G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845","Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.ru":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.citation.en":["Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5","Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709","Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264","Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776","Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30.","Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298.","El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082","Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974","Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6.","González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5","Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321","Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72.","Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689","Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077","Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50.","Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3.","Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3.","Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225","Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283","Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24.","Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8932"],"dc.date.accessioned_dt":"2025-07-09T13:59:02Z","dc.date.accessioned":["2025-07-09T13:59:02Z"],"dc.date.available":["2025-07-09T13:59:02Z"],"publication_grp":["123456789/8932"],"bi_4_dis_filter":["madelung’s disease\n|||\nMadelung’s disease","lipectomy\n|||\nlipectomy","диффузный симметричный липоматоз\n|||\nдиффузный симметричный липоматоз","шеи новообразования\n|||\nшеи новообразования","липэктомия\n|||\nлипэктомия","diffuse symmetric lipomatosis\n|||\ndiffuse symmetric lipomatosis","adipose tissue proliferation\n|||\nadipose tissue proliferation","жировой ткани разрастание\n|||\nжировой ткани разрастание","болезнь маделунга\n|||\nболезнь Маделунга","neck neoplasms\n|||\nneck neoplasms"],"bi_4_dis_partial":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_4_dis_value_filter":["липэктомия","Madelung’s disease","diffuse symmetric lipomatosis","neck neoplasms","болезнь Маделунга","adipose tissue proliferation","шеи новообразования","lipectomy","диффузный симметричный липоматоз","жировой ткани разрастание"],"bi_sort_1_sort":"systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case","bi_sort_3_sort":"2025-07-09T13:59:02Z","read":["g0"],"_version_":1837178072511545344},{"SolrIndexer.lastIndexed":"2025-05-15T09:43:03.721Z","search.uniqueid":"2-7972","search.resourcetype":2,"search.resourceid":7972,"handle":"123456789/8861","location":["m229","l684"],"location.comm":["229"],"location.coll":["684"],"withdrawn":"false","discoverable":"true","author":["Gareev, Ilgiz","Beylerli, Ozal","Musaev, Elmar","Wang, Chunlei","Pavlov, Valentin"],"author_keyword":["Gareev, Ilgiz","Beylerli, Ozal","Musaev, Elmar","Wang, Chunlei","Pavlov, Valentin"],"author_ac":["gareev, ilgiz\n|||\nGareev, Ilgiz","beylerli, ozal\n|||\nBeylerli, Ozal","musaev, elmar\n|||\nMusaev, Elmar","wang, chunlei\n|||\nWang, Chunlei","pavlov, valentin\n|||\nPavlov, Valentin"],"author_filter":["gareev, ilgiz\n|||\nGareev, Ilgiz","beylerli, ozal\n|||\nBeylerli, Ozal","musaev, elmar\n|||\nMusaev, Elmar","wang, chunlei\n|||\nWang, Chunlei","pavlov, valentin\n|||\nPavlov, Valentin"],"dc.contributor.author_hl":["Gareev, Ilgiz","Beylerli, Ozal","Musaev, Elmar","Wang, Chunlei","Pavlov, Valentin"],"dc.contributor.author_mlt":["Gareev, Ilgiz","Beylerli, Ozal","Musaev, Elmar","Wang, Chunlei","Pavlov, Valentin"],"dc.contributor.author":["Gareev, Ilgiz","Beylerli, Ozal","Musaev, Elmar","Wang, Chunlei","Pavlov, Valentin"],"dc.contributor.author_stored":["Gareev, Ilgiz\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Beylerli, Ozal\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Musaev, Elmar\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Wang, Chunlei\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Pavlov, Valentin\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen"],"dc.contributor.author.en":["Gareev, Ilgiz","Beylerli, Ozal","Musaev, Elmar","Wang, Chunlei","Pavlov, Valentin"],"dc.date.accessioned_dt":"2025-05-15T09:41:55Z","dc.date.accessioned":["2025-05-15T09:41:55Z"],"dc.date.available":["2025-05-15T09:41:55Z"],"dateIssued":["2025-01-01"],"dateIssued_keyword":["2025-01-01","2025"],"dateIssued_ac":["2025-01-01\n|||\n2025-01-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.issued_dt":"2025-01-01T00:00:00Z","dc.date.issued":["2025-01-01"],"dc.date.issued_stored":["2025-01-01\n|||\nnull\n|||\nnull\n|||\nnull\n|||\n"],"dc.description.abstract_hl":["Objective: Spontaneous (non-traumatic) intracerebral hemorrhage (ICH) is one of the major causes of global death. The purpose of our bioinformatics analysis was to detect viable pathophysiological targets and small-molecule drug candidates and to identify the precise secondary mechanisms of brain injury in ICH. Methods: The GSE24265 dataset, consisting of data from four perihematomal brain tissues and seven contralateral brain tissues, was downloaded from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs) in ICH. Online analysis tool GEO2R and Drug Susceptibility Assessment Module within the ACBI Bioinformation tool was used for data differential expression analysis. TargetScan, miRDB, and RNA22 were used to investigate the miRNAs regulating the DEGs. The functional annotation of DEGs was performed using Gene Ontology (GO) resources, and the cell signaling pathway analysis of DEGs was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). DAVID is used to perform GO function enrichment analysis and KEGG pathway analysis of candidate target genes. Enrichment analysis was performed for delving the molecular mechanism of DEGs, and protein–protein interaction (PPI) networks and microRNA (miRNA)-messenger RNA (mRNA) networks were used to reveal the hub nodes and the related interaction relationships. Hub genes and miRNA-mRNA interaction of PPI network were identified by STRING version 12.0 online software and Cytoscape. Next, the DEGs were analyzed using the L1000CDS2 database to identify small-molecule compounds with potential therapeutic effects. Results: A total of 325 upregulated genes and 103 downregulated genes associated with ICH were identified. The biological functions of DEGs associated with ICH are mainly involved in the inflammatory response, chemokine activity, and immune response. The KEGG analysis identified several pathways significantly associated with ICH, including but not limited to cytokine-cytokine receptor interaction and MAPK signaling pathway. A PPI network consisting of 188 nodes and 563 edges was constructed using STRING, and 27 hub genes were identified with Cytoscape software. The miRNA-mRNA network with high connectivity contained key 27 mRNAs (from C-C motif chemokine ligand 5 (CCL5), C-C motif chemokine ligand 8 (CCL8), …., to dishevelled-associated activator of morphogenesis 1 (DAAM1), and FRAT regulator of WNT signaling pathway 1 (FRAT1)) and 135 candidate miRNAs. These genes and miRNAs are closely related to secondary brain injury induced by ICH. In addition, a L1000CDS2 analysis of six small-molecule compounds revealed their therapeutic potential. Conclusions: Our study explores the pathogenesis of brain tissue injury promoted by neuroinflammation in ICH and extends the clinical utility of its key genes. At the same time, we constructed a miRNA-mRNA network which may play crucial roles in the pathogenesis of ICH. In addition, we obtained six small molecule compounds that will have anti-inflammatory effects on ICH, including Geldanamycin, Dasatinib, BMS-345541, Saracatinib, and Afatinib. © 2024 International Hemorrhagic Stroke Association"],"dc.description.abstract":["Objective: Spontaneous (non-traumatic) intracerebral hemorrhage (ICH) is one of the major causes of global death. The purpose of our bioinformatics analysis was to detect viable pathophysiological targets and small-molecule drug candidates and to identify the precise secondary mechanisms of brain injury in ICH. Methods: The GSE24265 dataset, consisting of data from four perihematomal brain tissues and seven contralateral brain tissues, was downloaded from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs) in ICH. Online analysis tool GEO2R and Drug Susceptibility Assessment Module within the ACBI Bioinformation tool was used for data differential expression analysis. TargetScan, miRDB, and RNA22 were used to investigate the miRNAs regulating the DEGs. The functional annotation of DEGs was performed using Gene Ontology (GO) resources, and the cell signaling pathway analysis of DEGs was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). DAVID is used to perform GO function enrichment analysis and KEGG pathway analysis of candidate target genes. Enrichment analysis was performed for delving the molecular mechanism of DEGs, and protein–protein interaction (PPI) networks and microRNA (miRNA)-messenger RNA (mRNA) networks were used to reveal the hub nodes and the related interaction relationships. Hub genes and miRNA-mRNA interaction of PPI network were identified by STRING version 12.0 online software and Cytoscape. Next, the DEGs were analyzed using the L1000CDS2 database to identify small-molecule compounds with potential therapeutic effects. Results: A total of 325 upregulated genes and 103 downregulated genes associated with ICH were identified. The biological functions of DEGs associated with ICH are mainly involved in the inflammatory response, chemokine activity, and immune response. The KEGG analysis identified several pathways significantly associated with ICH, including but not limited to cytokine-cytokine receptor interaction and MAPK signaling pathway. A PPI network consisting of 188 nodes and 563 edges was constructed using STRING, and 27 hub genes were identified with Cytoscape software. The miRNA-mRNA network with high connectivity contained key 27 mRNAs (from C-C motif chemokine ligand 5 (CCL5), C-C motif chemokine ligand 8 (CCL8), …., to dishevelled-associated activator of morphogenesis 1 (DAAM1), and FRAT regulator of WNT signaling pathway 1 (FRAT1)) and 135 candidate miRNAs. These genes and miRNAs are closely related to secondary brain injury induced by ICH. In addition, a L1000CDS2 analysis of six small-molecule compounds revealed their therapeutic potential. Conclusions: Our study explores the pathogenesis of brain tissue injury promoted by neuroinflammation in ICH and extends the clinical utility of its key genes. At the same time, we constructed a miRNA-mRNA network which may play crucial roles in the pathogenesis of ICH. In addition, we obtained six small molecule compounds that will have anti-inflammatory effects on ICH, including Geldanamycin, Dasatinib, BMS-345541, Saracatinib, and Afatinib. © 2024 International Hemorrhagic Stroke Association"],"dc.description.abstract.en":["Objective: Spontaneous (non-traumatic) intracerebral hemorrhage (ICH) is one of the major causes of global death. The purpose of our bioinformatics analysis was to detect viable pathophysiological targets and small-molecule drug candidates and to identify the precise secondary mechanisms of brain injury in ICH. Methods: The GSE24265 dataset, consisting of data from four perihematomal brain tissues and seven contralateral brain tissues, was downloaded from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (DEGs) in ICH. Online analysis tool GEO2R and Drug Susceptibility Assessment Module within the ACBI Bioinformation tool was used for data differential expression analysis. TargetScan, miRDB, and RNA22 were used to investigate the miRNAs regulating the DEGs. The functional annotation of DEGs was performed using Gene Ontology (GO) resources, and the cell signaling pathway analysis of DEGs was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). DAVID is used to perform GO function enrichment analysis and KEGG pathway analysis of candidate target genes. Enrichment analysis was performed for delving the molecular mechanism of DEGs, and protein–protein interaction (PPI) networks and microRNA (miRNA)-messenger RNA (mRNA) networks were used to reveal the hub nodes and the related interaction relationships. Hub genes and miRNA-mRNA interaction of PPI network were identified by STRING version 12.0 online software and Cytoscape. Next, the DEGs were analyzed using the L1000CDS2 database to identify small-molecule compounds with potential therapeutic effects. Results: A total of 325 upregulated genes and 103 downregulated genes associated with ICH were identified. The biological functions of DEGs associated with ICH are mainly involved in the inflammatory response, chemokine activity, and immune response. The KEGG analysis identified several pathways significantly associated with ICH, including but not limited to cytokine-cytokine receptor interaction and MAPK signaling pathway. A PPI network consisting of 188 nodes and 563 edges was constructed using STRING, and 27 hub genes were identified with Cytoscape software. The miRNA-mRNA network with high connectivity contained key 27 mRNAs (from C-C motif chemokine ligand 5 (CCL5), C-C motif chemokine ligand 8 (CCL8), …., to dishevelled-associated activator of morphogenesis 1 (DAAM1), and FRAT regulator of WNT signaling pathway 1 (FRAT1)) and 135 candidate miRNAs. These genes and miRNAs are closely related to secondary brain injury induced by ICH. In addition, a L1000CDS2 analysis of six small-molecule compounds revealed their therapeutic potential. Conclusions: Our study explores the pathogenesis of brain tissue injury promoted by neuroinflammation in ICH and extends the clinical utility of its key genes. At the same time, we constructed a miRNA-mRNA network which may play crucial roles in the pathogenesis of ICH. In addition, we obtained six small molecule compounds that will have anti-inflammatory effects on ICH, including Geldanamycin, Dasatinib, BMS-345541, Saracatinib, and Afatinib. © 2024 International Hemorrhagic Stroke Association"],"dc.doi":["10.1016/j.hest.2024.07.007"],"dc.doi.en":["10.1016/j.hest.2024.07.007"],"dc.identifier.issn":["2589-238X"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8861"],"dc.language.iso":["en"],"dc.language.iso.en":["en"],"dc.publisher":["KeAi Communications Co."],"dc.publisher.en":["KeAi Communications Co."],"dc.relation.ispartofseries":["Brain Hemorrhages;v. 6 № 1"],"dc.relation.ispartofseries.en":["Brain Hemorrhages;v. 6 № 1"],"subject":["Bioinformatics analysis","Intracerebral hemorrhage","miRNA–mRNA network","Neuroinflammation","Prognosis","Signaling pathways","Therapy","Scopus"],"subject_keyword":["Bioinformatics analysis","Bioinformatics analysis","Intracerebral hemorrhage","Intracerebral hemorrhage","miRNA–mRNA network","miRNA–mRNA network","Neuroinflammation","Neuroinflammation","Prognosis","Prognosis","Signaling pathways","Signaling pathways","Therapy","Therapy","Scopus","Scopus"],"subject_ac":["bioinformatics analysis\n|||\nBioinformatics analysis","intracerebral hemorrhage\n|||\nIntracerebral hemorrhage","mirna–mrna network\n|||\nmiRNA–mRNA network","neuroinflammation\n|||\nNeuroinflammation","prognosis\n|||\nPrognosis","signaling pathways\n|||\nSignaling pathways","therapy\n|||\nTherapy","scopus\n|||\nScopus"],"subject_tax_0_filter":["bioinformatics analysis\n|||\nBioinformatics analysis","intracerebral hemorrhage\n|||\nIntracerebral hemorrhage","mirna–mrna network\n|||\nmiRNA–mRNA network","neuroinflammation\n|||\nNeuroinflammation","prognosis\n|||\nPrognosis","signaling pathways\n|||\nSignaling pathways","therapy\n|||\nTherapy","scopus\n|||\nScopus"],"subject_filter":["bioinformatics analysis\n|||\nBioinformatics analysis","intracerebral hemorrhage\n|||\nIntracerebral hemorrhage","mirna–mrna network\n|||\nmiRNA–mRNA network","neuroinflammation\n|||\nNeuroinflammation","prognosis\n|||\nPrognosis","signaling pathways\n|||\nSignaling pathways","therapy\n|||\nTherapy","scopus\n|||\nScopus"],"dc.subject_mlt":["Bioinformatics analysis","Intracerebral hemorrhage","miRNA–mRNA network","Neuroinflammation","Prognosis","Signaling pathways","Therapy","Scopus"],"dc.subject":["Bioinformatics analysis","Intracerebral hemorrhage","miRNA–mRNA network","Neuroinflammation","Prognosis","Signaling pathways","Therapy","Scopus"],"dc.subject.en":["Bioinformatics analysis","Intracerebral hemorrhage","miRNA–mRNA network","Neuroinflammation","Prognosis","Signaling pathways","Therapy","Scopus"],"title":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"title_keyword":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"title_ac":["bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage\n|||\nBioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.title_sort":"Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage","dc.title_hl":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.title_mlt":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.title":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.title_stored":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen"],"dc.title.en":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.title.alternative":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.title.alternative.en":["Bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage"],"dc.type":["Article"],"dc.type.en":["Article"],"publication_grp":["123456789/8861"],"bi_2_dis_filter":["beylerli, ozal\n|||\nBeylerli, Ozal","wang, chunlei\n|||\nWang, Chunlei","musaev, elmar\n|||\nMusaev, Elmar","gareev, ilgiz\n|||\nGareev, Ilgiz","pavlov, valentin\n|||\nPavlov, Valentin"],"bi_2_dis_partial":["Gareev, Ilgiz","Wang, Chunlei","Pavlov, Valentin","Beylerli, Ozal","Musaev, Elmar"],"bi_2_dis_value_filter":["Gareev, Ilgiz","Wang, Chunlei","Pavlov, Valentin","Beylerli, Ozal","Musaev, Elmar"],"bi_4_dis_filter":["prognosis\n|||\nPrognosis","bioinformatics analysis\n|||\nBioinformatics analysis","mirna–mrna network\n|||\nmiRNA–mRNA network","therapy\n|||\nTherapy","intracerebral hemorrhage\n|||\nIntracerebral hemorrhage","signaling pathways\n|||\nSignaling pathways","scopus\n|||\nScopus","neuroinflammation\n|||\nNeuroinflammation"],"bi_4_dis_partial":["Bioinformatics analysis","Signaling pathways","Therapy","miRNA–mRNA network","Prognosis","Scopus","Neuroinflammation","Intracerebral hemorrhage"],"bi_4_dis_value_filter":["Bioinformatics analysis","Signaling pathways","Therapy","miRNA–mRNA network","Prognosis","Scopus","Neuroinflammation","Intracerebral hemorrhage"],"bi_sort_1_sort":"bioinformatics analysis of potential pathogenesis and risk genes of neuroinflammation-promoted brain injury in intracerebral hemorrhage","bi_sort_2_sort":"2025","bi_sort_3_sort":"2025-05-15T09:41:55Z","read":["g0"],"_version_":1832179134603722752},{"SolrIndexer.lastIndexed":"2025-04-29T12:43:34.069Z","search.uniqueid":"2-7901","search.resourcetype":2,"search.resourceid":7901,"handle":"123456789/8790","location":["m229","l684"],"location.comm":["229"],"location.coll":["684"],"withdrawn":"false","discoverable":"true","dc.abstract":["Introduction. Cardiovascular diseases (CVD) continue to be the leading cause of death worldwide. The development of new therapeutic approaches that can more accurately affect the molecular mechanisms of CVD is extremely important. Recent breakthroughs in the field of genetic engineering, such as CRISPR-Cas9 (Clustered Regularly Interspaced Palindromic Repeats/CRISPR associated protein 9) technology and related gene-modulating enzymes, open unprecedented opportunities for the creation of new therapies. These technologies make it possible not only to edit the genome, but also to directly eliminate the root causes of CVD. Aim. To analyze the literature on the use of CRISPR-Cas9 in CVD therapy. Materials and methods. The authors conducted a search for publications in the electronic databases PubMed and Elibrary. The evaluation of the articles was carried out in accordance with the recommendations of PRISMA. After the selection procedure, 72 articles were included in the review. Results. The article discusses various aspects of the use of CRISPR for the correction of genetic mutations that contribute to the development of cardiopathies, as well as the prospects of this technology in the context of gene therapy. The article focuses on the possibilities that CRISPR therapy opens up to improve the effectiveness of CVD treatment, and also emphasizes the need for further research to address issues of safety, delivery and long-term effectiveness. The results of the analysis give hope for the creation of innovative approaches to the fight against cardiac ailments, which can significantly improve the quality of life of patients and reduce the incidence rate. Conclusion. To date, the rapidly developing CRISPR toolkit has been successfully implemented into clinical practice due to the many encour-aging successes achieved in basic research laboratories and in preclinical trials. These achievements give hope that the complex and long-term problems of CVD can be solved with the help of innovative approaches based on genome editing, which creates a new era in medicine. © 2025, LLC MMA MediaMedika. All rights reserved."],"dc.abstract.en":["Introduction. Cardiovascular diseases (CVD) continue to be the leading cause of death worldwide. The development of new therapeutic approaches that can more accurately affect the molecular mechanisms of CVD is extremely important. Recent breakthroughs in the field of genetic engineering, such as CRISPR-Cas9 (Clustered Regularly Interspaced Palindromic Repeats/CRISPR associated protein 9) technology and related gene-modulating enzymes, open unprecedented opportunities for the creation of new therapies. These technologies make it possible not only to edit the genome, but also to directly eliminate the root causes of CVD. Aim. To analyze the literature on the use of CRISPR-Cas9 in CVD therapy. Materials and methods. The authors conducted a search for publications in the electronic databases PubMed and Elibrary. The evaluation of the articles was carried out in accordance with the recommendations of PRISMA. After the selection procedure, 72 articles were included in the review. Results. The article discusses various aspects of the use of CRISPR for the correction of genetic mutations that contribute to the development of cardiopathies, as well as the prospects of this technology in the context of gene therapy. The article focuses on the possibilities that CRISPR therapy opens up to improve the effectiveness of CVD treatment, and also emphasizes the need for further research to address issues of safety, delivery and long-term effectiveness. The results of the analysis give hope for the creation of innovative approaches to the fight against cardiac ailments, which can significantly improve the quality of life of patients and reduce the incidence rate. Conclusion. To date, the rapidly developing CRISPR toolkit has been successfully implemented into clinical practice due to the many encour-aging successes achieved in basic research laboratories and in preclinical trials. These achievements give hope that the complex and long-term problems of CVD can be solved with the help of innovative approaches based on genome editing, which creates a new era in medicine. © 2025, LLC MMA MediaMedika. All rights reserved."],"author":["Gretseva, Tatyana A.","Enikeyev, Damir A.","Shaidullina, Evelina A.","Djanbekova, Liana M.","Karpelevich, Valeria S.","Kuzhina, Alsu R.","Magomedova, Alleiss I.","Valeev, Ildar R.","Gimranova, Gulnaz S.","Sayarova, Leysan M.","Klavdieva, Nadezhda A.","Ataeva, Aminat A.","Salimova, Natali Yu.","Menyasheva, Diana R.","Berdiev, Bakhrom M.","Грецева, Т.А.","Еникеев, Д.А.","Шайдуллина, Э.А.","Джанбекова, Л.М.","Карпелевич, В.С.","Кужина, А.Р.","Магомедова, А.И.","Валеев, И.Р.","Гимранова, Г.С.","Саярова, Л.М.","Клавдиева, Н.А.","Атаева, А.А.","Салимова, Н.Ю.","Меняшева, Д.Р.","Бердиев, Б.М."],"author_keyword":["Gretseva, Tatyana A.","Enikeyev, Damir A.","Shaidullina, Evelina A.","Djanbekova, Liana M.","Karpelevich, Valeria S.","Kuzhina, Alsu R.","Magomedova, Alleiss I.","Valeev, Ildar R.","Gimranova, Gulnaz S.","Sayarova, Leysan M.","Klavdieva, Nadezhda A.","Ataeva, Aminat A.","Salimova, Natali Yu.","Menyasheva, Diana R.","Berdiev, Bakhrom M.","Грецева, Т.А.","Еникеев, Д.А.","Шайдуллина, Э.А.","Джанбекова, Л.М.","Карпелевич, В.С.","Кужина, А.Р.","Магомедова, А.И.","Валеев, И.Р.","Гимранова, Г.С.","Саярова, Л.М.","Клавдиева, Н.А.","Атаева, А.А.","Салимова, Н.Ю.","Меняшева, Д.Р.","Бердиев, Б.М."],"author_ac":["gretseva, tatyana a.\n|||\nGretseva, Tatyana A.","enikeyev, damir a.\n|||\nEnikeyev, Damir A.","shaidullina, evelina a.\n|||\nShaidullina, Evelina A.","djanbekova, liana m.\n|||\nDjanbekova, Liana M.","karpelevich, valeria s.\n|||\nKarpelevich, Valeria S.","kuzhina, alsu r.\n|||\nKuzhina, Alsu R.","magomedova, alleiss i.\n|||\nMagomedova, Alleiss I.","valeev, ildar r.\n|||\nValeev, Ildar R.","gimranova, gulnaz s.\n|||\nGimranova, Gulnaz S.","sayarova, leysan m.\n|||\nSayarova, Leysan M.","klavdieva, nadezhda a.\n|||\nKlavdieva, Nadezhda A.","ataeva, aminat a.\n|||\nAtaeva, Aminat A.","salimova, natali yu.\n|||\nSalimova, Natali Yu.","menyasheva, diana r.\n|||\nMenyasheva, Diana R.","berdiev, bakhrom m.\n|||\nBerdiev, Bakhrom M.","грецева, т.а.\n|||\nГрецева, Т.А.","еникеев, д.а.\n|||\nЕникеев, Д.А.","шайдуллина, э.а.\n|||\nШайдуллина, Э.А.","джанбекова, л.м.\n|||\nДжанбекова, Л.М.","карпелевич, в.с.\n|||\nКарпелевич, В.С.","кужина, а.р.\n|||\nКужина, А.Р.","магомедова, а.и.\n|||\nМагомедова, А.И.","валеев, и.р.\n|||\nВалеев, И.Р.","гимранова, г.с.\n|||\nГимранова, Г.С.","саярова, л.м.\n|||\nСаярова, Л.М.","клавдиева, н.а.\n|||\nКлавдиева, Н.А.","атаева, а.а.\n|||\nАтаева, А.А.","салимова, н.ю.\n|||\nСалимова, Н.Ю.","меняшева, д.р.\n|||\nМеняшева, Д.Р.","бердиев, б.м.\n|||\nБердиев, Б.М."],"author_filter":["gretseva, tatyana a.\n|||\nGretseva, Tatyana A.","enikeyev, damir a.\n|||\nEnikeyev, Damir A.","shaidullina, evelina a.\n|||\nShaidullina, Evelina A.","djanbekova, liana m.\n|||\nDjanbekova, Liana M.","karpelevich, valeria s.\n|||\nKarpelevich, Valeria S.","kuzhina, alsu r.\n|||\nKuzhina, Alsu R.","magomedova, alleiss i.\n|||\nMagomedova, Alleiss I.","valeev, ildar r.\n|||\nValeev, Ildar R.","gimranova, gulnaz s.\n|||\nGimranova, Gulnaz S.","sayarova, leysan m.\n|||\nSayarova, Leysan M.","klavdieva, nadezhda a.\n|||\nKlavdieva, Nadezhda A.","ataeva, aminat a.\n|||\nAtaeva, Aminat A.","salimova, natali yu.\n|||\nSalimova, Natali Yu.","menyasheva, diana r.\n|||\nMenyasheva, Diana R.","berdiev, bakhrom m.\n|||\nBerdiev, Bakhrom M.","грецева, т.а.\n|||\nГрецева, Т.А.","еникеев, д.а.\n|||\nЕникеев, Д.А.","шайдуллина, э.а.\n|||\nШайдуллина, Э.А.","джанбекова, л.м.\n|||\nДжанбекова, Л.М.","карпелевич, в.с.\n|||\nКарпелевич, В.С.","кужина, а.р.\n|||\nКужина, А.Р.","магомедова, а.и.\n|||\nМагомедова, А.И.","валеев, и.р.\n|||\nВалеев, И.Р.","гимранова, г.с.\n|||\nГимранова, Г.С.","саярова, л.м.\n|||\nСаярова, Л.М.","клавдиева, н.а.\n|||\nКлавдиева, Н.А.","атаева, а.а.\n|||\nАтаева, А.А.","салимова, н.ю.\n|||\nСалимова, Н.Ю.","меняшева, д.р.\n|||\nМеняшева, Д.Р.","бердиев, б.м.\n|||\nБердиев, Б.М."],"dc.contributor.author_hl":["Gretseva, Tatyana A.","Enikeyev, Damir A.","Shaidullina, Evelina A.","Djanbekova, Liana M.","Karpelevich, Valeria S.","Kuzhina, Alsu R.","Magomedova, Alleiss I.","Valeev, Ildar R.","Gimranova, Gulnaz S.","Sayarova, Leysan M.","Klavdieva, Nadezhda A.","Ataeva, Aminat A.","Salimova, Natali Yu.","Menyasheva, Diana R.","Berdiev, Bakhrom M.","Грецева, Т.А.","Еникеев, Д.А.","Шайдуллина, Э.А.","Джанбекова, Л.М.","Карпелевич, В.С.","Кужина, А.Р.","Магомедова, А.И.","Валеев, И.Р.","Гимранова, Г.С.","Саярова, Л.М.","Клавдиева, Н.А.","Атаева, А.А.","Салимова, Н.Ю.","Меняшева, Д.Р.","Бердиев, Б.М."],"dc.contributor.author_mlt":["Gretseva, Tatyana A.","Enikeyev, Damir A.","Shaidullina, Evelina A.","Djanbekova, Liana M.","Karpelevich, Valeria S.","Kuzhina, Alsu R.","Magomedova, Alleiss I.","Valeev, Ildar R.","Gimranova, Gulnaz S.","Sayarova, Leysan M.","Klavdieva, Nadezhda A.","Ataeva, Aminat A.","Salimova, Natali Yu.","Menyasheva, Diana R.","Berdiev, Bakhrom M.","Грецева, Т.А.","Еникеев, Д.А.","Шайдуллина, Э.А.","Джанбекова, Л.М.","Карпелевич, В.С.","Кужина, А.Р.","Магомедова, А.И.","Валеев, И.Р.","Гимранова, Г.С.","Саярова, Л.М.","Клавдиева, Н.А.","Атаева, А.А.","Салимова, Н.Ю.","Меняшева, Д.Р.","Бердиев, Б.М."],"dc.contributor.author":["Gretseva, Tatyana A.","Enikeyev, Damir A.","Shaidullina, Evelina A.","Djanbekova, Liana M.","Karpelevich, Valeria S.","Kuzhina, Alsu R.","Magomedova, Alleiss I.","Valeev, Ildar R.","Gimranova, Gulnaz S.","Sayarova, Leysan M.","Klavdieva, Nadezhda A.","Ataeva, Aminat A.","Salimova, Natali Yu.","Menyasheva, Diana R.","Berdiev, Bakhrom M.","Грецева, Т.А.","Еникеев, Д.А.","Шайдуллина, Э.А.","Джанбекова, Л.М.","Карпелевич, В.С.","Кужина, А.Р.","Магомедова, А.И.","Валеев, И.Р.","Гимранова, Г.С.","Саярова, Л.М.","Клавдиева, Н.А.","Атаева, А.А.","Салимова, Н.Ю.","Меняшева, Д.Р.","Бердиев, Б.М."],"dc.contributor.author_stored":["Gretseva, Tatyana A.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Enikeyev, Damir A.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Shaidullina, Evelina A.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Djanbekova, Liana M.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Karpelevich, Valeria S.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Kuzhina, Alsu R.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Magomedova, Alleiss I.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Valeev, Ildar R.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Gimranova, Gulnaz S.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Sayarova, Leysan M.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Klavdieva, Nadezhda A.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Ataeva, Aminat A.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Salimova, Natali Yu.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Menyasheva, Diana R.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Berdiev, Bakhrom M.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Грецева, Т.А.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Еникеев, Д.А.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Шайдуллина, Э.А.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Джанбекова, Л.М.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Карпелевич, В.С.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Кужина, А.Р.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Магомедова, А.И.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Валеев, И.Р.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Гимранова, Г.С.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Саярова, Л.М.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Клавдиева, Н.А.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Атаева, А.А.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Салимова, Н.Ю.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Меняшева, Д.Р.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU","Бердиев, Б.М.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU"],"dc.contributor.author.en":["Gretseva, Tatyana A.","Enikeyev, Damir A.","Shaidullina, Evelina A.","Djanbekova, Liana M.","Karpelevich, Valeria S.","Kuzhina, Alsu R.","Magomedova, Alleiss I.","Valeev, Ildar R.","Gimranova, Gulnaz S.","Sayarova, Leysan M.","Klavdieva, Nadezhda A.","Ataeva, Aminat A.","Salimova, Natali Yu.","Menyasheva, Diana R.","Berdiev, Bakhrom M."],"dc.contributor.author.ru_RU":["Грецева, Т.А.","Еникеев, Д.А.","Шайдуллина, Э.А.","Джанбекова, Л.М.","Карпелевич, В.С.","Кужина, А.Р.","Магомедова, А.И.","Валеев, И.Р.","Гимранова, Г.С.","Саярова, Л.М.","Клавдиева, Н.А.","Атаева, А.А.","Салимова, Н.Ю.","Меняшева, Д.Р.","Бердиев, Б.М."],"dc.date.accessioned_dt":"2025-04-29T12:39:45Z","dc.date.accessioned":["2025-04-29T12:39:45Z"],"dc.date.available":["2025-04-29T12:39:45Z"],"dateIssued":["2025-01-01"],"dateIssued_keyword":["2025-01-01","2025"],"dateIssued_ac":["2025-01-01\n|||\n2025-01-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.issued_dt":"2025-01-01T00:00:00Z","dc.date.issued":["2025-01-01"],"dc.date.issued_stored":["2025-01-01\n|||\nnull\n|||\nnull\n|||\nnull\n|||\n"],"dc.description.abstract_hl":["Введение. Сердечно-сосудистые заболевания (ССЗ) продолжают оставаться основной причиной смертности во всем мир. Разработка новых терапевтических подходов, позволяющих более точно воздействовать на молекулярные механизмы ССЗ, крайне важна. Недавние прорывы в области генной инженерии, такие как технология CRISPR-Cas9 (Clustered Regularly Interspaced Palindromic Repeats / CRISPR associated protein 9) и связанные с ней генномодулирующие ферменты, открывают беспрецедентные возможности для создания новых методов\nлечения. Эти технологии позволяют не только редактировать геном, но и непосредственно устранять первопричины ССЗ.\nЦель. Провести анализ литературы, посвященной применению CRISPR-Cas9 в терапии ССЗ.\nМатериалы и методы. Авторами был проведен поиск публикаций в электронных базах данных PubMed и Elibrary. Оценка статей\nпроводилась в соответствии с рекомендациями PRISMA. После процедуры отбора в обзор были включены 72 статьи.\nРезультаты. В статье обсуждаются различные аспекты применения CRISPR для коррекции генетических мутаций, способствующих\nразвитию кардиопатий, а также перспективы этой технологии в контексте генной терапии. Статья акцентирует внимание на возможностях, которые открывает CRISPR-терапия для улучшения эффективности лечения ССЗ, а также подчеркивает необходимость дальнейших исследований для решения вопросов безопасности, доставки и долговременной эффективности. Результаты анализа дают надежду\nна создание инновационных подходов к борьбе с кардиологическими недугами, что может значительно улучшить качество жизни пациентов и снизить уровень заболеваемости.\nЗаключение. На сегодняшний день быстро развивающийся инструментарий CRISPR успешно внедряется в клиническую практику\nблагодаря множеству обнадеживающих успехов, достигнутых в лабораториях фундаментальных исследований и в ходе доклинических\nиспытаний. Эти достижения дают надежду на то, что сложные и долгосрочные проблемы ССЗ смогут быть решены с помощью инновационных подходов, основанных на редактировании генома, что создает новую эру в медицине."],"dc.description.abstract":["Введение. Сердечно-сосудистые заболевания (ССЗ) продолжают оставаться основной причиной смертности во всем мир. Разработка новых терапевтических подходов, позволяющих более точно воздействовать на молекулярные механизмы ССЗ, крайне важна. Недавние прорывы в области генной инженерии, такие как технология CRISPR-Cas9 (Clustered Regularly Interspaced Palindromic Repeats / CRISPR associated protein 9) и связанные с ней генномодулирующие ферменты, открывают беспрецедентные возможности для создания новых методов\nлечения. Эти технологии позволяют не только редактировать геном, но и непосредственно устранять первопричины ССЗ.\nЦель. Провести анализ литературы, посвященной применению CRISPR-Cas9 в терапии ССЗ.\nМатериалы и методы. Авторами был проведен поиск публикаций в электронных базах данных PubMed и Elibrary. Оценка статей\nпроводилась в соответствии с рекомендациями PRISMA. После процедуры отбора в обзор были включены 72 статьи.\nРезультаты. В статье обсуждаются различные аспекты применения CRISPR для коррекции генетических мутаций, способствующих\nразвитию кардиопатий, а также перспективы этой технологии в контексте генной терапии. Статья акцентирует внимание на возможностях, которые открывает CRISPR-терапия для улучшения эффективности лечения ССЗ, а также подчеркивает необходимость дальнейших исследований для решения вопросов безопасности, доставки и долговременной эффективности. Результаты анализа дают надежду\nна создание инновационных подходов к борьбе с кардиологическими недугами, что может значительно улучшить качество жизни пациентов и снизить уровень заболеваемости.\nЗаключение. На сегодняшний день быстро развивающийся инструментарий CRISPR успешно внедряется в клиническую практику\nблагодаря множеству обнадеживающих успехов, достигнутых в лабораториях фундаментальных исследований и в ходе доклинических\nиспытаний. Эти достижения дают надежду на то, что сложные и долгосрочные проблемы ССЗ смогут быть решены с помощью инновационных подходов, основанных на редактировании генома, что создает новую эру в медицине."],"dc.description.abstract.ru_RU":["Введение. Сердечно-сосудистые заболевания (ССЗ) продолжают оставаться основной причиной смертности во всем мир. Разработка новых терапевтических подходов, позволяющих более точно воздействовать на молекулярные механизмы ССЗ, крайне важна. Недавние прорывы в области генной инженерии, такие как технология CRISPR-Cas9 (Clustered Regularly Interspaced Palindromic Repeats / CRISPR associated protein 9) и связанные с ней генномодулирующие ферменты, открывают беспрецедентные возможности для создания новых методов\nлечения. Эти технологии позволяют не только редактировать геном, но и непосредственно устранять первопричины ССЗ.\nЦель. Провести анализ литературы, посвященной применению CRISPR-Cas9 в терапии ССЗ.\nМатериалы и методы. Авторами был проведен поиск публикаций в электронных базах данных PubMed и Elibrary. Оценка статей\nпроводилась в соответствии с рекомендациями PRISMA. После процедуры отбора в обзор были включены 72 статьи.\nРезультаты. В статье обсуждаются различные аспекты применения CRISPR для коррекции генетических мутаций, способствующих\nразвитию кардиопатий, а также перспективы этой технологии в контексте генной терапии. Статья акцентирует внимание на возможностях, которые открывает CRISPR-терапия для улучшения эффективности лечения ССЗ, а также подчеркивает необходимость дальнейших исследований для решения вопросов безопасности, доставки и долговременной эффективности. Результаты анализа дают надежду\nна создание инновационных подходов к борьбе с кардиологическими недугами, что может значительно улучшить качество жизни пациентов и снизить уровень заболеваемости.\nЗаключение. На сегодняшний день быстро развивающийся инструментарий CRISPR успешно внедряется в клиническую практику\nблагодаря множеству обнадеживающих успехов, достигнутых в лабораториях фундаментальных исследований и в ходе доклинических\nиспытаний. Эти достижения дают надежду на то, что сложные и долгосрочные проблемы ССЗ смогут быть решены с помощью инновационных подходов, основанных на редактировании генома, что создает новую эру в медицине."],"dc.doi":["10.47407/kr2024.6.1.00547"],"dc.doi.en":["10.47407/kr2024.6.1.00547"],"dc.identifier.issn":["2713-2552"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8790"],"dc.publisher":["LLC MMA MediaMedika"],"dc.publisher.en":["LLC MMA MediaMedika"],"dc.relation.ispartofseries":["Clinical Review for General Practice;т. 6 № 1"],"dc.relation.ispartofseries.en":["Clinical Review for General Practice;т. 6 № 1"],"subject":["CRISPR-Cas9","сердечно-сосудистые заболевания","кардиология","генетическое редактирование","генетическая модификация","генная терапия","Scopus","cardiology","cardiovascular diseases","CRISPR-Cas9","gene therapy","genetic editing","genetic modification"],"subject_keyword":["CRISPR-Cas9","CRISPR-Cas9","сердечно-сосудистые заболевания","сердечно-сосудистые заболевания","кардиология","кардиология","генетическое редактирование","генетическое редактирование","генетическая модификация","генетическая модификация","генная терапия","генная терапия","Scopus","Scopus","cardiology","cardiology","cardiovascular diseases","cardiovascular diseases","CRISPR-Cas9","CRISPR-Cas9","gene therapy","gene therapy","genetic editing","genetic editing","genetic modification","genetic modification"],"subject_ac":["crispr-cas9\n|||\nCRISPR-Cas9","сердечно-сосудистые заболевания\n|||\nсердечно-сосудистые заболевания","кардиология\n|||\nкардиология","генетическое редактирование\n|||\nгенетическое редактирование","генетическая модификация\n|||\nгенетическая модификация","генная терапия\n|||\nгенная терапия","scopus\n|||\nScopus","cardiology\n|||\ncardiology","cardiovascular diseases\n|||\ncardiovascular diseases","crispr-cas9\n|||\nCRISPR-Cas9","gene therapy\n|||\ngene therapy","genetic editing\n|||\ngenetic editing","genetic modification\n|||\ngenetic modification"],"subject_tax_0_filter":["crispr-cas9\n|||\nCRISPR-Cas9","сердечно-сосудистые заболевания\n|||\nсердечно-сосудистые заболевания","кардиология\n|||\nкардиология","генетическое редактирование\n|||\nгенетическое редактирование","генетическая модификация\n|||\nгенетическая модификация","генная терапия\n|||\nгенная терапия","scopus\n|||\nScopus","cardiology\n|||\ncardiology","cardiovascular diseases\n|||\ncardiovascular diseases","crispr-cas9\n|||\nCRISPR-Cas9","gene therapy\n|||\ngene therapy","genetic editing\n|||\ngenetic editing","genetic modification\n|||\ngenetic modification"],"subject_filter":["crispr-cas9\n|||\nCRISPR-Cas9","сердечно-сосудистые заболевания\n|||\nсердечно-сосудистые заболевания","кардиология\n|||\nкардиология","генетическое редактирование\n|||\nгенетическое редактирование","генетическая модификация\n|||\nгенетическая модификация","генная терапия\n|||\nгенная терапия","scopus\n|||\nScopus","cardiology\n|||\ncardiology","cardiovascular diseases\n|||\ncardiovascular diseases","crispr-cas9\n|||\nCRISPR-Cas9","gene therapy\n|||\ngene therapy","genetic editing\n|||\ngenetic editing","genetic modification\n|||\ngenetic modification"],"dc.subject_mlt":["CRISPR-Cas9","сердечно-сосудистые заболевания","кардиология","генетическое редактирование","генетическая модификация","генная терапия","Scopus","cardiology","cardiovascular diseases","CRISPR-Cas9","gene therapy","genetic editing","genetic modification"],"dc.subject":["CRISPR-Cas9","сердечно-сосудистые заболевания","кардиология","генетическое редактирование","генетическая модификация","генная терапия","Scopus","cardiology","cardiovascular diseases","CRISPR-Cas9","gene therapy","genetic editing","genetic modification"],"dc.subject.en":["CRISPR-Cas9","Scopus","cardiology","cardiovascular diseases","CRISPR-Cas9","gene therapy","genetic editing","genetic modification"],"dc.subject.ru_RU":["сердечно-сосудистые заболевания","кардиология","генетическое редактирование","генетическая модификация","генная терапия"],"title":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"title_keyword":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"title_ac":["genetic modifications in cardiology: the role of crispr-cas9 in the treatment of cardiovascular diseases\n|||\nGenetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","генетические модификации в кардиологии: роль crispr-cas9 в терапии сердечно-сосудистых заболеваний\n|||\nГенетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.title_sort":"Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","dc.title_hl":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.title_mlt":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.title":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.title_stored":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru_RU"],"dc.title.en":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases"],"dc.title.ru_RU":["Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.title.alternative":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases","Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.title.alternative.en":["Genetic modifications in cardiology: the role of CRISPR-Cas9 in the treatment of cardiovascular diseases"],"dc.title.alternative.ru_RU":["Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеваний"],"dc.type":["Article"],"dc.type.ru_RU":["Article"],"publication_grp":["123456789/8790"],"bi_2_dis_filter":["menyasheva, diana r.\n|||\nMenyasheva, Diana R.","gretseva, tatyana a.\n|||\nGretseva, Tatyana A.","valeev, ildar r.\n|||\nValeev, Ildar R.","salimova, natali yu.\n|||\nSalimova, Natali Yu.","клавдиева, н.а.\n|||\nКлавдиева, Н.А.","джанбекова, л.м.\n|||\nДжанбекова, Л.М.","гимранова, г.с.\n|||\nГимранова, Г.С.","бердиев, б.м.\n|||\nБердиев, Б.М.","салимова, н.ю.\n|||\nСалимова, Н.Ю.","gimranova, gulnaz s.\n|||\nGimranova, Gulnaz S.","саярова, л.м.\n|||\nСаярова, Л.М.","karpelevich, valeria s.\n|||\nKarpelevich, Valeria S.","валеев, и.р.\n|||\nВалеев, И.Р.","грецева, т.а.\n|||\nГрецева, Т.А.","klavdieva, nadezhda a.\n|||\nKlavdieva, Nadezhda A.","enikeyev, damir a.\n|||\nEnikeyev, Damir A.","berdiev, bakhrom m.\n|||\nBerdiev, Bakhrom M.","kuzhina, alsu r.\n|||\nKuzhina, Alsu R.","кужина, а.р.\n|||\nКужина, А.Р.","меняшева, д.р.\n|||\nМеняшева, Д.Р.","еникеев, д.а.\n|||\nЕникеев, Д.А.","карпелевич, в.с.\n|||\nКарпелевич, В.С.","атаева, а.а.\n|||\nАтаева, А.А.","шайдуллина, э.а.\n|||\nШайдуллина, Э.А.","shaidullina, evelina a.\n|||\nShaidullina, Evelina A.","ataeva, aminat a.\n|||\nAtaeva, Aminat A.","magomedova, alleiss i.\n|||\nMagomedova, Alleiss I.","sayarova, leysan m.\n|||\nSayarova, Leysan M.","магомедова, а.и.\n|||\nМагомедова, А.И.","djanbekova, liana m.\n|||\nDjanbekova, Liana M."],"bi_2_dis_partial":["Gimranova, Gulnaz S.","Карпелевич, В.С.","Enikeyev, Damir A.","Джанбекова, Л.М.","Salimova, Natali Yu.","Sayarova, Leysan M.","Ataeva, Aminat A.","Клавдиева, Н.А.","Kuzhina, Alsu R.","Бердиев, Б.М.","Berdiev, Bakhrom M.","Gretseva, Tatyana A.","Саярова, Л.М.","Shaidullina, Evelina A.","Klavdieva, Nadezhda A.","Магомедова, А.И.","Karpelevich, Valeria S.","Грецева, Т.А.","Шайдуллина, Э.А.","Гимранова, Г.С.","Magomedova, Alleiss I.","Valeev, Ildar R.","Menyasheva, Diana R.","Валеев, И.Р.","Меняшева, Д.Р.","Салимова, Н.Ю.","Еникеев, Д.А.","Djanbekova, Liana M.","Кужина, А.Р.","Атаева, А.А."],"bi_2_dis_value_filter":["Gimranova, Gulnaz S.","Карпелевич, В.С.","Enikeyev, Damir A.","Джанбекова, Л.М.","Salimova, Natali Yu.","Sayarova, Leysan M.","Ataeva, Aminat A.","Клавдиева, Н.А.","Kuzhina, Alsu R.","Бердиев, Б.М.","Berdiev, Bakhrom M.","Gretseva, Tatyana A.","Саярова, Л.М.","Shaidullina, Evelina A.","Klavdieva, Nadezhda A.","Магомедова, А.И.","Karpelevich, Valeria S.","Грецева, Т.А.","Шайдуллина, Э.А.","Гимранова, Г.С.","Magomedova, Alleiss I.","Valeev, Ildar R.","Menyasheva, Diana R.","Валеев, И.Р.","Меняшева, Д.Р.","Салимова, Н.Ю.","Еникеев, Д.А.","Djanbekova, Liana M.","Кужина, А.Р.","Атаева, А.А."],"bi_4_dis_filter":["cardiovascular diseases\n|||\ncardiovascular diseases","crispr-cas9\n|||\nCRISPR-Cas9","генетическая модификация\n|||\nгенетическая модификация","генная терапия\n|||\nгенная терапия","gene therapy\n|||\ngene therapy","genetic modification\n|||\ngenetic modification","сердечно-сосудистые заболевания\n|||\nсердечно-сосудистые заболевания","кардиология\n|||\nкардиология","генетическое редактирование\n|||\nгенетическое редактирование","scopus\n|||\nScopus","cardiology\n|||\ncardiology","genetic editing\n|||\ngenetic editing"],"bi_4_dis_partial":["генная терапия","genetic editing","сердечно-сосудистые заболевания","генетическая модификация","CRISPR-Cas9","кардиология","Scopus","gene therapy","cardiovascular diseases","genetic modification","генетическое редактирование","cardiology"],"bi_4_dis_value_filter":["генная терапия","genetic editing","сердечно-сосудистые заболевания","генетическая модификация","CRISPR-Cas9","кардиология","Scopus","gene therapy","cardiovascular diseases","genetic modification","генетическое редактирование","cardiology"],"bi_sort_1_sort":"genetic modifications in cardiology: the role of crispr-cas9 in the treatment of cardiovascular diseases","bi_sort_2_sort":"2025","bi_sort_3_sort":"2025-04-29T12:39:45Z","read":["g0"],"_version_":1830740939588501504},{"SolrIndexer.lastIndexed":"2025-07-09T13:59:00.286Z","search.uniqueid":"2-8039","search.resourcetype":2,"search.resourceid":8039,"handle":"123456789/8928","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-75-82"],"dc.abstract":["

Introduction. Cutaneous melanoma is a highly aggressive malignancy with a significant risk of metastasis. Current treatment strategies include surgical resection, immunotherapy, and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite the efficacy of dual BRAF/MEK inhibition, the rapid development of drug resistance remains a challenge, prompting interest in combination immunotherapy plus targeted therapy. Aim. This study aimed to evaluate the efficacy and tolerability of triple therapy, involving atezolizumab, vemurafenib, and cobimetinib in patients with BRAF V600 mutation-driven metastatic melanoma following failure of prior lines of therapy. Materials and methods. We present a detailed case report of a patient with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first-line therapy with dabrafenib and trametinib. After subsequent progression, second- and third-line therapies with pembrolizumab followed by pembrolizumab and lenvatinib were administered; however, both therapies proved ineffective. Fourth-line therapy with atezolizumab, vemurafenib, and cobimetinib demonstrated a significant clinical response. Results and discussion. Following six months of triple therapy, positron emission tomography/computed tomography (PET/CT) confirmed complete metabolic regression of the previously identified lesions, including those in the intrathoracic lymph nodes and pulmonary metastases. The treatment was well tolerated, with no grade 3–4 adverse events. Conclusion. This clinical case highlights the potential of the atezolizumab, vemurafenib, and cobimetinib therapy in patients with pretreated BRAF V600E-mutated metastatic melanoma. This regimen may benefit patients with acquired resistance to BRAF/MEK inhibitors and immune checkpoint inhibitors. The findings underscore the importance of personalized treatment strategies and the need for further research in this area.

","

Введение. Меланома кожи является высокоагрессивным злокачественным новообразованием с высоким риском метастазирования. Современные методы лечения включают хирургическое вмешательство, иммунотерапию и таргетную терапию, направленную на мутации в сигнальных путях MAPK/ERK, в частности BRAF V600E. Несмотря на эффективность двойных режимов (ингибиторы BRAF и MEK), быстро развивающаяся лекарственная устойчивость остается проблемой, что обусловило интерес к комбинированной иммуно-таргетной терапии. Цель: оценить эффективность и переносимость тройной комбинации Атезолизумаб + Вемурафениб + Кобиметиниб у пациента с метастатической меланомой кожи, BRAF V600E-положительной, после неудачи предшествующих линий терапии. Материалы и методы. Приведен детализированный клинический случай пациента с метастатической меланомой кожи, у которого после операции и первой линии терапии комбинацией Дабрафениб + Траметиниб была зафиксирована стабилизация заболевания в течение 27 месяцев. После последующего прогрессирования были применены вторая и третья линии терапии: Пембролизумаб, затем Пембролизумаб + Ленватиниб, однако они оказались недостаточно эффективными. Четвертая линия терапии: комбинация Атезолизумаб + Вемурафениб + Кобиметиниб — показала выраженный положительный эффект. Результаты и обсуждение. После шести месяцев терапии тройной комбинацией отмечено полное метаболическое регрессирование ранее выявленных очагов по данным ПЭТ-КТ, включая внутригрудные лимфатические узлы и метастатические очаги в легких. Терапия продолжена, переносимость удовлетворительная, нежелательные явления 3–4-й степени отсутствуют. Заключение. Клинический случай демонстрирует перспективность применения комбинированной схемы Атезолизумаб + Вемурафениб + Кобиметиниб у предлеченного пациента с метастатической меланомой, обладающей мутацией BRAF V600E. Данный подход может быть эффективным у пациентов с ранее развившейся резистентностью к BRAF/MEK-ингибиторам и ингибиторам контрольных точек иммунного ответа. Полученные данные подтверждают актуальность персонализированного подхода в лечении меланомы и необходимость дальнейших исследований в этой области.

"],"dc.abstract.en":["

Introduction. Cutaneous melanoma is a highly aggressive malignancy with a significant risk of metastasis. Current treatment strategies include surgical resection, immunotherapy, and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite the efficacy of dual BRAF/MEK inhibition, the rapid development of drug resistance remains a challenge, prompting interest in combination immunotherapy plus targeted therapy. Aim. This study aimed to evaluate the efficacy and tolerability of triple therapy, involving atezolizumab, vemurafenib, and cobimetinib in patients with BRAF V600 mutation-driven metastatic melanoma following failure of prior lines of therapy. Materials and methods. We present a detailed case report of a patient with metastatic cutaneous melanoma who achieved disease stabilization for 27 months following surgery and first-line therapy with dabrafenib and trametinib. After subsequent progression, second- and third-line therapies with pembrolizumab followed by pembrolizumab and lenvatinib were administered; however, both therapies proved ineffective. Fourth-line therapy with atezolizumab, vemurafenib, and cobimetinib demonstrated a significant clinical response. Results and discussion. Following six months of triple therapy, positron emission tomography/computed tomography (PET/CT) confirmed complete metabolic regression of the previously identified lesions, including those in the intrathoracic lymph nodes and pulmonary metastases. The treatment was well tolerated, with no grade 3–4 adverse events. Conclusion. This clinical case highlights the potential of the atezolizumab, vemurafenib, and cobimetinib therapy in patients with pretreated BRAF V600E-mutated metastatic melanoma. This regimen may benefit patients with acquired resistance to BRAF/MEK inhibitors and immune checkpoint inhibitors. The findings underscore the importance of personalized treatment strategies and the need for further research in this area.

"],"subject":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy","меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"subject_keyword":["melanoma","melanoma","atezolizumab","atezolizumab","vemurafenib","vemurafenib","cobimetinib","cobimetinib","immunotherapy","immunotherapy","tumor biomarkers","tumor biomarkers","SOX transcription factors","SOX transcription factors","targeted therapy","targeted therapy","меланома","меланома","атезолизумаб","атезолизумаб","вемурафениб","вемурафениб","кобиметиниб","кобиметиниб","иммунотерапия","иммунотерапия","биомаркеры новообразований","биомаркеры новообразований","Soxe транскрипционные факторы","Soxe транскрипционные факторы","таргетная терапия","таргетная терапия"],"subject_ac":["melanoma\n|||\nmelanoma","atezolizumab\n|||\natezolizumab","vemurafenib\n|||\nvemurafenib","cobimetinib\n|||\ncobimetinib","immunotherapy\n|||\nimmunotherapy","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","меланома\n|||\nмеланома","атезолизумаб\n|||\nатезолизумаб","вемурафениб\n|||\nвемурафениб","кобиметиниб\n|||\nкобиметиниб","иммунотерапия\n|||\nиммунотерапия","биомаркеры новообразований\n|||\nбиомаркеры новообразований","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы","таргетная терапия\n|||\nтаргетная терапия"],"subject_tax_0_filter":["melanoma\n|||\nmelanoma","atezolizumab\n|||\natezolizumab","vemurafenib\n|||\nvemurafenib","cobimetinib\n|||\ncobimetinib","immunotherapy\n|||\nimmunotherapy","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","меланома\n|||\nмеланома","атезолизумаб\n|||\nатезолизумаб","вемурафениб\n|||\nвемурафениб","кобиметиниб\n|||\nкобиметиниб","иммунотерапия\n|||\nиммунотерапия","биомаркеры новообразований\n|||\nбиомаркеры новообразований","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы","таргетная терапия\n|||\nтаргетная терапия"],"subject_filter":["melanoma\n|||\nmelanoma","atezolizumab\n|||\natezolizumab","vemurafenib\n|||\nvemurafenib","cobimetinib\n|||\ncobimetinib","immunotherapy\n|||\nimmunotherapy","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","меланома\n|||\nмеланома","атезолизумаб\n|||\nатезолизумаб","вемурафениб\n|||\nвемурафениб","кобиметиниб\n|||\nкобиметиниб","иммунотерапия\n|||\nиммунотерапия","биомаркеры новообразований\n|||\nбиомаркеры новообразований","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы","таргетная терапия\n|||\nтаргетная терапия"],"dc.subject_mlt":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy","меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"dc.subject":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy","меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"dc.subject.en":["melanoma","atezolizumab","vemurafenib","cobimetinib","immunotherapy","tumor biomarkers","SOX transcription factors","targeted therapy"],"title":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"title_keyword":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"title_ac":["combination braf/mek inhibitor targeted therapy and immunotherapy (atezolizumab + vemurafenib + cobimetinib) for metastatic cutaneous melanoma: clinical case\n|||\nCombination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","комбинированная таргетная терапия ингибиторами braf и mek в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)\n|||\nКомбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title_sort":"Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","dc.title_hl":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title_mlt":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.title_stored":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib + cobimetinib) for Metastatic Cutaneous Melanoma: Clinical Case"],"dc.abstract.ru":["

Введение. Меланома кожи является высокоагрессивным злокачественным новообразованием с высоким риском метастазирования. Современные методы лечения включают хирургическое вмешательство, иммунотерапию и таргетную терапию, направленную на мутации в сигнальных путях MAPK/ERK, в частности BRAF V600E. Несмотря на эффективность двойных режимов (ингибиторы BRAF и MEK), быстро развивающаяся лекарственная устойчивость остается проблемой, что обусловило интерес к комбинированной иммуно-таргетной терапии. Цель: оценить эффективность и переносимость тройной комбинации Атезолизумаб + Вемурафениб + Кобиметиниб у пациента с метастатической меланомой кожи, BRAF V600E-положительной, после неудачи предшествующих линий терапии. Материалы и методы. Приведен детализированный клинический случай пациента с метастатической меланомой кожи, у которого после операции и первой линии терапии комбинацией Дабрафениб + Траметиниб была зафиксирована стабилизация заболевания в течение 27 месяцев. После последующего прогрессирования были применены вторая и третья линии терапии: Пембролизумаб, затем Пембролизумаб + Ленватиниб, однако они оказались недостаточно эффективными. Четвертая линия терапии: комбинация Атезолизумаб + Вемурафениб + Кобиметиниб — показала выраженный положительный эффект. Результаты и обсуждение. После шести месяцев терапии тройной комбинацией отмечено полное метаболическое регрессирование ранее выявленных очагов по данным ПЭТ-КТ, включая внутригрудные лимфатические узлы и метастатические очаги в легких. Терапия продолжена, переносимость удовлетворительная, нежелательные явления 3–4-й степени отсутствуют. Заключение. Клинический случай демонстрирует перспективность применения комбинированной схемы Атезолизумаб + Вемурафениб + Кобиметиниб у предлеченного пациента с метастатической меланомой, обладающей мутацией BRAF V600E. Данный подход может быть эффективным у пациентов с ранее развившейся резистентностью к BRAF/MEK-ингибиторам и ингибиторам контрольных точек иммунного ответа. Полученные данные подтверждают актуальность персонализированного подхода в лечении меланомы и необходимость дальнейших исследований в этой области.

"],"dc.fullRISC":["ВВЕДЕНИЕ\nМеланома кожи представляет собой злокачественное\nновообразование, возникающее из меланоцитов и характеризующееся агрессивным биологическим поведением и высоким потенциалом метастазирования [1].\nСогласно данным GLOBOCAN, ежегодно регистрируется свыше 325 000 новых случаев меланомы, из которых\nболее 57 000 заканчиваются летально [2]. В развитых\nстранах заболеваемость продолжает расти, особенно\nсреди лиц со светлой кожей, проживающих в регионах\nс высокой солнечной активностью [3]. Ультрафиолетовое (УФ) облучение считается основным экзогенным\nфактором канцерогенеза при меланоме. Под действием\nУФ-излучения в меланоцитах накапливаются мутации,\nнарушающие контроль клеточного цикла, пролиферации и апоптоза [4–6].\nОсобенно важны в патогенезе мутации в генах\nBRAF, NRAS, KIT, NF1 и других сигнальных каскадах\nMAPK/ERK и PI3K/AKT [7, 8]. Мутации в гене BRAF\nвстречаются приблизительно в 40–60 % случаев меланомы, причем наиболее распространенной является\nBRAF V600E — замена валина на глутаминовую кислоту в кодоне 600 [9]. Эта мутация ассоциирована с молодым возрастом, большим числом невусов, первичной\nлокализацией на туловище и высокой УФ-экспозицией\n[10, 11]. Исследования показали, что пациенты с BRAFмутацией демонстрируют особый биологический\nи клинический фенотип опухоли [12]. Мутации NRAS\nвстречаются в 15–20 % случаев, особенно при узловых\nформах меланомы, ассоциированных с длительным\nсолнечным воздействием и большей толщиной опухоли [13]. Меланомы без мутации в BRAF или NRAS называются double wild-type и часто характеризуются мутациями в NF1 и KIT [14, 15].\nДиагностика меланомы включает клинико-дерматологическое обследование, дерматоскопию и иммуногистохимические исследования. Одним из наиболее\nчувствительных и специфичных маркеров является\nтранскрипционный фактор SOX10, экспрессируемый\nпрактически во всех формах меланомы, включая десмопластические и веретенообразные подтипы. Его\nчувствительность достигает 100 %, а специфичность —\n93 % [16]. С учетом молекулярных особенностей опухоли за последнее десятилетие произошло значительное\nрасширение терапевтического арсенала за счет таргетной терапии и иммунотерапии [17]. Переломным моментом стало внедрение ингибиторов BRAF (вемурафениб, дабрафениб) и MEK (траметиниб, кобиметиниб,\nбиниметиниб), которые при комбинированном применении существенно улучшили показатели выживаемости [18, 19]. Так, комбинация дабрафениб + траметиниб\nпо сравнению с монотерапией продемонстрировала\nдостоверное увеличение общей выживаемости (ОВ)\nи выживаемости без прогрессирования (ВБП), медиана\nВБП достигала 11 месяцев, а 5-летняя ОВ — 34 % [20].\nПохожими характеристиками обладает комбинация\nвемурафениб + кобиметиниб и энкорафениб + биниметиниб [21].\nОднако на фоне таргетной терапии довольно быстро\nразвивается лекарственная устойчивость — в среднем\nчерез 6–8 месяцев [22]. Среди предполагаемых механизмов устойчивости называют повторную активацию MAPK-пути, мутации в MEK1/2, PIK3CA и экспрессию альтернативных рецепторов роста [23, 24].\nВ связи с этим было предложено использовать комбинированную иммуно- и таргетную терапию. Исследование IMspire150 стало первым, где была продемонстрирована эффективность тройной комбинации\nатезолизумаб + вемурафениб + кобиметиниб: медиана\nВБП достигла 15,1 месяца против 10,6 при двойной\nтерапии, а профиль токсичности оказался приемлемым [25]. Результаты IMspire150 были подтверждены и другими исследованиями, включая SECOMBIT\nи DREAMseq, где оценивались различные стратегии\nпоследовательного и комбинированного применения\nиммуно- и таргетных агентов [26, 27]. Так, в DREAMseq\nбыло показано, что инициальная иммунотерапия\n(Ниволумаб + Ипилимумаб) с последующим переходом\nна таргетную терапию обеспечивает более длительную\nОВ, чем наоборот [27].\nИммуноонкологические препараты (ингибиторы PD-1\nи CTLA-4) продемонстрировали революционные результаты в лечении метастатической меланомы. Комбинация Ниволумаб + Ипилимумаб обеспечивает медиану ОВ свыше 60 месяцев, хотя сопровождается высокой\nтоксичностью (3–4-я степень — у 55 % пациентов) [28,\n29]. Пембролизумаб, другой ингибитор PD-1, в рамках\nисследования KEYNOTE-006 показал двухлетнюю выживаемость около 55 %, особенно у пациентов с высокой экспрессией PD-L1 [30]. При прогрессии на иммунотерапии перспективным вариантом является\nкомбинация Пембролизумаб + Ленватиниб, как показано в исследовании LEAP-004, где общая эффективность\nсоставила 21,4 % [31]. Современные исследования поднимают важность учета иммуноопосредованного «сетпоинта» опухоли — баланса между иммунной атакой\nи защитой опухоли, зависящего от опухолевой микросреды, экспрессии PD-L1, мутационной нагрузки и инфильтрации лимфоцитами [32, 33].\nМикроокружение меланомы включает иммунные\nклетки, сосуды, фибробласты, и его характеристики\nвлияют на ответ на терапию. Например, высокая экспрессия VEGF может снижать эффективность иммунотерапии, поэтому ангиостатические агенты вроде\nЛенватиниба потенциально усиливают ее эффект [34].\nСогласно рекомендациям NCCN (2024) и ESMO (2022),\nвыбор терапии должен быть индивидуализирован\nс учетом мутационного профиля, стадии заболевания, выраженности симптомов и предпочтений пациента [35].\nМАТЕРИАЛЫ И МЕТОДЫ\nПациент А. в 2018 году стал отмечать появление опухоли на коже волосистой части головы в заушной области\nслева. Постепенно отмечал изменение свойств опухоли увеличение в размерах, появление зуда. С января\n2019-го отметил появление опухоли на задней поверхности шеи. Обратился в поликлинику по месту жительства, где было проведено обследование. Пациент был\nнаправлен в Республиканский онкологический диспансер, где образования были верифицированы и выставлен диагноз: меланома кожи заушной области, волосистой части головы стадия 3 а группа 2 T1aN1M0. 15 мая\n2019 г. пациенту было выполнено расширенное истечение опухоли кожи заушной области слева. Произведен\nпоиск мутации генов BRAF. Выявлена мутация в гене\nBRAF V600E. Согласно клиническим рекомендациям\nпациенту назначен курс лекарственной терапии препаратами Дабрафениб и Траметиниб. 31 июля 2019 г.\nпациент начал получать терапию. После третьего курса\nтерапии больной был направлен на контрольное обследование — ПЭТ / КТ, где было отмечено уменьшение\nразмеров и уровня активности в корне правого легкого\n(лимфатический узел) (рис. 1).\nДругие внутригрудные лимфатические узлы неактивны. Пациент продолжил терапию в прежнем режиме.\nПосле девятого курса терапии пациент был вновь направлен на контрольное обследование (ПЭТ / КТ), где\nотмечена стабилизация заболевания со снижением метаболической активности (рис. 2).\nПациенту было рекомендовано продолжить терапию\nв режиме «Дабрафениб и Траметиниб». После 14-го\nкурса терапии по данным контрольного обследования\nотмечено в динамике появление низкой активности\nв немногочисленных лимфатических узлах первого\nи второго уровня шеи. А также появление зоны активности послеоперационной области. Пациент был направлен на консилиум, где принято решение продолжить терапию в прежнем режиме. По окончанию 19-го\nкурса проведен контроль в динамике, где зафиксирована стабилизация заболевания. Пациент продолжил лечение в прежней схеме, и после 26-го курса была вновь\nоценена динамика. По данным позитронной-эмиссионной томографии, отмечена отрицательная динамика\nв виде роста размеров и активности единичного лимфоузла шеи слева вероятнее МТС (рис. 3), в остальном\nрегресс активности в немногочисленных лимфоузлах\nшеи, сохраняются слабо активные лимфоузлы корня\nправого легкого.\nБыло принято решение назначить анти-PD-1 терапию\nПембролизумабом. 28 сентября 2022 г. больной получил первый курс второй линии терапии. По окончании\nтретьего курса была проведена оценка эффективности\nлечения, где выявлена прогрессия заболевания в виде\nувеличения лимфоузлов шеи слева с повышением метаболической активности (рис. 4).\nПроведена биопсия лимфатического узла. Патологоанатомически подтверждён метастаз пигментной меланомы в исследованном узле. 9 февраля 2023 г. пациенту\nпроведена экстирпация метастатических пораженных\nлимфоузлов шеи. После чего консилиумом было решено добавить к Пембролизумабу Ленватиниб. После четырех курсов данной схемы терапии по данным\nПЭТ-КТ отмечено появление очагов в правом легком\nс низкой метаболической активностью. Для уточнения\nхарактера выявленных очагов была проведена компьютерная томография, где было подтверждено прогрессирование заболевания в виде появления метастатических очагов в легком. Онкологическим консилиумом\nРеспубликанского онкологического диспансера было\nпредложено лечение: Атезолизумаб + Вемурафениб +\nКобиметиниб. После шести месяцев терапии на контрольном обследовании данных о наличии очагов с патологическим метаболизмом 18F-ФДГ, характерных длянеопластического процесса, не выявлено, в сравнении\nс предыдущим исследованием отмечается снижение\nактивности внутригрудных лимфатических узлов. Регресс ранее визуализируемых очагов в легких. Пациент\nпродолжил терапию в прежнем режиме. В настоящее\nвремя пациент продолжает получать терапию Атезолизумаб + Вемурафениб + Кобиметиниб. Нежелательных\nявлений, требующих коррекции дозировки или отмены\nпрепарата, не выявлено.\nРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nМеланома кожи с мутацией BRAF V600E представляет\nсобой особую клинико-биологическую подгруппу опухолей, для которой за последние годы разработаны различные терапевтические подходы, включая таргетные\nпрепараты и иммуноонкологические средства [7, 9, 17].\nПациенту, описанному в настоящем наблюдении, была\nпроведена радикальная хирургическая резекция с последующим применением таргетной терапии комбинацией Дабрафениб + Траметиниб, что соответствует\nсовременным рекомендациям по ведению пациентов\nс мутацией BRAF V600E на стадии III и IV [18, 19, 35].\nКак показано в исследовании COMBI-AD, адъювантное\nприменение Дабрафениба с Траметинибом у пациентов\nс полностью удаленной меланомой стадии III приводит\nк значимому снижению риска рецидива и увеличению\nобщей выживаемости: через 3 года она составила 86 %\n[20]. У описанного пациента стабилизация заболевания\nсохранялась более 2 лет, что подтверждает данные литературы о длительном клиническом контроле на фоне\nдвойной таргетной терапии [21].\nОднако, как и в большинстве случаев, в течение третьего года лечения у пациента было зарегистрировано\nпрогрессирование заболевания, что может быть связано с формированием лекарственной устойчивости\nк ингибиторам BRAF и MEK. Предполагается, что повторная активация MAPK-пути, мутации в MEK1/2,\nа также компенсация через PI3K-AKT путь являются\nосновными причинами вторичной резистентности\n[22–24]. Вторая линия лечения включала назначение\nПембролизумаба — ингибитора PD-1, эффективность\nкоторого подтверждена в исследовании KEYNOTE-006,\nгде при распространенной меланоме медиана общей\nвыживаемости составила 32,7 месяца [30]. Однако у пациента было отмечено раннее прогрессирование после\nначала иммунотерапии, что, вероятно, обусловлено иммунологическим «холодным» фенотипом опухоли или\nугнетающим микроклиматом опухолевой микросреды\n[32, 33].\nВ качестве третьей линии был применен режим «Пембролизумаб + Ленватиниб». Данная комбинация показала перспективные результаты в исследовании\nLEAP-004 (фаза II), особенно у пациентов с прогрессированием после PD-1 терапии: общая эффективность\nсоставила 21,4 %, а медиана ВБП — 4,2 месяца [31]. Однако и этот подход оказался недостаточно эффективным в конкретном клиническом случае, что диктует\nнеобходимость более агрессивной и комбинированной\nстратегии.\nВ 2023 году пациенту было назначено лечение в режиме\n«Атезолизумаб + Вемурафениб + Кобиметиниб», основанное на данных рандомизированного клинического\nисследования IMspire150, где тройная терапия показала значимое преимущество по медиане выживаемости\nбез прогрессирования (15,1 против 10,6 месяца при\nдвойной терапии), а также более высокий общий ответ(ORR) [25]. Этот подход признан эффективным при наличии активной мутации BRAF и удовлетворительного\nсоматического статуса пациента [26].\nОтдельного внимания заслуживает вопрос о выборе\nпоследовательности терапии при BRAF-положительной\nмеланоме. Исследование DREAMseq (фаза III) продемонстрировало преимущество начала лечения с иммунотерапии (Ниволумаб + Ипилимумаб), а затем — переход к таргетным препаратам. Однако при агрессивном\nклиническом течении, выраженном симптомокомплексе или быстро растущих метастазах обосновано первичное применение таргетной терапии [27]. Также следует учитывать важность оценки микросреды опухоли,\nуровня экспрессии PD-L1 и мутационной нагрузки при\nпрогнозировании ответа на иммунотерапию [32–34].\nИнтеграция биомаркеров и динамического мониторинга ответа на лечение в реальной клинической практике\nостается ключевым направлением развития персонализированной онкологии.\nТаким образом, представленный случай демонстрирует весь спектр современных терапевтических стратегий при метастатической меланоме и подчеркивает\nнеобходимость индивидуального подбора лечения\nс учетом молекулярно-генетических характеристик\nопухоли, динамики ответа и развития резистентности.\nИспользование комбинированной терапии, как показано в IMspire150, дает реальные шансы на долгосрочный\nконтроль заболевания у тщательно отобранных пациентов [25].\nПациенту с BRAF-положительной меланомой, согласно\nклиническим рекомендациям, была проведена радикальная операция с последующим назначением таргетной терапии комбинацией Дабрафениб + Траметиниб.\nНа фоне проводимого лечения отмечалась длительная\nстабилизация заболевания — около 27 месяцев. Эти данные согласуются с результатами исследования COMBIAD, где сообщается, что адъювантная терапия данной\nкомбинацией у пациентов с BRAF-мутированной меланомой стадии III приводит к 3-летней общей выживаемости 86% [20]. Также в этом исследовании было установлено, что нежелательные явления были, как правило,\nобратимыми и контролируемыми [20].\nПосле прогрессирования заболевания во время таргетной терапии пациенту был назначен Пембролизумаб.\nЭтот препарат представляет собой гуманизированное\nмоноклональное антитело IgG4, направленное против\nрецептора PD-1 и блокирующее взаимодействие с его\nлигандами PD-L1 и PD-L2 [30]. Как показано в исследовании KEYNOTE-006, применение Пембролизумаба\nприводит к значительному улучшению общей выживаемости по сравнению с Ипилимумабом [30]. Однако у описанного пациента прогрессирование было зафиксировано на ранних сроках иммунотерапии, что,\nвероятно, связано с иммуносупрессивной опухолевой\nмикросредой [33]. Следующим этапом лечения стала\nкомбинация Пембролизумаб + Ленватиниб. Эффективность данной схемы была продемонстрирована\nво II фазе исследования LEAP-004, где комбинированная терапия у предлеченных пациентов с метастатической меланомой привела к объективному ответу у 21,4 %\nпациентов [31]. Однако у данного пациента отмечалась\nдальнейшая отрицательная динамика, включая появление метастатических очагов в легких.\nВ связи с прогрессированием заболевания было принято решение о переходе на схему «Атезолизумаб +\nВемурафениб + Кобиметиниб». Согласно данным\nклинического исследования IMspire150, эта тройная\nкомбинация обеспечила медиану выживаемости без\nпрогрессирования 15,1 месяца против 10,6 месяца\nв группе двойной таргетной терапии (Вемурафениб +\nКобиметиниб), при этом профиль токсичности оставался приемлемым [25]. Данное исследование подтвердило преимущества добавления иммунотерапии\nк таргетному режиму у пациентов с ранее не леченной\nBRAF-мутированной меланомой [25]. Таким образом,\nклиническое течение у данного пациента в целом соответствует текущим научным данным.\nСогласно исследованию DREAMseq, для пациентов\nс BRAF-мутированной меланомой возможны различные подходы к выбору последовательности терапии:\nот инициальной иммунотерапии до первичной таргетной терапии [27]. Учитывая агрессивность заболевания\nи необходимость быстрого ответа, у нашего пациента\nстартовая тактика с таргетной терапии была оправдана.\nЗАКЛЮЧЕНИЕ\nПациент с положительной мутацией BRAF, у которого была проведена радикальная операция, после\nкоторой он получал терапию комбинацией Дабрафениб + Траметиниб. Отмечена стабилизация заболевания на протяжении 27 месяцев. Позже, когда лечение\nне достигло ожидаемого эффекта, пациент был переведен на следующую линию терапии: Пембролизумаб.\nЗатем после прогрессирования добавлен был Ленватиниб. Но после очередной прогрессии заболевания\nпациенту было предложено комбинированное лечение\nАтезолизумаб + Вемурафениб + Кобиметиниб, которое\nпоказало лучшие результаты в клиническом исследовании IMspire-150. Пациент получает по настоящее время данную комбинацию, с хорошей переносимостью\nи стабильной динамикой."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nМеланома кожи представляет собой злокачественное\nновообразование, возникающее из меланоцитов и характеризующееся агрессивным биологическим поведением и высоким потенциалом метастазирования [1].\nСогласно данным GLOBOCAN, ежегодно регистрируется свыше 325 000 новых случаев меланомы, из которых\nболее 57 000 заканчиваются летально [2]. В развитых\nстранах заболеваемость продолжает расти, особенно\nсреди лиц со светлой кожей, проживающих в регионах\nс высокой солнечной активностью [3]. Ультрафиолетовое (УФ) облучение считается основным экзогенным\nфактором канцерогенеза при меланоме. Под действием\nУФ-излучения в меланоцитах накапливаются мутации,\nнарушающие контроль клеточного цикла, пролиферации и апоптоза [4–6].\nОсобенно важны в патогенезе мутации в генах\nBRAF, NRAS, KIT, NF1 и других сигнальных каскадах\nMAPK/ERK и PI3K/AKT [7, 8]. Мутации в гене BRAF\nвстречаются приблизительно в 40–60 % случаев меланомы, причем наиболее распространенной является\nBRAF V600E — замена валина на глутаминовую кислоту в кодоне 600 [9]. Эта мутация ассоциирована с молодым возрастом, большим числом невусов, первичной\nлокализацией на туловище и высокой УФ-экспозицией\n[10, 11]. Исследования показали, что пациенты с BRAFмутацией демонстрируют особый биологический\nи клинический фенотип опухоли [12]. Мутации NRAS\nвстречаются в 15–20 % случаев, особенно при узловых\nформах меланомы, ассоциированных с длительным\nсолнечным воздействием и большей толщиной опухоли [13]. Меланомы без мутации в BRAF или NRAS называются double wild-type и часто характеризуются мутациями в NF1 и KIT [14, 15].\nДиагностика меланомы включает клинико-дерматологическое обследование, дерматоскопию и иммуногистохимические исследования. Одним из наиболее\nчувствительных и специфичных маркеров является\nтранскрипционный фактор SOX10, экспрессируемый\nпрактически во всех формах меланомы, включая десмопластические и веретенообразные подтипы. Его\nчувствительность достигает 100 %, а специфичность —\n93 % [16]. С учетом молекулярных особенностей опухоли за последнее десятилетие произошло значительное\nрасширение терапевтического арсенала за счет таргетной терапии и иммунотерапии [17]. Переломным моментом стало внедрение ингибиторов BRAF (вемурафениб, дабрафениб) и MEK (траметиниб, кобиметиниб,\nбиниметиниб), которые при комбинированном применении существенно улучшили показатели выживаемости [18, 19]. Так, комбинация дабрафениб + траметиниб\nпо сравнению с монотерапией продемонстрировала\nдостоверное увеличение общей выживаемости (ОВ)\nи выживаемости без прогрессирования (ВБП), медиана\nВБП достигала 11 месяцев, а 5-летняя ОВ — 34 % [20].\nПохожими характеристиками обладает комбинация\nвемурафениб + кобиметиниб и энкорафениб + биниметиниб [21].\nОднако на фоне таргетной терапии довольно быстро\nразвивается лекарственная устойчивость — в среднем\nчерез 6–8 месяцев [22]. Среди предполагаемых механизмов устойчивости называют повторную активацию MAPK-пути, мутации в MEK1/2, PIK3CA и экспрессию альтернативных рецепторов роста [23, 24].\nВ связи с этим было предложено использовать комбинированную иммуно- и таргетную терапию. Исследование IMspire150 стало первым, где была продемонстрирована эффективность тройной комбинации\nатезолизумаб + вемурафениб + кобиметиниб: медиана\nВБП достигла 15,1 месяца против 10,6 при двойной\nтерапии, а профиль токсичности оказался приемлемым [25]. Результаты IMspire150 были подтверждены и другими исследованиями, включая SECOMBIT\nи DREAMseq, где оценивались различные стратегии\nпоследовательного и комбинированного применения\nиммуно- и таргетных агентов [26, 27]. Так, в DREAMseq\nбыло показано, что инициальная иммунотерапия\n(Ниволумаб + Ипилимумаб) с последующим переходом\nна таргетную терапию обеспечивает более длительную\nОВ, чем наоборот [27].\nИммуноонкологические препараты (ингибиторы PD-1\nи CTLA-4) продемонстрировали революционные результаты в лечении метастатической меланомы. Комбинация Ниволумаб + Ипилимумаб обеспечивает медиану ОВ свыше 60 месяцев, хотя сопровождается высокой\nтоксичностью (3–4-я степень — у 55 % пациентов) [28,\n29]. Пембролизумаб, другой ингибитор PD-1, в рамках\nисследования KEYNOTE-006 показал двухлетнюю выживаемость около 55 %, особенно у пациентов с высокой экспрессией PD-L1 [30]. При прогрессии на иммунотерапии перспективным вариантом является\nкомбинация Пембролизумаб + Ленватиниб, как показано в исследовании LEAP-004, где общая эффективность\nсоставила 21,4 % [31]. Современные исследования поднимают важность учета иммуноопосредованного «сетпоинта» опухоли — баланса между иммунной атакой\nи защитой опухоли, зависящего от опухолевой микросреды, экспрессии PD-L1, мутационной нагрузки и инфильтрации лимфоцитами [32, 33].\nМикроокружение меланомы включает иммунные\nклетки, сосуды, фибробласты, и его характеристики\nвлияют на ответ на терапию. Например, высокая экспрессия VEGF может снижать эффективность иммунотерапии, поэтому ангиостатические агенты вроде\nЛенватиниба потенциально усиливают ее эффект [34].\nСогласно рекомендациям NCCN (2024) и ESMO (2022),\nвыбор терапии должен быть индивидуализирован\nс учетом мутационного профиля, стадии заболевания, выраженности симптомов и предпочтений пациента [35].\nМАТЕРИАЛЫ И МЕТОДЫ\nПациент А. в 2018 году стал отмечать появление опухоли на коже волосистой части головы в заушной области\nслева. Постепенно отмечал изменение свойств опухоли увеличение в размерах, появление зуда. С января\n2019-го отметил появление опухоли на задней поверхности шеи. Обратился в поликлинику по месту жительства, где было проведено обследование. Пациент был\nнаправлен в Республиканский онкологический диспансер, где образования были верифицированы и выставлен диагноз: меланома кожи заушной области, волосистой части головы стадия 3 а группа 2 T1aN1M0. 15 мая\n2019 г. пациенту было выполнено расширенное истечение опухоли кожи заушной области слева. Произведен\nпоиск мутации генов BRAF. Выявлена мутация в гене\nBRAF V600E. Согласно клиническим рекомендациям\nпациенту назначен курс лекарственной терапии препаратами Дабрафениб и Траметиниб. 31 июля 2019 г.\nпациент начал получать терапию. После третьего курса\nтерапии больной был направлен на контрольное обследование — ПЭТ / КТ, где было отмечено уменьшение\nразмеров и уровня активности в корне правого легкого\n(лимфатический узел) (рис. 1).\nДругие внутригрудные лимфатические узлы неактивны. Пациент продолжил терапию в прежнем режиме.\nПосле девятого курса терапии пациент был вновь направлен на контрольное обследование (ПЭТ / КТ), где\nотмечена стабилизация заболевания со снижением метаболической активности (рис. 2).\nПациенту было рекомендовано продолжить терапию\nв режиме «Дабрафениб и Траметиниб». После 14-го\nкурса терапии по данным контрольного обследования\nотмечено в динамике появление низкой активности\nв немногочисленных лимфатических узлах первого\nи второго уровня шеи. А также появление зоны активности послеоперационной области. Пациент был направлен на консилиум, где принято решение продолжить терапию в прежнем режиме. По окончанию 19-го\nкурса проведен контроль в динамике, где зафиксирована стабилизация заболевания. Пациент продолжил лечение в прежней схеме, и после 26-го курса была вновь\nоценена динамика. По данным позитронной-эмиссионной томографии, отмечена отрицательная динамика\nв виде роста размеров и активности единичного лимфоузла шеи слева вероятнее МТС (рис. 3), в остальном\nрегресс активности в немногочисленных лимфоузлах\nшеи, сохраняются слабо активные лимфоузлы корня\nправого легкого.\nБыло принято решение назначить анти-PD-1 терапию\nПембролизумабом. 28 сентября 2022 г. больной получил первый курс второй линии терапии. По окончании\nтретьего курса была проведена оценка эффективности\nлечения, где выявлена прогрессия заболевания в виде\nувеличения лимфоузлов шеи слева с повышением метаболической активности (рис. 4).\nПроведена биопсия лимфатического узла. Патологоанатомически подтверждён метастаз пигментной меланомы в исследованном узле. 9 февраля 2023 г. пациенту\nпроведена экстирпация метастатических пораженных\nлимфоузлов шеи. После чего консилиумом было решено добавить к Пембролизумабу Ленватиниб. После четырех курсов данной схемы терапии по данным\nПЭТ-КТ отмечено появление очагов в правом легком\nс низкой метаболической активностью. Для уточнения\nхарактера выявленных очагов была проведена компьютерная томография, где было подтверждено прогрессирование заболевания в виде появления метастатических очагов в легком. Онкологическим консилиумом\nРеспубликанского онкологического диспансера было\nпредложено лечение: Атезолизумаб + Вемурафениб +\nКобиметиниб. После шести месяцев терапии на контрольном обследовании данных о наличии очагов с патологическим метаболизмом 18F-ФДГ, характерных длянеопластического процесса, не выявлено, в сравнении\nс предыдущим исследованием отмечается снижение\nактивности внутригрудных лимфатических узлов. Регресс ранее визуализируемых очагов в легких. Пациент\nпродолжил терапию в прежнем режиме. В настоящее\nвремя пациент продолжает получать терапию Атезолизумаб + Вемурафениб + Кобиметиниб. Нежелательных\nявлений, требующих коррекции дозировки или отмены\nпрепарата, не выявлено.\nРЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ\nМеланома кожи с мутацией BRAF V600E представляет\nсобой особую клинико-биологическую подгруппу опухолей, для которой за последние годы разработаны различные терапевтические подходы, включая таргетные\nпрепараты и иммуноонкологические средства [7, 9, 17].\nПациенту, описанному в настоящем наблюдении, была\nпроведена радикальная хирургическая резекция с последующим применением таргетной терапии комбинацией Дабрафениб + Траметиниб, что соответствует\nсовременным рекомендациям по ведению пациентов\nс мутацией BRAF V600E на стадии III и IV [18, 19, 35].\nКак показано в исследовании COMBI-AD, адъювантное\nприменение Дабрафениба с Траметинибом у пациентов\nс полностью удаленной меланомой стадии III приводит\nк значимому снижению риска рецидива и увеличению\nобщей выживаемости: через 3 года она составила 86 %\n[20]. У описанного пациента стабилизация заболевания\nсохранялась более 2 лет, что подтверждает данные литературы о длительном клиническом контроле на фоне\nдвойной таргетной терапии [21].\nОднако, как и в большинстве случаев, в течение третьего года лечения у пациента было зарегистрировано\nпрогрессирование заболевания, что может быть связано с формированием лекарственной устойчивости\nк ингибиторам BRAF и MEK. Предполагается, что повторная активация MAPK-пути, мутации в MEK1/2,\nа также компенсация через PI3K-AKT путь являются\nосновными причинами вторичной резистентности\n[22–24]. Вторая линия лечения включала назначение\nПембролизумаба — ингибитора PD-1, эффективность\nкоторого подтверждена в исследовании KEYNOTE-006,\nгде при распространенной меланоме медиана общей\nвыживаемости составила 32,7 месяца [30]. Однако у пациента было отмечено раннее прогрессирование после\nначала иммунотерапии, что, вероятно, обусловлено иммунологическим «холодным» фенотипом опухоли или\nугнетающим микроклиматом опухолевой микросреды\n[32, 33].\nВ качестве третьей линии был применен режим «Пембролизумаб + Ленватиниб». Данная комбинация показала перспективные результаты в исследовании\nLEAP-004 (фаза II), особенно у пациентов с прогрессированием после PD-1 терапии: общая эффективность\nсоставила 21,4 %, а медиана ВБП — 4,2 месяца [31]. Однако и этот подход оказался недостаточно эффективным в конкретном клиническом случае, что диктует\nнеобходимость более агрессивной и комбинированной\nстратегии.\nВ 2023 году пациенту было назначено лечение в режиме\n«Атезолизумаб + Вемурафениб + Кобиметиниб», основанное на данных рандомизированного клинического\nисследования IMspire150, где тройная терапия показала значимое преимущество по медиане выживаемости\nбез прогрессирования (15,1 против 10,6 месяца при\nдвойной терапии), а также более высокий общий ответ(ORR) [25]. Этот подход признан эффективным при наличии активной мутации BRAF и удовлетворительного\nсоматического статуса пациента [26].\nОтдельного внимания заслуживает вопрос о выборе\nпоследовательности терапии при BRAF-положительной\nмеланоме. Исследование DREAMseq (фаза III) продемонстрировало преимущество начала лечения с иммунотерапии (Ниволумаб + Ипилимумаб), а затем — переход к таргетным препаратам. Однако при агрессивном\nклиническом течении, выраженном симптомокомплексе или быстро растущих метастазах обосновано первичное применение таргетной терапии [27]. Также следует учитывать важность оценки микросреды опухоли,\nуровня экспрессии PD-L1 и мутационной нагрузки при\nпрогнозировании ответа на иммунотерапию [32–34].\nИнтеграция биомаркеров и динамического мониторинга ответа на лечение в реальной клинической практике\nостается ключевым направлением развития персонализированной онкологии.\nТаким образом, представленный случай демонстрирует весь спектр современных терапевтических стратегий при метастатической меланоме и подчеркивает\nнеобходимость индивидуального подбора лечения\nс учетом молекулярно-генетических характеристик\nопухоли, динамики ответа и развития резистентности.\nИспользование комбинированной терапии, как показано в IMspire150, дает реальные шансы на долгосрочный\nконтроль заболевания у тщательно отобранных пациентов [25].\nПациенту с BRAF-положительной меланомой, согласно\nклиническим рекомендациям, была проведена радикальная операция с последующим назначением таргетной терапии комбинацией Дабрафениб + Траметиниб.\nНа фоне проводимого лечения отмечалась длительная\nстабилизация заболевания — около 27 месяцев. Эти данные согласуются с результатами исследования COMBIAD, где сообщается, что адъювантная терапия данной\nкомбинацией у пациентов с BRAF-мутированной меланомой стадии III приводит к 3-летней общей выживаемости 86% [20]. Также в этом исследовании было установлено, что нежелательные явления были, как правило,\nобратимыми и контролируемыми [20].\nПосле прогрессирования заболевания во время таргетной терапии пациенту был назначен Пембролизумаб.\nЭтот препарат представляет собой гуманизированное\nмоноклональное антитело IgG4, направленное против\nрецептора PD-1 и блокирующее взаимодействие с его\nлигандами PD-L1 и PD-L2 [30]. Как показано в исследовании KEYNOTE-006, применение Пембролизумаба\nприводит к значительному улучшению общей выживаемости по сравнению с Ипилимумабом [30]. Однако у описанного пациента прогрессирование было зафиксировано на ранних сроках иммунотерапии, что,\nвероятно, связано с иммуносупрессивной опухолевой\nмикросредой [33]. Следующим этапом лечения стала\nкомбинация Пембролизумаб + Ленватиниб. Эффективность данной схемы была продемонстрирована\nво II фазе исследования LEAP-004, где комбинированная терапия у предлеченных пациентов с метастатической меланомой привела к объективному ответу у 21,4 %\nпациентов [31]. Однако у данного пациента отмечалась\nдальнейшая отрицательная динамика, включая появление метастатических очагов в легких.\nВ связи с прогрессированием заболевания было принято решение о переходе на схему «Атезолизумаб +\nВемурафениб + Кобиметиниб». Согласно данным\nклинического исследования IMspire150, эта тройная\nкомбинация обеспечила медиану выживаемости без\nпрогрессирования 15,1 месяца против 10,6 месяца\nв группе двойной таргетной терапии (Вемурафениб +\nКобиметиниб), при этом профиль токсичности оставался приемлемым [25]. Данное исследование подтвердило преимущества добавления иммунотерапии\nк таргетному режиму у пациентов с ранее не леченной\nBRAF-мутированной меланомой [25]. Таким образом,\nклиническое течение у данного пациента в целом соответствует текущим научным данным.\nСогласно исследованию DREAMseq, для пациентов\nс BRAF-мутированной меланомой возможны различные подходы к выбору последовательности терапии:\nот инициальной иммунотерапии до первичной таргетной терапии [27]. Учитывая агрессивность заболевания\nи необходимость быстрого ответа, у нашего пациента\nстартовая тактика с таргетной терапии была оправдана.\nЗАКЛЮЧЕНИЕ\nПациент с положительной мутацией BRAF, у которого была проведена радикальная операция, после\nкоторой он получал терапию комбинацией Дабрафениб + Траметиниб. Отмечена стабилизация заболевания на протяжении 27 месяцев. Позже, когда лечение\nне достигло ожидаемого эффекта, пациент был переведен на следующую линию терапии: Пембролизумаб.\nЗатем после прогрессирования добавлен был Ленватиниб. Но после очередной прогрессии заболевания\nпациенту было предложено комбинированное лечение\nАтезолизумаб + Вемурафениб + Кобиметиниб, которое\nпоказало лучшие результаты в клиническом исследовании IMspire-150. Пациент получает по настоящее время данную комбинацию, с хорошей переносимостью\nи стабильной динамикой."],"dc.subject.ru":["меланома","атезолизумаб","вемурафениб","кобиметиниб","иммунотерапия","биомаркеры новообразований","Soxe транскрипционные факторы","таргетная терапия"],"dc.title.ru":["Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["75-82"],"dc.rights":["CC BY 4.0"],"dc.section":["CLINICAL CASE","КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.section.en":["CLINICAL CASE"],"dc.section.ru":["КЛИНИЧЕСКИЙ СЛУЧАЙ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["В. Е. Аскаров","V. E. Askarov","А. В. Султанбаев","A. V. Sultanbaev","К. В. Меньшиков","K. V. Menshikov","В. С. Чалов","V. S. Chalov","Н. И. Султанбаева","N. I. Sultanbaeva","И. А. Меньшикова","I. A. Menshikova"],"author_keyword":["В. Е. Аскаров","V. E. Askarov","А. В. Султанбаев","A. V. Sultanbaev","К. В. Меньшиков","K. V. Menshikov","В. С. Чалов","V. S. Chalov","Н. И. Султанбаева","N. I. Sultanbaeva","И. А. Меньшикова","I. A. Menshikova"],"author_ac":["в. е. аскаров\n|||\nВ. Е. Аскаров","v. e. askarov\n|||\nV. E. Askarov","а. в. султанбаев\n|||\nА. В. Султанбаев","a. v. sultanbaev\n|||\nA. V. Sultanbaev","к. в. меньшиков\n|||\nК. В. Меньшиков","k. v. menshikov\n|||\nK. V. Menshikov","в. с. чалов\n|||\nВ. С. Чалов","v. s. chalov\n|||\nV. S. Chalov","н. и. султанбаева\n|||\nН. И. Султанбаева","n. i. sultanbaeva\n|||\nN. I. Sultanbaeva","и. а. меньшикова\n|||\nИ. А. Меньшикова","i. a. menshikova\n|||\nI. A. Menshikova"],"author_filter":["в. е. аскаров\n|||\nВ. Е. Аскаров","v. e. askarov\n|||\nV. E. Askarov","а. в. султанбаев\n|||\nА. В. Султанбаев","a. v. sultanbaev\n|||\nA. V. Sultanbaev","к. в. меньшиков\n|||\nК. В. Меньшиков","k. v. menshikov\n|||\nK. V. Menshikov","в. с. чалов\n|||\nВ. С. Чалов","v. s. chalov\n|||\nV. S. Chalov","н. и. султанбаева\n|||\nН. И. Султанбаева","n. i. sultanbaeva\n|||\nN. I. Sultanbaeva","и. а. меньшикова\n|||\nИ. А. Меньшикова","i. a. menshikova\n|||\nI. A. Menshikova"],"dc.author.name":["В. Е. Аскаров","V. E. Askarov","А. В. Султанбаев","A. V. Sultanbaev","К. В. Меньшиков","K. V. Menshikov","В. С. Чалов","V. S. Chalov","Н. И. Султанбаева","N. I. Sultanbaeva","И. А. Меньшикова","I. A. Menshikova"],"dc.author.name.ru":["В. Е. Аскаров","А. В. Султанбаев","К. В. Меньшиков","В. С. Чалов","Н. И. Султанбаева","И. А. Меньшикова"],"dc.author.affiliation":["Республиканский клинический онкологический диспансер","Republican Clinical Oncological Dispensary","Республиканский клинический онкологический диспансер","Republican Clinical Oncological Dispensary","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Republican Clinical Oncological Dispensary ; Bashkir State Medical University","Центр ядерной медицины","Nuclear Medicine Centre","Республиканский клинический онкологический диспансер","Republican Clinical Oncological Dispensary","Башкирский государственный медицинский университет","Bashkir State Medical University"],"dc.author.affiliation.ru":["Республиканский клинический онкологический диспансер","Республиканский клинический онкологический диспансер","Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","Центр ядерной медицины","Республиканский клинический онкологический диспансер","Башкирский государственный медицинский университет"],"dc.author.full":["В. Е. Аскаров | Республиканский клинический онкологический диспансер","V. E. Askarov | Republican Clinical Oncological Dispensary","А. В. Султанбаев | Республиканский клинический онкологический диспансер","A. V. Sultanbaev | Republican Clinical Oncological Dispensary","К. В. Меньшиков | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","K. V. Menshikov | Republican Clinical Oncological Dispensary ; Bashkir State Medical University","В. С. Чалов | Центр ядерной медицины","V. S. Chalov | Nuclear Medicine Centre","Н. И. Султанбаева | Республиканский клинический онкологический диспансер","N. I. Sultanbaeva | Republican Clinical Oncological Dispensary","И. А. Меньшикова | Башкирский государственный медицинский университет","I. A. Menshikova | Bashkir State Medical University"],"dc.author.full.ru":["В. Е. Аскаров | Республиканский клинический онкологический диспансер","А. В. Султанбаев | Республиканский клинический онкологический диспансер","К. В. Меньшиков | Республиканский клинический онкологический диспансер ; Башкирский государственный медицинский университет","В. С. Чалов | Центр ядерной медицины","Н. И. Султанбаева | Республиканский клинический онкологический диспансер","И. А. Меньшикова | Башкирский государственный медицинский университет"],"dc.author.name.en":["V. E. Askarov","A. V. Sultanbaev","K. V. Menshikov","V. S. Chalov","N. I. Sultanbaeva","I. A. Menshikova"],"dc.author.affiliation.en":["Republican Clinical Oncological Dispensary","Republican Clinical Oncological Dispensary","Republican Clinical Oncological Dispensary ; Bashkir State Medical University","Nuclear Medicine Centre","Republican Clinical Oncological Dispensary","Bashkir State Medical University"],"dc.author.full.en":["V. E. Askarov | Republican Clinical Oncological Dispensary","A. V. Sultanbaev | Republican Clinical Oncological Dispensary","K. V. Menshikov | Republican Clinical Oncological Dispensary ; Bashkir State Medical University","V. S. Chalov | Nuclear Medicine Centre","N. I. Sultanbaeva | Republican Clinical Oncological Dispensary","I. A. Menshikova | Bashkir State Medical University"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-0988-7261\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u0412. \\u0415. \\u0410\\u0441\\u043a\\u0430\\u0440\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0988-7261\", \"affiliation\": \"Republican Clinical Oncological Dispensary\", \"full_name\": \"V. E. Askarov\"}}, {\"ru\": {\"orcid\": \"0000-0003-0996-5995\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u0410. \\u0412. \\u0421\\u0443\\u043b\\u0442\\u0430\\u043d\\u0431\\u0430\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-0996-5995\", \"affiliation\": \"Republican Clinical Oncological Dispensary\", \"full_name\": \"A. V. Sultanbaev\"}}, {\"ru\": {\"orcid\": \"0000-0003-3734-2779\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440 ; \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041a. \\u0412. \\u041c\\u0435\\u043d\\u044c\\u0448\\u0438\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-3734-2779\", \"affiliation\": \"Republican Clinical Oncological Dispensary ; Bashkir State Medical University\", \"full_name\": \"K. V. Menshikov\"}}, {\"ru\": {\"orcid\": \"0000-0001-8779-4074\", \"affiliation\": \"\\u0426\\u0435\\u043d\\u0442\\u0440 \\u044f\\u0434\\u0435\\u0440\\u043d\\u043e\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u044b\", \"full_name\": \"\\u0412. \\u0421. \\u0427\\u0430\\u043b\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0001-8779-4074\", \"affiliation\": \"Nuclear Medicine Centre\", \"full_name\": \"V. S. Chalov\"}}, {\"ru\": {\"orcid\": \"0000-0001-5926-0446\", \"affiliation\": \"\\u0420\\u0435\\u0441\\u043f\\u0443\\u0431\\u043b\\u0438\\u043a\\u0430\\u043d\\u0441\\u043a\\u0438\\u0439 \\u043a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u043e\\u043d\\u043a\\u043e\\u043b\\u043e\\u0433\\u0438\\u0447\\u0435\\u0441\\u043a\\u0438\\u0439 \\u0434\\u0438\\u0441\\u043f\\u0430\\u043d\\u0441\\u0435\\u0440\", \"full_name\": \"\\u041d. \\u0418. \\u0421\\u0443\\u043b\\u0442\\u0430\\u043d\\u0431\\u0430\\u0435\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0001-5926-0446\", \"affiliation\": \"Republican Clinical Oncological Dispensary\", \"full_name\": \"N. I. Sultanbaeva\"}}, {\"ru\": {\"orcid\": \"0000-0002-8665-8895\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0418. \\u0410. \\u041c\\u0435\\u043d\\u044c\\u0448\\u0438\\u043a\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0002-8665-8895\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"I. A. Menshikova\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1089"],"dc.citation":["Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947","Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947"],"dc.citation.ru":["Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947"],"dc.citation.en":["Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. DOI: 10.3322/caac.21763","Arnold M., Singh D., Laversanne M., Vignat J., Vaccarella S., Meheus F., et al. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022;158(5):495–503. DOI: 10.1001/jamadermatol.2022.0160","Whiteman D.C., Green A.C., Olsen C.M. The growing burden of invasive melanoma: projections of incidence rates and numbers of new cases in six susceptible populations through 2031. J Invest Dermatol. 2016;136(6):1161–71. DOI: 10.1016/j.jid.2016.01.035","Hayward N.K., Wilmott J.S., Waddell N., Johansson P.A., Field M.A., Nones K., et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80. DOI: 10.1038/nature22071","Wessely A., Steeb T., Berking C., Heppt M.V. How neural crest transcription factors contribute to melanoma heterogeneity, cellular plasticity, and treatment resistance. Int J Mol Sci. 2021;22(11):5761. DOI: 10.3390/ijms22115761","Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. DOI: 10.1016/j.cell.2015.05.044","Kozyra P., Pitucha M. Revisiting the role of B-RAF Kinase as a therapeutic target in melanoma. Curr Med Chem. 2024;31(15):2003–20. DOI: 10.2174/0109298673258495231011065225","Diaz M.J., Tran J.T., Choo Z.N., Root K.T., Batchu S., Milanovic S., et al. Genomic subtypes of cutaneous melanoma have distinct metabolic profiles: A single-cell transcriptomic analysis. Arch Dermatol Res. 2023;315(10):2961–5. DOI: 10.1007/s00403-023-02690-7","Bauer J., Büttner P., Murali R., Okamoto I., Kolaitis N.A., Landi M.T., et al. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res. 2011;24(2):345–51. DOI: 10.1111/j.1755-148X.2011.00837.x","Beleaua M.A., Jung I., Braicu C., Milutin D., Gurzu S. SOX11, SOX10 and MITF gene interaction: a possible diagnostic tool in malignant melanoma. Life (Basel). 2021;11(4):281. DOI: 10.3390/life11040281","Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am. 2020;100(1):175–88. DOI: 10.1016/j.suc.2019.09.013","Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., et al. Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma. Onco Targets Ther. 2018;11:7095–107. DOI: 10.2147/OTT.S182721","Ascierto P.A., Ribas A., Larkin J., McArthur G.A., Lewis K.D., Hauschild A., et al. Impact of initial treatment and prognostic factors on postprogression survival in BRAF-mutated metastatic melanoma treated with dacarbazine or vemurafenib ± cobimetinib: a pooled analysis of four clinical trials. J Transl Med. 2020;18(1):294. DOI: 10.1186/s12967-020-02458-x","Robert C., Grob J.J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019;381(7):626–36. DOI: 10.1056/NEJMoa1904059","Dummer R., Ascierto P.A., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018;19(10):1315–27. DOI: 10.1016/S1470-2045(18)30497-2","Guha A., Jain P., Fradley M.G., Lenihan D., Gutierrez J.M., Jain C., et al. Cardiovascular adverse events associated with BRAF versus BRAF/ MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries. Cancer Med. 2021;10(12):3862–72. DOI: 10.1002/cam4.3938","Gutzmer R., Stroyakovskiy D., Gogas H., Robert C., Lewis K., Protsenko S., et al. Atezolizumab, vemurafenib, and cobimetinib as firstline treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, doubleblind, placebo-controlled, phase 3 trial. Lancet. 2020;395(10240):1835– 44. DOI: 10.1016/S0140-6736(20)30934-X","Swetter S.M., Johnson D., Albertini M.R., Barker C.A., Bateni S., Baumgartner J., et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J Natl Compr Canc Netw. 2024;22(5):290–8. DOI: 10.6004/jnccn.2024.0036","Larkin J., Chiarion-Sileni V., Gonzalez R., Grob J.J., Cowey C.L., Lao C.D., et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030","Ott P.A., Hodi F.S., Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res. 2013;19(19):5300–9. DOI: 10.1158/1078-0432.CCR-13-0143","Robert C., Long G.V., Brady B., Dutriaux C., Di Giacomo A.M., Mortier L., et al. Five-year outcomes with nivolumab in patients with wildtype BRAF advanced melanoma. J Clin Oncol. 2020;38(33):3937–46. DOI: 10.1200/JCO.20.00995","Dummer R., Flaherty K.T., Robert C., Arance A., B de Groot J.W., Garbe C., et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF. Future Oncol. 2023;19(16):1091–8. DOI: 10.2217/fon-2022-1258","Ascierto P.A., Dummer R., Gogas H.J., Arance A., Mandala M., Liszkay G., et al. Contribution of MEK inhibition to BRAF/MEK inhibitor combination treatment of BRAF-mutant melanoma: part 2 of the randomized, open-label, phase III COLUMBUS Trial. J Clin Oncol. 2023;41(29):4621–31. DOI: 10.1200/JCO.22.02322","Wahid M., Jawed A., Mandal R.K., Dar S.A., Akhter N., Somvanshi P., et al. Recent developments and obstacles in the treatment of melanoma with BRAF and MEK inhibitors. Crit Rev Oncol Hematol. 2018;125:84–8. DOI: 10.1016/j.critrevonc.2018.03.005","Steininger J., Gellrich F.F., Schulz A., Westphal D., Beissert S., Meier F. Systemic therapy of metastatic melanoma: on the road to cure. Cancers (Basel). 2021;13(6):1430. DOI: 10.3390/cancers13061430","Meirson T., Asher N., Bomze D., Markel G. Safety of BRAF+MEK inhibitor combinations: severe adverse event evaluation. Cancers (Basel). 2020;12(6):1650. DOI: 10.3390/cancers12061650","Chanda M., Cohen M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin Drug Discov. 2021;16(11):1319–47. DOI: 10.1080/17460441.2021.1942834","Jespersen H., Bjursten S., Ny L., Levin M. Checkpoint inhibitorinduced sarcoid reaction mimicking bone metastases. Lancet Oncol. 2018;19(6):e327. DOI: 10.1016/S1470-2045(18)30252-3","Казьмин А.И., Черницын К.И., Мошуров И.П. Стойкий полный ответ на терапию пембролизумабом у пациентки с метастатической меланомой с поражением костей. Онкология. Журнал им. П.А. Герцена. 2019;8(3):221–5. DOI: 10.17116/onkolog2019803115221","Amaral T., Ottaviano M., Arance A., Blank C., Chiarion-Sileni V., Donia M., et al. Cutaneous melanoma: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2025;36(1):10–30. DOI: 10.1016/j.annonc.2024.11.006","Luke J.J., Flaherty K.T., Ribas A., Long G.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14(8):463–82. DOI: 10.1038/nrclinonc.2017.43","Menzer C., Menzies A.M., Carlino M.S., Reijers I., Groen E.J., Eigentler T., et al. Targeted therapy in advanced melanoma with rare BRAF mutations. J Clin Oncol. 2019;37(33):3142–51. DOI: 10.1200/JCO.19.00489","Chen D.S., Mellman I. Elements of cancer immunity and the cancerimmune set point. Nature. 2017;541(7637):321–30. DOI: 10.1038/nature21349","Satala D., Satala G., Karkowska-Kuleta J., Bukowski M., Kluza A., Rapala-Kozik M., et al. Structural insights into the interactions of candidal enolase with human vitronectin, fibronectin and plasminogen. Int J Mol Sci. 2020;21(21):7843. DOI: 10.3390/ijms21217843","Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with BRAF-mutant melanoma: advances and perspectives. Am Soc Clin Oncol Educ Book. 2020;40:219–29. DOI: 10.1200/EDBK_279947"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8928"],"dc.date.accessioned_dt":"2025-07-09T13:59:00Z","dc.date.accessioned":["2025-07-09T13:59:00Z"],"dc.date.available":["2025-07-09T13:59:00Z"],"publication_grp":["123456789/8928"],"bi_4_dis_filter":["иммунотерапия\n|||\nиммунотерапия","cobimetinib\n|||\ncobimetinib","меланома\n|||\nмеланома","tumor biomarkers\n|||\ntumor biomarkers","sox transcription factors\n|||\nSOX transcription factors","targeted therapy\n|||\ntargeted therapy","вемурафениб\n|||\nвемурафениб","atezolizumab\n|||\natezolizumab","immunotherapy\n|||\nimmunotherapy","биомаркеры новообразований\n|||\nбиомаркеры новообразований","vemurafenib\n|||\nvemurafenib","таргетная терапия\n|||\nтаргетная терапия","атезолизумаб\n|||\nатезолизумаб","melanoma\n|||\nmelanoma","кобиметиниб\n|||\nкобиметиниб","soxe транскрипционные факторы\n|||\nSoxe транскрипционные факторы"],"bi_4_dis_partial":["targeted therapy","меланома","tumor biomarkers","vemurafenib","melanoma","SOX transcription factors","atezolizumab","Soxe транскрипционные факторы","биомаркеры новообразований","cobimetinib","атезолизумаб","таргетная терапия","immunotherapy","кобиметиниб","иммунотерапия","вемурафениб"],"bi_4_dis_value_filter":["targeted therapy","меланома","tumor biomarkers","vemurafenib","melanoma","SOX transcription factors","atezolizumab","Soxe транскрипционные факторы","биомаркеры новообразований","cobimetinib","атезолизумаб","таргетная терапия","immunotherapy","кобиметиниб","иммунотерапия","вемурафениб"],"bi_sort_1_sort":"combination braf/mek inhibitor targeted therapy and immunotherapy (atezolizumab + vemurafenib + cobimetinib) for metastatic cutaneous melanoma: clinical case","bi_sort_3_sort":"2025-07-09T13:59:00Z","read":["g0"],"_version_":1837178070286467072},{"SolrIndexer.lastIndexed":"2025-04-23T09:48:17.504Z","search.uniqueid":"2-7888","search.resourcetype":2,"search.resourceid":7888,"handle":"123456789/8778","location":["m229","l684"],"location.comm":["229"],"location.coll":["684"],"withdrawn":"false","discoverable":"true","author":["Sangeet, Ghai,","Ni, Tiffany T.","Pavlovich, Christian P.","Futterer, Jurgen J.","Schade, George R.","Sanchez-Salas, Rafael","Cornud, Francois","Eggener, Scott","Feller, John F.","George, Arvin K.","Villers, Arnauld","de la Rosette, Jean"],"author_keyword":["Sangeet, Ghai,","Ni, Tiffany T.","Pavlovich, Christian P.","Futterer, Jurgen J.","Schade, George R.","Sanchez-Salas, Rafael","Cornud, Francois","Eggener, Scott","Feller, John F.","George, Arvin K.","Villers, Arnauld","de la Rosette, Jean"],"author_ac":["sangeet, ghai,\n|||\nSangeet, Ghai,","ni, tiffany t.\n|||\nNi, Tiffany T.","pavlovich, christian p.\n|||\nPavlovich, Christian P.","futterer, jurgen j.\n|||\nFutterer, Jurgen J.","schade, george r.\n|||\nSchade, George R.","sanchez-salas, rafael\n|||\nSanchez-Salas, Rafael","cornud, francois\n|||\nCornud, Francois","eggener, scott\n|||\nEggener, Scott","feller, john f.\n|||\nFeller, John F.","george, arvin k.\n|||\nGeorge, Arvin K.","villers, arnauld\n|||\nVillers, Arnauld","de la rosette, jean\n|||\nde la Rosette, Jean"],"author_filter":["sangeet, ghai,\n|||\nSangeet, Ghai,","ni, tiffany t.\n|||\nNi, Tiffany T.","pavlovich, christian p.\n|||\nPavlovich, Christian P.","futterer, jurgen j.\n|||\nFutterer, Jurgen J.","schade, george r.\n|||\nSchade, George R.","sanchez-salas, rafael\n|||\nSanchez-Salas, Rafael","cornud, francois\n|||\nCornud, Francois","eggener, scott\n|||\nEggener, Scott","feller, john f.\n|||\nFeller, John F.","george, arvin k.\n|||\nGeorge, Arvin K.","villers, arnauld\n|||\nVillers, Arnauld","de la rosette, jean\n|||\nde la Rosette, Jean"],"dc.contributor.author_hl":["Sangeet, Ghai,","Ni, Tiffany T.","Pavlovich, Christian P.","Futterer, Jurgen J.","Schade, George R.","Sanchez-Salas, Rafael","Cornud, Francois","Eggener, Scott","Feller, John F.","George, Arvin K.","Villers, Arnauld","de la Rosette, Jean"],"dc.contributor.author_mlt":["Sangeet, Ghai,","Ni, Tiffany T.","Pavlovich, Christian P.","Futterer, Jurgen J.","Schade, George R.","Sanchez-Salas, Rafael","Cornud, Francois","Eggener, Scott","Feller, John F.","George, Arvin K.","Villers, Arnauld","de la Rosette, Jean"],"dc.contributor.author":["Sangeet, Ghai,","Ni, Tiffany T.","Pavlovich, Christian P.","Futterer, Jurgen J.","Schade, George R.","Sanchez-Salas, Rafael","Cornud, Francois","Eggener, Scott","Feller, John F.","George, Arvin K.","Villers, Arnauld","de la Rosette, Jean"],"dc.contributor.author_stored":["Sangeet, Ghai,\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Ni, Tiffany T.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Pavlovich, Christian P.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Futterer, Jurgen J.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Schade, George R.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Sanchez-Salas, Rafael\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Cornud, Francois\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Eggener, Scott\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Feller, John F.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","George, Arvin K.\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Villers, Arnauld\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","de la Rosette, Jean\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen"],"dc.contributor.author.en":["Sangeet, Ghai,","Ni, Tiffany T.","Pavlovich, Christian P.","Futterer, Jurgen J.","Schade, George R.","Sanchez-Salas, Rafael","Cornud, Francois","Eggener, Scott","Feller, John F.","George, Arvin K.","Villers, Arnauld","de la Rosette, Jean"],"dc.date.accessioned_dt":"2025-04-23T09:41:16Z","dc.date.accessioned":["2025-04-23T09:41:16Z"],"dc.date.available":["2025-04-23T09:41:16Z"],"dateIssued":["2025-01-01"],"dateIssued_keyword":["2025-01-01","2025"],"dateIssued_ac":["2025-01-01\n|||\n2025-01-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.issued_dt":"2025-01-01T00:00:00Z","dc.date.issued":["2025-01-01"],"dc.date.issued_stored":["2025-01-01\n|||\nnull\n|||\nnull\n|||\nnull\n|||\n"],"dc.description.abstract_hl":["Introduction: Prostate cancer (PCa) management poses challenges due to treatment-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative for intermediate-risk PCa, aiming to selectively target localized cancerous lesions while preserving healthy tissue. This review explores emerging FT modalities for PCa treatment, focusing on transrectal MRI-guided focused ultrasound surgery (MRgFUS), transurethral ultrasound ablation (TULSA), focal laser ablation (FLA), and histotripsy. Methods: A comprehensive literature search was conducted to identify studies and clinical trials related to FT. Relevant articles were selected and data were synthesized to provide insights into the efficacy and feasibility of MRgFUS, TULSA, FLA, and histotripsy for FT. Results: MRgFUS utilizes transrectal high-intensity focused ultrasound under MRI guidance to selectively ablate cancerous tissue, demonstrating positive outcomes in oncologic control and preservation of urinary and sexual function. TULSA employs transurethral delivery of high-intensity ultrasound energy under MRI guidance, showing promising results for whole gland treatment. FLA benefits from precise ablation, indicating effectiveness in tumor destruction while preserving quality-of-life. Histotripsy, a mechanical ablation method, exhibits promise by inducing tissue fractionation through bubble activity, offering advantages such as tissue selectivity and real-time treatment monitoring. Conclusion: Emerging FT modalities present promising alternatives for the management of localized PCa, offering personalized treatment. Further research and clinical trials are warranted to establish the long-term efficacy of these techniques in PCa management. © The Author(s), under exclusive licence to Springer Nature Limited 2025."],"dc.description.abstract":["Introduction: Prostate cancer (PCa) management poses challenges due to treatment-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative for intermediate-risk PCa, aiming to selectively target localized cancerous lesions while preserving healthy tissue. This review explores emerging FT modalities for PCa treatment, focusing on transrectal MRI-guided focused ultrasound surgery (MRgFUS), transurethral ultrasound ablation (TULSA), focal laser ablation (FLA), and histotripsy. Methods: A comprehensive literature search was conducted to identify studies and clinical trials related to FT. Relevant articles were selected and data were synthesized to provide insights into the efficacy and feasibility of MRgFUS, TULSA, FLA, and histotripsy for FT. Results: MRgFUS utilizes transrectal high-intensity focused ultrasound under MRI guidance to selectively ablate cancerous tissue, demonstrating positive outcomes in oncologic control and preservation of urinary and sexual function. TULSA employs transurethral delivery of high-intensity ultrasound energy under MRI guidance, showing promising results for whole gland treatment. FLA benefits from precise ablation, indicating effectiveness in tumor destruction while preserving quality-of-life. Histotripsy, a mechanical ablation method, exhibits promise by inducing tissue fractionation through bubble activity, offering advantages such as tissue selectivity and real-time treatment monitoring. Conclusion: Emerging FT modalities present promising alternatives for the management of localized PCa, offering personalized treatment. Further research and clinical trials are warranted to establish the long-term efficacy of these techniques in PCa management. © The Author(s), under exclusive licence to Springer Nature Limited 2025."],"dc.description.abstract.en":["Introduction: Prostate cancer (PCa) management poses challenges due to treatment-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative for intermediate-risk PCa, aiming to selectively target localized cancerous lesions while preserving healthy tissue. This review explores emerging FT modalities for PCa treatment, focusing on transrectal MRI-guided focused ultrasound surgery (MRgFUS), transurethral ultrasound ablation (TULSA), focal laser ablation (FLA), and histotripsy. Methods: A comprehensive literature search was conducted to identify studies and clinical trials related to FT. Relevant articles were selected and data were synthesized to provide insights into the efficacy and feasibility of MRgFUS, TULSA, FLA, and histotripsy for FT. Results: MRgFUS utilizes transrectal high-intensity focused ultrasound under MRI guidance to selectively ablate cancerous tissue, demonstrating positive outcomes in oncologic control and preservation of urinary and sexual function. TULSA employs transurethral delivery of high-intensity ultrasound energy under MRI guidance, showing promising results for whole gland treatment. FLA benefits from precise ablation, indicating effectiveness in tumor destruction while preserving quality-of-life. Histotripsy, a mechanical ablation method, exhibits promise by inducing tissue fractionation through bubble activity, offering advantages such as tissue selectivity and real-time treatment monitoring. Conclusion: Emerging FT modalities present promising alternatives for the management of localized PCa, offering personalized treatment. Further research and clinical trials are warranted to establish the long-term efficacy of these techniques in PCa management. © The Author(s), under exclusive licence to Springer Nature Limited 2025."],"dc.doi":["10.1038/s41391-025-00956-x"],"dc.doi.en":["10.1038/s41391-025-00956-x"],"dc.identifier.issn":["1365-7852"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8778"],"dc.language.iso":["en"],"dc.language.iso.en":["en"],"dc.publisher":["Springer Nature"],"dc.publisher.en":["Springer Nature"],"dc.relation.ispartofseries":["Prostate Cancer and Prostatic Diseases;"],"dc.relation.ispartofseries.en":["Prostate Cancer and Prostatic Diseases;"],"subject":["Scopus"],"subject_keyword":["Scopus","Scopus"],"subject_ac":["scopus\n|||\nScopus"],"subject_tax_0_filter":["scopus\n|||\nScopus"],"subject_filter":["scopus\n|||\nScopus"],"dc.subject_mlt":["Scopus"],"dc.subject":["Scopus"],"dc.subject.en":["Scopus"],"title":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"title_keyword":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"title_ac":["new kids on the block: mri guided transrectal focused us, tulsa, focal laser ablation, histotripsy – a comprehensive review\n|||\nNew kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.title_sort":"New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review","dc.title_hl":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.title_mlt":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.title":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.title_stored":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen"],"dc.title.en":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.title.alternative":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.title.alternative.en":["New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy – a comprehensive review"],"dc.type":["Article"],"dc.type.en":["Article"],"publication_grp":["123456789/8778"],"bi_2_dis_filter":["villers, arnauld\n|||\nVillers, Arnauld","ni, tiffany t.\n|||\nNi, Tiffany T.","futterer, jurgen j.\n|||\nFutterer, Jurgen J.","sanchez-salas, rafael\n|||\nSanchez-Salas, Rafael","george, arvin k.\n|||\nGeorge, Arvin K.","de la rosette, jean\n|||\nde la Rosette, Jean","schade, george r.\n|||\nSchade, George R.","pavlovich, christian p.\n|||\nPavlovich, Christian P.","sangeet, ghai,\n|||\nSangeet, Ghai,","cornud, francois\n|||\nCornud, Francois","eggener, scott\n|||\nEggener, Scott","feller, john f.\n|||\nFeller, John F."],"bi_2_dis_partial":["Futterer, Jurgen J.","Eggener, Scott","Cornud, Francois","Villers, Arnauld","de la Rosette, Jean","Ni, Tiffany T.","Sangeet, Ghai,","Schade, George R.","George, Arvin K.","Pavlovich, Christian P.","Sanchez-Salas, Rafael","Feller, John F."],"bi_2_dis_value_filter":["Futterer, Jurgen J.","Eggener, Scott","Cornud, Francois","Villers, Arnauld","de la Rosette, Jean","Ni, Tiffany T.","Sangeet, Ghai,","Schade, George R.","George, Arvin K.","Pavlovich, Christian P.","Sanchez-Salas, Rafael","Feller, John F."],"bi_4_dis_filter":["scopus\n|||\nScopus"],"bi_4_dis_partial":["Scopus"],"bi_4_dis_value_filter":["Scopus"],"bi_sort_1_sort":"new kids on the block: mri guided transrectal focused us, tulsa, focal laser ablation, histotripsy – a comprehensive review","bi_sort_2_sort":"2025","bi_sort_3_sort":"2025-04-23T09:41:16Z","read":["g0"],"_version_":1830186330370342912}]},"facet_counts":{"facet_queries":{},"facet_fields":{},"facet_dates":{},"facet_ranges":{},"facet_intervals":{}},"highlighting":{"2-8042":{"dc.citation.en":["do Prado Padovani R., Chablani S.V., Tuttle R.M. Radioactive iodine therapy: multiple faces"],"dc.citation.ru":["do Prado Padovani R., Chablani S.V., Tuttle R.M. Radioactive iodine therapy: multiple faces"],"dc.abstract.en":[". Conclusion. The study highlights the potential of interventional endocrine surgery as a"],"dc.citation":["do Prado Padovani R., Chablani S.V., Tuttle R.M. Radioactive iodine therapy: multiple faces"],"dc.abstract":[". Conclusion. The study highlights the potential of interventional endocrine surgery as a"]},"2-7905":{"dc.title.en":["New approaches to targeted drug therapy of intracranial tumors"],"dc.description.abstract":["-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology"],"dc.title":["New approaches to targeted drug therapy of intracranial tumors"],"dc.title_hl":["New approaches to targeted drug therapy of intracranial tumors"],"dc.title_mlt":["New approaches to targeted drug therapy of intracranial tumors"],"dc.description.abstract.en":["-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology"],"dc.title.alternative.en":["New approaches to targeted drug therapy of intracranial tumors"],"title":["New approaches to targeted drug therapy of intracranial tumors"],"dc.description.abstract_hl":["-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology"],"dc.title.alternative":["New approaches to targeted drug therapy of intracranial tumors"]},"2-7741":{"dc.description.abstract":[" of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major"],"bi_4_dis_partial":["Therapy"],"dc.description.abstract.en":[" of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major"],"dc.subject.en":["Therapy"],"dc.description.abstract_hl":[" of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major"],"dc.subject":["Therapy"],"dc.subject_mlt":["Therapy"],"subject":["Therapy"]},"2-7930":{"dc.title.en":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"],"dc.description.abstract":[" the potential of stromal vascular fraction (SVF) cell therapy as a novel regenerative treatment for ICH. SVF"],"dc.title":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"],"dc.title_hl":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"],"dc.title_mlt":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"],"dc.description.abstract.en":[" the potential of stromal vascular fraction (SVF) cell therapy as a novel regenerative treatment for ICH. SVF"],"dc.title.alternative.en":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"],"title":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"],"dc.description.abstract_hl":[" the potential of stromal vascular fraction (SVF) cell therapy as a novel regenerative treatment for ICH. SVF"],"dc.title.alternative":["Stromal vascular fraction cell therapy: A promising therapeutic method for intracerebral hemorrhage"]},"2-7834":{"bi_4_dis_partial":["Cancer therapy"],"dc.subject.en":["Cancer therapy"],"dc.subject":["Cancer therapy"],"dc.subject_mlt":["Cancer therapy"],"subject":["Cancer therapy"]},"2-8043":{"dc.citation.en":["Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J"],"dc.citation.ru":["Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J"],"dc.citation":["Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J"]},"2-7972":{"bi_4_dis_partial":["Therapy"],"dc.subject.en":["Therapy"],"dc.subject":["Therapy"],"dc.subject_mlt":["Therapy"],"subject":["Therapy"]},"2-7901":{"bi_4_dis_partial":["gene therapy"],"dc.subject.en":["gene therapy"],"dc.subject":["gene therapy"],"dc.subject_mlt":["gene therapy"],"dc.abstract.en":["-modulating enzymes, open unprecedented opportunities for the creation of new therapies. These technologies make"],"subject":["gene therapy"],"dc.abstract":["-modulating enzymes, open unprecedented opportunities for the creation of new therapies. These technologies make"]},"2-8039":{"dc.title.en":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib"],"dc.title":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib"],"dc.title_hl":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib"],"dc.title_mlt":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib"],"bi_4_dis_partial":["targeted therapy"],"dc.subject.en":["targeted therapy"],"title":["Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib"],"dc.citation.en":["Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am"],"dc.subject":["targeted therapy"],"dc.citation.ru":["Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am"],"dc.subject_mlt":["targeted therapy"],"dc.abstract.en":[", and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite"],"dc.citation":["Sun J., Carr M.J., Khushalani N.I. Principles of targeted therapy for melanoma. Surg Clin North Am"],"subject":["targeted therapy"],"dc.abstract":[", and targeted therapy directed at mutations in the MAPK/ ERK pathway, particularly BRAF V600E. Despite"]},"2-7888":{"dc.description.abstract":["-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative"],"dc.description.abstract.en":["-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative"],"dc.description.abstract_hl":["-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative"]}}} -->

По вашему запросу найдено документов: 27

Страница 1 из 3

Этаноловая склеротерапия с радиочастотной абляцией в лечении токсической аденомы (клинический случай)

-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology

of the potential of immune system-derived miRNAs to revolutionize CVD management and therapy, addressing a major

the potential of stromal vascular fraction (SVF) cell therapy as a novel regenerative treatment for ICH. SVF

Cancer therapy

G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" [21]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [22]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [23]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [24]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [25]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [26]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [27]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [28]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [29]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [30]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [31]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [32]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [33]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [34]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [35]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [36]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [37]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [38]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [39]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [40]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [41]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.ru"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.citation.en"]=> array(21) { [0]=> string(185) "Liu Q., Lyu H., Xu B., Lee J.H. Madelung disease epidemiology and clinical characteristics: a systemic review. Aesthetic Plast Surg. 2021;45(3):977–86. DOI: 10.1007/s00266-020-02083-5" [1]=> string(167) "Sia K.J., Tang I.P., Tan T.Y. Multiple symmetrical lipomatosis: case report and literature review. J Laryngol Otol. 2012;126(7):756–8. DOI: 10.1017/S0022215112000709" [2]=> string(209) "Kratz C., Lenard H.G., Ruzicka T., Gärtner J. Multiple symmetric lipomatosis: an unusual cause of childhood obesity and mental retardation. Eur J Paediatr Neurol. 2000;4(2):63–7. DOI: 10.1053/ejpn.2000.0264" [3]=> string(210) "Nounla J., Rolle U., Gräfe G., Kräling K. Benign symmetric lipomatosis with myelomeningocele in an adolescent: An uncommon association-case report. J Pediatr Surg. 2001;36(7):E13. DOI: 10.1053/jpsu.2001.24776" [4]=> string(93) "Madelung O.W. Über den Fetthals (diffuses Lipom des Halses). Arch Klin Chir. 1888;37:106-30." [5]=> string(91) "Lanois P.E., Bensaude R. De ladeno-lipomatosesymetrique. Bull Mem Soc Med Hosp. 1898;1:298." [6]=> string(204) "El Ouahabi H., Doubi S., Lahlou K., Boujraf S., Ajdi F. Launois-bensaude syndrome: A benign symmetric lipomatosis without alcohol association. Ann Afr Med. 2017;16(1):33–4. DOI: 10.4103/1596-3519.202082" [7]=> string(176) "Chen C.Y., Fang Q.Q., Wang X.F., Zhang M.X., Zhao W.Y., Shi B.H., et al. Madelung’s disease: lipectomy or liposuction? Biomed Res Int. 2018;3975974. DOI: 10.1155/2018/3975974" [8]=> string(123) "Coker J.E., Bryan J.A. Endocrine and metabolic disorders: Causes and pathogenesis of obesity. J. Fam. Pract. 2008;4:21–6." [9]=> string(262) "González-García R., Rodríguez-Campo F.J., Sastre-Pérez J., Muñoz-Guerra M.F. Benign symmetric lipomatosis (Madelung’s disease): case reports and current management. Aesthetic Plast Surg. 2004;28(2):108– 12; discussion 113. DOI: 10.1007/s00266-004-3123-5" [10]=> string(326) "Holme E., Larsson N.G., Oldfors A., Tulinius M., Sahlin P., Stenman G. Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A-->G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am J Hum Genet. 1993r;52(3):551–6. PMID: 8447321" [11]=> string(289) "Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010;44(5):755–72." [12]=> string(201) "Celentano V., Esposito E., Perrotta S., Giglio M.C., Tarquini R., Luglio G., et al. Madelung disease: report of a case and review of the literature. Acta Chir Belg. 2014;114(6):417–20. PMID: 26021689" [13]=> string(191) "Lemaitre M., Chevalier B., Jannin A., Bourry J., Espiard S., Vantyghem M.C. Multiple symmetric and multiple familial lipomatosis. Presse Med. 2021;50(3):104077. DOI: 10.1016/j.lpm.2021.104077" [14]=> string(494) "Вецмадян Е.А., Труфанов Г.Е., Рязанов В.В., Мостовая О.Т., Новиков К.В., Карайванов Н.С. Ультразвуковая диагностика липом мягких тканей с использованием методик цветного допплеровского картирования и эластографии. Вестник Российской Военно-медицинской академии. 2012;2(38):43–50." [15]=> string(227) "Богов А.А., Андреев П.С., Филиппов В.Л., Топыркин В.Г. Оперативное лечение болезни Маделунга. Практическая медицина. 2018;16(7-1):90–3." [16]=> string(324) "Уракова Е.В., Нестеров О.В., Ильина Р.Ю., Лексин Р.В. Хирургическая тактика при рецидивирующем липоматозе (болезни Маделунга). Клинический случай. Практическая медицина. 2022;20(6):131–3." [17]=> string(527) "Егай А.А., Тентимишев А.Э., Норматов Р.М., Тян А.С. Хирургическое лечение множественного симметричного липоматоза (болезнь Маделунга), осложненного сдавлением яремных вен с обеих сторон. Преимущества липэктомии перед липосакцией. Научное обозрение. Медицинские науки. 2022;1:5– 10. DOI: 10.17513/srms.1225" [18]=> string(379) "Тимербулатов М.В., Шорнина А.С., Лихтер Р.А., Каипов А.Э. Оценка липосакции в структуре абдоминопластики и сочетанной герниоабдоминопластики. Креативная хирургия и онкология. 2023;13(4):278–83. DOI: 10.24060/2076-3093-2023-13-4-278-283" [19]=> string(141) "Dang Y., Du X., Ou X., Zheng Q., Xie F. Advances in diagnosis and treatment of Madelung’s deformity. Am J Transl Res. 2023;15(7):4416–24." [20]=> string(276) "Leti Acciaro A, Garagnani L, Lando M, Lana D, Sartini S, Adani R. Modified dome osteotomy and anterior locking plate fixation for distal radius variant of Madelung deformity: a retrospective study. J Plast Surg Hand Surg. 2022;56(2):121–6. DOI: 10.1080/2000656X.2021.1934845" } ["dc.identifier.uri"]=> array(1) { [0]=> string(36) "http://hdl.handle.net/123456789/8932" } ["dc.date.accessioned_dt"]=> string(20) "2025-07-09T13:59:02Z" ["dc.date.accessioned"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["dc.date.available"]=> array(1) { [0]=> string(20) "2025-07-09T13:59:02Z" } ["publication_grp"]=> array(1) { [0]=> string(14) "123456789/8932" } ["bi_4_dis_filter"]=> array(10) { [0]=> string(45) "madelung’s disease ||| Madelung’s disease" [1]=> string(23) "lipectomy ||| lipectomy" [2]=> string(133) "диффузный симметричный липоматоз ||| диффузный симметричный липоматоз" [3]=> string(79) "шеи новообразования ||| шеи новообразования" [4]=> string(45) "липэктомия ||| липэктомия" [5]=> string(63) "diffuse symmetric lipomatosis ||| diffuse symmetric lipomatosis" [6]=> string(61) "adipose tissue proliferation ||| adipose tissue proliferation" [7]=> string(103) "жировой ткани разрастание ||| жировой ткани разрастание" [8]=> string(71) "болезнь маделунга ||| болезнь Маделунга" [9]=> string(33) "neck neoplasms ||| neck neoplasms" } ["bi_4_dis_partial"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_4_dis_value_filter"]=> array(10) { [0]=> string(20) "липэктомия" [1]=> string(20) "Madelung’s disease" [2]=> string(29) "diffuse symmetric lipomatosis" [3]=> string(14) "neck neoplasms" [4]=> string(33) "болезнь Маделунга" [5]=> string(28) "adipose tissue proliferation" [6]=> string(37) "шеи новообразования" [7]=> string(9) "lipectomy" [8]=> string(62) "диффузный симметричный липоматоз" [9]=> string(48) "жировой ткани разрастание" } ["bi_sort_1_sort"]=> string(99) "systemic benign lipomatosis (madelung’s disease): experience of surgical treatment. clinical case" ["bi_sort_3_sort"]=> string(20) "2025-07-09T13:59:02Z" ["read"]=> array(1) { [0]=> string(2) "g0" } ["_version_"]=> int(1837178072511545344) } -->
Системный доброкачественный липоматоз (болезнь Маделунга): опыт хирургического лечения (клинический случай)

Therapy

Генетические модификации в кардиологии: роль CRISPR-Cas9 в терапии сердечно-сосудистых заболеванийgene therapy

Комбинированная таргетная терапия ингибиторами BRAF и MEK в сочетании с иммунотерапией (атезолизумаб + вемурафениб + кобиметиниб) при метастатической меланоме кожи (клинический случай)Combination BRAF/MEK Inhibitor Targeted Therapy and Immunotherapy (atezolizumab + vemurafenib

-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative

Страница 1 из 3