief, PAINTOR integrates genetic associa-
tion results, linkage disequilibrium structure and enriched genomic 
features in an empirical Bayes framework and derives the posterior 
probability of each variant being causal, conditional on available data. 
To eliminate artefacts due to differences in genotyping and impu-
tation across platforms, we restricted PAINTOR analyses to cases 
and controls typed using OncoArray (61% of the total). We iden-
tified seven variants with a high posterior probability (HPP ≥ 80%) 
of being causal for overall breast cancer, and ten for the ER-positive 
subtype (Table 1); two of these had a HPP > 80% for both ER-positive 
and overall breast cancer. These 15 HPP variants (HPPVs; ≥80%) 
were distributed across 13 regions. We also identified an additional 
35 variants in 25 regions with HPP (≥50 and <80%) for ER-positive, 
ER-negative or overall breast cancer (Fig. 2g).

Consistent with the CCV analysis, we found evidence that most 
regions contained multiple HPPVs; the sum of posterior prob-
abilities across all variants in a region (an estimate of the number 
of distinct causal variants in the region) was >2.0 for 84 out of 
86 regions analyzed for overall breast cancer, with a maximum of  
16.1 and a mean of 6.4. For ER-positive cancer, 46 out of 47 regions 
had total posterior probability of >2.0 (maximum: 18.3; mean: 6.5). 
For ER-negative cancer, 17 out of 23 regions had a total posterior 
probability of >2.0 (maximum: 9.1; mean: 3.2).

Although for many regions we were not able to identify HPPVs, 
we were able to reduce the proportion of variants needed to account 
for 80% of the total posterior probability in a region to <5% for 65 
regions for overall breast cancer, 43 regions for ER-positive breast 
cancer and 18 regions for ER-negative breast cancer (Supplementary 
Fig. 3a–c). PAINTOR analyses were also able to reduce the set of 
likely causal variants in many cases. After summation of the pos-
terior probabilities for CCVs in each of the overall breast cancer 
signals, 39 out of 100 strong-evidence signals had a total posterior 
probability of >1.0. The number of CCVs in these signals ranged 
from 1 to 375 (median: 24), but the number of variants needed to 
capture 95% of the total posterior probability in each signal ranged 
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Fig. 4 | Predicted target genes are enriched in known breast cancer driver 
genes and transcription factors. Target genes (n = 69) that fulfill at least 
one of the following criteria: (1) is targeted by more than one independent 
signal; (2) is a known driver gene; (3) is a known transcription factor 
gene; (4) its binding sites (as determined by ChIP-Seq (ChIP-Seq BS)) 
are significantly overlapped by CCVs; or (5) its consensus (transcription 
factor) motif is significantly overlapped by CCVs. Asterisks indicate genes 
with published functional follow-up.
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from 1 to 115 (median: 12), representing an average reduction of 
43% in the number of variants needed to capture the signal.

PAINTOR and CCV analyses were generally consistent, yet 
complementary. Only 3.3% of variants outside of the set of strong-
signal CCVs for overall breast cancer had a posterior probability 
of >1%, and only 48 (0.013%) of these had a posterior probability 
of >30% (Supplementary Fig. 3d). At ER-positive and ER-negative 
signals, respectively, 3.1 and 1.6% of the non-CCVs at strong signals 
had a posterior probability of >1%, and 40 (0.019%) and 3 (0.003%) 
of these had a posterior probability of >30% (Supplementary  
Fig. 3e–f). For the non-CCVs at strong-evidence signals with a 
posterior probability of >30%, the relatively HPP may be driven by 
the addition of functional annotation. Indeed, the incorporation of 
functional annotations more than doubled the posterior probability 
for 64 out of 88 variants when compared with a PAINTOR model 
with no functional annotations.

CCVs colocalize with variants controlling local gene expres
sion. We used four breast-specific expression quantitative trait loci 

(eQTL) datasets to identify a credible set of variants associated with 
differences in gene expression (expression variants): tumor tissue 
from the Nurses’ Health Study (NHS)32 and The Cancer Genome 
Atlas (TCGA)33; and normal breast tissue from the NHS and the 
Molecular Taxonomy of Breast Cancer International Consortium 
(METABRIC)34. We then examined the overlap of expression vari-
ants (for each gene, expression variants were defined as those vari-
ants that had a P value within two orders of magnitude of the variant 
most significantly associated with that gene’s expression) with CCVs 
(Methods). There was significant overlap of CCVs with expression 
variants from both the NHS normal and breast cancer tissue studies 
(normal breast: odds ratio (OR) = 2.70; P = 1.7 × 10−5; tumor tissue: 
OR = 2.34; P = 2.6 × 10−4; Supplementary Table 3). ER-neutral CCVs 
overlapped with expression variants in normal tissue more fre-
quently than ER-positive and ER-negative CCVs (ORER neutral = 3.51; 
P = 1.3 × 10−5). Cancer risk CCVs overlapped credible expres-
sion variants in 128 out of 205 signals (62%) in at least one of the  
datasets (Supplementary Table 5a,b). Sixteen additional variants 
with a posterior probability of ≥30%, not included among the  
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Fig. 5 | Predicted target genes by phenotype and significantly enriched pathways. a, Venn diagram showing the associated phenotype (Er positive, 
Er negative or Er neutral) for the level 1 target genes, predicted by the CCVs and HPPVs. Asterisks denote Er-positive or Er-negative target genes also 
targeted by Er-neutral signals. b, Heat map showing clustering of pathway themes over-represented by InQuISIT level 1 target genes. Colors represent 
the relative number of genes per phenotype within enriched pathways, grouped by common themes (Er positive, Er negative, Er neutral or all phenotypes 
together (strong)). cAMP, cyclic adenosine monophosphate; CArM1, coactivator associated arginine methyltransferase 1; cGMP, cyclic guanosine 
monophosphate; EGFr, epidermal growth factor receptor; FGFr, fibroblast growth factor receptor; GATA, GATA transcription factors; MAPK, mitogen 
activated protein kinase; MET, MET proto-oncogene receptor tyrosine kinase; nOTCH, notch protein; PTEn, phosphatase and tensin homolog; PTK6, 
protein tyrosine kinase 6; rAS, rAS protein; rOBO, roundabout receptors; rOS, reactive oxygen species; TGFBr, transforming growth factor beta receptor; 
WnT, WnT proteins.
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CCVs, also overlapped with a credible expression variant (Supple-
mentary Table 5a,b).

Transcription factors and known somatic breast cancer driv
ers are overrepresented among prioritized target genes. We 
assumed that causal variants function by affecting the behavior of 
a local target gene. However, it is challenging to define target genes 
or to determine how they may be affected by the causal variant. 
Few potentially causal variants directly affect protein coding: we 
observed 67 out of 5,375 CCVs and 19 out of 137 HPPVs (≥30%) 
in protein-coding regions. Of these, 33 (0.61%) were predicted to 
create a missense change, one a frameshift and another a stop gain, 
while 30 were synonymous (0.59%; Supplementary Table 5c). In 
total, 499 CCVs at 94 signals, and four additional HPPVs (≥30%), 
are predicted to create new splice sites or activate cryptic splice sites 
in 126 genes (Supplementary Table 5d). These results are consistent 
with previous observations that the majority of common suscepti-
bility variants are regulatory.

We applied an updated version of our pipeline integrated 
expression quantitative trait and in silico prediction of GWAS tar-
gets (INQUISIT)2 to prioritize potential target genes from 5,375 
CCVs in strong signals and all 138 HPPVs (≥30%; Supplementary 
Table 2c). The pipeline predicted 1,204 target genes from 124 out 
of 128 genomic regions examined. As a validation, we examined 
the overlap between INQUISIT predictions and 278 established 
breast cancer driver genes35–39. Cancer driver genes were over-rep-
resented among high-confidence (level 1) targets, with a fivefold 
increase over expected levels from CCVs and a 15-fold increase 
from HPPVs (P = 1 × 10−6; Supplementary Fig. 4a). Notably, 13 can-
cer driver genes (ATAD2, CASP8, CCND1, CHEK2, ESR1, FGFR2, 
GATA3, MAP3K1, MYC, SETBP1, TBX3, XBP1 and ZFP36L1) were 
predicted from the HPPVs derived from PAINTOR. Cancer driver 
gene status was consequently included as an additional weighting 
factor in the INQUISIT pipeline. Transcription factor genes40 were 
also enriched among high-confidence targets predicted from both 
CCVs (twofold; P = 4.6 × 10−4) and HPPVs (2.5-fold; P = 1.8 × 10−2; 
Supplementary Fig. 4a).

In total, INQUISIT identified 191 target genes supported by  
strong evidence (Supplementary Table 6). Significantly more genes 
were targeted by multiple independent signals (n = 165) than 
expected by chance (P = 4.3 × 10−8; Supplementary Fig. 4b and 
Fig. 4). Six high-confidence predictions came only from HPPVs, 
although three of these (IGFBP5, POMGNT1 and WDYHV1) 
had been predicted at lower confidence from CCVs. Target genes 
included 20 that were prioritized via potential coding/splicing  
changes (Supplementary Table 7), ten via promoter variants (Supple-
mentary Table 8) and 180 via distal regulatory variants (Supple-
mentary Table 9). We illustrate the genes prioritized via multiple 
lines of evidence in Fig. 4.

Three examples of INQUISIT using genomic features to predict 
target genes. On the basis of capture Hi-C and chromatin inter-
action analysis by paired-end tag sequencing (ChIA-PET) data, 
NRIP1 is a predicted target of intergenic CCVs and HPPVs at 
chr21q21 (Supplementary Fig. 5a). Multiple target genes were pre-
dicted at chr22q12, including the driver genes CHEK2 and XBP1 
(Supplementary Fig. 5b). A third example at chr12q24.31 is a more 
complicated scenario with two level 1 targets: RPLP0 (ref. 41) and 
a modulator of mammary progenitor cell expansion, MSI1 (ref. 42) 
(Supplementary Fig. 5c).

Target gene pathways include DNA integrity checkpoint, apop
tosis and developmental processes and the immune system. We 
performed pathway analysis to identify common processes using 
INQUSIT high-confidence target protein-coding genes (Fig. 5a) and 
identified 488 Gene Ontology terms and 307 pathways at an FDR of 

5% (Supplementary Table 10). These were grouped into 98 themes 
by common ancestor Gene Ontology terms, pathways or tran-
scription factor classes (Fig. 5b). We found that 23% (14/60) of the 
ER-positive target genes were classified within developmental pro-
cess pathways (including mammary development), 18% were classi-
fied in immune system pathways and a further 17% were classified 
in nuclear receptor pathways. Of the genes targeted by ER-neutral 
signals, 21% (18/87) were classified in developmental process path-
ways, 19% were classified in immune system pathways and a further 
18% were classified in apoptotic process pathways. The top themes 
of genes targeted by ER-negative signals were DNA integrity check-
point processes and the immune system, each of which contained 
19% of genes (7/37), and apoptotic processes (16%).

Novel pathways revealed by this study include tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) signaling, the 
AP-2 transcription factors pathway, and regulation of IκB kinase/
nuclear factor-κB (NF-κB) signaling. Of note, the latter of these is 
specifically over-represented among ER-negative target genes. We 
also found significant over-representation of additional carcinogen-
esis-linked pathways, including cyclic adenosine monophosphate, 
NOTCH, phosphoinositide 3-kinase, RAS and WNT/β-catenin, 
and of receptor tyrosine kinase signaling, including fibroblast 
growth factor receptor, epidermal growth factor receptor and trans-
forming growth factor-β receptor43–47. Finally, our target genes are 
also significantly over-represented in DNA damage checkpoint and 
DNA repair pathways, as well as programmed cell death pathways, 
such as apoptotic processes, regulated necrosis and death receptor 
signaling-related pathways.

Discussion
We have performed multiple complementary analyses on 150 breast 
cancer-associated regions originally found by GWASs, and iden-
tified 362 independent risk signals, 205 of these with high confi-
dence (P < 10−6). The inclusion of these new variants increases the 
explained proportion of familial risk by 6% compared with that 
explained by the lead signals alone.

We observed that most regions contain multiple independent 
signals, with the greatest number (nine) in the region surround-
ing ESR1 and its co-regulated genes, and on 2q35, where IGFBP5 
appears to be a key target. We used two complementary approaches 
to identify likely causal variants within each region: a Bayesian 
approach, PAINTOR (which integrated genetic associations, link-
age disequilibrium and informative genomic features, providing 
complementary evidence) and a more traditional, multinomial 
regression approach. PAINTOR supported most associations found 
by multinomial regression and also identified additional variants. 
Specifically, the Bayesian method highlighted 15 variants that are 
highly likely to be causal (HPP ≥ 80%). From these approaches, 
we identified a single variant, likely to be causal, at each of 34 sig-
nals (Table 1). Of these, only rs16991615 (MCM8; NP_115874.3:p.
E341K) and rs7153397 (CCDC88C; NM_001080414.2:c.5058 + 134
2G>A; a cryptic splice-donor site) were predicted to affect protein-
coding sequences. However, in other signals, we also identified four 
coding changes previously recognized as deleterious: the stop gain 
rs11571833 (BRCA2; NP_000050.2:p.K3326*)48; two CHEK2 cod-
ing variants (the frameshift rs555607708 (refs. 49,50) and a missense 
variant, rs17879961 (refs. 51,52)); and a splicing variant (rs10069690 
in TERT, which results in the truncated protein INS1b19, decreased 
telomerase activity, telomere shortening and increased DNA dam-
age response53).

Having identified potential causal variants within each signal, we 
aimed to uncover their functions at the DNA level, as well as try-
ing to predict their target gene(s). Across all 150 regions, a notable 
feature is that many likely causal variants implicated in ER-positive 
cancer risk lie in gene regulatory regions marked as open and active 
in ER-positive breast cells, but not in other cell types. Moreover, 
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a significant proportion of potential causal variants overlap the 
binding sites for transcription factor proteins (n = 40 from ChIP-
Seq) and co-regulators (n = 64 with the addition of computation-
ally derived motifs). Furthermore, nine proteins also appear in the 
list of high-confidence target genes; hence, the following genes and 
their products have been implicated by two different approaches: 
CREBBP, EP300, ESR1, FOXI1, GATA3, MEF2B, MYC, NRIP1 and 
TCF7L2. Most proteins encoded by these genes already have estab-
lished roles in estrogen signaling. CREBBP, EP300, ESR1, GATA3 
and MYC are also known cancer driver genes that are frequently 
somatically mutated in breast tumors.

In contrast with ER-positive signals, we identified fewer genomic 
features enriched in ER-negative signals. This may reflect the com-
mon molecular mechanisms underlying their development, but the 
power of this study was limited, despite including as many patients 
with ER-negative tumors as possible from the BCAC and CIMBA 
consortia. Less than 20% of genomic signals confer a greater risk of 
ER-negative cancer and there are few publicly available ChIP-Seq 
data on ER-negative breast cancer cell lines. The heterogeneity of 
ER-negative tumors also may have limited our power. Nevertheless, 
we have identified 35 target genes for ER-negative likely causal vari-
ants. Some of these already had functional evidence supporting 
their role: including CASP8 (ref. 54) and MDM4 (ref. 55). However, 
most targets currently have no reported function in ER-negative 
breast cancer development.

Finally, we examined the Gene Ontology pathways in which 
target genes most often lie. Of note, 14% (25/180) of all high-confi-
dence target genes and 19% of ER-negative target predictions are in 
immune system pathways. Among the significantly enriched path-
ways were T cell activation, interleukin signaling, Toll-like receptor 
cascades and I-κB kinase/NF-κB signaling, as well as processes lead-
ing to activation and perpetuation of the innate immune system. The 
link between immunity, inflammation and tumorigenesis has been 
studied extensively56, although not primarily in the context of suscep-
tibility. Five ER-negative high-confidence target genes (ALK, CASP8, 
CFLAR, ESR1 and TNFSF10) lie in the IκB kinase/NF-κB signaling 
pathway. Interestingly, ER-negative cells have high levels of NF-kB 
activity compared with ER-positive cells57. A recent expression–meth-
ylation analysis on breast cancer tumor tissue also identified clusters 
of genes correlated with DNA methylation levels: one enriched in ER 
signaling genes and a second in immune pathway genes58.

These analyses provide strong evidence for more than 200 inde-
pendent breast cancer risk signals, identify the plausible cancer 
variants and define likely target genes for the majority of these. 
However, notwithstanding the enrichment of certain pathways and 
transcription factors, the biological basis underlying most of these 
signals remains poorly understood. Our analyses provide a rational  
basis for such future studies into the biology underlying breast  
cancer susceptibility.
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M et ho ds
Study samples. Epidemiological data for European women were obtained from 
75 breast cancer case–control studies participating in the BCAC (cases: 40,285 
iCOGS and 69,615 OncoArray; cases with ER status available: 29,561 iCOGS and 
55,081 OncoArray; controls: 38,058 iCOGS and 50,879 OncoArray). Details of the 
participating studies, genotype calling and quality control are given in refs. 2,22,23, 
respectively. Epidemiological data for BRCA1 mutation carriers were obtained 
from 60 studies providing data to the CIMBA (affected: 1,591 iCOGS and 7,772 
OncoArray; unaffected: 1,665 iCOGS and 7,780 OncoArray). This dataset has 
been described in detail previously1,59,60. All studies provided samples of European 
ancestry. Any non-European samples were excluded from the analyses.

Variant selection and genotyping. Similar approaches were used to select variants 
for inclusion on the iCOGS and OncoArray, and these are described in detail 
elsewhere2,21. Both arrays included a dense coverage of variants across known 
susceptibility regions (at the time of their design), with sparser coverage of the 
rest of the genome. Twenty-one known susceptibility regions were selected for 
dense genotyping using iCOGS and 73 regions were selected for OncoArray. 
These regions were 1-megabase (Mb) intervals centered on the published lead 
GWAS hit (combined into larger intervals where these overlapped). For iCOGS, 
all known variants from the March 2010 release of the 1000 Genomes Project 
with a MAF > 0.02 in Europeans were identified, and all those correlated with the 
published GWAS variants at r2 > 0.1 (r2, Pearson’s squared correlation coefficient), 
together with a set of variants designed to tag all remaining variants at r2 > 0.9, were 
selected to be included in the array (http://ccge.medschl.cam.ac.uk/files/2014/03/
iCOGS_detailed_lists_ALL1.pdf). For OncoArray, all designable variants 
correlated with the known hits at r2 > 0.6, plus all variants from lists of potentially 
functional variants on RegulomeDB and a set of variants designed to tag all of 
the remaining variants at r2 > 0.9, were selected. In total, across the 152 regions 
considered here, 26,978 iCOGS- and 58,339 OncoArray-genotyped variants passed 
the quality control criteria.

We imputed genotypes for all of the remaining variants by using IMPUTE2 
(ref. 61) and the October 2014 release of the 1000 Genomes Project as a reference. 
Imputation was conducted independently in the iCOGS and OncoArray subsets. 
To improve accuracy at low-frequency variants, we used the standard IMPUTE2 
MCMC algorithm for follow-up imputation, which includes no pre-phasing of the 
genotypes and increased both the buffer regions and the number of haplotypes to 
use as templates (a more detailed description of the parameters used can be found 
in ref. 21). We thus genotyped or successfully imputed 639,118 variants (all with 
an imputation info score ≥ 0.3 and a MAF ≥ 0.001 in both iCOGS and OncoArray 
datasets). Imputation summaries and coverage for each of the analyzed regions 
stratified by allele frequency can be found in Supplementary Table 1b.

BCAC statistical analyses. Per-allele odds ratios and standard errors were 
estimated for each variant using logistic regression. We ran this analysis separately 
for iCOGS and OncoArray, and for overall, ER-positive and ER-negative breast 
cancer. The association between each variant and breast cancer risk was adjusted 
by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) 
ancestry-informative principal components. The statistical significance for each 
variant was derived using a Wald test.

Defining appropriate significance thresholds for association signals. To establish an 
appropriate significance threshold for independent signals, all variants evaluated 
in the meta-analysis were included in logistic forward selection regression analyses 
for overall breast cancer risk in iCOGS, run independently for each region. We 
evaluated five P value thresholds for inclusion: <1 × 10−4, <1 × 10−5, <1 × 10−6, 
<1 × 10−7 and <1 × 10−8. The most parsimonious iCOGS models were tested in 
OncoArray, and the FDR at the 1% level for each threshold was estimated using 
the Benjamini–Hochberg procedure. At a 1% FDR threshold, 72% of associations, 
significant at P < 10−4, were replicated on iCOGS, and 94% of associations, 
significant at P < 10−6, were replicated on OncoArray. Based on these results, two 
categories were defined: strong-evidence signals (conditional P < 10−6 in the final 
model) and moderate-evidence signals (conditional P < 10−4 and P ≥ 10−6 in the 
final model).

Identification of independent signals. To identify independent signals, we ran 
multinomial stepwise regression analyses, separately in iCOGS and OncoArray, 
for all variants displaying evidence of association (nvariants = 202,749). We selected 
two sets of well-imputed variants (imputation info score ≥ 0.3 in both iCOGS and 
OncoArray): (1) common and low-frequency variants (MAF ≥ 0.01) with a logistic 
regression P value inclusion threshold of ≤0.05 in either the iCOGS or OncoArray 
datasets for at least one of the three phenotypes (overall, ER positive and ER 
negative breast cancer); and (2) rarer variants (MAF ≥ 0.001 and <0.01), with a 
logistic regression inclusion P value of ≤ 0.0001. The same parameters used for 
adjustment in logistic regression were used in the multinomial regression analysis 
(R function multinom), which simultaneously estimated per-allele odds ratios for 
ER-positive and ER-negative breast cancer. The multinomial regression estimates 
were combined using a fixed-effects meta-analysis weighted by the inverse 
variance. Variants with the lowest conditional P value from the meta-analysis of 

both European cohorts at each step were included in the multinomial regression 
model. However, if the new variant to be included in the model caused collinearity 
problems due to high correlation with an already selected variant, or showed  
high heterogeneity (P < 10−4) between iCOGS and OncoArray after being 
conditioned by the variant(s) in the model, we dropped the new variant and 
repeated this process.

At 105 of 152 evaluated regions, the main signal showed genome-wide 
significance, while 44 were marginally significant (9.89 × 10−5 ≥ P > 5 × 10−8). For 
two regions, there were no variants significant at P < 10−4 (chr14:104712261–
105712261; rs10623258; multinomial regression P = 2.32 × 10−4; chr19:10923703–
11923703; rs322144; multinomial regression P = 3.90 × 10−3). Four main differences 
in the datasets used here and in the previous paper may account for this: (1) our 
previous paper2 included data from 11 additional GWASs (14,910 cases and 17,588 
controls) that have not been included in the present analysis in order to minimize 
differences in array coverage, and because ER status data were substantially 
incomplete and individual-level data were not available for all GWASs; (2) the 
present analysis was based on estimating separate risks for ER-positive and 
ER-negative disease, whereas in our previous paper the outcome was overall 
breast cancer risk; ER status was available for only 73% of the iCOGS and 79% 
of the OncoArray breast cancer cases; (3) for the set of samples genotyped with 
both arrays, ref. 2 used the iCOGS genotypes, while the present study included 
OncoArray genotypes to maximize the number of samples genotyped with a larger 
coverage; and (4) the imputation procedure was modified (in particular using one-
step imputation without pre-phasing) to improve the imputation accuracy of less 
frequent variants.

We used a forward stepwise approach to define the number of independent 
signals within each associated genomic region. First, we identified the index variant 
of the main signal in the region, and then ran multinomial logistic regression for all 
of the other variants, adjusted by the index variant, to identify additional variants 
that remained independently significant within the model. We repeated this 
process, adjusting for identified index variants, until no more additional variants 
could be added. In this way, we found from 1–11 independent signals within the 
150 regions that containing a genome-wide significant main signal.

Selection of a set of CCVs. For each independently associated signal, we first 
defined CCVs likely to drive its association as those variants with P values within 
two orders of magnitude of the most significant variant for that signal, after 
adjusting for the index variant of other signals within that region (as identified in 
the forward stepwise regression above; Supplementary Fig. 6a)24. For each region, 
we then attempted to obtain the best-fitting model by successively fitting models in 
which the index variant for each signal was replaced by other CCVs for that signal, 
adjusting for the index variants for the other signals (Supplementary Fig. 6b). 
Where a model with a higher chi-squared value was obtained, the index variant 
was replaced by the CCV in the best model (Supplementary Fig. 6c,d). This process 
was repeated until the model (that is, the set of index variants) did not change 
further (Supplementary Fig. 6g). This procedure was performed first for the set of 
strong signals (that is, considering models including only the strong signals). Once 
a final model had been obtained for the strong signals, the index variants for the 
strong signals were considered fixed and the process was repeated for all signals, 
this time allowing the index variants for the weak signals (but not the strong 
signals) to vary. Using this procedure, we could define the best model for 140 out of 
150 regions, but for ten regions this approach did not converge (chr4:175328036–
176346426, chr5:55531884–56587883, chr6:151418856–152937016, 
chr8:75730301–76917937, chr10:80341148–81387721, chr10:122593901–
123849324, chr12:115336522–116336522, chr14:36632769–37635752, 
chr16:3606788–4606788 and chr22:38068833–39859355). For these ten regions, we 
defined the best model, from among all possible combinations of credible variants, 
as that with the largest chi-squared value. Finally, we redefined the set of CCVs 
for each signal using the conditional P values, after adjusting for the revised set of 
index variants. Again, for the strong signals, we conditioned on the index variants 
for the other strong signals, while for the weak signals we conditioned on the index 
variants for all of the other signals.

Case-only analysis. Differences in the effect size between ER-positive and ER-
negative disease for each index-independent variant were assessed using a case-
only analysis. We performed logistic regression with ER status as the dependent 
variable and the lead variant at each strong signal in the fine-mapping region as the 
independent variables. We used FDR (5%) to adjust for multiple testing.

OncoArrayonly stepwise analysis. To evaluate whether the lower coverage in 
iCOGS could affect the identification of independent signals, we ran stepwise 
multinomial regression using only the OncoArray dataset. We identified 249 
independent signals. Ninety-two signals, in 67 fine-mapping regions, achieved 
a genome-wide significance level (conditional P < 5 × 10−8). Of these, 205 
signals were also identified in the meta-analysis with iCOGS. Nine independent 
variants across ten regions were not evaluated in the combined analysis due 
to their low imputation information score in iCOGS. Of these nine signals, 
two signals would be classified as main primary signals: rs114709821 at region 
chr1:145144984–146144984 (OncoArray imputation information score = 0.72); 
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and rs540848673 at region chr1:149406413–150420734 (OncoArray imputation 
information score = 0.33). Given the low number of additional signals identified 
in the OncoArray dataset alone, all analyses were based on the combined iCOGS/
OncoArray dataset.

CIMBA statistical analysis. CIMBA provided data from 60 retrospective cohort 
studies consisting of 9,445 unaffected and 9,363 affected female BRCA1 mutation 
carriers of European ancestry. Unconditional (that is, single-variant) analyses were 
performed using a score test based on the retrospective likelihood of observing 
the genotype conditional on the disease phenotype62,63. Conditional analyses, 
where more than one variant is analyzed simultaneously, cannot be performed 
in this score test framework. Therefore, conditional analyses were performed by 
Cox regression, allowing for adjustment of the conditionally independent variants 
identified by the BCAC/DRIVE analyses. All models were stratified by country 
and birth cohort, and adjusted for relatedness (unconditional models used kinship-
adjusted standard errors based on the estimated kinship matrix; conditional 
models used cluster robust standard errors based on phenotypic family data).

Data from the iCOGS array and OncoArray were analyzed separately and 
combined to give an overall BRCA1 association by fixed-effects meta-analysis. 
Variants were excluded from further analyses if they exhibited evidence of 
heterogeneity (heterogeneity P < 1 × 10−4) between iCOGS and OncoArray, had a 
MAF < 0.005, were poorly imputed (imputation information score < 0.3) or were 
imputed to iCOGS only (that is, they must have been imputed to OncoArray or 
iCOGS and OncoArray).

Metaanalysis of ERnegative cases in BCAC with BRCA1 mutation carriers 
from CIMBA. BRCA1 mutation carrier association results were combined with 
the BCAC multinomial regression ER-negative association results in a fixed-
effects meta-analysis. Variants considered for analysis must have passed all 
previous quality control steps and have had MAF ≥ 0.005. All meta-analyses were 
performed using the METAL software64. Instances where spurious associations 
might occur were investigated by assessing the linkage disequilibrium between a 
possible spurious association and the conditionally independent variants. High 
linkage disequilibrium between a variant and a conditionally independent variant 
within its region causes model instability through collinearity, and convergence 
of the model likelihood maximization may not be reliable. Where the association 
appeared to be driven by collinearity, the signals were excluded.

Heritability estimation. To estimate the frailty-scale heritability due to all of the 
fine-mapping signals, we used the formula:

h2 ¼ 2 γ0TRγ0 � τ0T Iτ0
� �

Here, γ0 ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

p

I
 and τ0 ¼ τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

p

I
, where p is a vector of allele 

frequencies, γ are the estimated per-allele odds ratios, τ are the corresponding 
standard errors and R is the correlation matrix of genotype frequencies.

To adjust for the overestimation resulting from only including signals 
passing a given significance threshold, we adapted the approach of ref. 65, based 
on maximizing the likelihood, conditional on the test statistic passing the 
relevant threshold. Since our analyses were based on estimating ER-negative 
and ER-positive odds ratios simultaneously, the method needed to be adapted 
to maximize a conditional bivariate normal likelihood. Following ref. 65, we then 
estimated mean square error estimates based on a weighted mean of the maximum 
likelihood estimates and the naïve estimates, which were shown to be unbiased in 
the 1-degree of freedom case. The estimated effect sizes for overall breast cancer 
were computed as a weighted mean of the ER-negative and ER-positive estimates, 
based on the proportions of each subtype in the whole study (weights: 0.21 and 
0.79). The results were then expressed in terms of the proportion of the FRR to 
first-degree relatives of affected women, using the formula h2/(2log[λ]), where the 
FRR λ was assumed to be 2 (ref. 2).

eQTL analysis. Total RNA was extracted from normal breast tissue in formalin-
fixed paraffin-embedded breast cancer tissue blocks from 264 NHS participants32. 
Transcript expression levels were measured using the Glue Grant Human 
Transcriptome Array version 3.0 at the Molecular Biology Core Facilities, Dana-
Farber Cancer Institute. Gene expression was normalized and summarized into 
log2 values using RMA (Affymetrix Power Tools version 1.18.012). Quality control 
was performed using GlueQC and arrayQualityMetrics version 3.24.014. Genome-
wide data on variants were generated using the Illumina HumanHap550 BeadChip 
as part of the Cancer Genetic Markers of Susceptibility initiative66. Imputation to 
the 1000KGP Phase 3 version 5 ALL reference panel was performed using MACH 
to pre-phase measured genotypes, and minimac to impute.

Expression analyses were performed using data from the TCGA and 
METABRIC projects34,38. The TCGA eQTL analysis was based on 458 breast 
tumors that had matched gene expression, copy number and methylation profiles, 
together with the corresponding germline genotypes available. All 458 individuals 
were of European ancestry, as ascertained using the genotype data and the Local 
Ancestry in Admixed Populations (LAMP) software package (LAMP estimate 
cut-off > 95% European)67. Germline genotypes were imputed into the 1000 

Genomes Project reference panel (October 2014 release) using IMPUTE version 2 
(refs. 68,69). Gene expression had been measured on the Illumina HiSeq 2000 RNA 
sequencing (RNA-Seq) platform (gene-level RSEM normalized counts70), copy 
number estimates were derived from Affymetrix SNP 6.0 (somatic copy number 
alteration minus germline copy number variation called using the GISTIC2 
algorithm71), and methylation beta values were measured on the Illumina Infinium 
HumanMethylation450. Expression QTL analysis focused on all variants within 
each of the 152 genomic intervals that had been subjected to fine-mapping for their 
association with breast cancer susceptibility. Each of these variants was evaluated 
for its association with the expression of every gene within 2 Mb that had been 
profiled for each of the three data types. The effects of tumor copy number and 
methylation on gene expression were first regressed out using a method described 
previously72. eQTL analysis was performed by linear regression, with residual gene 
expression as the outcome, germline SNP genotype dosage as the covariate of 
interest, and ESR1 expression and age as additional covariates, using the R package 
Matrix eQTL73.

The METABRIC eQTL analysis was based on 138 normal breast tissue 
samples resected from patients with breast cancer of European ancestry. Germline 
genotyping for the METABRIC study was also done on the Affymetrix SNP 6.0 
array, and gene expression in the METABRIC study was measured using the 
Illumina HT12 microarray platform (probe-level estimates). No adjustment was 
implemented for somatic copy number and methylation status since we were 
evaluating eQTLs in normal breast tissue. All other steps were identical to the 
TCGA eQTL analysis described above.

Genomic features enrichment. We explored the overlap of CCVs and 
excluded variants with 90 transcription factors, ten histone marks and DNase 
hypersensitivity sites in 15 breast cell lines and eight normal human breast 
tissues. We analyzed data from the Encyclopedia of DNA Elements (ENCODE) 
Project74,75, Roadmap Epigenomics Projects76, the International Human Epigenome 
Consortium27,77, Pellacani et al.78, TCGA33, METABRIC34, the ReMap database (we 
included 241 transcription factor annotations from ReMap (from a total of 2,825), 
which showed at least 2% overlap for any of the phenotype SNP sets)79 and other 
data obtained through the National Center for Biotechnology Information Gene 
Expression Omnibus. Promoters were defined following the procedure defined 
in ref. 78 (that is, ±2 kilobases (kb) from a gene transcription start site) using an 
updated version of the RefSeq genes (refGene version updated 11 April 2017)80. 
Transcribed regions were defined using the same version of RefSeq genes. lncRNA 
annotation was obtained from GENCODE (version 19)81

To include eQTL results in the enrichment analysis we: (1) identified all of the 
genes for which summary statistics were available; (2) defined the most significant 
eQTL variant for each gene (index eQTL variant; P value threshold ≤ 5 × 10−4); and 
(3) classified variants with P values within two orders of magnitude of the index 
expression variant as the credible set of eQTL variants (that is, the best candidates 
to drive expression of the gene). Variants within at least one eQTL credible set 
were defined as expression variants. We evaluated the overlap between eQTL 
credible sets and CCVs (risk variants credible set). We evaluated the enrichment 
of CCVs for genomic features using logistic regression, with CCV (versus non-
CCV variants) being the outcome. To adjust for the correlation among variants in 
the same fine-mapping region, we used robust variance estimation for clustered 
observations (R function multiwaycov). The associated variants at an FDR of 5% 
were included in a stepwise forward logistic regression procedure to select the most 
parsimonious model. A likelihood ratio test was used to compare multinomial 
logistic regression models with and without equality effect constraints to evaluate 
whether there was heterogeneity among the effect sizes for ER positive, ER negative 
or signals equally associated with both phenotypes (ER neutral).

To validate the disease specificity of the regulatory regions identified through 
this analysis, we followed the same approach for the autoimmune-related CCVs 
from ref. 29 (n = 4,192). Variants excluded as candidate causal variants, and within 
500 kb upstream and downstream of the index variant for each signal, were 
classified as excluded variants (n = 1,686,484). We then tested the enrichment 
for both the breast cancer and autoimmune CCVs with breast and T and B cell 
enhancers. We also evaluated the overlap of our CCVs with ENCODE enhancer-
like and promoter-like regions for 111 tissues, primary cells, immortalized cell lines 
and in vitro-differentiated cells. Of these, 73 had available data for both enhancer- 
and promoter-like regions.

Transcription binding site motif analysis. We conducted a search to find motif 
occurrences for transcription factors at active regulatory regions significantly 
enriched in CCVs. For this, we used two publicly available databases: Factorbook82 
and JASPAR 2016 (ref. 83). For the search using Factorbook, we included the 
motifs for the transcription factors discovered in the cell lines where significant 
enrichment was found in our genomic features analysis. We also searched for all 
of the available motifs for Homo sapiens in the JASPAR database (JASPAR CORE 
2016; TFBSTools84). Using the USCS sequence (BSgenome.Hsapiens.USCS.hg19) as 
a reference, we created fasta sequences with the reference and alternative alleles for 
all of the variants included in our analysis plus 20 base pairs flanking each variant. 
We used FIMO (version 4.11.2; Grant et al.85) to scan all of the fasta sequences, 
searching for the JASPAR and Factorbook motifs to identify any overlap of any 
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PolyPhen-2 (ref. 91), SIFT92 and MAPP93 were used to predict the consequences of 
missense coding variants. MaxEntScan94, Splice-Site Finder and Human Splicing 
Finder95 were used to predict splicing effects.

INQUISIT analysis. Logic underlying INQUISIT predictions. Briefly, genes were 
considered to be potential targets of candidate causal variants through effects on: (1) 
distal gene regulation; (2) proximal regulation; or (3) a gene’s coding sequence. We 
intersected CCV positions with multiple sources of genomic information, including 
chromatin interactions from capture Hi-C experiments performed in a panel of 
six breast cell lines96, ChIA-PET97 and Hi-C98. We used computational enhancer–
promoter correlations (PreSTIGE99, IM-PET100, FANTOM5 (ref. 101) and super-
enhancers28), results for breast tissue-specific expression variants from multiple 
independent studies (TCGA, METABRIC and NHS; Methods), allele-specific 
imbalance in gene expression102, transcription factor and histone modification 
ChIP-Seq from the ENCODE and Roadmap Epigenomics Projects, together 
with the genomic features found to be significantly enriched as described above, 
gene expression RNA-Seq from several breast cancer lines and normal samples, 
and topologically associated domain boundaries from T-47D cells (ENCODE103; 
Methods). To assess the impact of intragenic variants, we evaluated their potential 
to alter splicing using Alamut Batch to identify new and cryptic donors and 
acceptors, and several tools to predict the effects of coding sequence changes (see 
‘Variant annotation’ section). Variants potentially affecting post-translational 
modifications were downloaded from the ‘A Website Exhibits SNP On Modification 
Event’ database (http://www.awesome-hust.com/)104. The output from each tool was 
converted to a binary measure to indicate deleterious or tolerated predictions.

Scoring hierarchy. Each target gene prediction category (distal, promoter or coding) 
was scored according to different criteria. Genes predicted to be distally regulated 
targets of CCVs were awarded points based on physical links (for example, CHi-
C), computational prediction methods, allele-specific expression or expression 
variant associations. All CCVs and HPPVs were considered as potentially involved 
in distal regulation. Intersection of a putative distal enhancer with genomic 
features found to be significantly enriched (see ‘Genomic features enrichment’ 
for details) were further upweighted. Multiple independent interactions were 
awarded an additional point. CCVs and HPPVs in gene proximal regulatory 
regions were intersected with histone ChIP-Seq peaks characteristic of promoters 
and assigned to the overlapping transcription start sites (defined as −1.0 kb 
to +0.1 kb). Further points were awarded to such genes if there was evidence 
of expression variant association or allele-specific expression, while a lack of 
expression resulted in down-weighting as potential targets. Potential coding 
changes, including missense, nonsense and predicted splicing alterations, resulted 
in the addition of one point to the encoded gene for each type of change, while 
lack of expression reduced the score. We added an additional point for predicted 
target genes that were also breast cancer drivers. For each category, scores ranged 
from 0 to 7 (distal), 0–3 (promoter) or 0 to 2 (coding). We converted these scores 
into ‘confidence levels’: level 1 (highest confidence; distal score > 4, promoter 
score ≥ 3 and coding score > 1); level 2 (1 ≤ distal score ≤ 4, promoter score = 1 or 
2 and coding score = 1); and level 3 (0 < distal score < 1, 0 < promoter score < 1 
and 0 < coding < 1). For genes with multiple scores (for example, those predicted 
as targets from multiple independent risk signals or predicted to be impacted 
in several categories), we recorded the highest score. Driver and transcription 
factor gene enrichment analysis was carried out using INQUISIT scores before 
adding a point for driver gene status. Modifications to the pipeline since original 
publication2 included:

•	 Topologically associated domain boundary definitions from ENCODE T-47D 
Hi-C analysis. Previously, we used regions from ref. 98.

•	 eQTL (addition of NHS normal and tumor samples).
•	 Allele-specific imbalance using TCGA and Genotype-Tissue Expression RNA-

Seq data102.
•	 Capture Hi-C data from six breast cell lines96.
•	 Additional bio-features derived from global enrichment in this study.
•	 Variants affecting sites of post-translational modification104.

Multi-signal targets. To test whether more genes were targeted by multiple signals 
than would be expected by chance, we modeled the number of signals per gene 
by negative binomial regression (R function glm.nb; package MASS) and Poisson 
regression (R function glm; package stats) with ChIA-PET interactions as a 
covariate, and adjusted by fine-mapping region. Likelihood ratio tests were used to 
compare goodness of fit. Rootograms were created using the R function rootogram 
(package vcd).

Pathway analysis. The pathway gene set database dated 1 September 2018 was 
used105 (http://download.baderlab.org/EM_Genesets/current_release/Human/
symbol/). This database contains pathways from Reactome106, the NCI Pathway 
Interaction Database107, Gene Ontology108, HumanCyc109, MSigdb110, NetPath111 
and Panther112. All duplicated pathways, defined in two or more databases, were 
included. To provide more biologically meaningful results, only pathways that 
contained ≤200 genes were used.

of the alleles for each of the variants (setting the P value threshold to 10−3). We 
subsequently determined whether our CCVs were more frequency overlapping a 
particular transcription factor binding motif when compared with the excluded 
variants. We ran these analyses for all of the strong signals, but also strong signals 
stratified by ER status. Also, we subset this analysis to the variants located at 
regulatory regions in an ER-positive cell line (MCF-7 marked by H3K4me1; 
ENCODE identification: ENCFF674BKS) and evaluated whether the ER-positive 
CCVs overlapped any of the motifs more frequently than the excluded variants. 
We also evaluated the change in total binding affinity caused by the ER-positive 
CCV alternative allele for all but one (2:217955891:T:<CN0>:0) of the ER-positive 
CCVs (MatrixRider86).

Subsequently, we evaluated whether the MCF-7 regions demarked by 
H3K4me1 (ENCODE identification: ENCFF674BKS) and overlapped by 
ER-positive CCVs were enriched in known TFBS motifs. First, we subset the 
ENCODE bed file ENCFF674BKS to identify MCF-7 H3K4me1 peaks overlapped 
by the ER-positive CCVs (n = 107), as well as peaks only overlapped by excluded 
variants (n = 11,099), using BEDTools87. We created fasta format sequences 
using genomic coordinate data from the intersected bed files. To create a control 
sequence set, we used the script included with the MEME Suite (fasta-shuffle-
letters) to create ten shuffled copies of each sequence overlapped by ER-positive 
CCVs (n = 1,070). We then used AME88 to interrogate whether the 107 MCF-7 
H3K4me1 genomic regions overlapped by ER-positive CCVs were enriched 
in known TFBS consensus motifs when compared with the shuffled control 
sequences, or with the MCF-7 H3K4me1 genomic regions overlapped only by 
excluded variants. We used the command line version of AME (version 4.12.0), 
selecting as a scoring method the total number of positions in the sequence whose 
motif score P value was <10−3, and using a one-tailed Fisher’s exact test as the 
association test.

PAINTOR analysis. To further refine the set of CCVs, we performed empirical 
Bayes fine-mapping using PAINTOR to integrate marginal genetic association 
summary statistics, linkage disequilibrium patterns and biological features31,89. 
PAINTOR derives jointly the posterior probability for causality of all variants 
along the respective contribution of genomic features, in order to maximize the 
log-likelihood of the data across all regions. PAINTOR does not assume a fixed 
number of causal variants in each region, although it implicitly penalizes non-
parsimonious causal models. We applied PAINTOR separately to association 
results for overall breast cancer (in 85 regions determined to have at least one 
ER-neutral association or ER-positive and ER-negative association), ER-positive 
breast cancer (in 48 regions determined to have at least one ER-positive-
specific association) and ER-negative breast cancer (in 22 regions determined 
to have at least one ER-negative-specific association). To avoid artefacts due 
to mismatches between the linkage disequilibrium in study samples and the 
linkage disequilibrium matrix supplied to PAINTOR, we used association logistic 
regression summary statistics from OncoArray data only, and estimated the linkage 
disequilibrium structure in the OncoArray sample. For each endpoint, we fit four 
models with increasing numbers of genomic features selected from the stepwise 
enrichment analyses described above: model 0 (with no genomic features; assumes 
each variant is equally likely to be causal a priori); model 1 (with those genomic 
features selected with the stopping rule P < 0.001); model 2 (with those genomic 
features selected with the stopping rule P < 0.01); and model 3 (with those genomic 
features selected with the stopping rule P < 0.05).

We used the Bayesian information criterion (BIC) to choose the best-fitting 
model for each outcome. As PAINTOR estimates the marginal log-likelihood 
of the observed Z scores using Gibbs sampling, we used a shrunk mean BIC 
across multiple Gibbs chains to account for the stochasticity in the log-likelihood 
estimates. We ran PAINTOR four times to generate four independent Gibbs 
chains, and estimated the BIC difference between model i and model j as 
Δij ¼ 100

Vþ100

� �
BICi � BICj
� �

I

. This assumes an n(0,100) prior on the difference, or 

roughly a 16% chance that model i would be decisively better than model j (that 
is |BICi − BICj| > 10). We then proceeded to choose the best-fitting model in a 
stepwise fashion: starting with a model with no annotations, we selected a model 
with more annotations in favor of a model with fewer if the larger model was a 
considerably better fit (that is, Δij > 2). Model 1 was the best fit according to this 
process for overall and ER-positive breast cancer, while model 0 was the best fit for 
ER-negative breast cancer.

Differences between the PAINTOR and CCV outputs may be due to several 
factors. By considering functional enrichment and joint linkage disequilibrium 
among all SNPs, PAINTOR may refine the set of likely causal variants. Rather than 
imposing a hard threshold, PAINTOR allows for a gradient of evidence supporting 
causality; in addition, the two sets of calculations are based on different summary 
statistics: CCV analyses used both iCOGS and OncoArray genotypes, while 
PAINTOR used only OncoArray data (Fig. 1 and Methods).

Variant annotation. Variant genome coordinates were converted to assembly 
GRCh38 with liftOver and uploaded to Variant Effect Predictor90 to determine 
their effect on genes, transcripts and protein sequence. The commercial software 
Alamut Batch version 1.6 was also used to annotate coding and splicing variants. 
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We interrogated the pathway annotation sets with the list of high-confidence 
(level 1) INQUISIT genes. The significance of over-representation of the 
INQUISIT genes within each pathway was assessed with a hypergeometric test 
using the R function phyper as follows:
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where x is the number of level 1 genes that overlap with any of the genes in 
the pathway, n is the number of genes in the pathway, m is the number of level 1 
genes that overlap with any of the genes in the pathway dataset (mstrong GO = 145; 
mER-positive GO = 50; mER-negative GO = 27; mER-neutral GO = 73; mstrong pathways = 121; mER-positive 

pathways = 38; mER-negative pathways = 21; mER-neutral pathways = 68) and N is the number of genes 
in the pathway dataset (Ngenes GO = 14,252; Ngenes pathways = 10,915). We only included 
pathways that overlapped with at least two level 1 genes. We used the Benjamini–
Hochberg FDR113 at the 5% level.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The credible set of causal variants (determined by either multinomial stepwise 
regression or PAINTOR) is provided in Supplementary Table 2c. Further 
information and requests for resources should be directed to M.K.B. (bcac@
medschl.cam.ac.uk).

References
 59. Couch, F. J. et al. Genome-wide association study in BRCA1 mutation 

carriers identifies novel loci associated with breast and ovarian cancer risk. 
PLoS Genet. 9, e1003212 (2013).

 60. Gaudet, M. M. et al. Identification of a BRCA2-specific modifier locus at 
6p24 related to breast cancer risk. PLoS Genet. 9, e1003173 (2013).

 61. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new 
multipoint method for genome-wide association studies by imputation of 
genotypes. Nat. Genet. 39, 906–913 (2007).

 62. Antoniou, A. C. et al. RAD51 135G → C modifies breast cancer risk among 
BRCA2 mutation carriers: results from a combined analysis of 19 studies. 
Am. J. Hum. Genet. 81, 1186–1200 (2007).

 63. Barnes, D. R. et al. Evaluation of association methods for analysing 
modifiers of disease risk in carriers of high-risk mutations. Genet. 
Epidemiol. 36, 274–291 (2012).

 64. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis 
of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

 65. Zhong, H. & Prentice, R. L. Bias-reduced estimators and confidence 
intervals for odds ratios in genome-wide association studies. Biostatistics 9, 
621–634 (2008).

 66. Hunter, D. J. et al. A genome-wide association study identifies alleles in 
FGFR2 associated with risk of sporadic postmenopausal breast cancer.  
Nat. Genet. 39, 870–874 (2007).

 67. Baran, Y. et al. Fast and accurate inference of local ancestry in Latino 
populations. Bioinformatics 28, 1359–1367 (2012).

 68. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. 
Fast and accurate genotype imputation in genome-wide association studies 
through pre-phasing. Nat. Genet. 44, 955–959 (2012).

 69. Genomes Project, C. et al. An integrated map of genetic variation from 
1,092 human genomes. Nature 491, 56–65 (2012).

 70. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from 
RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 
323 (2011).

 71. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident 
localization of the targets of focal somatic copy-number alteration in 
human cancers. Genome Biol. 12, R41 (2011).

 72. Li, Q. et al. Integrative eQTL-based analyses reveal the biology of breast 
cancer risk loci. Cell 152, 633–641 (2013).

 73. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix 
operations. Bioinformatics 28, 1353–1358 (2012).

 74. The ENCODE Project Consortium An integrated encyclopedia of DNA 
elements in the human genome. Nature 489, 57–74 (2012).

 75. Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 
44, D726–D732 (2016).

 76. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human 
epigenomes. Nature 518, 317–330 (2015).

 77. Stunnenberg, H. G. International Human Epigenome Consortium &  
Hirst, M. The International Human Epigenome Consortium: a blueprint  
for scientific collaboration and discovery. Cell 167, 1145–1149 (2016).

NatuRe GeNetics | www.nature.com/naturegenetics

https://doi.org/10.1101/520916
https://doi.org/10.1101/521013
https://doi.org/10.1101/521013
http://www.nature.com/naturegenetics


Articles NATURe GeNeTIcS

and M.L. provided software. L.Fa., H.A., J.Bee., D.R.B., J.Al.., S.Ka., C.Tu., M.Mor. and 
X.J. performed a formal analysis. S.A., K.A., M.R.A., I.L.A., H.A.C., N.N.A., A.A., V.A., 
K.J.A., B.K.A., B.A., P.L.A., J.Az., J.Ba., R.B.B., D.B., A.B.F., J.Ben., M.B., K.B., A.M.B., 
C.B., W.B., N.V.B., S.E.B., B.Bo., A.B., H.Bra., H.Bre., I.B., I.W.B., A.B.W., T.B., B.Bu., 
S.S.B., Q.C., T.C., M.A.C., N.J.C., I.C., F.C., J.S.C., B.D.C., J.E.C., J.C., H.C., W.K.C., 
K.B.M., C.L.C., J.M.C., S.C., F.J.C., A.C., S.S.C., C.C., K.C., M.B.D., M.D.H., P.D., O.D., 
Y.C.D., G.S.D., S.M.D., T.D., I.D.S., A.D., S.D., M.Dum., M.Dur., L.D., M.Dw., D.M.E., 
C.E., M.E., D.G.E., P.A.F., U.F., O.F., G.F., H.F., L.Fo., W.D.F., E.F., L.Fr., D.F., M.Ga., 
M.G.D., G.Ga., P.A.G., S.M.G., J.Ga., J.A.G., M.M.G., V.G., G.G.G., G.Gl., A.K.G., M.S.G., 
D.E.G., A.G.N., M.H.G., M.Gr., J.Gr., A.G., P.G., E.H., C.A.H., N.H., P.Ha., U.H., P.A.H., 
J.M.H., M.H., W.H., C.S.H., B.A.M., J.H., P.Hi., F.B.L., A.H., M.J.H., J.L.H., A.Ho., G.H., 
P.J.H., E.N.I., C.I., M.I., A.Jag., M.J., A.Jak., P.J., R.J., R.C.J., E.M.J., N.J., M.E.J., A.Juk., 
A.Jun., R.Ka., D.K., B.Pes., R.Ke., M.J.K., E.K., J.I.K., J.K., C.M.K., Y.K., I.K., V.K., S.Ko., 
K.K.S., T.K., A.K., K.K., Y.L., D.L., E.L., G.L., J.Le., F.L., A.Li., W.L., J.Lo., A.Lo., J.T.L., 
J.Lu., R.J.M., T.M., E.M., A.Ma., M.Ma., S.Man., S.Mag., M.E.M., K.Ma., D.M., R.M., 
L.M., C.M., N.Me., A.Me., P.M., A.Mi., N.Mi., M.Mo., F.M., A.M.M., V.M.M., T.A., 
S.A.N., R.N., K.L.N., N.Z.N., H.N., P.N., F.C.N., L.N.Z., A.N., K.O., E.O., O.I.O., H.O., 
N.O., A.O., V.S.P., J.Pa., S.K.P., T.W.P.S., M.T.P., J.Pau., I.S.P., B.Pei., B.Y.K., P.P., J.Pe., 
D.P.K., K.Pr., R.P., N.P., D.P., M.A.P., K.Py., P.R., S.J.R., J.R., R.R.M., G.R., H.A.R., M.R., 
A.R., C.M.R., E.S., E.S.H., D.P.S., M.Sa., C.Sa., E.J.S., M.T.S., D.F.S., R.K.S., A.S., M.J.S., 
B.S., P.Sc., C.Sc., R.J.S., L.S., C.M.D., M.Sh., P.Sh., C.Y.S., X.S., C.F.S., T.P.S., S.S., M.C.S., 
J.J.S., A.B.S., J.St., D.S.L., C.Su., A.J.S., R.M.T., Y.Y.T., W.J.T., J.A.T., M.R.T., M.Te., S.H., 
M.B.T., A.T., M.Th., D.L.T., M.G.T., M.Ti., A.E.T., R.A.E., I.T., D.T., G.T.M., M.A.T., N.T., 
M.Tz., H.U.U., C.M.V., C.J.A., L.E.K., E.J.R., A.Ve., A.Vi., J.V., M.J.V., Q.W., B.W., C.R.W., 
J.N.W., C.W., H.W., R.W., A.W., A.H.W., D.Y., Y.Z. and W.Z. provided resources. K.Mi., 
J.D., M.K.B., Q.W., R.Ke., J.C.C. and M.K.S. curated and managed the data. L.Fa., H.A., 
J.Bee., G.C.T., D.F.E., P.K. and A.M.D. wrote the original draft of the manuscript. D.R.B., 
J.Al., P.So., A.Le., V.N.K., J.D.E., S.L.E., A.C.A. and J.Si wrote and edited the manuscript. 
L.Fa., H.A., J.Bee. and C.Tu visualized the results. A.C.A., G.C.T., J.Si., D.F.E., P.K. and 
A.M.D. supervised the project. L.Fa., P.D.P.P., J.C.C., M.G.C., M.K.S., R.L.M., V.N.K., 
J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K. and A.M.D. acquired funding. All authors 
read and approved the final version of the manuscript.

competing interests
The authors declare no competing interests.

additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41588-019-0537-1.

Correspondence and requests for materials should be addressed to P.K. or A.M.D.

Reprints and permissions information is available at www.nature.com/reprints.

 110. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc. Natl Acad. 
Sci. USA 102, 15545–15550 (2005).

 111. Kandasamy, K. et al. NetPath: a public resource of curated signal 
transduction pathways. Genome Biol. 11, R3 (2010).

 112. Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies 
indexed by function. Genome Res. 13, 2129–2141 (2003).

 113. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a 
practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 
Stat. Methodol. 57, 289–300 (1995).

acknowledgements
We thank all of the individuals who took part in these studies, as well as all of the 
researchers, clinicians, technicians and administrative staff who enabled this work 
to be carried out. This work was supported by the European Union’s Horizon 2020 
Research and Innovation Programme under Marie Sklodowska-Curie grant agreement 
number 656144. Genotyping of the OncoArray was principally funded from three 
sources: the PERSPECTIVE project (funded by the Government of Canada through 
Genome Canada and the Canadian Institutes of Health Research, the ‘Ministère de 
l’Économie de la Science et de l’Innovation du Québec’ (through Genome Québec) 
and the Quebec Breast Cancer Foundation); the NCI Genetic Associations and 
Mechanisms in Oncology (GAME-ON) initiative and the Discovery, Biology and Risk 
of Inherited Variants in Breast Cancer (DRIVE) project (NIH grants U19 CA148065 
and X01HG007492); and Cancer Research UK (C1287/A10118, C8197/A16565 and 
C1287/A16563). BCAC is funded by Cancer Research UK (C1287/A16563), by the 
European Community’s Seventh Framework Programme under grant agreement 223175 
(HEALTH-F2-2009-223175) (COGS) and by the European Union’s Horizon 2020 
Research and Innovation Programme under grant agreements 633784 (B-CAST) and 
634935 (BRIDGES). Genotyping of the iCOGS array was funded by the European Union 
(HEALTH-F2-2009-223175), Cancer Research UK (C1287/A10710), the Canadian 
Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ 
program, and the Ministry of Economic Development, Innovation and Export Trade of 
Quebec (grant PSR-SIIRI-701). Combining of the GWAS data was supported in part by 
NIH Cancer Post-Cancer GWAS initiative grant U19 CA 148065 (DRIVE; part of the 
GAME-ON initiative). For a full description of funding and acknowledgments, see the 
Supplementary Note.

author contributions
L.Fa., H.A., J.Bee., D.R.B., J.Al., S.Ka., K.A.P., K.Mi., P.So., A.Le., M.Gh., P.D.P.P., 
J.C.C., M.G.C., M.K.S., R.L.M., V.N.K., J.D.E., S.L.E., A.C.A., G.C.T., J.Si., D.F.E., P.K. 
and A.M.D. conceived of the study idea. L.Fa., H.A., J.Bee., D.R.B., J.Al., J.D.E., S.L.E., 
A.C.A., G.C.T., J.Si., D.F.E., P.K. and A.M.D. developed the methodology. J.Bee., J.P.T. 

NatuRe GeNetics | www.nature.com/naturegenetics

https://doi.org/10.1038/s41588-019-0537-1
https://doi.org/10.1038/s41588-019-0537-1
http://www.nature.com/reprints
http://www.nature.com/naturegenetics


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Alison Dunning, Peter Kraft

Last updated by author(s): Aug 10, 2019

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for the data collection.

Data analysis The software used have been described in details in Online Methods section. Softwares included: IMPUTE2, MEME Suite (FIMO, AME, 
fasta-shuffle-letters), Meta, R (R libraries: stats, nnet, MASS, vcd, TFBSTools, MatrixRider, multinomRob, multiwaycov), Bedtools, MACs, 
Variant Effect Predictor, Alamut® Batch v1.6 (tools PolyPhen-2 , SIFT, MAPP, MaxEntScan, Splice-Site Finder, Human Splicing Finder), 
PAINTOR, liftover, RMA, GlueQC,, arrayQualityMetrics v3.24.014, MACH, Local Ancestry in admixed Populations, GISTIC2. 
 
The custom scripts used during the study are available from the corresponding author on reasonable request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The credible set of causal variants (determined by either multinomial stepwise regression and PAINTOR) is provided in Supplementary Table S2C. Further 
information and requests for resources should be directed to and will be fulfilled by Manjeet Bolla (bcac@medschl.cam.ac.uk)



2

nature research  |  reporting sum
m

ary
O

ctober 2018

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was made. We aimed to bring together the largest possible sample size (109,900 breast cancer cases and 88,937 
controls of European ancestry) with GWAS imputed up to 1000 Genomes Project Panel to study the role of genetic variants in breast cancer. 
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Population characteristics Analyses were conducted on breast cancer cases and controls of European ancestry. The association between each variant and 
breast cancer risk was adjusted by study (iCOGS) or country (OncoArray), and eight (iCOGS) or ten (OncoArray) ancestry-
informative principal components.

Recruitment Epidemiological data for European women were obtained from 75 breast cancer case-control studies participating in the Breast 
Cancer Association Consortium (BCAC). The majority of studies are population-based case–control studies, or case–control 
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