Triple-negative breast cancer (TNBC) represents one of the most aggressive subtypes of breast cancer, characterized by the absence of key molecular targets including estrogen receptors (ER), progesterone receptors (PR), and HER2. This molecular profile significantly limits treatment modalities, establishing chemotherapy as the definitive treatment. The high rates of recurrences and metastasis, along with the lack of specific targeted therapies, make TNBC a major clinical challenge. This article evaluates critical prognostic and predictive biomarkers of TNBC, including BRCA1/BRCA2 gene mutations, PD-L1 expression, tumor-infiltrating lymphocytes (TILs), circulating tumor cells (CTCs), and circulating tumor DNA (ctDNA). These markers are pivotal for outcome prediction and treatment optimization. Moreover, a transformative approach to TNBC treatment is represented by personalized medicine based on molecular profiling supported by artificial intelligence (AI). The integration of artificial intelligence (AI) facilitates the analysis of substantial data sets, the accurate prediction of clinical outcomes, and the formulation of customized treatment strategies for individual patients. Thus, this article analyzes current data concerning prognostic and predictive markers of TNBC, with a particular emphasis on their clinical utility and the potential for personalized therapy.
","Трижды негативный рак молочной железы (TNBC) представляет собой один из самых агрессивных подтипов рака молочной железы, что связано с отсутствием экспрессии ключевых молекулярных мишеней, таких как рецепторы эстрогена (ER), прогестерона (PR) и HER2. Это существенно ограничивает терапевтические опции и делает химиотерапию основным методом лечения. Высокая частота рецидивов, метастазирования и отсутствие специфичных таргетных терапий делают TNBC серьезной проблемой для онкологов. В данной статье рассматриваются ключевые прогностические и предиктивные маркеры TNBC, такие как мутации в генах BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), циркулирующие опухолевые клетки (CTC) и циркулирующая опухолевая ДНК (ctDNA). Эти маркеры играют ключевую роль в прогнозировании исходов и выборе оптимальной терапии. Кроме того, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами искусственного интеллекта (ИИ), представляет собой перспективное направление в лечении TNBC. Применение ИИ позволяет анализировать большие объемы данных и предсказывать клинические исходы с высокой точностью, что позволяет разрабатывать персонализированные стратегии лечения для каждого пациента. Таким образом, данная статья систематизирует и анализирует современные данные о прогностических и предиктивных маркерах TNBC, акцентируя внимание на их клинической значимости и перспективных подходах к персонализированной терапии.
"],"dc.abstract.en":["Triple-negative breast cancer (TNBC) represents one of the most aggressive subtypes of breast cancer, characterized by the absence of key molecular targets including estrogen receptors (ER), progesterone receptors (PR), and HER2. This molecular profile significantly limits treatment modalities, establishing chemotherapy as the definitive treatment. The high rates of recurrences and metastasis, along with the lack of specific targeted therapies, make TNBC a major clinical challenge. This article evaluates critical prognostic and predictive biomarkers of TNBC, including BRCA1/BRCA2 gene mutations, PD-L1 expression, tumor-infiltrating lymphocytes (TILs), circulating tumor cells (CTCs), and circulating tumor DNA (ctDNA). These markers are pivotal for outcome prediction and treatment optimization. Moreover, a transformative approach to TNBC treatment is represented by personalized medicine based on molecular profiling supported by artificial intelligence (AI). The integration of artificial intelligence (AI) facilitates the analysis of substantial data sets, the accurate prediction of clinical outcomes, and the formulation of customized treatment strategies for individual patients. Thus, this article analyzes current data concerning prognostic and predictive markers of TNBC, with a particular emphasis on their clinical utility and the potential for personalized therapy.
"],"subject":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy","трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"subject_keyword":["triple-negative breast cancer","triple-negative breast cancer","prognostic and predictive biomarkers","prognostic and predictive biomarkers","personalized medicine","personalized medicine","molecular profiling","molecular profiling","artificial intelligence","artificial intelligence","immunotherapy","immunotherapy","трижды негативный рак молочной железы","трижды негативный рак молочной железы","прогностические маркеры","прогностические маркеры","предиктивные маркеры","предиктивные маркеры","персонализированная медицина","персонализированная медицина","молекулярное профилирование","молекулярное профилирование","искусственный интеллект","искусственный интеллект","иммунотерапия","иммунотерапия"],"subject_ac":["triple-negative breast cancer\n|||\ntriple-negative breast cancer","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers","personalized medicine\n|||\npersonalized medicine","molecular profiling\n|||\nmolecular profiling","artificial intelligence\n|||\nartificial intelligence","immunotherapy\n|||\nimmunotherapy","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","предиктивные маркеры\n|||\nпредиктивные маркеры","персонализированная медицина\n|||\nперсонализированная медицина","молекулярное профилирование\n|||\nмолекулярное профилирование","искусственный интеллект\n|||\nискусственный интеллект","иммунотерапия\n|||\nиммунотерапия"],"subject_tax_0_filter":["triple-negative breast cancer\n|||\ntriple-negative breast cancer","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers","personalized medicine\n|||\npersonalized medicine","molecular profiling\n|||\nmolecular profiling","artificial intelligence\n|||\nartificial intelligence","immunotherapy\n|||\nimmunotherapy","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","предиктивные маркеры\n|||\nпредиктивные маркеры","персонализированная медицина\n|||\nперсонализированная медицина","молекулярное профилирование\n|||\nмолекулярное профилирование","искусственный интеллект\n|||\nискусственный интеллект","иммунотерапия\n|||\nиммунотерапия"],"subject_filter":["triple-negative breast cancer\n|||\ntriple-negative breast cancer","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers","personalized medicine\n|||\npersonalized medicine","molecular profiling\n|||\nmolecular profiling","artificial intelligence\n|||\nartificial intelligence","immunotherapy\n|||\nimmunotherapy","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","предиктивные маркеры\n|||\nпредиктивные маркеры","персонализированная медицина\n|||\nперсонализированная медицина","молекулярное профилирование\n|||\nмолекулярное профилирование","искусственный интеллект\n|||\nискусственный интеллект","иммунотерапия\n|||\nиммунотерапия"],"dc.subject_mlt":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy","трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"dc.subject":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy","трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"dc.subject.en":["triple-negative breast cancer","prognostic and predictive biomarkers","personalized medicine","molecular profiling","artificial intelligence","immunotherapy"],"title":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"title_keyword":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"title_ac":["multifactorial analysis of prognostic and predictive biomarkers in triple negative breast cancer patients\n|||\nMultifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы\n|||\nМногофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title_sort":"Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","dc.title_hl":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title_mlt":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.title_stored":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Multifactorial Analysis of Prognostic and Predictive Biomarkers in Triple Negative Breast Cancer Patients"],"dc.abstract.ru":["Трижды негативный рак молочной железы (TNBC) представляет собой один из самых агрессивных подтипов рака молочной железы, что связано с отсутствием экспрессии ключевых молекулярных мишеней, таких как рецепторы эстрогена (ER), прогестерона (PR) и HER2. Это существенно ограничивает терапевтические опции и делает химиотерапию основным методом лечения. Высокая частота рецидивов, метастазирования и отсутствие специфичных таргетных терапий делают TNBC серьезной проблемой для онкологов. В данной статье рассматриваются ключевые прогностические и предиктивные маркеры TNBC, такие как мутации в генах BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), циркулирующие опухолевые клетки (CTC) и циркулирующая опухолевая ДНК (ctDNA). Эти маркеры играют ключевую роль в прогнозировании исходов и выборе оптимальной терапии. Кроме того, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами искусственного интеллекта (ИИ), представляет собой перспективное направление в лечении TNBC. Применение ИИ позволяет анализировать большие объемы данных и предсказывать клинические исходы с высокой точностью, что позволяет разрабатывать персонализированные стратегии лечения для каждого пациента. Таким образом, данная статья систематизирует и анализирует современные данные о прогностических и предиктивных маркерах TNBC, акцентируя внимание на их клинической значимости и перспективных подходах к персонализированной терапии.
"],"dc.fullRISC":["ВВЕДЕНИЕ\nТрижды негативный рак молочной железы (TNBC) является одним из наиболее агрессивных подтипов рака\nмолочной железы и представляет собой значительную\nклиническую проблему. Этот подтип характеризуется\nотсутствием экспрессии трех основных молекулярных\nмаркеров: рецепторов эстрогена (ER), прогестерона\n(PR) и HER2 (рецептор эпидермального фактора роста\nчеловека 2) [1]. Это исключает возможность использования гормональной терапии и таргетной терапии\nHER2, что ограничивает терапевтические опции и делает основным методом лечения химиотерапию [2].\nАгрессивное течение, высокая частота рецидивов и метастазов, а также отсутствие специфической терапии\nделают TNBC серьезным вызовом для онкологов [3].\nРак молочной железы является наиболее распространенным злокачественным новообразованием среди\nженщин в мире. По данным Всемирной организации\nздравоохранения (ВОЗ) за 2020 год было зарегистрировано более 2,3 миллиона новых случаев рака молочной\nжелезы, что составляет 11,7 % от всех новых онкологических диагнозов. Рак молочной железы занимает первое место по распространенности среди всех злокачественных опухолей у женщин, обгоняя даже рак легких\nи колоректальный рак [4].\nСмертность от рака молочной железы также высока. В 2020 году от этого заболевания умерли около\n685 000 женщин. Несмотря на значительные успехи\nв ранней диагностике и лечении, рак молочной железы\nостается одной из ведущих причин смерти от рака среди женщин. Заболеваемость раком молочной железы\nварьирует в зависимости от региона: в развитых странах (например, Северная Америка, Европа, Австралия)\nпоказатели заболеваемости выше, чем в развивающихся странах. Однако в развивающихся странах (особенно\nв Африке и Азии) уровень смертности от рака молочной\nжелезы выше из-за недостаточного доступа к медицинской помощи и позднего выявления заболевания [4].\nМировые данные показывают, что TNBC составляет\nот 10 до 20 % всех случаев рака молочной железы [5].\nЗаболевание чаще встречается у молодых женщин, особенно до 50 лет, и имеет более высокую частоту у пациенток афроамериканского происхождения, а также\nсреди женщин с мутациями в генах BRCA1 и BRCA2.\nПо данным крупных метаанализов, в Северной Америке и Европе TNBC встречается у 15–20 % пациентов\nс раком молочной железы, а в Азии и Африке частота\nможет быть выше, что связано с генетическими и экологическими факторами [6].\nВ России, по данным национального онкологического\nрегистра, ежегодно регистрируется более 70 000 новых\nслучаев рака молочной железы. Из них 12–15 % случаев\nприходится на трижды негативный подтип. Статистика также показывает, что TNBC чаще диагностируется\nна поздних стадиях, что связано с более агрессивным\nтечением заболевания и поздним выявлением рака.\nРецидивы и метастазы при TNBC развиваются чаще,\nчем при других подтипах рака молочной железы, и их\nчастота достигает 30–40 % у пациенток с поздними стадиями [7, 8].\nПо данным Федеральной службы государственной\nстатистики (Росстат), смертность от рака молочной\nжелезы в России в 2020 году составила 21 634 случая,\nчто делает его одной из ведущих причин смерти среди женщин от злокачественных новообразований [9].\nПроблема ранней диагностики и специфического лечения TNBC является серьезной проблемой для мирового здравоохранения. TNBC занимает значительную\nдолю в структуре смертности среди всех онкологических заболеваний. Данная патология характеризуется\nагрессивным клиническим течением, что напрямую\nотражается на результатах лечения. Определенной перспективой обладают исследования в области скрининга, верификации клинически значимых предикторов\nи прогнозировании ответа на терапию.\nОсновной биологической характеристикой TNBC является его гетерогенность, которая выражается в разнообразии молекулярных и клинических проявлений.\nЭтот подтип рака делится на несколько молекулярных\nподтипов, включая базальноподобный, мезенхимальный и иммуномодулирующий подтипы, каждый из которых имеет разные патогенетические механизмы и потенциально разное реагирование на терапию [1, 10].\nTNBC ассоциируется с повышенной частотой рецидивов в течение первых 3–5 лет после постановки диагноза, а также с более коротким временем до метастазирования по сравнению с другими подтипами рака\nмолочной железы [11]. Более того, метастазы чаще поражают внутренние органы, такие как легкие и мозг,\nчто усложняет лечение и ухудшает прогноз [12].\nОдной из ключевых проблем TNBC является отсутствие специфичных онкомаркеров, что затрудняет\nраннюю диагностику и мониторинг. TNBC обычно\nдиагностируется на основании иммуногистохимических тестов, исключающих экспрессию ER, PR и HER2.\nОднако на сегодняшний день не существует специфических биомаркеров, которые позволили бы точно прогнозировать исход заболевания или эффективность\nтерапии [13, 14].\nСтандартное лечение TNBC включает комбинацию химиотерапии и лучевой терапии, однако значительная\nчасть пациенток не отвечает на лечение, и их прогноз\nостается неблагоприятным [15]. Текущие исследования\nнаправлены на поиск новых биомаркеров, которые могли бы улучшить диагностику, прогноз и выбор терапии\nдля пациентов с TNBC [16].\nЦель данной обзорной статьи — систематизировать\nи проанализировать современные данные о прогностических и предиктивных онкомаркерах для пациенток\nс трижды негативным раком молочной железы. Основное внимание уделено их клинической значимости\nдля прогнозирования исходов и выбора эффективной\nтерапии.\nПатогенез и молекулярные особенности\nTNBC\nTNBC является одним из самых агрессивных подтипов\nрака молочной железы, что связано с его биологическими особенностями и отсутствием терапевтических\nмишеней, таких как ER, PR и HER2. Из-за отсутствияэтих маркеров TNBC не поддается стандартным методам гормональной и таргетной терапии, направленным\nна гормональные или HER2-зависимые опухоли, что\nзначительно ограничивает терапевтические возможности и ухудшает прогноз пациенток.\nКанцерогенез TNBC характеризуется консолидацией\nмножества генетических, эпигенетических и иммунных\nмеханизмов, что определяет трудности при выборе таргетных мишеней с целью специфического лечения [17].\nОсобенности пула опухолевых клеток TNBC, включающие в себя генетическую и иммунологическую неоднородность, предопределяют развитие неопластического\nпроцесса. Высокий метастатический потенциал, инвазивность, склонность к периневральной и лимфоваскулярной инвазии достаточно полно характеризуют\nTNBC как одну из самых агрессивных солидных опухолей [18]. Проводится много исследований, изучающих\nзакономерности между генетическими, гистологическими и иммунологическими параметрами TNBC в совокупности с динамикой развития заболевания и ответом организма.\nТрижды негативный рак молочной железы представляет собой не однородную группу опухолей, а множество\nподтипов с различными молекулярными и клиническими характеристиками. Молекулярная гетерогенность\nTNBC была впервые подробно описана в 2011 году\nв исследовании Lehmann и коллег, где было предложено выделять несколько подтипов опухоли на основе их\nмолекулярного профиля [10]. Эти подтипы включают:\nБазальноподобный подтип (Basal-like TNBC). Он наиболее распространен среди пациенток с TNBC и составляет 70–80 % всех случаев [19, 20]. Базальноподобные опухоли характеризуются высокой экспрессией\nгенов, связанных с базальными клетками, такими как\nцитокератин 5/6 и 17, а также повышенной активностью пролиферативных путей, что делает этот подтип\nагрессивным и трудно поддающимся лечению [21, 22].\nБазальноподобный TNBC ассоциируется с плохими\nпрогнозами, высокой частотой рецидивов и низкой выживаемостью. По данным клинических исследований,\nпациенки с этим подтипом имеют относительно хорошие ответы на химиотерапию, однако частота рецидивов остается высокой [23].\nМезенхимальный подтип (Mesenchymal TNBC): Мезенхимальные опухоли TNBC характеризуются активацией путей, связанных с эпителиально-мезенхимальным\nпереходом (EMT), что способствует инвазивности\nи метастазированию. Мезенхимальный подтип часто\nассоциируется с мутациями в генах, контролирующих\nклеточную миграцию и ремоделирование ткани, таких\nкак Wnt и TGF-β. Пациентки с мезенхимальным подтипом TNBC имеют повышенную склонность к метастазированию и, как следствие, худшие клинические исходы.\nЭтот подтип считается особенно агрессивным и часто\nустойчивым к стандартным методам химиотерапии [10].\nИммуномодулирующий подтип (Immunomodulatory\nTNBC) характеризуется повышенной инфильтрацией опухоли иммунными клетками, такими как\nT-лимфоциты, макрофаги и дендритные клетки. В этом\nподтипе также наблюдается высокая экспрессия генов,\nсвязанных с иммунными ответами, что делает его потенциально чувствительным к иммунотерапии, такой\nкак ингибиторы контрольных точек (например, PD-L1).\nИммуномодулирующий TNBC демонстрирует менее\nагрессивное течение по сравнению с базальноподобным и мезенхимальным подтипами, а также более высокую вероятность положительного ответа на иммунотерапию [18].\nЛюминально-андрогензависимый подтип (LAR TNBC)\nхарактеризуется экспрессией андрогеновых рецепторов (AR) и других генов, связанных с гормональными\nпутями, несмотря на отсутствие экспрессии рецепторов эстрогена и прогестерона. Этот подтип демонстрирует более медленное прогрессирование и менее\nагрессивное течение по сравнению с другими подтипами TNBC. Клинические испытания показывают, что\nпациенты с LAR подтипом могут отвечать на терапию\nингибиторами андрогеновых рецепторов, что открывает новые возможности для таргетной терапии этого\nподтипа [16].\nРазделение TNBC на молекулярные подтипы позволяет разработать более персонализированные подходы\nк лечению, которые учитывают биологические особенности опухоли. Например, пациентки с базальноподобным TNBC могут получать стандартную химиотерапию, тогда как для пациенток с иммуномодулирующим\nподтипом перспективной является иммунотерапия.\nМезенхимальные опухоли могут потребовать разработки новых методов лечения, нацеленных на подавление путей EMT, а пациентки с LAR подтипом могут\nбыть кандидатами на андрогеновую терапию [24, 25].\nТаким образом, молекулярная гетерогенность TNBC\nявляется ключевым фактором, влияющим на выбор\nтерапии и прогноз пациента. Более точное понимание\nмолекулярных механизмов различных подтипов TNBC\nпозволит улучшить результаты лечения, снизить частоту рецидивов и метастазов, а также повысить выживаемость пациенток.\nТекущие подходы к лечению TNBC\nОсновным методом лечения TNBC в течение долгого\nвремени остается противоопухолевая химиотерапия.\nСистемная химиотерапия может быть назначена в разных режимах, в зависимости от стадии опухолевого процесса и соматического статуса пациента. Части пациентов, которым планируется радикальное оперативное\nвмешательство, требуется проведение неоадъювантной\nхимиотерапии, что может позволить уменьшить размеры образования, достичь лекарственного патоморфоза\nи улучшить выживаемость. В случае местно-распространенного характера опухолевого процесса после выполнения радикальной или циторедуктивной операции\nможет потребоваться проведение адъювантной химиотерапии. Ответ на противоопухолевую химиотерапию\nтерапию зависит от множества факторов и не всегда\nбывает прогнозируемым. Наиболее распространенные\nпрепараты, используемые при TNBC, включают: антрациклины (доксорубицин); таксаны (паклитаксел,\nдоцетаксел); алкилирующие агенты (циклофосфамид);\nпроизводные платины (карбоплатин, цисплатин) [26]В работе Sikov W. и соавт. демонстрируются результаты применения системной неоадъювантной химиотерапии в комбинации с иммунными препаратами у пациентов с TNBC. Оценивались отдаленные результаты\nответа на терапию при добавлении к стандартной схеме карбоплатина, а также бевацизумаба. Исследователи\nопределили, что добавление карбоплатина благоприятно сказывается на частоте полного патоморфологичекого ответа, что повлияло на прогноз и показатели\nвыживаемости при TNBC [27].\nВнедрение в клиническую практику иммунотаргетных\nпрепаратов ознаменовало начало новой эры в медикаментозном лечении онкологических заболеваний.\nИсключением не являлся и рак молочной железы, который стад активно изучаться с позиций определения\nточек воздействия иммунных механизмов. Современные иммунотаргетные препараты воздействуют\nна несколько главных «мишеней» — рецептор CTLA-4,\nрецептор PD-1 и его лиганд PD-L1. В настоящее время\nиммунная терапия является актуальным методом лечения TNBC. Изучение экспрессии PD-1 и PD-L1, определение уровня иммунного ответа и специфических\nрецепторов может позволить радикально изменить\nподходы к ранней диагностике и лечению TNBC.\nВ рандомизированном контролируемом исследовании\nSchmid P. и соавт. оценивалась эффективность иммунотерапии у пациентов с TNBC. С этой целью проводился анализ результатов применения комбинации\nингибитора контрольных точек PD-L1 (атезолизумаба)\nс системным химиотерапевтическим препаратом (набпаклитаксел) у пациентов с метастатическими и/или\nнеоперабельным TNBC. Авторы заявили о значительном улучшеним общей выживаемости (ОВ) у пациенток\nс позитивной экспрессией PD-L1, получавших комбинацию атезолизумаба и наб-паклитаксела, по сравнению\nс химиотерапией в монорежиме. Медиана ОВ у этой\nгруппы пациентов увеличилась с 18,7 до 25 месяцев [28].\nДанные результаты декларируют, что использование\nингибиторов контрольных точек может улучшить выживаемость у пациенток с TNBC, особенно в популяции с повышенной экспрессией опухоли PD-L1. Данное\nисследование наряду с другими крупными работами\nстало основанием для валидации атезолизумаба в качестве лекарственного препарата при метастатическом\nTNBC с позитивной экспрессией PD-L1. В другом важном исследовании под руководством Cortes J. и соавт.\nоценивалась эффективность пембролизумаба (ингибитор PD-1) в комбинации с химиотерапией у пациенток\nс метастатическим TNBC. Результаты исследования показали, что добавление пембролизумаба улучшило медиану безрецидивной выживаемости (БРВ) у пациенток с опухолями, экспрессирующими PD-L1. Медиана\nБРВ увеличилась с 5,6 до 9,7 месяца, что подтверждает\nэффективность иммунотерапии в комбинации с химиотерапией для пациентов с PD-L1-позитивными опухолями TNBC [29].\nТаргетная терапия становится важной стратегией в лечении TNBC, особенно для пациенток с мутациями\nв генах BRCA1 и BRCA2, которые составляют значительную часть случаев TNBC. Эти мутации приводят\nк нарушению механизмов репарации ДНК, что делает клетки опухоли более уязвимыми к повреждениям ДНК, вызванным химиотерапией или таргетными\nпрепаратами [30]. Исследование OlympiAD — одно\nиз крупных клинических исследований, подтверждающих эффективность PARP-ингибиторов для лечения\nпациенток с мутациями BRCA. В представленном рандомизированном клиническом исследовании оценивалась эффективность олапариба (PARP-ингибитор)\nв сравнении с системной химиотерапией у пациенток\nс метастатическим TNBC и BRCA-мутацией. Результаты продемонстрировали, что олапариб улучшил медиану БРВ в сравнении с системной химиотерапией: 7,0 месяцев против 4,2 месяцев [31]. Полученные результаты\nподтвердил и роль олапариба как эффективного и безопасного лекарственного препарата для лечения TNBC\nу пациенток с BRCA-мутацией. В последующем данное\nсоединение было валидировано для соответствующей\nкатегории пациентов. Таким образом, таргетная терапия, направленная на использование дефектов в механизмах восстановления ДНК, стала важным компонентом лечения TNBC.\nУспех таргетной терапии и иммунотерапии для TNBC\nво многом зависит от наличия соответствующих прогностических и предиктивных биомаркеров. Например, наличие мутаций BRCA1/2 делает пациенток кандидатами на терапию PARP-ингибиторами, в то время\nкак экспрессия PD-L1 является ключевым маркером\nдля назначения ингибиторов контрольных точек.\nНесмотря на то, что химиотерапия остается основным\nметодом лечения TNBC, новые подходы, такие как\nиммунотерапия и таргетная терапия, начинают значительно улучшать клинические исходы у пациенток\nс этим агрессивным подтипом рака.\nПрогностические маркеры у пациенток\nс TNBC\nОпределение прогноза является важной составляющей комплексного лечения онкологических пациентов. По этой причине правильная оценка вероятностей\nвыживаемости может позволить стратифицировать\nпациентов по группам риска и определять показания\nдля соответствующих методов лечения. Ценным инструментом для прогнозирования в онкологии выступает онкомаркеры — предикторы агрессивности,\nподверженности лечению и выживаемости. Особое\nзначение данные соединения приобретают при лечении\nагрессивных опухолей и запущенных стадий злокачественного процесса в организме. У пациентов с TNBC\nпрогностические онкомаркеры могут стать важной\nопцией для определения стратегии ведения и лечения. В данном разделе рассмотрены ключевые прогностические маркеры TNBC, среди которых циркулирующие опухолевые клетки (CTC), циркулирующая\nопухолевая ДНК (ctDNA), экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), мутации в генах\nBRCA1/BRCA2 и метаболические маркеры.\nCTC и ctDNA выступают в качестве потенциальных\nпрогностических маркеров при различных злокачественных образованиях, в том числе и при TNBC.Они отражают наличие остаточной опухолевой активности и могут служить инструментами для прогнозирования риска рецидива и метастазирования, а также\nдля мониторинга эффективности терапии [32]. CTC\nпредставляют собой опухолевые клетки, которые отделяются от первичной опухоли или метастатических\nочагов и попадают в системный кровоток. Диагностика данных соединений может позволить стратифицировать пациентов по уровню ответа на терапию, что\nпозволит оптимизировать существующие протоколы\nлечения [33]. На сегодняшний день единственным валидированным методом, одобренным FDA (Food and\nDrug Administration) для определения CTC, является\nCellSearch® System. Данная методика основана на иммуномагнитной сепарации клеток, экспрессирующих\nEpCAM (Epithelial cell adhesion molecule — молекула\nклеточной адгезии эпителия). Наряду с представленным методом активно развиваются микрофлюидные\nтехнологии, которые позволяют производить селекцию\nCTC на основе их физико-химических и биологических\nхарактеристик. Для молекулярного анализа широко\nприменяются методы полимеразной цепной реакции\n(ПЦР), позволяющие выявлять специфические генетические маркеры опухолевых клеток и получать более\nточную информацию о молекулярных характеристиках опухоли [34]. Высокие уровни CTC коррелируют\nс неблагоприятным прогнозом. В исследовании Lucci\nи соавт. было показано, что наличие CTC у пациентов\nс ранним раком молочной железы ассоциировано с повышенным риском рецидива и сниженными показателями выживаемости [35]. В наблюдательном исследовании, проведенном Liu M. и соавт., проводился анализ\nрезультатов лечения пациентов с TNBC. Авторы отметили, что пациенты, у которых после неоадъювантной химиотерапии наблюдалось снижение количества\nCTC, имели лучшие клинические исходы по сравнению\nс теми, у кого уровни CTC оставались высокими [36].\nВ другом крупном рандомизированном двойном слепом плацебоконтролируемом исследовании третьей\nфазы исследователи обнаружили, что наличие CTC\nсвязано с повышенным риском развития метастазов\nв отдаленных органах у пациентов с TNBC [37].\nctDNA представляет собой фрагменты ДНК опухолевых клеток, которые высвобождаются в кровоток\nв результате апоптоза или некроза опухолевых клеток. Для определения ctDNA используются высокочувствительные молекулярные методы диагностики,\nкоторые позволяют верифицировать изменения на геномном и генетическом уровнях. Цифровая ПЦР обладает высокой чувствительностью и позволяет количественно определять специфические мутации, тогда\nкак секвенирование следующего поколения (NGS) дает\nвозможность анализировать широкий спектр генетических аномалий, включая точечные мутации, делеции, инсерции и изменения числа копий генов [38].\nЭти технологии позволяют проводить неинвазивный\nмониторинг опухолевого процесса и корректировать\nстратегию лечения в зависимости от молекулярного\nпрофиля заболевания. ctDNA может использоваться\nдля раннего обнаружения минимальной остаточной\nболезни (MRD) после лечения. В проспективном кагортном исследовании Garcia-Murillas и соавт. было показано, что обнаружение ctDNA после хирургического\nвмешательства связано с высоким риском рецидива\n[39]. В проспективном наблюдательном исследовании\nбыло продемонстрировано, что у пациенток с положительной ctDNA после неоадювантной химиотерапии\nмедиана БРВ составила 15,4 месяца, что значительно\nменьше по сравнению с 28,7 месяца у пациенток без обнаруженной ctDNA. Обнаружение ctDNA было связано\nс увеличением риска рецидива с коэффициентом риска\n(HR) 4,5 (95 % доверительный интервал [CI], 2.1–9.5,\np < 0.001) [40].\nCTC и ctDNA являются важными инструментами диагностики, прогнозирования и мониторинга лечения пациентов с TNBC. Дальнейшие исследования в области\nих изучения, а также интеграция этих прогностических\nмаркеров в клинический процесс могут значительно\nповысить эффективность и качество оказываемой персонифицированной помощи при TNBC.\nОпухолевые маркеры, такие как экспрессия PDL1 и инфильтрация опухоли лимфоцитами (TILs), играют важную роль в прогнозировании иммунного ответа\nорганизма на опухоль и проводимое лечение, а также\nв выборе соответствующей схемы иммунной терапии.\nPD-L1 (лиганд программируемой клеточной смерти-1)\nэкспрессируется на поверхности опухолевых клеток\nи взаимодействует с PD-1-рецепторами на T-клетках,\nчто позволяет опухолевым клеткам избегать иммунной\nреакции организма. Высокая экспрессия PD-L1 в опухолях TNBC ассоциируется с более агрессивным течением и худшим прогнозом. В то же время экспрессия\nPD-L1 также предсказывает чувствительность опухоли к иммунотерапии, направленной на блокирование\nконтрольных иммунных точек (checkpoint inhibitors).\nНа сегодняшний день представителями ингибиторов\nконтрольных точек иммунного ответа, используемых\nпри TNBC, являются пембролизумаб и атезолизумаб\n[41]. Исследование KEYNOTE-355 показало, что у пациенток с метастатическим TNBC, у которых опухоли\nэкспрессируют PD-L1, добавление пембролизумаба\nк стандартной химиотерапии улучшает ОВ и БРВ [18].\nTILs представляют собой иммунные клетки, которые инфильтрируют опухолевую ткань и играют\nважную роль в подавлении роста опухоли. Высокий\nуровень TILs в опухолях TNBC считается благоприятным прогностическим фактором, так как он связан\nс лучшими показателями ОВ и более частым полным\nпатоморфологическим ответом на неоадъювантную\nхимиотерапию [42]. В ретроспективном когортноми\nисследовании, проведенном Denkert и соавт. было продемонстрировано, что пациенты с TNBC и высоким\nуровнем TILs имеют значительно лучшие клинические\nрезультаты, включая увеличение БРВ и ОВ. Увеличение\nOS при увеличении TILs на 10 % составило 13 % (HR =\n0.87; 95 % CI: 0.80–0.94; p < 0.001) [43].\nИзменения в метаболических путях опухолевых клеток\nтакже могут служить прогностическими маркерами\nагрессивности TNBC. Аберрантные метаболические\nпроцессы, такие как повышенный гликолиз (эффектВарбурга) и усиленное производство лактата, играют\nважную роль в поддержании агрессивного фенотипа опухолей [44]. Лактат — это продукт повышенного\nпроцесса гликолиза, который используется опухолевыми клетками для поддержания их роста в условиях\nгипоксии. Повышенные уровни лактата и активности лактатдегидрогеназы (ЛДГ) в опухолевых клетках\nкоррелируют с более агрессивным течением заболевания и худшими клиническими исходами у пациентов\nс TNBC. Эти маркеры отражают метаболическую активность опухоли и её способность к быстрому росту\nи метастазированию [45]. В исследовании Malhotra\nи соавт. было продемонстрировано, что у пациентов\nс высоким уровнем ЛДГ наблюдаются худшие прогнозы\nи меньшая выживаемость по сравнению с пациентами\nс нормальными уровнями ЛДГ [46].\nПрогностические маркеры, такие как CTC, ctDNA,\nэкспрессия PD-L1, инфильтрация TILs, мутации\nBRCA1/BRCA2 и метаболические маркеры, играют важную роль в прогнозировании клинических исходов\nи выборе терапии у пациентов с TNBC. Представленные предикторы позволяют выбирать оптимальную\nтактику диагностики и методов лечения, что благоприятно сказывается на клинических результатах.\nПерспективы персонализированной\nмедицины\nПерсонализированная медицина в лечении TNBC активно развивается благодаря внедрению молекулярного профилирования и искусственного интеллекта\n(ИИ). Клиническая агрессивность TNBC диктует необходимость мультимодального подхода к диагностике,\nпрогнозированию и лечению. Интеграция алгоритмов\nкорреляционных взаимоотношений между опухолевыми предикторами, морфофункциональными характеристиками опухоли и клинической картиной заболевания может позволить создать оптимальную стратегию\nпри TNBC.\nАнализ больших объемов геномных, транскриптомных\nи клинических данных требует создания инструментов\nалгоритмизации вычислительного процесса. В данном\nконтексте ИИ стал незаменимой опцией, позволяющей выявлять скрытые закономерности и разрабатывать точные модели для прогнозирования ответа\nна лечение и выживаемости пациентов. Применение\nкомпьютерного интеллекта при TNBC охватывает широкий спектр задач: от анализа биомаркеров, таких как\nBRCA1/BRCA2, PD-L1, CTC и ctDNA, до оценки вероятности рецидивов [47]. В систематическом обзоре где\nбыли рассмотрены 63 исследования, которые использовали методы ИИ для персонализированной медицины\nпри онкологических заболеваниях, было показано, что\nприменение ИИ позволяет с высокой точностью предсказывать ответы на терапию и повышать точность\nдиагностики, используя такие методы, как глубокое обучение и случайные леса [48].\nДополнительно ИИ помогает моделировать возможные исходы лечения. Так, в исследовании Enhanced\nDeep Learning Model for Personalized Cancer Treatment\nразработаны модели глубокого обучения, которые продемонстрировали высокую точность в предсказании\nответа на лечение у пациентов с различными онкологическими заболеваниями, включая TNBC [49].\nКроме предсказания эффективности терапии, ИИ активно применяется для поддержки врачебных решений.\nВ исследовании Amoroso и соавт. представлен подход\n«объяснимого искусственного интеллекта» (Explainable\nAI, XAI), который позволил классифицировать пациентов на основе молекулярных данных и подобрать им\nоптимальные стратегии лечения на основе профилирования опухолей. Это исследование показало, что ИИ может эффективно поддерживать клинические решения\nи увеличивать точность подбора терапии, что особенно\nважно для TNBC [50]. ИИ может предсказывать не только вероятность рецидивов, но и подбирать наилучшие\nсхемы терапии для каждого пациента. Исследование I-PREDICT также подтвердило, что персонализированная терапия на основе геномных данных, подобранная с помощью ИИ, улучшает выживаемость пациентов\nпо сравнению с традиционными подходами [51].\nЗАКЛЮЧЕНИЕ\nTNBC остается одной из самых сложных клинических\nпроблем в онкологии из-за его агрессивного течения,\nвысокой частоты рецидивов и отсутствия стандартных\nтерапевтических мишеней. Благодаря развитию молекулярного профилирования и внедрению методов ИИ\nперсонализированная медицина для пациенток с TNBC\nстановится более доступной и эффективной.\nМолекулярное профилирование позволило выявить\nподтипы TNBC, такие как базальноподобный, мезенхимальный и иммуномодулирующий, что помогает\nврачам разрабатывать более точные стратегии лечения.\nПрогностические и предиктивные маркеры, такие как\nмутации BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли TILs, а также CTC и ctDNA, играют\nважную роль в выборе оптимальной стратегии лечения\nзаболевания.\nПрименение методов ИИ значительно улучшило возможности анализа больших объемов данных, таких как\nрезультаты молекулярного профилирования и клинические данные пациентов. Исследования показали, что\nИИ может предсказывать клинические исходы с высокой точностью, оптимизировать выбор терапии и поддерживать принятие клинических решений. Применение объяснимого ИИ (Explainable AI, XAI) помогает\nврачам не только предсказывать результаты лечения,\nно и понимать, на основе каких данных принимаются\nэти решения, что делает процесс лечения более прозрачным и эффективным.\nТаким образом, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами ИИ, становится ключевым элементом лечения пациенток с TNBC, улучшая как прогнозы,\nтак и результаты терапии. Дальнейшее развитие этих\nтехнологий позволит повысить точность диагностики,\nвыбрать оптимальные стратегии лечения и, в конечном\nсчете, улучшить выживаемость пациентов."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nТрижды негативный рак молочной железы (TNBC) является одним из наиболее агрессивных подтипов рака\nмолочной железы и представляет собой значительную\nклиническую проблему. Этот подтип характеризуется\nотсутствием экспрессии трех основных молекулярных\nмаркеров: рецепторов эстрогена (ER), прогестерона\n(PR) и HER2 (рецептор эпидермального фактора роста\nчеловека 2) [1]. Это исключает возможность использования гормональной терапии и таргетной терапии\nHER2, что ограничивает терапевтические опции и делает основным методом лечения химиотерапию [2].\nАгрессивное течение, высокая частота рецидивов и метастазов, а также отсутствие специфической терапии\nделают TNBC серьезным вызовом для онкологов [3].\nРак молочной железы является наиболее распространенным злокачественным новообразованием среди\nженщин в мире. По данным Всемирной организации\nздравоохранения (ВОЗ) за 2020 год было зарегистрировано более 2,3 миллиона новых случаев рака молочной\nжелезы, что составляет 11,7 % от всех новых онкологических диагнозов. Рак молочной железы занимает первое место по распространенности среди всех злокачественных опухолей у женщин, обгоняя даже рак легких\nи колоректальный рак [4].\nСмертность от рака молочной железы также высока. В 2020 году от этого заболевания умерли около\n685 000 женщин. Несмотря на значительные успехи\nв ранней диагностике и лечении, рак молочной железы\nостается одной из ведущих причин смерти от рака среди женщин. Заболеваемость раком молочной железы\nварьирует в зависимости от региона: в развитых странах (например, Северная Америка, Европа, Австралия)\nпоказатели заболеваемости выше, чем в развивающихся странах. Однако в развивающихся странах (особенно\nв Африке и Азии) уровень смертности от рака молочной\nжелезы выше из-за недостаточного доступа к медицинской помощи и позднего выявления заболевания [4].\nМировые данные показывают, что TNBC составляет\nот 10 до 20 % всех случаев рака молочной железы [5].\nЗаболевание чаще встречается у молодых женщин, особенно до 50 лет, и имеет более высокую частоту у пациенток афроамериканского происхождения, а также\nсреди женщин с мутациями в генах BRCA1 и BRCA2.\nПо данным крупных метаанализов, в Северной Америке и Европе TNBC встречается у 15–20 % пациентов\nс раком молочной железы, а в Азии и Африке частота\nможет быть выше, что связано с генетическими и экологическими факторами [6].\nВ России, по данным национального онкологического\nрегистра, ежегодно регистрируется более 70 000 новых\nслучаев рака молочной железы. Из них 12–15 % случаев\nприходится на трижды негативный подтип. Статистика также показывает, что TNBC чаще диагностируется\nна поздних стадиях, что связано с более агрессивным\nтечением заболевания и поздним выявлением рака.\nРецидивы и метастазы при TNBC развиваются чаще,\nчем при других подтипах рака молочной железы, и их\nчастота достигает 30–40 % у пациенток с поздними стадиями [7, 8].\nПо данным Федеральной службы государственной\nстатистики (Росстат), смертность от рака молочной\nжелезы в России в 2020 году составила 21 634 случая,\nчто делает его одной из ведущих причин смерти среди женщин от злокачественных новообразований [9].\nПроблема ранней диагностики и специфического лечения TNBC является серьезной проблемой для мирового здравоохранения. TNBC занимает значительную\nдолю в структуре смертности среди всех онкологических заболеваний. Данная патология характеризуется\nагрессивным клиническим течением, что напрямую\nотражается на результатах лечения. Определенной перспективой обладают исследования в области скрининга, верификации клинически значимых предикторов\nи прогнозировании ответа на терапию.\nОсновной биологической характеристикой TNBC является его гетерогенность, которая выражается в разнообразии молекулярных и клинических проявлений.\nЭтот подтип рака делится на несколько молекулярных\nподтипов, включая базальноподобный, мезенхимальный и иммуномодулирующий подтипы, каждый из которых имеет разные патогенетические механизмы и потенциально разное реагирование на терапию [1, 10].\nTNBC ассоциируется с повышенной частотой рецидивов в течение первых 3–5 лет после постановки диагноза, а также с более коротким временем до метастазирования по сравнению с другими подтипами рака\nмолочной железы [11]. Более того, метастазы чаще поражают внутренние органы, такие как легкие и мозг,\nчто усложняет лечение и ухудшает прогноз [12].\nОдной из ключевых проблем TNBC является отсутствие специфичных онкомаркеров, что затрудняет\nраннюю диагностику и мониторинг. TNBC обычно\nдиагностируется на основании иммуногистохимических тестов, исключающих экспрессию ER, PR и HER2.\nОднако на сегодняшний день не существует специфических биомаркеров, которые позволили бы точно прогнозировать исход заболевания или эффективность\nтерапии [13, 14].\nСтандартное лечение TNBC включает комбинацию химиотерапии и лучевой терапии, однако значительная\nчасть пациенток не отвечает на лечение, и их прогноз\nостается неблагоприятным [15]. Текущие исследования\nнаправлены на поиск новых биомаркеров, которые могли бы улучшить диагностику, прогноз и выбор терапии\nдля пациентов с TNBC [16].\nЦель данной обзорной статьи — систематизировать\nи проанализировать современные данные о прогностических и предиктивных онкомаркерах для пациенток\nс трижды негативным раком молочной железы. Основное внимание уделено их клинической значимости\nдля прогнозирования исходов и выбора эффективной\nтерапии.\nПатогенез и молекулярные особенности\nTNBC\nTNBC является одним из самых агрессивных подтипов\nрака молочной железы, что связано с его биологическими особенностями и отсутствием терапевтических\nмишеней, таких как ER, PR и HER2. Из-за отсутствияэтих маркеров TNBC не поддается стандартным методам гормональной и таргетной терапии, направленным\nна гормональные или HER2-зависимые опухоли, что\nзначительно ограничивает терапевтические возможности и ухудшает прогноз пациенток.\nКанцерогенез TNBC характеризуется консолидацией\nмножества генетических, эпигенетических и иммунных\nмеханизмов, что определяет трудности при выборе таргетных мишеней с целью специфического лечения [17].\nОсобенности пула опухолевых клеток TNBC, включающие в себя генетическую и иммунологическую неоднородность, предопределяют развитие неопластического\nпроцесса. Высокий метастатический потенциал, инвазивность, склонность к периневральной и лимфоваскулярной инвазии достаточно полно характеризуют\nTNBC как одну из самых агрессивных солидных опухолей [18]. Проводится много исследований, изучающих\nзакономерности между генетическими, гистологическими и иммунологическими параметрами TNBC в совокупности с динамикой развития заболевания и ответом организма.\nТрижды негативный рак молочной железы представляет собой не однородную группу опухолей, а множество\nподтипов с различными молекулярными и клиническими характеристиками. Молекулярная гетерогенность\nTNBC была впервые подробно описана в 2011 году\nв исследовании Lehmann и коллег, где было предложено выделять несколько подтипов опухоли на основе их\nмолекулярного профиля [10]. Эти подтипы включают:\nБазальноподобный подтип (Basal-like TNBC). Он наиболее распространен среди пациенток с TNBC и составляет 70–80 % всех случаев [19, 20]. Базальноподобные опухоли характеризуются высокой экспрессией\nгенов, связанных с базальными клетками, такими как\nцитокератин 5/6 и 17, а также повышенной активностью пролиферативных путей, что делает этот подтип\nагрессивным и трудно поддающимся лечению [21, 22].\nБазальноподобный TNBC ассоциируется с плохими\nпрогнозами, высокой частотой рецидивов и низкой выживаемостью. По данным клинических исследований,\nпациенки с этим подтипом имеют относительно хорошие ответы на химиотерапию, однако частота рецидивов остается высокой [23].\nМезенхимальный подтип (Mesenchymal TNBC): Мезенхимальные опухоли TNBC характеризуются активацией путей, связанных с эпителиально-мезенхимальным\nпереходом (EMT), что способствует инвазивности\nи метастазированию. Мезенхимальный подтип часто\nассоциируется с мутациями в генах, контролирующих\nклеточную миграцию и ремоделирование ткани, таких\nкак Wnt и TGF-β. Пациентки с мезенхимальным подтипом TNBC имеют повышенную склонность к метастазированию и, как следствие, худшие клинические исходы.\nЭтот подтип считается особенно агрессивным и часто\nустойчивым к стандартным методам химиотерапии [10].\nИммуномодулирующий подтип (Immunomodulatory\nTNBC) характеризуется повышенной инфильтрацией опухоли иммунными клетками, такими как\nT-лимфоциты, макрофаги и дендритные клетки. В этом\nподтипе также наблюдается высокая экспрессия генов,\nсвязанных с иммунными ответами, что делает его потенциально чувствительным к иммунотерапии, такой\nкак ингибиторы контрольных точек (например, PD-L1).\nИммуномодулирующий TNBC демонстрирует менее\nагрессивное течение по сравнению с базальноподобным и мезенхимальным подтипами, а также более высокую вероятность положительного ответа на иммунотерапию [18].\nЛюминально-андрогензависимый подтип (LAR TNBC)\nхарактеризуется экспрессией андрогеновых рецепторов (AR) и других генов, связанных с гормональными\nпутями, несмотря на отсутствие экспрессии рецепторов эстрогена и прогестерона. Этот подтип демонстрирует более медленное прогрессирование и менее\nагрессивное течение по сравнению с другими подтипами TNBC. Клинические испытания показывают, что\nпациенты с LAR подтипом могут отвечать на терапию\nингибиторами андрогеновых рецепторов, что открывает новые возможности для таргетной терапии этого\nподтипа [16].\nРазделение TNBC на молекулярные подтипы позволяет разработать более персонализированные подходы\nк лечению, которые учитывают биологические особенности опухоли. Например, пациентки с базальноподобным TNBC могут получать стандартную химиотерапию, тогда как для пациенток с иммуномодулирующим\nподтипом перспективной является иммунотерапия.\nМезенхимальные опухоли могут потребовать разработки новых методов лечения, нацеленных на подавление путей EMT, а пациентки с LAR подтипом могут\nбыть кандидатами на андрогеновую терапию [24, 25].\nТаким образом, молекулярная гетерогенность TNBC\nявляется ключевым фактором, влияющим на выбор\nтерапии и прогноз пациента. Более точное понимание\nмолекулярных механизмов различных подтипов TNBC\nпозволит улучшить результаты лечения, снизить частоту рецидивов и метастазов, а также повысить выживаемость пациенток.\nТекущие подходы к лечению TNBC\nОсновным методом лечения TNBC в течение долгого\nвремени остается противоопухолевая химиотерапия.\nСистемная химиотерапия может быть назначена в разных режимах, в зависимости от стадии опухолевого процесса и соматического статуса пациента. Части пациентов, которым планируется радикальное оперативное\nвмешательство, требуется проведение неоадъювантной\nхимиотерапии, что может позволить уменьшить размеры образования, достичь лекарственного патоморфоза\nи улучшить выживаемость. В случае местно-распространенного характера опухолевого процесса после выполнения радикальной или циторедуктивной операции\nможет потребоваться проведение адъювантной химиотерапии. Ответ на противоопухолевую химиотерапию\nтерапию зависит от множества факторов и не всегда\nбывает прогнозируемым. Наиболее распространенные\nпрепараты, используемые при TNBC, включают: антрациклины (доксорубицин); таксаны (паклитаксел,\nдоцетаксел); алкилирующие агенты (циклофосфамид);\nпроизводные платины (карбоплатин, цисплатин) [26]В работе Sikov W. и соавт. демонстрируются результаты применения системной неоадъювантной химиотерапии в комбинации с иммунными препаратами у пациентов с TNBC. Оценивались отдаленные результаты\nответа на терапию при добавлении к стандартной схеме карбоплатина, а также бевацизумаба. Исследователи\nопределили, что добавление карбоплатина благоприятно сказывается на частоте полного патоморфологичекого ответа, что повлияло на прогноз и показатели\nвыживаемости при TNBC [27].\nВнедрение в клиническую практику иммунотаргетных\nпрепаратов ознаменовало начало новой эры в медикаментозном лечении онкологических заболеваний.\nИсключением не являлся и рак молочной железы, который стад активно изучаться с позиций определения\nточек воздействия иммунных механизмов. Современные иммунотаргетные препараты воздействуют\nна несколько главных «мишеней» — рецептор CTLA-4,\nрецептор PD-1 и его лиганд PD-L1. В настоящее время\nиммунная терапия является актуальным методом лечения TNBC. Изучение экспрессии PD-1 и PD-L1, определение уровня иммунного ответа и специфических\nрецепторов может позволить радикально изменить\nподходы к ранней диагностике и лечению TNBC.\nВ рандомизированном контролируемом исследовании\nSchmid P. и соавт. оценивалась эффективность иммунотерапии у пациентов с TNBC. С этой целью проводился анализ результатов применения комбинации\nингибитора контрольных точек PD-L1 (атезолизумаба)\nс системным химиотерапевтическим препаратом (набпаклитаксел) у пациентов с метастатическими и/или\nнеоперабельным TNBC. Авторы заявили о значительном улучшеним общей выживаемости (ОВ) у пациенток\nс позитивной экспрессией PD-L1, получавших комбинацию атезолизумаба и наб-паклитаксела, по сравнению\nс химиотерапией в монорежиме. Медиана ОВ у этой\nгруппы пациентов увеличилась с 18,7 до 25 месяцев [28].\nДанные результаты декларируют, что использование\nингибиторов контрольных точек может улучшить выживаемость у пациенток с TNBC, особенно в популяции с повышенной экспрессией опухоли PD-L1. Данное\nисследование наряду с другими крупными работами\nстало основанием для валидации атезолизумаба в качестве лекарственного препарата при метастатическом\nTNBC с позитивной экспрессией PD-L1. В другом важном исследовании под руководством Cortes J. и соавт.\nоценивалась эффективность пембролизумаба (ингибитор PD-1) в комбинации с химиотерапией у пациенток\nс метастатическим TNBC. Результаты исследования показали, что добавление пембролизумаба улучшило медиану безрецидивной выживаемости (БРВ) у пациенток с опухолями, экспрессирующими PD-L1. Медиана\nБРВ увеличилась с 5,6 до 9,7 месяца, что подтверждает\nэффективность иммунотерапии в комбинации с химиотерапией для пациентов с PD-L1-позитивными опухолями TNBC [29].\nТаргетная терапия становится важной стратегией в лечении TNBC, особенно для пациенток с мутациями\nв генах BRCA1 и BRCA2, которые составляют значительную часть случаев TNBC. Эти мутации приводят\nк нарушению механизмов репарации ДНК, что делает клетки опухоли более уязвимыми к повреждениям ДНК, вызванным химиотерапией или таргетными\nпрепаратами [30]. Исследование OlympiAD — одно\nиз крупных клинических исследований, подтверждающих эффективность PARP-ингибиторов для лечения\nпациенток с мутациями BRCA. В представленном рандомизированном клиническом исследовании оценивалась эффективность олапариба (PARP-ингибитор)\nв сравнении с системной химиотерапией у пациенток\nс метастатическим TNBC и BRCA-мутацией. Результаты продемонстрировали, что олапариб улучшил медиану БРВ в сравнении с системной химиотерапией: 7,0 месяцев против 4,2 месяцев [31]. Полученные результаты\nподтвердил и роль олапариба как эффективного и безопасного лекарственного препарата для лечения TNBC\nу пациенток с BRCA-мутацией. В последующем данное\nсоединение было валидировано для соответствующей\nкатегории пациентов. Таким образом, таргетная терапия, направленная на использование дефектов в механизмах восстановления ДНК, стала важным компонентом лечения TNBC.\nУспех таргетной терапии и иммунотерапии для TNBC\nво многом зависит от наличия соответствующих прогностических и предиктивных биомаркеров. Например, наличие мутаций BRCA1/2 делает пациенток кандидатами на терапию PARP-ингибиторами, в то время\nкак экспрессия PD-L1 является ключевым маркером\nдля назначения ингибиторов контрольных точек.\nНесмотря на то, что химиотерапия остается основным\nметодом лечения TNBC, новые подходы, такие как\nиммунотерапия и таргетная терапия, начинают значительно улучшать клинические исходы у пациенток\nс этим агрессивным подтипом рака.\nПрогностические маркеры у пациенток\nс TNBC\nОпределение прогноза является важной составляющей комплексного лечения онкологических пациентов. По этой причине правильная оценка вероятностей\nвыживаемости может позволить стратифицировать\nпациентов по группам риска и определять показания\nдля соответствующих методов лечения. Ценным инструментом для прогнозирования в онкологии выступает онкомаркеры — предикторы агрессивности,\nподверженности лечению и выживаемости. Особое\nзначение данные соединения приобретают при лечении\nагрессивных опухолей и запущенных стадий злокачественного процесса в организме. У пациентов с TNBC\nпрогностические онкомаркеры могут стать важной\nопцией для определения стратегии ведения и лечения. В данном разделе рассмотрены ключевые прогностические маркеры TNBC, среди которых циркулирующие опухолевые клетки (CTC), циркулирующая\nопухолевая ДНК (ctDNA), экспрессия PD-L1, инфильтрация опухоли лимфоцитами (TILs), мутации в генах\nBRCA1/BRCA2 и метаболические маркеры.\nCTC и ctDNA выступают в качестве потенциальных\nпрогностических маркеров при различных злокачественных образованиях, в том числе и при TNBC.Они отражают наличие остаточной опухолевой активности и могут служить инструментами для прогнозирования риска рецидива и метастазирования, а также\nдля мониторинга эффективности терапии [32]. CTC\nпредставляют собой опухолевые клетки, которые отделяются от первичной опухоли или метастатических\nочагов и попадают в системный кровоток. Диагностика данных соединений может позволить стратифицировать пациентов по уровню ответа на терапию, что\nпозволит оптимизировать существующие протоколы\nлечения [33]. На сегодняшний день единственным валидированным методом, одобренным FDA (Food and\nDrug Administration) для определения CTC, является\nCellSearch® System. Данная методика основана на иммуномагнитной сепарации клеток, экспрессирующих\nEpCAM (Epithelial cell adhesion molecule — молекула\nклеточной адгезии эпителия). Наряду с представленным методом активно развиваются микрофлюидные\nтехнологии, которые позволяют производить селекцию\nCTC на основе их физико-химических и биологических\nхарактеристик. Для молекулярного анализа широко\nприменяются методы полимеразной цепной реакции\n(ПЦР), позволяющие выявлять специфические генетические маркеры опухолевых клеток и получать более\nточную информацию о молекулярных характеристиках опухоли [34]. Высокие уровни CTC коррелируют\nс неблагоприятным прогнозом. В исследовании Lucci\nи соавт. было показано, что наличие CTC у пациентов\nс ранним раком молочной железы ассоциировано с повышенным риском рецидива и сниженными показателями выживаемости [35]. В наблюдательном исследовании, проведенном Liu M. и соавт., проводился анализ\nрезультатов лечения пациентов с TNBC. Авторы отметили, что пациенты, у которых после неоадъювантной химиотерапии наблюдалось снижение количества\nCTC, имели лучшие клинические исходы по сравнению\nс теми, у кого уровни CTC оставались высокими [36].\nВ другом крупном рандомизированном двойном слепом плацебоконтролируемом исследовании третьей\nфазы исследователи обнаружили, что наличие CTC\nсвязано с повышенным риском развития метастазов\nв отдаленных органах у пациентов с TNBC [37].\nctDNA представляет собой фрагменты ДНК опухолевых клеток, которые высвобождаются в кровоток\nв результате апоптоза или некроза опухолевых клеток. Для определения ctDNA используются высокочувствительные молекулярные методы диагностики,\nкоторые позволяют верифицировать изменения на геномном и генетическом уровнях. Цифровая ПЦР обладает высокой чувствительностью и позволяет количественно определять специфические мутации, тогда\nкак секвенирование следующего поколения (NGS) дает\nвозможность анализировать широкий спектр генетических аномалий, включая точечные мутации, делеции, инсерции и изменения числа копий генов [38].\nЭти технологии позволяют проводить неинвазивный\nмониторинг опухолевого процесса и корректировать\nстратегию лечения в зависимости от молекулярного\nпрофиля заболевания. ctDNA может использоваться\nдля раннего обнаружения минимальной остаточной\nболезни (MRD) после лечения. В проспективном кагортном исследовании Garcia-Murillas и соавт. было показано, что обнаружение ctDNA после хирургического\nвмешательства связано с высоким риском рецидива\n[39]. В проспективном наблюдательном исследовании\nбыло продемонстрировано, что у пациенток с положительной ctDNA после неоадювантной химиотерапии\nмедиана БРВ составила 15,4 месяца, что значительно\nменьше по сравнению с 28,7 месяца у пациенток без обнаруженной ctDNA. Обнаружение ctDNA было связано\nс увеличением риска рецидива с коэффициентом риска\n(HR) 4,5 (95 % доверительный интервал [CI], 2.1–9.5,\np < 0.001) [40].\nCTC и ctDNA являются важными инструментами диагностики, прогнозирования и мониторинга лечения пациентов с TNBC. Дальнейшие исследования в области\nих изучения, а также интеграция этих прогностических\nмаркеров в клинический процесс могут значительно\nповысить эффективность и качество оказываемой персонифицированной помощи при TNBC.\nОпухолевые маркеры, такие как экспрессия PDL1 и инфильтрация опухоли лимфоцитами (TILs), играют важную роль в прогнозировании иммунного ответа\nорганизма на опухоль и проводимое лечение, а также\nв выборе соответствующей схемы иммунной терапии.\nPD-L1 (лиганд программируемой клеточной смерти-1)\nэкспрессируется на поверхности опухолевых клеток\nи взаимодействует с PD-1-рецепторами на T-клетках,\nчто позволяет опухолевым клеткам избегать иммунной\nреакции организма. Высокая экспрессия PD-L1 в опухолях TNBC ассоциируется с более агрессивным течением и худшим прогнозом. В то же время экспрессия\nPD-L1 также предсказывает чувствительность опухоли к иммунотерапии, направленной на блокирование\nконтрольных иммунных точек (checkpoint inhibitors).\nНа сегодняшний день представителями ингибиторов\nконтрольных точек иммунного ответа, используемых\nпри TNBC, являются пембролизумаб и атезолизумаб\n[41]. Исследование KEYNOTE-355 показало, что у пациенток с метастатическим TNBC, у которых опухоли\nэкспрессируют PD-L1, добавление пембролизумаба\nк стандартной химиотерапии улучшает ОВ и БРВ [18].\nTILs представляют собой иммунные клетки, которые инфильтрируют опухолевую ткань и играют\nважную роль в подавлении роста опухоли. Высокий\nуровень TILs в опухолях TNBC считается благоприятным прогностическим фактором, так как он связан\nс лучшими показателями ОВ и более частым полным\nпатоморфологическим ответом на неоадъювантную\nхимиотерапию [42]. В ретроспективном когортноми\nисследовании, проведенном Denkert и соавт. было продемонстрировано, что пациенты с TNBC и высоким\nуровнем TILs имеют значительно лучшие клинические\nрезультаты, включая увеличение БРВ и ОВ. Увеличение\nOS при увеличении TILs на 10 % составило 13 % (HR =\n0.87; 95 % CI: 0.80–0.94; p < 0.001) [43].\nИзменения в метаболических путях опухолевых клеток\nтакже могут служить прогностическими маркерами\nагрессивности TNBC. Аберрантные метаболические\nпроцессы, такие как повышенный гликолиз (эффектВарбурга) и усиленное производство лактата, играют\nважную роль в поддержании агрессивного фенотипа опухолей [44]. Лактат — это продукт повышенного\nпроцесса гликолиза, который используется опухолевыми клетками для поддержания их роста в условиях\nгипоксии. Повышенные уровни лактата и активности лактатдегидрогеназы (ЛДГ) в опухолевых клетках\nкоррелируют с более агрессивным течением заболевания и худшими клиническими исходами у пациентов\nс TNBC. Эти маркеры отражают метаболическую активность опухоли и её способность к быстрому росту\nи метастазированию [45]. В исследовании Malhotra\nи соавт. было продемонстрировано, что у пациентов\nс высоким уровнем ЛДГ наблюдаются худшие прогнозы\nи меньшая выживаемость по сравнению с пациентами\nс нормальными уровнями ЛДГ [46].\nПрогностические маркеры, такие как CTC, ctDNA,\nэкспрессия PD-L1, инфильтрация TILs, мутации\nBRCA1/BRCA2 и метаболические маркеры, играют важную роль в прогнозировании клинических исходов\nи выборе терапии у пациентов с TNBC. Представленные предикторы позволяют выбирать оптимальную\nтактику диагностики и методов лечения, что благоприятно сказывается на клинических результатах.\nПерспективы персонализированной\nмедицины\nПерсонализированная медицина в лечении TNBC активно развивается благодаря внедрению молекулярного профилирования и искусственного интеллекта\n(ИИ). Клиническая агрессивность TNBC диктует необходимость мультимодального подхода к диагностике,\nпрогнозированию и лечению. Интеграция алгоритмов\nкорреляционных взаимоотношений между опухолевыми предикторами, морфофункциональными характеристиками опухоли и клинической картиной заболевания может позволить создать оптимальную стратегию\nпри TNBC.\nАнализ больших объемов геномных, транскриптомных\nи клинических данных требует создания инструментов\nалгоритмизации вычислительного процесса. В данном\nконтексте ИИ стал незаменимой опцией, позволяющей выявлять скрытые закономерности и разрабатывать точные модели для прогнозирования ответа\nна лечение и выживаемости пациентов. Применение\nкомпьютерного интеллекта при TNBC охватывает широкий спектр задач: от анализа биомаркеров, таких как\nBRCA1/BRCA2, PD-L1, CTC и ctDNA, до оценки вероятности рецидивов [47]. В систематическом обзоре где\nбыли рассмотрены 63 исследования, которые использовали методы ИИ для персонализированной медицины\nпри онкологических заболеваниях, было показано, что\nприменение ИИ позволяет с высокой точностью предсказывать ответы на терапию и повышать точность\nдиагностики, используя такие методы, как глубокое обучение и случайные леса [48].\nДополнительно ИИ помогает моделировать возможные исходы лечения. Так, в исследовании Enhanced\nDeep Learning Model for Personalized Cancer Treatment\nразработаны модели глубокого обучения, которые продемонстрировали высокую точность в предсказании\nответа на лечение у пациентов с различными онкологическими заболеваниями, включая TNBC [49].\nКроме предсказания эффективности терапии, ИИ активно применяется для поддержки врачебных решений.\nВ исследовании Amoroso и соавт. представлен подход\n«объяснимого искусственного интеллекта» (Explainable\nAI, XAI), который позволил классифицировать пациентов на основе молекулярных данных и подобрать им\nоптимальные стратегии лечения на основе профилирования опухолей. Это исследование показало, что ИИ может эффективно поддерживать клинические решения\nи увеличивать точность подбора терапии, что особенно\nважно для TNBC [50]. ИИ может предсказывать не только вероятность рецидивов, но и подбирать наилучшие\nсхемы терапии для каждого пациента. Исследование I-PREDICT также подтвердило, что персонализированная терапия на основе геномных данных, подобранная с помощью ИИ, улучшает выживаемость пациентов\nпо сравнению с традиционными подходами [51].\nЗАКЛЮЧЕНИЕ\nTNBC остается одной из самых сложных клинических\nпроблем в онкологии из-за его агрессивного течения,\nвысокой частоты рецидивов и отсутствия стандартных\nтерапевтических мишеней. Благодаря развитию молекулярного профилирования и внедрению методов ИИ\nперсонализированная медицина для пациенток с TNBC\nстановится более доступной и эффективной.\nМолекулярное профилирование позволило выявить\nподтипы TNBC, такие как базальноподобный, мезенхимальный и иммуномодулирующий, что помогает\nврачам разрабатывать более точные стратегии лечения.\nПрогностические и предиктивные маркеры, такие как\nмутации BRCA1/BRCA2, экспрессия PD-L1, инфильтрация опухоли TILs, а также CTC и ctDNA, играют\nважную роль в выборе оптимальной стратегии лечения\nзаболевания.\nПрименение методов ИИ значительно улучшило возможности анализа больших объемов данных, таких как\nрезультаты молекулярного профилирования и клинические данные пациентов. Исследования показали, что\nИИ может предсказывать клинические исходы с высокой точностью, оптимизировать выбор терапии и поддерживать принятие клинических решений. Применение объяснимого ИИ (Explainable AI, XAI) помогает\nврачам не только предсказывать результаты лечения,\nно и понимать, на основе каких данных принимаются\nэти решения, что делает процесс лечения более прозрачным и эффективным.\nТаким образом, персонализированная медицина, основанная на молекулярном профилировании и поддерживаемая методами ИИ, становится ключевым элементом лечения пациенток с TNBC, улучшая как прогнозы,\nтак и результаты терапии. Дальнейшее развитие этих\nтехнологий позволит повысить точность диагностики,\nвыбрать оптимальные стратегии лечения и, в конечном\nсчете, улучшить выживаемость пациентов."],"dc.subject.ru":["трижды негативный рак молочной железы","прогностические маркеры","предиктивные маркеры","персонализированная медицина","молекулярное профилирование","искусственный интеллект","иммунотерапия"],"dc.title.ru":["Многофакторный анализ прогностических и предиктивных онкомаркеров у пациентов с трижды негативным раком молочной железы"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["43-52"],"dc.rights":["CC BY 4.0"],"dc.section":["LITERATURE REVIEW","ОБЗОР ЛИТЕРАТУРЫ"],"dc.section.en":["LITERATURE REVIEW"],"dc.section.ru":["ОБЗОР ЛИТЕРАТУРЫ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["В. Н. Павлов","V. N. Pavlov","М. Ф. Урманцев","M. F. Urmantsev","Р. Ф. Гильманова","R. F. Gilmanova","Ю. А. Исмагилова","J. A. Ismagilova","М. Р. Бакеев","M. R. Bakeev"],"author_keyword":["В. Н. Павлов","V. N. Pavlov","М. Ф. Урманцев","M. F. Urmantsev","Р. Ф. Гильманова","R. F. Gilmanova","Ю. А. Исмагилова","J. A. Ismagilova","М. Р. Бакеев","M. R. Bakeev"],"author_ac":["в. н. павлов\n|||\nВ. Н. Павлов","v. n. pavlov\n|||\nV. N. Pavlov","м. ф. урманцев\n|||\nМ. Ф. Урманцев","m. f. urmantsev\n|||\nM. F. Urmantsev","р. ф. гильманова\n|||\nР. Ф. Гильманова","r. f. gilmanova\n|||\nR. F. Gilmanova","ю. а. исмагилова\n|||\nЮ. А. Исмагилова","j. a. ismagilova\n|||\nJ. A. Ismagilova","м. р. бакеев\n|||\nМ. Р. Бакеев","m. r. bakeev\n|||\nM. R. Bakeev"],"author_filter":["в. н. павлов\n|||\nВ. Н. Павлов","v. n. pavlov\n|||\nV. N. Pavlov","м. ф. урманцев\n|||\nМ. Ф. Урманцев","m. f. urmantsev\n|||\nM. F. Urmantsev","р. ф. гильманова\n|||\nР. Ф. Гильманова","r. f. gilmanova\n|||\nR. F. Gilmanova","ю. а. исмагилова\n|||\nЮ. А. Исмагилова","j. a. ismagilova\n|||\nJ. A. Ismagilova","м. р. бакеев\n|||\nМ. Р. Бакеев","m. r. bakeev\n|||\nM. R. Bakeev"],"dc.author.name":["В. Н. Павлов","V. N. Pavlov","М. Ф. Урманцев","M. F. Urmantsev","Р. Ф. Гильманова","R. F. Gilmanova","Ю. А. Исмагилова","J. A. Ismagilova","М. Р. Бакеев","M. R. Bakeev"],"dc.author.name.ru":["В. Н. Павлов","М. Ф. Урманцев","Р. Ф. Гильманова","Ю. А. Исмагилова","М. Р. Бакеев"],"dc.author.affiliation":["Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","Bashkir State Medical University ; Clinic of Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University","Башкирский государственный медицинский университет","Bashkir State Medical University"],"dc.author.affiliation.ru":["Башкирский государственный медицинский университет","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","Башкирский государственный медицинский университет","Башкирский государственный медицинский университет"],"dc.author.full":["В. Н. Павлов | Башкирский государственный медицинский университет","V. N. Pavlov | Bashkir State Medical University","М. Ф. Урманцев | Башкирский государственный медицинский университет","M. F. Urmantsev | Bashkir State Medical University","Р. Ф. Гильманова | Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","R. F. Gilmanova | Bashkir State Medical University ; Clinic of Bashkir State Medical University","Ю. А. Исмагилова | Башкирский государственный медицинский университет","J. A. Ismagilova | Bashkir State Medical University","М. Р. Бакеев | Башкирский государственный медицинский университет","M. R. Bakeev | Bashkir State Medical University"],"dc.author.full.ru":["В. Н. Павлов | Башкирский государственный медицинский университет","М. Ф. Урманцев | Башкирский государственный медицинский университет","Р. Ф. Гильманова | Башкирский государственный медицинский университет ; Клиника Башкирского государственного медицинского университета","Ю. А. Исмагилова | Башкирский государственный медицинский университет","М. Р. Бакеев | Башкирский государственный медицинский университет"],"dc.author.name.en":["V. N. Pavlov","M. F. Urmantsev","R. F. Gilmanova","J. A. Ismagilova","M. R. Bakeev"],"dc.author.affiliation.en":["Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University ; Clinic of Bashkir State Medical University","Bashkir State Medical University","Bashkir State Medical University"],"dc.author.full.en":["V. N. Pavlov | Bashkir State Medical University","M. F. Urmantsev | Bashkir State Medical University","R. F. Gilmanova | Bashkir State Medical University ; Clinic of Bashkir State Medical University","J. A. Ismagilova | Bashkir State Medical University","M. R. Bakeev | Bashkir State Medical University"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0003-2125-4897\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u0412. \\u041d. \\u041f\\u0430\\u0432\\u043b\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0003-2125-4897\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"V. N. Pavlov\"}}, {\"ru\": {\"orcid\": \"0000-0002-4657-6625\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041c. \\u0424. \\u0423\\u0440\\u043c\\u0430\\u043d\\u0446\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4657-6625\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"M. F. Urmantsev\"}}, {\"ru\": {\"orcid\": \"0000-0002-3867-0216\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 ; \\u041a\\u043b\\u0438\\u043d\\u0438\\u043a\\u0430 \\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u043e\\u0433\\u043e \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u043e\\u0433\\u043e \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u043e\\u0433\\u043e \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\\u0430\", \"full_name\": \"\\u0420. \\u0424. \\u0413\\u0438\\u043b\\u044c\\u043c\\u0430\\u043d\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0002-3867-0216\", \"affiliation\": \"Bashkir State Medical University ; Clinic of Bashkir State Medical University\", \"full_name\": \"R. F. Gilmanova\"}}, {\"ru\": {\"orcid\": \"0009-0004-0603-7864\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u042e. \\u0410. \\u0418\\u0441\\u043c\\u0430\\u0433\\u0438\\u043b\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0009-0004-0603-7864\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"J. A. Ismagilova\"}}, {\"ru\": {\"orcid\": \"0000-0002-4160-2820\", \"affiliation\": \"\\u0411\\u0430\\u0448\\u043a\\u0438\\u0440\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442\", \"full_name\": \"\\u041c. \\u0420. \\u0411\\u0430\\u043a\\u0435\\u0435\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4160-2820\", \"affiliation\": \"Bashkir State Medical University\", \"full_name\": \"M. R. Bakeev\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1086"],"dc.citation":["Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881","Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881"],"dc.citation.ru":["Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881"],"dc.citation.en":["Chapdelaine A.G., Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules. 2023;13(8):1207. DOI: 10.3390/biom13081207","Varshini M., Krishnamurthy P., Reddy R., Wadhwani A., Chandrashekar V. Insights into the emerging therapeutic targets of triple-negative breast cancer. Curr Cancer Drug Targets. 2025;25(1):3–25. DOI: 10.2174/0115680096280750240123054936","Mir M., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets. 2020;20(8):603–15. DOI: 10.2174/1570163817666200518081955","Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. DOI: 10.3322/caac.21660","Bianchini G., De Angelis C., Licata L., Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. DOI: 10.1038/s41571-021-00565-2","Park S., Khalife R., White E., Magliocco A. Abstract P5-03-05: Distinct molecular differences between african american/black and white women with triple negative breast cancer. Cancer Res. 2023;83(5):3–5. DOI: 10.1158/1538-7445.SABCS22-P5-03-05","Мерабишвили В.М., Семиглазов В.Ф., Комяхов А.В., Семиглазова Т.Ю., Криворотько П.В., Беляев А.М. Состояние онкологической помощи в России: рак молочной железы. Эпидемиология и выживаемость больных. Влияние эпидемии бета-варианта коронавируса SARS-CoV-2 (клинико-популяционное исследование). Опухоли женской репродуктивной системы. 2023;19(3):16–24. DOI: 10.17650/1994-4098-2023-19-3-1624","Панченко И.С., Родионов В.В., Бурменская О.В., Кометова В.В., Боженко В.К. Молекулярно-генетические кластеры трижды негативного рака молочной железы и их прогностическая значимость. Казанский медицинский журнал. 2023;104(2):198– 206. DOI: 10.17816/KMJ104784","Каприн А.Д., Старинский В.В., Шахзадова А.О. (ред.) Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2021.","Lehmann B.D., Colaprico A., Silva T.C., Chen J., An H., Ban Y., et al. Multi-omics analysis identifies therapeutic vulnerabilities in triplenegative breast cancer subtypes. Nat Commun. 2021;12(1):6276. DOI: 10.1038/s41467-021-26502-6","Radovich M., Jiang G., Hancock B.A., Chitambar C., Nanda R., Falkson C., et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol. 2020;6(9):1410–5. DOI: 10.1001/jamaoncol.2020.2295","Dsouza S., Rao S., Fernandes D., Shankar S., Vidyasagar M., Santmayer S. Pattern of local recurrence and metastasis in carcinoma breast according to molecular subtype in patients treated with definitive intent. J Radiat Cancer Res. 2022;13:117–21. DOI: 10.4103/jrcr.jrcr_1_22","Ortega-Álvarez D., Tébar-García D., Casado-Peláez M., Castillo-Agea E., Balibrea-Rull J., Olivares-Osuna D., et al. Discovery and evaluation of novel biomarkers reveal dasatinib as a potential treatment for a specific subtype of triple-negative breast cancer. bioRxiv. 2024;603752. DOI: 10.1101/2024.07.24.603752","Wang X., Li X., Dong T., Yu W., Jia Z., Hou Y., et al. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg. 2024;110(12):7962–83. DOI: 10.1097/JS9.0000000000001799","Fasril T., Hilbertina N., Elliyanti A. Treatment problems in triple negative breast cancer. Int Islam Med J. 2023;4(2):51–8. DOI: 10.33086/iimj.v4i2.3951","Tan Q., Yin S-S., Zhou D., Chi Y., Man X., Li H. Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncoly. 2022;12:1–8. DOI: 10.3389/fonc.2022.779786","Kudelova E., Smolar M., Holubekova V., Hornakova A., Dvorska D., Lucansky V., et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Molecul Sci. 2022;23(23):14937. DOI: 10.3390/ijms232314937","Schmid P., Turner N.C., Barrios C.H., Isakoff S.J., Kim S.B., Sablin M.P., et al. First-line ipatasertib, atezolizumab, and taxane triplet for metastatic triple-negative breast cancer: clinical and biomarker results. Clin Cancer Res. 2024;30(4):767–78. DOI: 10.1158/1078-0432.CCR-23-2084","Popović L., Matovina-Brko G., Popovic M., Punie K., Cvetanovic A., Lambertini M. Targeting triple-negative breast cancer: A clinical perspective. Oncol Res. 2023;31:221–38. DOI: 10.32604/or.2023.028525","Cunsolo A., Bourdon D., Lam E., Caro G., Dharajiya N., Pluard T., et al. Abstract PO4-06-12: Distinction of basal-like and triple-negative basal-like breast cancers utilizing a novel comprehensive single-cell liquid biopsy-based test. Cancer Res. 2024;84(9):PO4–12. DOI: 10.1158/1538-7445.sabcs23-po4-06-12","McGinn O., Riley D., Finlay-Schultz J., Paul K. V., Kabos P., Sartorius C.A. Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 2022;20(9):1443–55. DOI: 10.1158/1541-7786.MCR-21-0866","ElFeky A., Saied E., Shawky H., Sadaka E. Prognostic value of basal markers (Epidermal Growth Factor Receptor «EGFR» and cytokeratin 5/6) expression in triple-negative invasive breast cancer. JPMA. 2023;73(4):161–6. DOI: 10.47391/JPMA.EGY-S4-33","Klayech Z., Moussa A., Souid M., Hadhri R., Miled S., Gabbouj S., et al. Prognostic significance of combining cytokeratin-19, E-cadherin and Ki-67 analysis in triple-negative breast cancer with basal-like and non-basal-like phenotype. Cancer Invest. 2024;42(9):769–81. DOI: 10.1080/07357907.2024.2416166","Zhang J., Xia Y., Zhou X., Yu H., Tan Y., Du Y., et al. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front Pharmacol. 2022;13:977660. DOI: 10.3389/fphar.2022.977660","Morrison L., Okines A. Systemic therapy for metastatic triple negative breast cancer: current treatments and future directions. Cancers. 2023;15(15):3801. DOI: 10.3390/cancers15153801","Глазкова Е.В., Фролова М.А., Исраелян Э.Р. Возможности терапии метастатического тройного негативного рака молочной железы. Медицинский Совет. 2022;(9):201–6. DOI: 10.21518/2079-701X-2022-16-9-201-206","Sikov W.M., Berry D.A., Perou C.M., Singh B., Cirrincione C.T., Tolaney S.M., et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dosedense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13–21. DOI: 10.1200/JCO.2014.57.0572","Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., et al. Atezolizumab and nab-paclitaxel in advanced triplenegative breast cancer. New Engl J Med. 2018;379(22):2108–21. DOI: 10.1056/NEJMoa1809615","Cortes J., Cescon D.W., Rugo H.S., Nowecki Z., Im S.A., Yusof M.M., et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817–28. DOI: 10.1016/S0140-6736(20)32531-9","Chai Y., Chen Y., Zhang D., Wei Y., Li Z., Li Q., et al. Homologous recombination deficiency (HRD) and BRCA 1/2 gene mutation for predicting the effect of platinum-based neoadjuvant chemotherapy of early-stage triple-negative breast cancer (TNBC): a systematic review and meta-analysis. J Personal Med. 2022;12(2):323. DOI: 10.3390/jpm12020323","Tutt A., Garber J., Kaufman B., Viale G., Fumagalli D., Rastogi P., et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. New Engl J Med. 2021;384(25):2394–405. DOI: 10.1056/NEJMoa2105215","Bidard F., Berger F., Arnedos M., Mouret-Reynier M., Trédan O., Sabatier R., et al. Clinical utility of ctDNA as a tool to detect triplenegative breast cancer relapses: The CUPCAKE trial. J Clin Oncol. 2024;42:1139. DOI: 10.1200/jco.2024.42.16_suppl.tps1139","Nel I., Herzog H., Aktas B. Combined analysis of disseminated tumor cells (DTCs) and circulating tumor DNA (ctDNA) in a patient suffering from triple negative breast cancer revealed elevated risk. Front Biosci. 2022;27(7):208. DOI: 10.31083/j.fbl2707208","Wang H., Wu J., Zhang Q., Hao J., Wang Y., Li Z., et al. A modified method to isolate circulating tumor cells and identify by a panel of gene mutations in lung cancer. Technol Cancer Res Treat. 2021;20:1533033821995275. DOI: 10.1177/1533033821995275","Lucci A., Hall C.S., Lodhi A.K., Bhattacharyya A., Anderson A.E., Xiao L., et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2013;13(7):688–95. DOI: 10.1016/S1470-2045(12)70209-7","Liu M.C., Pitcher B.N., Mardis E.R., Davies S.R., Friedman P.N., Snider J., et al. Circulating tumor cell enumeration and characterization in metastatic triple-negative breast cancers from patients receiving chemotherapy plus atezolizumab. J Clin Oncol. 2019;37(15_suppl):1012. DOI: 10.1200/JCO.2019.37.15_suppl.1012","Miller M.C., Manning H., Rossi G., Lemech C. Significance of circulating tumor cells in metastatic triple negative breast cancer patients within a randomized, double-blind, placebo-controlled phase III trial: The TNT trial. Breast Cancer Res Treat. 2020;181(3):571–9. DOI: 10.1007/s10549-020-05635-1","Yi K., Wang X., Filippov S., Zhang H. Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Medicine. 2023;2(4):e20230031. DOI: 10.1002/SMMD.20230031","Garcia-Murillas I., Schiavon G., Weigelt B., Ng C., Hrebien S., Cutts R.J., et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Translat Med. 2015;7(302):302ra133. DOI: 10.1126/scitranslmed.aab0021","Riva F., Bidard F.C., Houy A., Saliou A., Madic J., Rampanou A., et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2021;67(5):872–81. DOI: 10.1093/clinchem/hvaa346","Khan M., Du K., Ai M., Wang B., Lin J., Ren A., et al. PD-L1 expression as biomarker of efficacy of PD-1/PD-L1 checkpoint inhibitors in metastatic triple negative breast cancer: A systematic review and meta-analysis. Front Immunol. 2023;14:1060308. DOI: 10.3389/fimmu.2023.1060308","Uenaka N., Sato E., Horimoto Y., Kawai S., Asaoka M., Kaise H., et al. CD8-positive T-Cells are key immune cells for predicting the therapeutic effect of neoadjuvant chemotherapy in triple-negative breast cancer. Anticancer Res. 2024;44(10):4525–36. DOI: 10.21873/anticanres.17281","Luen S., Salgado R., Dieci M., Vingiani A., Curigliano G., Curigliano G., et al. Prognostic implications of residual disease tumorinfiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy. Ann Oncol. 2019;30:236–42. DOI: 10.1093/annonc/mdy547","Eldib H., Nwanwene K., Kachynski Y., Wright T., Abdallah M., Kumar L., et al. Predicting pathological response in early-stage triplenegative breast cancer: Exploring the role of BRCA gene mutations—A retrospective single-institution study. J Clin Oncol. 2024;42:e12656. DOI: 10.1200/jco.2024.42.16_suppl.e12656","Liu S., Li Y., Yuan M., Song Q., Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol. 2023;12:1060495. DOI: 10.3389/fonc.2022.1060495","Xu J., Shen H., Zhu Z., Tang J. Lactate-induced lactylation circularly regulates glucose metabolism enzymes in breast cancer.. J Clin Oncol. 2023;41:e13092. DOI: 10.1200/jco.2023.41.16_suppl.e13092","Malhotra G., Gattani R.G., Shinde R.K., Gianchandani S.G., Nayak K., Salwan A. Significance of serum lactate dehydrogenase as a prognostic marker and outcome predictor in patients with breast cancer. Cureus. 2024;16(3):e55932. DOI: 10.7759/cureus.55932","Sicklick J., Kato S., Okamura R., Schwaederlé M., Hahn M., Williams C., et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nature Med. 2019;25:744–50. DOI: 10.1038/s41591-019-0407-5","Fischer C.G., Pallavajjala A., Jiang L., Anagnostou V., Tao J., Adams E., et al. Artificial intelligence-assisted serial analysis of clinical cancer genomics data identifies changing treatment recommendations and therapeutic targets. Clin Cancer Res. 2022;2(11):2361–72. DOI: 10.1158/1078-0432.CCR-21-4061","Rezayi S., Niakan Kalhori S.R., Saeedi S. Effectiveness of artificial intelligence for personalized medicine in neoplasms: a systematic review. Biomed Res Int. 2022;2022:7842566. DOI: 10.1155/2022/7842566","Ahmed H., Hamad S., Shedeed H., Hussein A. Enhanced deep learning model for personalized cancer treatment. IEEE Access. 2022;10:106050–8. DOI: 10.1109/ACCESS.2022.3209285","Amoroso N., Pomarico D., Fanizzi A., Didonna V., Giotta F., Forgia D., et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Applied Sci. 2021;11:4881. DOI: 10.3390/APP11114881"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8925"],"dc.date.accessioned_dt":"2025-07-09T13:58:58Z","dc.date.accessioned":["2025-07-09T13:58:58Z"],"dc.date.available":["2025-07-09T13:58:58Z"],"publication_grp":["123456789/8925"],"bi_4_dis_filter":["иммунотерапия\n|||\nиммунотерапия","triple-negative breast cancer\n|||\ntriple-negative breast cancer","предиктивные маркеры\n|||\nпредиктивные маркеры","immunotherapy\n|||\nimmunotherapy","персонализированная медицина\n|||\nперсонализированная медицина","personalized medicine\n|||\npersonalized medicine","молекулярное профилирование\n|||\nмолекулярное профилирование","artificial intelligence\n|||\nartificial intelligence","трижды негативный рак молочной железы\n|||\nтрижды негативный рак молочной железы","прогностические маркеры\n|||\nпрогностические маркеры","molecular profiling\n|||\nmolecular profiling","искусственный интеллект\n|||\nискусственный интеллект","prognostic and predictive biomarkers\n|||\nprognostic and predictive biomarkers"],"bi_4_dis_partial":["triple-negative breast cancer","молекулярное профилирование","прогностические маркеры","prognostic and predictive biomarkers","artificial intelligence","personalized medicine","искусственный интеллект","предиктивные маркеры","immunotherapy","трижды негативный рак молочной железы","иммунотерапия","персонализированная медицина","molecular profiling"],"bi_4_dis_value_filter":["triple-negative breast cancer","молекулярное профилирование","прогностические маркеры","prognostic and predictive biomarkers","artificial intelligence","personalized medicine","искусственный интеллект","предиктивные маркеры","immunotherapy","трижды негативный рак молочной железы","иммунотерапия","персонализированная медицина","molecular profiling"],"bi_sort_1_sort":"multifactorial analysis of prognostic and predictive biomarkers in triple negative breast cancer patients","bi_sort_3_sort":"2025-07-09T13:58:58Z","read":["g0"],"_version_":1837178068783857664},{"SolrIndexer.lastIndexed":"2025-07-09T13:58:59.133Z","search.uniqueid":"2-8037","search.resourcetype":2,"search.resourceid":8037,"handle":"123456789/8926","location":["m195","l687"],"location.comm":["195"],"location.coll":["687"],"withdrawn":"false","discoverable":"true","dc.doi":["10.24060/2076-3093-2025-15-2-53-63"],"dc.abstract":["In Russia, breast cancer is the most prevalent oncological pathology among female patients, accounting for approximately 22.5% of all cancer cases. Approximately 90% of mortalities associated with this condition are attributed to the metastasis of cancer cells. Consequently, the effective detection of metastases within the regional lymphatic system during breast tumor progression is a critical diagnostic component. In recent decades, methodologies for verifying metastatic regional lymph nodes in breast cancer patients have advanced significantly, demonstrating high efficacy. The identification of sentinel lymph nodes became feasible through the use of various dyes, radioisotopes, and superparamagnetic nanoparticles. Detection techniques for metastatically affected formations include radioisotope lymphoscintigraphy, single-photon emission computed tomography (SPECT) often in combination with computed tomography (CT), and positron emission tomography (PET) typically integrated with CT. The accumulated data enabled an assessment of the advantages and limitations of current diagnostic methods. Radioisotope lymphoscintigraphy offers minimal invasiveness, high accuracy, and a low risk of complications; however, it remains insufficiently safe and cost-prohibitive. The application of superparamagnetic nanoparticles exerts negligible adverse effects on the human body and is characterized by straightforward administration. However, this method remains understudied, with its implementation being limited. Although the SPECT in combination with CT offers high sensitivity, thereby facilitating precise sentinel lymph node localization, it is associated with. exposure to ionizing radiation for the patient and the associated high procedural costs. Published data confirm the significance and efficacy of modern techniques for verifying metastatic regional lymph nodes in breast cancer. Therefore, the optimal diagnostic approaches can be selected, while reducing the invasiveness of mastectomy and lymph node dissection, improving survival rates, and decreasing the probability of recurrence or cancer progression.
","В России рак молочной железы является наиболее распространенной онкологической патологией среди женского населения и составляет 22,5 % от общей массы онкологических заболеваний. Около 90 % смертей от данного заболевания связаны с метастазированием раковых клеток. В связи с этим эффективное выявление метастазов в регионарной лимфатической системе при развитии опухолей молочной железы — это ключевой элемент диагностики. За последние 10–20 лет современные технологии верификации метастатически измененных регионарных лимфатических узлов при раке молочной железы усовершенствовались и стали демонстрировать высокую эффективность. Определение сторожевого лимфатического узла стало возможным благодаря использованию различных красителей, радиоизотопов, суперпарамагнитных наночастиц. Выявление метастатически измененных образований проводится с помощью радиоизотопной лимфосцинтиграфии, однофотонной эмиссионной компьютерной томографии, совмещенной с компьютерной томографией и позитронно-эмиссионной томографии, совмещенной с компьютерной томографией. Полученные сведения позволили охарактеризовать преимущества и недостатки применяемых способов диагностики метастатически измененных регионарных лимфатических узлов. Радиоизотопная лимфосцинтиграфия отличается минимальной инвазивностью и высокой точностью, а также низким риском осложнений, но при этом является недостаточно безопасным и дорогостоящим методом. Использование суперпарамагнитных наночастиц не оказывает существенного негативного влияния на организм человека, является простым в использовании, однако данный способ недостаточно изучен и пока еще мало распространен. Однофотонная эмиссионная компьютерная томография, совмещенная с компьютерной томографией, обладая высокой чувствительностью, позволяет узнать точную локализацию сторожевого лимфатического узла, но его недостатком является наличие лучевой нагрузки на пациента и высокая стоимость проведения данной процедуры. Результаты анализа публикаций подтверждают значимость и эффективность современных технологий верификации метастатически измененных регионарных лимфатических узлов при раке молочной железы, что позволяет выбрать оптимальный метод диагностики, ведущий к снижению травматичности мастэктомии и лимфодиссекции, увеличить выживаемость, снизить вероятность возникновения рецидивов и прогресса онкологического процесса.
"],"dc.abstract.en":["In Russia, breast cancer is the most prevalent oncological pathology among female patients, accounting for approximately 22.5% of all cancer cases. Approximately 90% of mortalities associated with this condition are attributed to the metastasis of cancer cells. Consequently, the effective detection of metastases within the regional lymphatic system during breast tumor progression is a critical diagnostic component. In recent decades, methodologies for verifying metastatic regional lymph nodes in breast cancer patients have advanced significantly, demonstrating high efficacy. The identification of sentinel lymph nodes became feasible through the use of various dyes, radioisotopes, and superparamagnetic nanoparticles. Detection techniques for metastatically affected formations include radioisotope lymphoscintigraphy, single-photon emission computed tomography (SPECT) often in combination with computed tomography (CT), and positron emission tomography (PET) typically integrated with CT. The accumulated data enabled an assessment of the advantages and limitations of current diagnostic methods. Radioisotope lymphoscintigraphy offers minimal invasiveness, high accuracy, and a low risk of complications; however, it remains insufficiently safe and cost-prohibitive. The application of superparamagnetic nanoparticles exerts negligible adverse effects on the human body and is characterized by straightforward administration. However, this method remains understudied, with its implementation being limited. Although the SPECT in combination with CT offers high sensitivity, thereby facilitating precise sentinel lymph node localization, it is associated with. exposure to ionizing radiation for the patient and the associated high procedural costs. Published data confirm the significance and efficacy of modern techniques for verifying metastatic regional lymph nodes in breast cancer. Therefore, the optimal diagnostic approaches can be selected, while reducing the invasiveness of mastectomy and lymph node dissection, improving survival rates, and decreasing the probability of recurrence or cancer progression.
"],"subject":["breast cancer","metastases","lymph nodes","sentinel lymph node","lymphoscintigraphy","fluorescent labeling","lymph node dissection","biopsy","radioimmunodetection","рак молочной железы","метастазы","лимфатические узлы","сигнальный лимфатический узел","лимфосцинтиграфия","флуоресцентная маркировка","лимфодиссекция","биопсия","радиоиммунная диагностика"],"subject_keyword":["breast cancer","breast cancer","metastases","metastases","lymph nodes","lymph nodes","sentinel lymph node","sentinel lymph node","lymphoscintigraphy","lymphoscintigraphy","fluorescent labeling","fluorescent labeling","lymph node dissection","lymph node dissection","biopsy","biopsy","radioimmunodetection","radioimmunodetection","рак молочной железы","рак молочной железы","метастазы","метастазы","лимфатические узлы","лимфатические узлы","сигнальный лимфатический узел","сигнальный лимфатический узел","лимфосцинтиграфия","лимфосцинтиграфия","флуоресцентная маркировка","флуоресцентная маркировка","лимфодиссекция","лимфодиссекция","биопсия","биопсия","радиоиммунная диагностика","радиоиммунная диагностика"],"subject_ac":["breast cancer\n|||\nbreast cancer","metastases\n|||\nmetastases","lymph nodes\n|||\nlymph nodes","sentinel lymph node\n|||\nsentinel lymph node","lymphoscintigraphy\n|||\nlymphoscintigraphy","fluorescent labeling\n|||\nfluorescent labeling","lymph node dissection\n|||\nlymph node dissection","biopsy\n|||\nbiopsy","radioimmunodetection\n|||\nradioimmunodetection","рак молочной железы\n|||\nрак молочной железы","метастазы\n|||\nметастазы","лимфатические узлы\n|||\nлимфатические узлы","сигнальный лимфатический узел\n|||\nсигнальный лимфатический узел","лимфосцинтиграфия\n|||\nлимфосцинтиграфия","флуоресцентная маркировка\n|||\nфлуоресцентная маркировка","лимфодиссекция\n|||\nлимфодиссекция","биопсия\n|||\nбиопсия","радиоиммунная диагностика\n|||\nрадиоиммунная диагностика"],"subject_tax_0_filter":["breast cancer\n|||\nbreast cancer","metastases\n|||\nmetastases","lymph nodes\n|||\nlymph nodes","sentinel lymph node\n|||\nsentinel lymph node","lymphoscintigraphy\n|||\nlymphoscintigraphy","fluorescent labeling\n|||\nfluorescent labeling","lymph node dissection\n|||\nlymph node dissection","biopsy\n|||\nbiopsy","radioimmunodetection\n|||\nradioimmunodetection","рак молочной железы\n|||\nрак молочной железы","метастазы\n|||\nметастазы","лимфатические узлы\n|||\nлимфатические узлы","сигнальный лимфатический узел\n|||\nсигнальный лимфатический узел","лимфосцинтиграфия\n|||\nлимфосцинтиграфия","флуоресцентная маркировка\n|||\nфлуоресцентная маркировка","лимфодиссекция\n|||\nлимфодиссекция","биопсия\n|||\nбиопсия","радиоиммунная диагностика\n|||\nрадиоиммунная диагностика"],"subject_filter":["breast cancer\n|||\nbreast cancer","metastases\n|||\nmetastases","lymph nodes\n|||\nlymph nodes","sentinel lymph node\n|||\nsentinel lymph node","lymphoscintigraphy\n|||\nlymphoscintigraphy","fluorescent labeling\n|||\nfluorescent labeling","lymph node dissection\n|||\nlymph node dissection","biopsy\n|||\nbiopsy","radioimmunodetection\n|||\nradioimmunodetection","рак молочной железы\n|||\nрак молочной железы","метастазы\n|||\nметастазы","лимфатические узлы\n|||\nлимфатические узлы","сигнальный лимфатический узел\n|||\nсигнальный лимфатический узел","лимфосцинтиграфия\n|||\nлимфосцинтиграфия","флуоресцентная маркировка\n|||\nфлуоресцентная маркировка","лимфодиссекция\n|||\nлимфодиссекция","биопсия\n|||\nбиопсия","радиоиммунная диагностика\n|||\nрадиоиммунная диагностика"],"dc.subject_mlt":["breast cancer","metastases","lymph nodes","sentinel lymph node","lymphoscintigraphy","fluorescent labeling","lymph node dissection","biopsy","radioimmunodetection","рак молочной железы","метастазы","лимфатические узлы","сигнальный лимфатический узел","лимфосцинтиграфия","флуоресцентная маркировка","лимфодиссекция","биопсия","радиоиммунная диагностика"],"dc.subject":["breast cancer","metastases","lymph nodes","sentinel lymph node","lymphoscintigraphy","fluorescent labeling","lymph node dissection","biopsy","radioimmunodetection","рак молочной железы","метастазы","лимфатические узлы","сигнальный лимфатический узел","лимфосцинтиграфия","флуоресцентная маркировка","лимфодиссекция","биопсия","радиоиммунная диагностика"],"dc.subject.en":["breast cancer","metastases","lymph nodes","sentinel lymph node","lymphoscintigraphy","fluorescent labeling","lymph node dissection","biopsy","radioimmunodetection"],"title":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"title_keyword":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"title_ac":["metastases to regional lymph nodes in breast cancer: current views of detection methods\n|||\nMetastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления\n|||\nМетастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"dc.title_sort":"Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","dc.title_hl":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"dc.title_mlt":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"dc.title":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods","Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"dc.title_stored":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nen","Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления\n|||\nnull\n|||\nnull\n|||\nnull\n|||\nru"],"dc.title.en":["Metastases to Regional Lymph Nodes in Breast Cancer: Current Views of Detection Methods"],"dc.abstract.ru":["В России рак молочной железы является наиболее распространенной онкологической патологией среди женского населения и составляет 22,5 % от общей массы онкологических заболеваний. Около 90 % смертей от данного заболевания связаны с метастазированием раковых клеток. В связи с этим эффективное выявление метастазов в регионарной лимфатической системе при развитии опухолей молочной железы — это ключевой элемент диагностики. За последние 10–20 лет современные технологии верификации метастатически измененных регионарных лимфатических узлов при раке молочной железы усовершенствовались и стали демонстрировать высокую эффективность. Определение сторожевого лимфатического узла стало возможным благодаря использованию различных красителей, радиоизотопов, суперпарамагнитных наночастиц. Выявление метастатически измененных образований проводится с помощью радиоизотопной лимфосцинтиграфии, однофотонной эмиссионной компьютерной томографии, совмещенной с компьютерной томографией и позитронно-эмиссионной томографии, совмещенной с компьютерной томографией. Полученные сведения позволили охарактеризовать преимущества и недостатки применяемых способов диагностики метастатически измененных регионарных лимфатических узлов. Радиоизотопная лимфосцинтиграфия отличается минимальной инвазивностью и высокой точностью, а также низким риском осложнений, но при этом является недостаточно безопасным и дорогостоящим методом. Использование суперпарамагнитных наночастиц не оказывает существенного негативного влияния на организм человека, является простым в использовании, однако данный способ недостаточно изучен и пока еще мало распространен. Однофотонная эмиссионная компьютерная томография, совмещенная с компьютерной томографией, обладая высокой чувствительностью, позволяет узнать точную локализацию сторожевого лимфатического узла, но его недостатком является наличие лучевой нагрузки на пациента и высокая стоимость проведения данной процедуры. Результаты анализа публикаций подтверждают значимость и эффективность современных технологий верификации метастатически измененных регионарных лимфатических узлов при раке молочной железы, что позволяет выбрать оптимальный метод диагностики, ведущий к снижению травматичности мастэктомии и лимфодиссекции, увеличить выживаемость, снизить вероятность возникновения рецидивов и прогресса онкологического процесса.
"],"dc.fullRISC":["ВВЕДЕНИЕ\nСогласно сведениям L. Wilkinson, T. Gathani, в 2020 году\nв мире зарегистрировано 2,26 миллиона случаев рака\nмолочной железы (РМЖ), и это заболевание является\nосновной причиной смертности от рака у женщин [1].\nВ соответствии с данными МНИОИ им. П.А. Герцена,\nв России РМЖ является наиболее распространенной онкологической патологией среди женского населения и составляет 22,5% от общей массы онкологических заболеваний. В 2023 году он был выявлен впервые у 82499 женщин,\nпри этом показатель его распространенности составил\n57,28 на 100 тысяч населения. В структуре смертности среди женщин данная патология также имеет наибольший\nудельный вес (15,9%), что подчеркивает ее социальную\nи медицинскую значимость [2].\nS. X. Yang и соавторы утверждают, что среди пациенток\nс метастатически пораженными лимфатическими узлами уровень смертности значительно выше [3]. Именно\nпоэтому верификация опухолевых клеток в регионарных зонах является обязательным элементом диагностики.\nСогласно данным исследования V. M. Sanvido с соавторами, у больных РМЖ, которым проводилась резекция\nсторожевых лимфатических узлов (СЛУ), частота локорегионарных рецидивов в течение 18 месяцев после\nлечения составила 1,7 %, а при полной лимфодиссекции\n7,3 %. При этом общий показатель 5-летней выживаемости составил 80,1 % [4]. Поэтому онкологи считают,\nчто лимфодиссекция является неотъемлемой частью\nхирургического вмешательства.\nВ связи с этим в хирургической маммологии эффективное выявление метастазов в регионарной лимфатической системе при развитии опухолей молочной железы — это ключевой элемент диагностики.\nЦель обзора — мониторинг опубликованных материалов о регионарном метастазировании при РМЖ, позволяющий совершенствовать диагностику, прогнозирование метастазирования и развития осложнений.\nМеханизм лимфооттока из молочной\nжелезы\nОпределение распространенности опухолевого процесса — ключевой фактор для выбора тактики при лечении РМЖ. По мнению J. Zhang-Yin et al., решающее\nзначение при этом имеет точная оценка состояния лимфатических узлов, которая позволяет прогнозировать\nрезультаты лечения на ранних стадиях и разрабатывать\nэффективные стратегии контроля над прогрессированием заболевания у пациенток с РМЖ [5]. Однако без\nточного представления об анатомии лимфатической\nсистемы молочных желез сделать это затруднительно.\nК настоящему времени установлено, что лимфоотток\nначинается с долек молочной железы, проходит через\nвнутригрудные узлы и через каналы попадает в субареолярное сплетение Саппея [6].\nПо мнению S. Cieśla et al., в дальнейшем из поверхностного и глубокого сплетений лимфа дополнительно отводится по трем основным путям [7].\nКак утверждает R. Ramakrishnan, подмышечный или\nбоковой путь является доминирующим и получает\nболее 75 % лимфы из молочной железы. Он дренирует\nвсе квадранты молочной железы, при этом наибольшая\nдоля оттока приходится на боковые квадранты, особенно на верхний наружный квадрант [8].\nСогласно данным K. Bland, парастернальный путь дренирует все квадранты молочной железы, при этом основная доля дренажа приходится на медиальные квадранты, особенно на нижний внутренний квадрант.\nВажной особенностью этого пути является наличие\nлимфатических коллатералей к контралатеральной молочной железе [9].\nРетромаммарный путь начинается из глубокой части молочной железы. В сравнении с другими путями\nпо нему осуществляется меньший объем лимфодренажа, а его лимфатические сосуды могут достигать влагалищ прямых мышц живота, подбрюшинного и подпеченочного сплетений, обеспечивая возможность\nотдаленного метастазирования [10].\nПо мнению S. A. Varghese, альтернативные пути лимфооттока могут формироваться в случае, если стандартные лимфатические пути становятся непроходимыми.\nТакая ситуация может возникнуть из-за остаточных\nметастазов или склеротических изменений в лимфатических узлах, возникших после удаления опухолевой\nткани [11].\nПути метастазирования в регионарной\nлимфатической системе молочных желез\nпри РМЖ\nМетастазирование — это сложный процесс, характеризующийся трансформацией здоровых клеток в злокачественные. Эти клетки обладают способностью\nк неконтролируемой пролиферации, устойчивостью\nк апоптозу, стимуляции ангиогенеза и формированию\nвторичных опухолевых очагов в отдаленных органах [12].\nВ публикации S. Nathanson, L. Nelson было отмечено,\nчто изначально раковые клетки, возникающие в протоках молочной железы, пролиферируют, прорастают\nчерез базальную мембрану, растут в первичном очаге\nи могут проникать в перитуморальный внеклеточный\nматрикс, чему способствуют подвижность клеток, секреция протеолитических ферментов, потеря молекул\nмежклеточной адгезии и приобретение молекул опухолевой адгезии раковой клетки к строме [13].\nСогласно данным H. Zhou et al., раковые клетки перемещаются и попадают в лимфатические сосуды, после\nчего они начинают выделять факторы роста, стимулирующие местный ангиогенез. Для повышения инвазивности опухолевые клетки подвергаются эпидермально-мезенхимальному переходу. Благодаря хемотаксису\nпроисходит последующая миграция злокачественных\nклеток по путям лимфооттока. Кроме того, поток интерстициальной жидкости не только механически\nспособствует движению клеток, но и стимулирует их\nк выработке аутокринных хемокинов, которые обеспечивают их дальнейшее перемещение. Экспрессия\nопределенных рецепторных белков и цитокинов играет\nключевую роль в способности опухолевых клеток к миграции и инвазии в лимфатические узлы. Эти молекулыпозволяют раковым клеткам уклоняться от иммунного\nответа, тем самым создавая благоприятные условия для\nих роста в лимфоузлах [14].\nПо мнению S. Jaha et al., опухолевые клетки с током\nлимфы поступают в субкапсулярный синуc, состоящий\nиз эндотелиальных клеток, которые окружают корковый слой лимфатического узла. Далее лимфа из субкапсулярного и коркового синусов поступает в мозговое\nвещество, где она попадает в выносящий лимфатический сосуд. Опухолевые клетки могут сохраняться\nв лимфатическом узле либо продолжать пассивно распространяться по лимфатическим сосудам, способствуя диссеминации процесса [15].\nМетоды определения путей\nметастазирования в регионарной\nлимфатической системе молочных желез\nпри РМЖ\nНакопление данных о механизме и путях лимфооттока\nповлияло на формирование новых стратегий диагностики [16] и ведения [17] больных РМЖ с регионарным\nметастазированием. Эти знания позволили разработать и внедрить более точные и эффективные методы\nвизуализации лимфатической системы, что критически\nважно для определения стадии заболевания и планирования лечения. Наиболее широкое распространение\nполучили контрастный и радиоизотопный методы исследования, которые позволили наиболее точно и в более короткие сроки диагностировать СЛУ, тем самым\nснизить летальность и увеличить продолжительность\nжизни пациентов.\nПодходы к исследованию лимфатических узлов молочной железы с течением времени эволюционировали,\nпредлагая все более широкий спектр методов. Одним\nиз самых первых способов определения СЛУ стал контрастный метод, предложенный K. Kett et al. Суть методики заключалась в инъекции синего красителя в зону\nареолы молочной железы. После распространения\nкрасителя был визуализирован СЛУ, располагающийся\nна уровне третьего ребра, его назвали узлом Зоргиуса.\nДалее контрастное вещество, проходя через несколько\nлимфатических узлов и заполняя множество лимфатических сосудов, поступало в собирательную систему\nвокруг подмышечной вены [18]. Метод визуализации\nрегионарных лимфатических узлов с применением\nсинего красителя относительно простой, однако имеет существенные недостатки. По данным K.P White et\nal., при применении данного способа не удается визуализировать до 40 % СЛУ [19]. Стоит упомянуть, что\nк нежелательным явлениям, связанным с применением\nсинего красителя, относятся риск развития аллергических реакций, вплоть до развития анафилактического\nшока, а также стойкая пигментация кожных покровов\nв месте введения препарата, обусловленная его задержкой в тканях [20].\nD. L. Morton et al. провели клиническое исследование\nконтрастирования с использованием изосульфанового\nсинего красителя. В результате выяснилось, что лимфодренаж осуществлялся в подмышечные лимфатические\nузлы I уровня в 62,8 % случаев, а II уровня — в 23,2 %.\nАвторы пришли к выводу, что применение красителей\nзначительно облегчает интраоперационную диагностику метастатически измененных регионарных лимфатических узлов и, следовательно, позволяет более точно\nспланировать объем хирургического вмешательства,\nчто коренным образом изменило подход к хирургическому лечению РМЖ [21].\nR. Simmons et al. было предложено использование метиленового синего в качестве более эффективной и безопасной альтернативы изосульфановому синему [22].\nМетиленовый синий стал широко использоваться в клинической практике благодаря низкому риску возникновения аллергических реакций и доступной цене [23].\nЗатем J. C. Alex, D. N. Krag предложили заменить рентгеноконтрастное вещество радиоактивным лимфотропным коллоидом, что позитивно сказалось на результатах их диагностики [24].\nG. D’Eredita et al. показали важность претуморального\nвведения контраста для обеспечения наиболее точного\nлимфатического картирования, при этом СЛУ были\nуспешно идентифицированы в 94,8 % [25].\nK. Shimazu et al. была представлена методика биопсии\nСЛУ с предварительным введением красящих и радиоизотопных веществ как претуморально, так и субареолярно. Несмотря на более высокую частоту ошибочных результатов, составляющую 13,7 %, количество\nвыявляемых СЛУ при периареолярной инъекции было\nзначительно выше и составило 90 %, в то время как при\nпретуморальной — 51 %. Это объяснялось богатством\nлимфатических сосудов вокруг ареолы [26].\nH. S. Cody et al. в своем исследовании, посвященном изучению эффективности различных комбинаций препаратов и методов их введения, установили, что снижение\nчастоты ложноотрицательных результатов достигается\nлишь при одновременном применении радиоизотопного препарата и контрастов, вводимых как претуморально, так и субареолярно [27]. Эти исследования\nподчеркнули важность детального изучения сочетаний\nпрепаратов и мест их введения для повышения точности определения метастатически измененных регионарных лимфатических узлов, что напрямую влияет\nна выбор адекватной тактики лечения при РМЖ.\nK. Anan et al. считали, что эффективность комбинированного применения контрастного и радиоизотопного\nвещества варьировалась в широком диапазоне, достигая точности диагностики в 96–100 %, в отличие от метода с одним идентификатором, где она колебалась\nв пределах 86–90 %. Однако такая комбинация была более затратной и влекла за собой дополнительное радиационное воздействие на организм пациента. По мнению авторов, латеральное расположение опухоли было\nнаиболее частой причиной ложноотрицательных результатов, что говорит о важности индивидуального\nподхода при выборе стратегии картирования [28].\nМетодики поиска сторожевых лимфоузлов\nв настоящее время\nВ настоящее время существует широкий спектр технологий, предназначенных для визуализации и оценки состояния лимфатической системы у пациентокс РМЖ. Современные диагностические подходы\nвключают как традиционные, широкодоступные методы, так и высокотехнологичные решения, позволяющие с высокой точностью определять локализацию\nСЛУ, оценивать их морфологические характеристики\nи функциональное состояние. Выбор метода диагностики определяется конкретной клинической задачей,\nпредполагаемым объемом поражения лимфатической\nсистемы, индивидуальными особенностями пациента,\nа также наличием необходимого оборудования в медицинском учреждении.\nВ последние годы особенно важную роль в клинической диагностике РМЖ стала играть радиоизотопная\nлимфосцинтиграфия, зарекомендовавшая себя как\nвысокочувствительный и информативный способ выявления СЛУ. В соответствии с результатами, представленными A. Aron, C. Zavaleta, предложенная методика\nпозволяет в реальном времени оценить морфофункциональные нарушения и динамику лимфатического\nпотока благодаря четким изображениям [29]. В своей\nработе A. Kamata et al. отмечают, что этот метод диагностики эффективен при определении функционального\nсостояния лимфатических узлов и наиболее точного\nвыявления «истинного СЛУ» при наличии нескольких\nлимфатических бассейнов молочной железы [30].\nСогласно обобщенным результатам ряда клинических\nисследований, применение этого способа позволяет выявить пораженные лимфоузлы приблизительно\nв 90 % случаев, однако при этом частота ложноотрицательных результатов может достигать от 9 до 19 %\n[31–33]. V. Cuccurullo et al. утверждают, что высокая\nчувствительность лимфосцинтиграфии является определяющим фактором для точной оценки состояния\nлимфатической системы. Это позволяет своевременно\nвыявлять пораженные лимфатические узлы и определять тактику лечения [34].\nСтоит упомянуть, что, несмотря на все положительные качества, использование радионуклидного метода\nдля выявления СЛУ ограничивается необходимостью\nиспользования специализированного оборудования,\nсоблюдения строгих норм радиационной безопасности, а также сопровождается лучевой нагрузкой для\nпациента и медицинского персонала [34]. Y. Chahid\net al. подчеркивают, что наличие избыточного веса\nу пациентов также является фактором, ограничивающим применение данного метода, так как оно приводит к снижению силы регистрируемого сигнала [35].\nКроме того, высокая стоимость как самого радиоизотопного препарата, так и диагностической аппаратуры ограничивает доступность метода в региональных\nмедицинских учреждениях.\nНа сегодняшний день при поиске СЛУ чаще всего используется радиофармпрепарат на основе\nтехнеция-99m. Размеры применяемых наночастиц могут варьировать от 220 до 500 нм [36]. Радиоколлоид\nиспускает гамма-излучение, обладающее высокой проникающей способностью, что позволяет использовать\nего в тканях различной глубины и плотности [37].\nПо мнению ряда исследователей, вероятность идентификации регионарных метастатически измененных\nлимфатических узлов у пациенток с РМЖ при применении современного метода картирования с использованием радиоизотопов составляет 91–100 % [38], тогда\nкак при применении старой методики с помощью флуоресцентных красителей — 88–93 % [39].\nВ последние годы активно развиваются гибридные технологии, такие как ОФЭКТ-КТ. По мнению O. Israel et\nal., этот метод значительно повышает точность диагностики за счет суммирования анатомических и функциональных данных, что позволяет улучшить визуализацию узлов даже в глубоких слоях тканей [40]. Стоит\nотметить, что, обладая более высокой чувствительностью, ОФЭКТ-КТ в комбинации с радиоизотопной\nлимфосцинтиграфией позволяет снизить количество\nложноотрицательных результатов [41]. Данные, представленные T. Luan et al., свидетельствуют, что сочетание ОФЭКТ-КТ с лимфосцинтиграфией позволило\nулучшить визуализацию на 16 % за счет повышения\nпространственного разрешения и возможности более\nточной локализации метастатически измененных регионарных лимфатических узлов [42].\nВ настоящее время ОФЭКТ-КТ доступно в таких диагностических центрах, как ФГБУ «Национальный\nмедицинский исследовательский центр онкологии\nим. Н. Н. Блохина», ГБУЗ «Московский клинический\nнаучно-практический центр им. А. С. Логинова ДЗМ»,\nФГБУ «Российский научный центр рентгенорадиологии» (Москва), ФГБУ «Национальный медицинский\nисследовательский центр онкологии им. профессора\nН. Н. Петрова», ФГБУ «Российский научный центр\nрадиологии и хирургических технологий имени академика А. М. Гранова», ГАУЗ «Республиканский клинический онкологический диспансер МЗ РТ» имени\nпрофессора М. З. Сигала», «Межрегиональный клинико-диагностический центр» (Казань), «Свердловский\nобластной онкологический диспансер» (Екатеринбург), Ростовский научно-исследовательский онкологический институт, «Приволжский федеральный медицинский исследовательский центр Минздрава России»\n(Нижний Новгород), Красноярский краевой клинический онкологический диспансер им. А. И. Крыжановского. Однако ОФЭКТ-КТ остается недоступной\nтехнологией в региональных больницах и диагностических центрах.\nВ современной клинической практике визуализация\nметастатически измененных лимфатических узлов\nможет осуществляться с помощью лимфангиографии\nв сочетании с компьютерной томографией (КТЛГ).\nВ ходе исследования пациентам вводят контрастное вещество, которое благодаря тонким и пористым стенкам\nлимфатических сосудов легко проникает в лимфатическую систему. Компьютерная томография позволяет\nвизуализировать динамику распространения контрастного вещества в лимфатической системе, что необходимо для оценки ее структуры и функционального состояния. Наиболее часто используемыми контрастными\nвеществами являются йодсодержащие препараты, вводимые преимущественно в ткань опухоли и окружающую ее подкожную клетчатку для обеспечения оптимального контрастирования целевых областей [43].Согласно данным исследований [44, 45], КТЛГ демонстрирует высокую диагностическую ценность при\nопределении СЛУ, обладая чувствительностью около\n75 % и специфичностью, превышающей 90 %. При этом\nточность определения лимфатических узлов составляет\nболее 90 % [46]. Эти характеристики делают данный метод важным компонентом в планировании хирургического лечения и оценке прогноза заболевания.\nJ. Benjamin et al. отмечают, что основным недостатком\nКТ-лимфангиографии является не только ее полуинвазивный характер, но и сложность точного определения оптимального времени проведения сканирования,\nчто существенно влияет на необходимость увеличения\nколичества снимков и, соответственно, на повышение\nсуммарной дозы радиационного облучения, получаемой пациентом во время процедуры [47].\nВ последнее десятилетие появилась новая методика выявления СЛУ с помощью суперпарамагнитных наночастиц оксида железа, где в качестве индикатора используются мелкие магнитные частицы размером до 60 нм\n[48]. По мнению исследователей, при субареолярном\nвведении наночастиц этот метод позволяет найти СЛУ\nс вероятностью более 90 % [49, 50]. Преимущество\nданного метода заключается в том, что хирург может\nсамостоятельно вводить индикатор в операционной.\nПодготовка к данной процедуре занимает значительно\nменьше времени, чем при применении метода с радиофармпрепаратом. Этот способ позволяет избежать\nлучевой нагрузки, что делает его более безопасным\nпо сравнению с радиоизотопным методом [51].\nПри данном способе визуализации СЛУ применяется\nспециализированный магнитометр, а для улучшения\nточности диагностики предварительно выполняется\nмаммография и/или магнитно-резонансная томография [52].\nСтоит отметить, что при применении магнитных частиц\nсила сигнала ниже, чем у гамма-детектора, к тому же он\nможет прерываться из-за наличия металлических предметов в операционной, а при последующем проведении\nмагнитно-резонансной томографии (МРТ) нередко\nвыявляются артефакты, мешающие правильной визуализации [53]. Также в месте введения препарата длительное время наблюдается изменение цвета кожных\nпокровов [54]. К сожалению, в России этот метод в настоящее время недоступен.\nВ качестве дополнительного метода при исследовании\nСЛУ может быть использована МРТ. S. Samiei et al.\nопубликовали результаты наблюдения, в которых указывается, что МРТ, используемая в качестве самостоятельного метода оценки метастатически измененных\nлимфатических узлов, демонстрирует довольно широкий диапазон чувствительности — от 37,5 до 62,5 %,\nспецифичность при этом составляет 82 %. Вероятно,\nтакая вариабельность чувствительности обусловлена\nразличиями в протоколах МРТ и характеристиках исследуемых популяций пациентов [55]. В исследовании\nS. T. Chen et al. было отмечено, что МРТ обладает умеренной диагностической ценностью при оценке состояния метастатически измененных лимфатических\nузлов. При этом чувствительность данной методики составляет 63,2 %, специфичность 68,5 %, точность 66,6 %,\nотрицательная прогностическая ценность 77,7 %, а положительная прогностическая ценность 51,7 % [56].\nНесмотря на относительную доступность МРТ, низкая\nчувствительность данной методики обуславливает ее\nнеудовлетворительную диагностическую ценность\nв качестве самостоятельного метода оценки поражения\nСЛУ [57]. Важно отметить, что МРТ часто не позволяет\nобнаружить микрометастазы, что требует применения\nдополнительных, более чувствительных методов для\nадекватной оценки состояния регионарных лимфатических узлов при раке молочной железы [58].\nСтремление к совершенствованию диагностических\nподходов в современной медицине закономерно привело к росту интереса к спектроскопическим методам,\nвыгодно отличающимся малой инвазивностью и возможностью получения данных с высоким пространственным разрешением в режиме реального времени.\nСреди различных спектроскопических методов рамановская спектроскопия (РС) выделяется своей способностью быстро предоставлять клинически значимую\nдиагностическую информацию, что делает ее особенно\nперспективной для поиска СЛУ и оценки распространенности онкологического процесса [59].\nСогласно данным K. Hanna et al., РС основана на анализе\nколебаний различной частоты, возникающих в разных\nтипах клеток и тканей. Злокачественная трансформация\nклеток сопровождается значительными биохимическими изменениями, отражающимися на их морфологических и функциональных свойствах. Данный метод\nпозволяет исследовать количественно измененные молекулярные сигнатуры, что позволяет использовать его\nдля ранней диагностики онкологических заболеваний\nи классификации опухолей. Одним из основных преимуществ РС является ее неинвазивный характер. Обладая относительной высокой чувствительностью, методика не требует сложной подготовки образцов или\nих предварительной маркировки. Несмотря на свои\nпреимущества, РС имеет и ограничения. Метод основан\nна регистрации очень слабых сигналов, что требует использования относительно дорогостоящего оборудования, например систем синхронного детектирования для\nподавления шумов. Кроме того, для получения одного\nспектра может потребоваться много времени, что может\nсоздавать трудности при использовании РС в клинической практике [60]. Согласно сведением S. Barkur et al.,\nчувствительность и специфичность представленной методики составляют более 80% [61].\nАльтернативным методом диагностики пораженных регионарных лимфоузлов при РМЖ в региональных лечебных учреждениях может служить\nультразвуковое исследование. Однако в своем исследовании I. P. C. Buzatto et al. говорят о том, что его чувствительность (59 %) и специфичность (79 %) недостаточны\nдля надежного исключения регионарного метастазирования [62]. К основным недостаткам метода также относят трудность визуализации глубоких лимфоузлов\nи невозможность оценки их функции.\nВ последнее десятилетие в ряде клинических исследований изучалась возможность выявления метастатически измененных лимфатических узлов при РМЖ\nна ранней стадии с помощью ультразвукового исследования с контрастным усилением. При применении\nэтого метода частота выявления СЛУ может достигать\nболее 90 % [63, 64].\nСогласно результатам наблюдений, представленных\nY. Fan et al., чувствительность данной методики варьирует от 69 до 86 %, в то время как показатели специфичности могут колебаться от 84 до 89 %. Следует отметить,\nчто УЗИ с контрастным усилением имеет ряд существенных ограничений. Одним из ключевых недостатков является высокая частота ложноотрицательных\nрезультатов, которая достигает 30 %, кроме того, доля\nложноположительных составляет 16 % [65].\nМаммография может рассматриваться как один из альтернативных методов выявления метастатического\nпоражения лимфатических узлов при раке молочной\nжелезы, однако ее диагностическая ценность существенно ограничена. Согласно результатам исследования M. A. Marino et al., данная методика демонстрирует\nумеренную чувствительность (66,9 %) и относительно\nвысокую специфичность (80,8 %) при диагностической\nточности 78,4 %, что указывает на ее недостаточную\nнадежность для исключения метастатического поражения СЛУ [66]. В публикации H. Tan et al. было показано, что чувствительность маммографии составляет\nвсего 42,7 %, но в то же время специфичность достигла\n90,8 %, при этом диагностическая точность оказалась\nкрайне низкой 24,1 %, что существенно ограничивает применение этого метода [67]. Более того, результаты наблюдения M. Zheng et al. показывают крайне\nнизкую долю истинно положительных результатов,\nкоторые составили всего 22,2 % при 11,7 % ложноположительных результатов. По их мнению, основные\nограничения представленного способа связаны с недостаточным пространственным разрешением, затрудняющим выявление небольших метастатических очагов\nи неполной визуализацией подмышечной области. Эти\nсущественные диагностические ограничения делают\nмаммографию недостаточно надежным методом для\nоценки состояния лимфатических узлов при первичной\nдиагностике рака молочной железы [68].\nЗАКЛЮЧЕНИЕ\nРезультаты анализа публикаций свидетельствуют о том,\nчто использование представленного в обзоре радиоизотопного метода в сочетании с лимфосцинтиграфией\nявляется наиболее эффективным. Применение данных\nметодик способствует снижению риска получения ложноположительных или ложноотрицательных результатов, что может существенно повлиять на дальнейшую\nтактику ведения пациента. Применяемые в таких случаях радиофармпрепараты на основе технеция-99m\nостаются наиболее востребованными благодаря их выраженной проникающей способности и высокой точности визуализации сигнальных лимфоузлов.\nНесмотря на то что радиоизотопный метод обладает\nвысокой чувствительностью, он требует специального\nоборудования, а также сопряжен с определенной лучевой нагрузкой на пациента. Важно также учитывать,\nчто доступность этого метода визуализации ограничена и, к сожалению, он доступен не во всех клиниках,\nчто может ограничивать возможности его применения\nв отдаленных медицинских учреждениях.\nКТ-лимфангиография является ценным способом\nвизуализации метастатически измененных лимфатических узлов благодаря высокой чувствительности\nи специфичности, однако данная методика широко\nне распространена, также использование ионизирующего излучения при проведении процедуры несет потенциальные риски, связанные с радиационной нагрузкой на пациента.\nИспользование суперпарамагнитных наночастиц также является одним из перспективных методов в диагностике СЛУ, в первую очередь благодаря отсутствию\nрадиационной нагрузки на пациента. Несмотря на потенциальные преимущества, существующие технические ограничения, связанные с применением данного\nметода, требуют его совершенствования для достижения более высокой точности.\nПрименение более простых методов, таких как УЗИ,\nМРТ или маммография, возможно в больницах, отдаленных от крупных диагностических центров, однако\nих диагностическая ценность недостаточна для надежного выявления метастатически измененных регионарных лимфатических узлов.\nРамановская спектроскопия является многообещающей методикой благодаря своей малой инвазивности\nи высокому диагностическому потенциалу. Однако ее\nширокое внедрение ограничивается необходимостью\nдорогостоящего оборудования, длительностью получения данных и техническими сложностями регистрации\nслабых сигналов, что требует дальнейшего совершенствования методики для клинического применения.\nПовысить точность диагностики может сочетание разных методик, но такую возможность имеют немногие\nмедицинские учреждения, и это требует дополнительных затрат. Интерпретация результатов ОФЭКТ-КТ\nтребует высокой квалификации специалиста, а также\nучета клинической картины и данных других исследований, поскольку артефакты, вызванные движениями пациента или особенностями оборудования, могут имитировать патологические изменения, ведущие\nк ложным результатам. Также при наличии у пациента микрометастазов применение гибридных методов\nне всегда гарантирует их обнаружение.\nСтоит упомянуть, что в последние годы онкологи\nдля диагностики регионарного метастазирования\nпри РМЖ все чаще ориентируются на индивидуальный подход к больному, стремясь повысить точность диагностики и минимизировать ее инвазивность. В перспективе развитие диагностики должно\nосновываться на сочетании современных технологий\nс возможностью их широкого внедрения в практику,\nособенно на уровне региональных медицинских организаций."],"dc.fullRISC.ru":["ВВЕДЕНИЕ\nСогласно сведениям L. Wilkinson, T. Gathani, в 2020 году\nв мире зарегистрировано 2,26 миллиона случаев рака\nмолочной железы (РМЖ), и это заболевание является\nосновной причиной смертности от рака у женщин [1].\nВ соответствии с данными МНИОИ им. П.А. Герцена,\nв России РМЖ является наиболее распространенной онкологической патологией среди женского населения и составляет 22,5% от общей массы онкологических заболеваний. В 2023 году он был выявлен впервые у 82499 женщин,\nпри этом показатель его распространенности составил\n57,28 на 100 тысяч населения. В структуре смертности среди женщин данная патология также имеет наибольший\nудельный вес (15,9%), что подчеркивает ее социальную\nи медицинскую значимость [2].\nS. X. Yang и соавторы утверждают, что среди пациенток\nс метастатически пораженными лимфатическими узлами уровень смертности значительно выше [3]. Именно\nпоэтому верификация опухолевых клеток в регионарных зонах является обязательным элементом диагностики.\nСогласно данным исследования V. M. Sanvido с соавторами, у больных РМЖ, которым проводилась резекция\nсторожевых лимфатических узлов (СЛУ), частота локорегионарных рецидивов в течение 18 месяцев после\nлечения составила 1,7 %, а при полной лимфодиссекции\n7,3 %. При этом общий показатель 5-летней выживаемости составил 80,1 % [4]. Поэтому онкологи считают,\nчто лимфодиссекция является неотъемлемой частью\nхирургического вмешательства.\nВ связи с этим в хирургической маммологии эффективное выявление метастазов в регионарной лимфатической системе при развитии опухолей молочной железы — это ключевой элемент диагностики.\nЦель обзора — мониторинг опубликованных материалов о регионарном метастазировании при РМЖ, позволяющий совершенствовать диагностику, прогнозирование метастазирования и развития осложнений.\nМеханизм лимфооттока из молочной\nжелезы\nОпределение распространенности опухолевого процесса — ключевой фактор для выбора тактики при лечении РМЖ. По мнению J. Zhang-Yin et al., решающее\nзначение при этом имеет точная оценка состояния лимфатических узлов, которая позволяет прогнозировать\nрезультаты лечения на ранних стадиях и разрабатывать\nэффективные стратегии контроля над прогрессированием заболевания у пациенток с РМЖ [5]. Однако без\nточного представления об анатомии лимфатической\nсистемы молочных желез сделать это затруднительно.\nК настоящему времени установлено, что лимфоотток\nначинается с долек молочной железы, проходит через\nвнутригрудные узлы и через каналы попадает в субареолярное сплетение Саппея [6].\nПо мнению S. Cieśla et al., в дальнейшем из поверхностного и глубокого сплетений лимфа дополнительно отводится по трем основным путям [7].\nКак утверждает R. Ramakrishnan, подмышечный или\nбоковой путь является доминирующим и получает\nболее 75 % лимфы из молочной железы. Он дренирует\nвсе квадранты молочной железы, при этом наибольшая\nдоля оттока приходится на боковые квадранты, особенно на верхний наружный квадрант [8].\nСогласно данным K. Bland, парастернальный путь дренирует все квадранты молочной железы, при этом основная доля дренажа приходится на медиальные квадранты, особенно на нижний внутренний квадрант.\nВажной особенностью этого пути является наличие\nлимфатических коллатералей к контралатеральной молочной железе [9].\nРетромаммарный путь начинается из глубокой части молочной железы. В сравнении с другими путями\nпо нему осуществляется меньший объем лимфодренажа, а его лимфатические сосуды могут достигать влагалищ прямых мышц живота, подбрюшинного и подпеченочного сплетений, обеспечивая возможность\nотдаленного метастазирования [10].\nПо мнению S. A. Varghese, альтернативные пути лимфооттока могут формироваться в случае, если стандартные лимфатические пути становятся непроходимыми.\nТакая ситуация может возникнуть из-за остаточных\nметастазов или склеротических изменений в лимфатических узлах, возникших после удаления опухолевой\nткани [11].\nПути метастазирования в регионарной\nлимфатической системе молочных желез\nпри РМЖ\nМетастазирование — это сложный процесс, характеризующийся трансформацией здоровых клеток в злокачественные. Эти клетки обладают способностью\nк неконтролируемой пролиферации, устойчивостью\nк апоптозу, стимуляции ангиогенеза и формированию\nвторичных опухолевых очагов в отдаленных органах [12].\nВ публикации S. Nathanson, L. Nelson было отмечено,\nчто изначально раковые клетки, возникающие в протоках молочной железы, пролиферируют, прорастают\nчерез базальную мембрану, растут в первичном очаге\nи могут проникать в перитуморальный внеклеточный\nматрикс, чему способствуют подвижность клеток, секреция протеолитических ферментов, потеря молекул\nмежклеточной адгезии и приобретение молекул опухолевой адгезии раковой клетки к строме [13].\nСогласно данным H. Zhou et al., раковые клетки перемещаются и попадают в лимфатические сосуды, после\nчего они начинают выделять факторы роста, стимулирующие местный ангиогенез. Для повышения инвазивности опухолевые клетки подвергаются эпидермально-мезенхимальному переходу. Благодаря хемотаксису\nпроисходит последующая миграция злокачественных\nклеток по путям лимфооттока. Кроме того, поток интерстициальной жидкости не только механически\nспособствует движению клеток, но и стимулирует их\nк выработке аутокринных хемокинов, которые обеспечивают их дальнейшее перемещение. Экспрессия\nопределенных рецепторных белков и цитокинов играет\nключевую роль в способности опухолевых клеток к миграции и инвазии в лимфатические узлы. Эти молекулыпозволяют раковым клеткам уклоняться от иммунного\nответа, тем самым создавая благоприятные условия для\nих роста в лимфоузлах [14].\nПо мнению S. Jaha et al., опухолевые клетки с током\nлимфы поступают в субкапсулярный синуc, состоящий\nиз эндотелиальных клеток, которые окружают корковый слой лимфатического узла. Далее лимфа из субкапсулярного и коркового синусов поступает в мозговое\nвещество, где она попадает в выносящий лимфатический сосуд. Опухолевые клетки могут сохраняться\nв лимфатическом узле либо продолжать пассивно распространяться по лимфатическим сосудам, способствуя диссеминации процесса [15].\nМетоды определения путей\nметастазирования в регионарной\nлимфатической системе молочных желез\nпри РМЖ\nНакопление данных о механизме и путях лимфооттока\nповлияло на формирование новых стратегий диагностики [16] и ведения [17] больных РМЖ с регионарным\nметастазированием. Эти знания позволили разработать и внедрить более точные и эффективные методы\nвизуализации лимфатической системы, что критически\nважно для определения стадии заболевания и планирования лечения. Наиболее широкое распространение\nполучили контрастный и радиоизотопный методы исследования, которые позволили наиболее точно и в более короткие сроки диагностировать СЛУ, тем самым\nснизить летальность и увеличить продолжительность\nжизни пациентов.\nПодходы к исследованию лимфатических узлов молочной железы с течением времени эволюционировали,\nпредлагая все более широкий спектр методов. Одним\nиз самых первых способов определения СЛУ стал контрастный метод, предложенный K. Kett et al. Суть методики заключалась в инъекции синего красителя в зону\nареолы молочной железы. После распространения\nкрасителя был визуализирован СЛУ, располагающийся\nна уровне третьего ребра, его назвали узлом Зоргиуса.\nДалее контрастное вещество, проходя через несколько\nлимфатических узлов и заполняя множество лимфатических сосудов, поступало в собирательную систему\nвокруг подмышечной вены [18]. Метод визуализации\nрегионарных лимфатических узлов с применением\nсинего красителя относительно простой, однако имеет существенные недостатки. По данным K.P White et\nal., при применении данного способа не удается визуализировать до 40 % СЛУ [19]. Стоит упомянуть, что\nк нежелательным явлениям, связанным с применением\nсинего красителя, относятся риск развития аллергических реакций, вплоть до развития анафилактического\nшока, а также стойкая пигментация кожных покровов\nв месте введения препарата, обусловленная его задержкой в тканях [20].\nD. L. Morton et al. провели клиническое исследование\nконтрастирования с использованием изосульфанового\nсинего красителя. В результате выяснилось, что лимфодренаж осуществлялся в подмышечные лимфатические\nузлы I уровня в 62,8 % случаев, а II уровня — в 23,2 %.\nАвторы пришли к выводу, что применение красителей\nзначительно облегчает интраоперационную диагностику метастатически измененных регионарных лимфатических узлов и, следовательно, позволяет более точно\nспланировать объем хирургического вмешательства,\nчто коренным образом изменило подход к хирургическому лечению РМЖ [21].\nR. Simmons et al. было предложено использование метиленового синего в качестве более эффективной и безопасной альтернативы изосульфановому синему [22].\nМетиленовый синий стал широко использоваться в клинической практике благодаря низкому риску возникновения аллергических реакций и доступной цене [23].\nЗатем J. C. Alex, D. N. Krag предложили заменить рентгеноконтрастное вещество радиоактивным лимфотропным коллоидом, что позитивно сказалось на результатах их диагностики [24].\nG. D’Eredita et al. показали важность претуморального\nвведения контраста для обеспечения наиболее точного\nлимфатического картирования, при этом СЛУ были\nуспешно идентифицированы в 94,8 % [25].\nK. Shimazu et al. была представлена методика биопсии\nСЛУ с предварительным введением красящих и радиоизотопных веществ как претуморально, так и субареолярно. Несмотря на более высокую частоту ошибочных результатов, составляющую 13,7 %, количество\nвыявляемых СЛУ при периареолярной инъекции было\nзначительно выше и составило 90 %, в то время как при\nпретуморальной — 51 %. Это объяснялось богатством\nлимфатических сосудов вокруг ареолы [26].\nH. S. Cody et al. в своем исследовании, посвященном изучению эффективности различных комбинаций препаратов и методов их введения, установили, что снижение\nчастоты ложноотрицательных результатов достигается\nлишь при одновременном применении радиоизотопного препарата и контрастов, вводимых как претуморально, так и субареолярно [27]. Эти исследования\nподчеркнули важность детального изучения сочетаний\nпрепаратов и мест их введения для повышения точности определения метастатически измененных регионарных лимфатических узлов, что напрямую влияет\nна выбор адекватной тактики лечения при РМЖ.\nK. Anan et al. считали, что эффективность комбинированного применения контрастного и радиоизотопного\nвещества варьировалась в широком диапазоне, достигая точности диагностики в 96–100 %, в отличие от метода с одним идентификатором, где она колебалась\nв пределах 86–90 %. Однако такая комбинация была более затратной и влекла за собой дополнительное радиационное воздействие на организм пациента. По мнению авторов, латеральное расположение опухоли было\nнаиболее частой причиной ложноотрицательных результатов, что говорит о важности индивидуального\nподхода при выборе стратегии картирования [28].\nМетодики поиска сторожевых лимфоузлов\nв настоящее время\nВ настоящее время существует широкий спектр технологий, предназначенных для визуализации и оценки состояния лимфатической системы у пациентокс РМЖ. Современные диагностические подходы\nвключают как традиционные, широкодоступные методы, так и высокотехнологичные решения, позволяющие с высокой точностью определять локализацию\nСЛУ, оценивать их морфологические характеристики\nи функциональное состояние. Выбор метода диагностики определяется конкретной клинической задачей,\nпредполагаемым объемом поражения лимфатической\nсистемы, индивидуальными особенностями пациента,\nа также наличием необходимого оборудования в медицинском учреждении.\nВ последние годы особенно важную роль в клинической диагностике РМЖ стала играть радиоизотопная\nлимфосцинтиграфия, зарекомендовавшая себя как\nвысокочувствительный и информативный способ выявления СЛУ. В соответствии с результатами, представленными A. Aron, C. Zavaleta, предложенная методика\nпозволяет в реальном времени оценить морфофункциональные нарушения и динамику лимфатического\nпотока благодаря четким изображениям [29]. В своей\nработе A. Kamata et al. отмечают, что этот метод диагностики эффективен при определении функционального\nсостояния лимфатических узлов и наиболее точного\nвыявления «истинного СЛУ» при наличии нескольких\nлимфатических бассейнов молочной железы [30].\nСогласно обобщенным результатам ряда клинических\nисследований, применение этого способа позволяет выявить пораженные лимфоузлы приблизительно\nв 90 % случаев, однако при этом частота ложноотрицательных результатов может достигать от 9 до 19 %\n[31–33]. V. Cuccurullo et al. утверждают, что высокая\nчувствительность лимфосцинтиграфии является определяющим фактором для точной оценки состояния\nлимфатической системы. Это позволяет своевременно\nвыявлять пораженные лимфатические узлы и определять тактику лечения [34].\nСтоит упомянуть, что, несмотря на все положительные качества, использование радионуклидного метода\nдля выявления СЛУ ограничивается необходимостью\nиспользования специализированного оборудования,\nсоблюдения строгих норм радиационной безопасности, а также сопровождается лучевой нагрузкой для\nпациента и медицинского персонала [34]. Y. Chahid\net al. подчеркивают, что наличие избыточного веса\nу пациентов также является фактором, ограничивающим применение данного метода, так как оно приводит к снижению силы регистрируемого сигнала [35].\nКроме того, высокая стоимость как самого радиоизотопного препарата, так и диагностической аппаратуры ограничивает доступность метода в региональных\nмедицинских учреждениях.\nНа сегодняшний день при поиске СЛУ чаще всего используется радиофармпрепарат на основе\nтехнеция-99m. Размеры применяемых наночастиц могут варьировать от 220 до 500 нм [36]. Радиоколлоид\nиспускает гамма-излучение, обладающее высокой проникающей способностью, что позволяет использовать\nего в тканях различной глубины и плотности [37].\nПо мнению ряда исследователей, вероятность идентификации регионарных метастатически измененных\nлимфатических узлов у пациенток с РМЖ при применении современного метода картирования с использованием радиоизотопов составляет 91–100 % [38], тогда\nкак при применении старой методики с помощью флуоресцентных красителей — 88–93 % [39].\nВ последние годы активно развиваются гибридные технологии, такие как ОФЭКТ-КТ. По мнению O. Israel et\nal., этот метод значительно повышает точность диагностики за счет суммирования анатомических и функциональных данных, что позволяет улучшить визуализацию узлов даже в глубоких слоях тканей [40]. Стоит\nотметить, что, обладая более высокой чувствительностью, ОФЭКТ-КТ в комбинации с радиоизотопной\nлимфосцинтиграфией позволяет снизить количество\nложноотрицательных результатов [41]. Данные, представленные T. Luan et al., свидетельствуют, что сочетание ОФЭКТ-КТ с лимфосцинтиграфией позволило\nулучшить визуализацию на 16 % за счет повышения\nпространственного разрешения и возможности более\nточной локализации метастатически измененных регионарных лимфатических узлов [42].\nВ настоящее время ОФЭКТ-КТ доступно в таких диагностических центрах, как ФГБУ «Национальный\nмедицинский исследовательский центр онкологии\nим. Н. Н. Блохина», ГБУЗ «Московский клинический\nнаучно-практический центр им. А. С. Логинова ДЗМ»,\nФГБУ «Российский научный центр рентгенорадиологии» (Москва), ФГБУ «Национальный медицинский\nисследовательский центр онкологии им. профессора\nН. Н. Петрова», ФГБУ «Российский научный центр\nрадиологии и хирургических технологий имени академика А. М. Гранова», ГАУЗ «Республиканский клинический онкологический диспансер МЗ РТ» имени\nпрофессора М. З. Сигала», «Межрегиональный клинико-диагностический центр» (Казань), «Свердловский\nобластной онкологический диспансер» (Екатеринбург), Ростовский научно-исследовательский онкологический институт, «Приволжский федеральный медицинский исследовательский центр Минздрава России»\n(Нижний Новгород), Красноярский краевой клинический онкологический диспансер им. А. И. Крыжановского. Однако ОФЭКТ-КТ остается недоступной\nтехнологией в региональных больницах и диагностических центрах.\nВ современной клинической практике визуализация\nметастатически измененных лимфатических узлов\nможет осуществляться с помощью лимфангиографии\nв сочетании с компьютерной томографией (КТЛГ).\nВ ходе исследования пациентам вводят контрастное вещество, которое благодаря тонким и пористым стенкам\nлимфатических сосудов легко проникает в лимфатическую систему. Компьютерная томография позволяет\nвизуализировать динамику распространения контрастного вещества в лимфатической системе, что необходимо для оценки ее структуры и функционального состояния. Наиболее часто используемыми контрастными\nвеществами являются йодсодержащие препараты, вводимые преимущественно в ткань опухоли и окружающую ее подкожную клетчатку для обеспечения оптимального контрастирования целевых областей [43].Согласно данным исследований [44, 45], КТЛГ демонстрирует высокую диагностическую ценность при\nопределении СЛУ, обладая чувствительностью около\n75 % и специфичностью, превышающей 90 %. При этом\nточность определения лимфатических узлов составляет\nболее 90 % [46]. Эти характеристики делают данный метод важным компонентом в планировании хирургического лечения и оценке прогноза заболевания.\nJ. Benjamin et al. отмечают, что основным недостатком\nКТ-лимфангиографии является не только ее полуинвазивный характер, но и сложность точного определения оптимального времени проведения сканирования,\nчто существенно влияет на необходимость увеличения\nколичества снимков и, соответственно, на повышение\nсуммарной дозы радиационного облучения, получаемой пациентом во время процедуры [47].\nВ последнее десятилетие появилась новая методика выявления СЛУ с помощью суперпарамагнитных наночастиц оксида железа, где в качестве индикатора используются мелкие магнитные частицы размером до 60 нм\n[48]. По мнению исследователей, при субареолярном\nвведении наночастиц этот метод позволяет найти СЛУ\nс вероятностью более 90 % [49, 50]. Преимущество\nданного метода заключается в том, что хирург может\nсамостоятельно вводить индикатор в операционной.\nПодготовка к данной процедуре занимает значительно\nменьше времени, чем при применении метода с радиофармпрепаратом. Этот способ позволяет избежать\nлучевой нагрузки, что делает его более безопасным\nпо сравнению с радиоизотопным методом [51].\nПри данном способе визуализации СЛУ применяется\nспециализированный магнитометр, а для улучшения\nточности диагностики предварительно выполняется\nмаммография и/или магнитно-резонансная томография [52].\nСтоит отметить, что при применении магнитных частиц\nсила сигнала ниже, чем у гамма-детектора, к тому же он\nможет прерываться из-за наличия металлических предметов в операционной, а при последующем проведении\nмагнитно-резонансной томографии (МРТ) нередко\nвыявляются артефакты, мешающие правильной визуализации [53]. Также в месте введения препарата длительное время наблюдается изменение цвета кожных\nпокровов [54]. К сожалению, в России этот метод в настоящее время недоступен.\nВ качестве дополнительного метода при исследовании\nСЛУ может быть использована МРТ. S. Samiei et al.\nопубликовали результаты наблюдения, в которых указывается, что МРТ, используемая в качестве самостоятельного метода оценки метастатически измененных\nлимфатических узлов, демонстрирует довольно широкий диапазон чувствительности — от 37,5 до 62,5 %,\nспецифичность при этом составляет 82 %. Вероятно,\nтакая вариабельность чувствительности обусловлена\nразличиями в протоколах МРТ и характеристиках исследуемых популяций пациентов [55]. В исследовании\nS. T. Chen et al. было отмечено, что МРТ обладает умеренной диагностической ценностью при оценке состояния метастатически измененных лимфатических\nузлов. При этом чувствительность данной методики составляет 63,2 %, специфичность 68,5 %, точность 66,6 %,\nотрицательная прогностическая ценность 77,7 %, а положительная прогностическая ценность 51,7 % [56].\nНесмотря на относительную доступность МРТ, низкая\nчувствительность данной методики обуславливает ее\nнеудовлетворительную диагностическую ценность\nв качестве самостоятельного метода оценки поражения\nСЛУ [57]. Важно отметить, что МРТ часто не позволяет\nобнаружить микрометастазы, что требует применения\nдополнительных, более чувствительных методов для\nадекватной оценки состояния регионарных лимфатических узлов при раке молочной железы [58].\nСтремление к совершенствованию диагностических\nподходов в современной медицине закономерно привело к росту интереса к спектроскопическим методам,\nвыгодно отличающимся малой инвазивностью и возможностью получения данных с высоким пространственным разрешением в режиме реального времени.\nСреди различных спектроскопических методов рамановская спектроскопия (РС) выделяется своей способностью быстро предоставлять клинически значимую\nдиагностическую информацию, что делает ее особенно\nперспективной для поиска СЛУ и оценки распространенности онкологического процесса [59].\nСогласно данным K. Hanna et al., РС основана на анализе\nколебаний различной частоты, возникающих в разных\nтипах клеток и тканей. Злокачественная трансформация\nклеток сопровождается значительными биохимическими изменениями, отражающимися на их морфологических и функциональных свойствах. Данный метод\nпозволяет исследовать количественно измененные молекулярные сигнатуры, что позволяет использовать его\nдля ранней диагностики онкологических заболеваний\nи классификации опухолей. Одним из основных преимуществ РС является ее неинвазивный характер. Обладая относительной высокой чувствительностью, методика не требует сложной подготовки образцов или\nих предварительной маркировки. Несмотря на свои\nпреимущества, РС имеет и ограничения. Метод основан\nна регистрации очень слабых сигналов, что требует использования относительно дорогостоящего оборудования, например систем синхронного детектирования для\nподавления шумов. Кроме того, для получения одного\nспектра может потребоваться много времени, что может\nсоздавать трудности при использовании РС в клинической практике [60]. Согласно сведением S. Barkur et al.,\nчувствительность и специфичность представленной методики составляют более 80% [61].\nАльтернативным методом диагностики пораженных регионарных лимфоузлов при РМЖ в региональных лечебных учреждениях может служить\nультразвуковое исследование. Однако в своем исследовании I. P. C. Buzatto et al. говорят о том, что его чувствительность (59 %) и специфичность (79 %) недостаточны\nдля надежного исключения регионарного метастазирования [62]. К основным недостаткам метода также относят трудность визуализации глубоких лимфоузлов\nи невозможность оценки их функции.\nВ последнее десятилетие в ряде клинических исследований изучалась возможность выявления метастатически измененных лимфатических узлов при РМЖ\nна ранней стадии с помощью ультразвукового исследования с контрастным усилением. При применении\nэтого метода частота выявления СЛУ может достигать\nболее 90 % [63, 64].\nСогласно результатам наблюдений, представленных\nY. Fan et al., чувствительность данной методики варьирует от 69 до 86 %, в то время как показатели специфичности могут колебаться от 84 до 89 %. Следует отметить,\nчто УЗИ с контрастным усилением имеет ряд существенных ограничений. Одним из ключевых недостатков является высокая частота ложноотрицательных\nрезультатов, которая достигает 30 %, кроме того, доля\nложноположительных составляет 16 % [65].\nМаммография может рассматриваться как один из альтернативных методов выявления метастатического\nпоражения лимфатических узлов при раке молочной\nжелезы, однако ее диагностическая ценность существенно ограничена. Согласно результатам исследования M. A. Marino et al., данная методика демонстрирует\nумеренную чувствительность (66,9 %) и относительно\nвысокую специфичность (80,8 %) при диагностической\nточности 78,4 %, что указывает на ее недостаточную\nнадежность для исключения метастатического поражения СЛУ [66]. В публикации H. Tan et al. было показано, что чувствительность маммографии составляет\nвсего 42,7 %, но в то же время специфичность достигла\n90,8 %, при этом диагностическая точность оказалась\nкрайне низкой 24,1 %, что существенно ограничивает применение этого метода [67]. Более того, результаты наблюдения M. Zheng et al. показывают крайне\nнизкую долю истинно положительных результатов,\nкоторые составили всего 22,2 % при 11,7 % ложноположительных результатов. По их мнению, основные\nограничения представленного способа связаны с недостаточным пространственным разрешением, затрудняющим выявление небольших метастатических очагов\nи неполной визуализацией подмышечной области. Эти\nсущественные диагностические ограничения делают\nмаммографию недостаточно надежным методом для\nоценки состояния лимфатических узлов при первичной\nдиагностике рака молочной железы [68].\nЗАКЛЮЧЕНИЕ\nРезультаты анализа публикаций свидетельствуют о том,\nчто использование представленного в обзоре радиоизотопного метода в сочетании с лимфосцинтиграфией\nявляется наиболее эффективным. Применение данных\nметодик способствует снижению риска получения ложноположительных или ложноотрицательных результатов, что может существенно повлиять на дальнейшую\nтактику ведения пациента. Применяемые в таких случаях радиофармпрепараты на основе технеция-99m\nостаются наиболее востребованными благодаря их выраженной проникающей способности и высокой точности визуализации сигнальных лимфоузлов.\nНесмотря на то что радиоизотопный метод обладает\nвысокой чувствительностью, он требует специального\nоборудования, а также сопряжен с определенной лучевой нагрузкой на пациента. Важно также учитывать,\nчто доступность этого метода визуализации ограничена и, к сожалению, он доступен не во всех клиниках,\nчто может ограничивать возможности его применения\nв отдаленных медицинских учреждениях.\nКТ-лимфангиография является ценным способом\nвизуализации метастатически измененных лимфатических узлов благодаря высокой чувствительности\nи специфичности, однако данная методика широко\nне распространена, также использование ионизирующего излучения при проведении процедуры несет потенциальные риски, связанные с радиационной нагрузкой на пациента.\nИспользование суперпарамагнитных наночастиц также является одним из перспективных методов в диагностике СЛУ, в первую очередь благодаря отсутствию\nрадиационной нагрузки на пациента. Несмотря на потенциальные преимущества, существующие технические ограничения, связанные с применением данного\nметода, требуют его совершенствования для достижения более высокой точности.\nПрименение более простых методов, таких как УЗИ,\nМРТ или маммография, возможно в больницах, отдаленных от крупных диагностических центров, однако\nих диагностическая ценность недостаточна для надежного выявления метастатически измененных регионарных лимфатических узлов.\nРамановская спектроскопия является многообещающей методикой благодаря своей малой инвазивности\nи высокому диагностическому потенциалу. Однако ее\nширокое внедрение ограничивается необходимостью\nдорогостоящего оборудования, длительностью получения данных и техническими сложностями регистрации\nслабых сигналов, что требует дальнейшего совершенствования методики для клинического применения.\nПовысить точность диагностики может сочетание разных методик, но такую возможность имеют немногие\nмедицинские учреждения, и это требует дополнительных затрат. Интерпретация результатов ОФЭКТ-КТ\nтребует высокой квалификации специалиста, а также\nучета клинической картины и данных других исследований, поскольку артефакты, вызванные движениями пациента или особенностями оборудования, могут имитировать патологические изменения, ведущие\nк ложным результатам. Также при наличии у пациента микрометастазов применение гибридных методов\nне всегда гарантирует их обнаружение.\nСтоит упомянуть, что в последние годы онкологи\nдля диагностики регионарного метастазирования\nпри РМЖ все чаще ориентируются на индивидуальный подход к больному, стремясь повысить точность диагностики и минимизировать ее инвазивность. В перспективе развитие диагностики должно\nосновываться на сочетании современных технологий\nс возможностью их широкого внедрения в практику,\nособенно на уровне региональных медицинских организаций."],"dc.subject.ru":["рак молочной железы","метастазы","лимфатические узлы","сигнальный лимфатический узел","лимфосцинтиграфия","флуоресцентная маркировка","лимфодиссекция","биопсия","радиоиммунная диагностика"],"dc.title.ru":["Метастазирование в регионарные лимфоузлы при раке молочной железы: современные представления о методах выявления"],"dc.issue.volume":["15"],"dc.issue.number":["2"],"dc.pages":["53-63"],"dc.rights":["CC BY 4.0"],"dc.section":["LITERATURE REVIEW","ОБЗОР ЛИТЕРАТУРЫ"],"dc.section.en":["LITERATURE REVIEW"],"dc.section.ru":["ОБЗОР ЛИТЕРАТУРЫ"],"dc.source":["Creative surgery and oncology","Креативная хирургия и онкология"],"dc.source.en":["Creative surgery and oncology"],"dc.source.ru":["Креативная хирургия и онкология"],"author":["И. Е. Кондрашкин","I. E. Kondrashkin","В. Э. Федоров","V. E. Fedorov","В. Ю. Барсуков","V. Y. Barsukov","Ю. И. Орлова","Y. I. Orlova","Л. Ф. Жандарова","L. F. Zhandarova"],"author_keyword":["И. Е. Кондрашкин","I. E. Kondrashkin","В. Э. Федоров","V. E. Fedorov","В. Ю. Барсуков","V. Y. Barsukov","Ю. И. Орлова","Y. I. Orlova","Л. Ф. Жандарова","L. F. Zhandarova"],"author_ac":["и. е. кондрашкин\n|||\nИ. Е. Кондрашкин","i. e. kondrashkin\n|||\nI. E. Kondrashkin","в. э. федоров\n|||\nВ. Э. Федоров","v. e. fedorov\n|||\nV. E. Fedorov","в. ю. барсуков\n|||\nВ. Ю. Барсуков","v. y. barsukov\n|||\nV. Y. Barsukov","ю. и. орлова\n|||\nЮ. И. Орлова","y. i. orlova\n|||\nY. I. Orlova","л. ф. жандарова\n|||\nЛ. Ф. Жандарова","l. f. zhandarova\n|||\nL. F. Zhandarova"],"author_filter":["и. е. кондрашкин\n|||\nИ. Е. Кондрашкин","i. e. kondrashkin\n|||\nI. E. Kondrashkin","в. э. федоров\n|||\nВ. Э. Федоров","v. e. fedorov\n|||\nV. E. Fedorov","в. ю. барсуков\n|||\nВ. Ю. Барсуков","v. y. barsukov\n|||\nV. Y. Barsukov","ю. и. орлова\n|||\nЮ. И. Орлова","y. i. orlova\n|||\nY. I. Orlova","л. ф. жандарова\n|||\nЛ. Ф. Жандарова","l. f. zhandarova\n|||\nL. F. Zhandarova"],"dc.author.name":["И. Е. Кондрашкин","I. E. Kondrashkin","В. Э. Федоров","V. E. Fedorov","В. Ю. Барсуков","V. Y. Barsukov","Ю. И. Орлова","Y. I. Orlova","Л. Ф. Жандарова","L. F. Zhandarova"],"dc.author.name.ru":["И. Е. Кондрашкин","В. Э. Федоров","В. Ю. Барсуков","Ю. И. Орлова","Л. Ф. Жандарова"],"dc.author.affiliation":["Саратовский государственный медицинский университет имени В.И. Разумовского","Saratov State Medical University named after V.I. Razumovsky","Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","Клиническая больница «РЖД-Медицина»","Clinical Hospital “RZD–Medicine”","Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”"],"dc.author.affiliation.ru":["Саратовский государственный медицинский университет имени В.И. Разумовского","Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","Клиническая больница «РЖД-Медицина»","Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»"],"dc.author.full":["И. Е. Кондрашкин | Саратовский государственный медицинский университет имени В.И. Разумовского","I. E. Kondrashkin | Saratov State Medical University named after V.I. Razumovsky","В. Э. Федоров | Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","V. E. Fedorov | Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","В. Ю. Барсуков | Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","V. Y. Barsukov | Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","Ю. И. Орлова | Клиническая больница «РЖД-Медицина»","Y. I. Orlova | Clinical Hospital “RZD–Medicine”","Л. Ф. Жандарова | Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","L. F. Zhandarova | Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”"],"dc.author.full.ru":["И. Е. Кондрашкин | Саратовский государственный медицинский университет имени В.И. Разумовского","В. Э. Федоров | Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","В. Ю. Барсуков | Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»","Ю. И. Орлова | Клиническая больница «РЖД-Медицина»","Л. Ф. Жандарова | Саратовский государственный медицинский университет имени В.И. Разумовского ; Клиническая больница «РЖД-Медицина»"],"dc.author.name.en":["I. E. Kondrashkin","V. E. Fedorov","V. Y. Barsukov","Y. I. Orlova","L. F. Zhandarova"],"dc.author.affiliation.en":["Saratov State Medical University named after V.I. Razumovsky","Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","Clinical Hospital “RZD–Medicine”","Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”"],"dc.author.full.en":["I. E. Kondrashkin | Saratov State Medical University named after V.I. Razumovsky","V. E. Fedorov | Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","V. Y. Barsukov | Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”","Y. I. Orlova | Clinical Hospital “RZD–Medicine”","L. F. Zhandarova | Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital “RZD–Medicine”"],"dc.authors":["{\"authors\": [{\"ru\": {\"orcid\": \"0000-0001-8827-8143\", \"affiliation\": \"\\u0421\\u0430\\u0440\\u0430\\u0442\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u0412.\\u0418. \\u0420\\u0430\\u0437\\u0443\\u043c\\u043e\\u0432\\u0441\\u043a\\u043e\\u0433\\u043e\", \"full_name\": \"\\u0418. \\u0415. \\u041a\\u043e\\u043d\\u0434\\u0440\\u0430\\u0448\\u043a\\u0438\\u043d\"}, \"en\": {\"orcid\": \"0000-0001-8827-8143\", \"affiliation\": \"Saratov State Medical University named after V.I. Razumovsky\", \"full_name\": \"I. E. Kondrashkin\"}}, {\"ru\": {\"orcid\": \"0000-0002-4586-6591\", \"affiliation\": \"\\u0421\\u0430\\u0440\\u0430\\u0442\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u0412.\\u0418. \\u0420\\u0430\\u0437\\u0443\\u043c\\u043e\\u0432\\u0441\\u043a\\u043e\\u0433\\u043e ; \\u041a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0430\\u044f \\u0431\\u043e\\u043b\\u044c\\u043d\\u0438\\u0446\\u0430 \\u00ab\\u0420\\u0416\\u0414-\\u041c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0430\\u00bb\", \"full_name\": \"\\u0412. \\u042d. \\u0424\\u0435\\u0434\\u043e\\u0440\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-4586-6591\", \"affiliation\": \"Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital \\u201cRZD\\u2013Medicine\\u201d\", \"full_name\": \"V. E. Fedorov\"}}, {\"ru\": {\"orcid\": \"0000-0002-6135-9223\", \"affiliation\": \"\\u0421\\u0430\\u0440\\u0430\\u0442\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u0412.\\u0418. \\u0420\\u0430\\u0437\\u0443\\u043c\\u043e\\u0432\\u0441\\u043a\\u043e\\u0433\\u043e ; \\u041a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0430\\u044f \\u0431\\u043e\\u043b\\u044c\\u043d\\u0438\\u0446\\u0430 \\u00ab\\u0420\\u0416\\u0414-\\u041c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0430\\u00bb\", \"full_name\": \"\\u0412. \\u042e. \\u0411\\u0430\\u0440\\u0441\\u0443\\u043a\\u043e\\u0432\"}, \"en\": {\"orcid\": \"0000-0002-6135-9223\", \"affiliation\": \"Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital \\u201cRZD\\u2013Medicine\\u201d\", \"full_name\": \"V. Y. Barsukov\"}}, {\"ru\": {\"orcid\": \"0009-0007-8210-5779\", \"affiliation\": \"\\u041a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0430\\u044f \\u0431\\u043e\\u043b\\u044c\\u043d\\u0438\\u0446\\u0430 \\u00ab\\u0420\\u0416\\u0414-\\u041c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0430\\u00bb\", \"full_name\": \"\\u042e. \\u0418. \\u041e\\u0440\\u043b\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0009-0007-8210-5779\", \"affiliation\": \"Clinical Hospital \\u201cRZD\\u2013Medicine\\u201d\", \"full_name\": \"Y. I. Orlova\"}}, {\"ru\": {\"orcid\": \"0000-0002-6286-4504\", \"affiliation\": \"\\u0421\\u0430\\u0440\\u0430\\u0442\\u043e\\u0432\\u0441\\u043a\\u0438\\u0439 \\u0433\\u043e\\u0441\\u0443\\u0434\\u0430\\u0440\\u0441\\u0442\\u0432\\u0435\\u043d\\u043d\\u044b\\u0439 \\u043c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0441\\u043a\\u0438\\u0439 \\u0443\\u043d\\u0438\\u0432\\u0435\\u0440\\u0441\\u0438\\u0442\\u0435\\u0442 \\u0438\\u043c\\u0435\\u043d\\u0438 \\u0412.\\u0418. \\u0420\\u0430\\u0437\\u0443\\u043c\\u043e\\u0432\\u0441\\u043a\\u043e\\u0433\\u043e ; \\u041a\\u043b\\u0438\\u043d\\u0438\\u0447\\u0435\\u0441\\u043a\\u0430\\u044f \\u0431\\u043e\\u043b\\u044c\\u043d\\u0438\\u0446\\u0430 \\u00ab\\u0420\\u0416\\u0414-\\u041c\\u0435\\u0434\\u0438\\u0446\\u0438\\u043d\\u0430\\u00bb\", \"full_name\": \"\\u041b. \\u0424. \\u0416\\u0430\\u043d\\u0434\\u0430\\u0440\\u043e\\u0432\\u0430\"}, \"en\": {\"orcid\": \"0000-0002-6286-4504\", \"affiliation\": \"Saratov State Medical University named after V.I. Razumovsky ; Clinical Hospital \\u201cRZD\\u2013Medicine\\u201d\", \"full_name\": \"L. F. Zhandarova\"}}]}"],"dateIssued":["2025-07-01"],"dateIssued_keyword":["2025-07-01","2025"],"dateIssued_ac":["2025-07-01\n|||\n2025-07-01","2025"],"dateIssued.year":[2025],"dateIssued.year_sort":"2025","dc.date.published":["2025-07-01"],"dc.origin":["https://surgonco.elpub.ru/jour/article/view/1087"],"dc.citation":["Wilkinson L., Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. DOI: 10.1259/bjr.20211033","Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2024.","Yang S.X., Hewitt S.M., Yu J. Locoregional tumor burden and risk of mortality in metastatic breast cancer. NPJ Precis Oncol. 2022;6(1):22. DOI: 10.1038/s41698-022-00265-9","Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence with or without axillary dissection in patients with invasive breast cancer and sentinel node metastasis. Sci Rep. 2021;11(1):19893. DOI: 10.1038/s41598-021-99359-w","Zhang-Yin J., Mauel E., Talpe S. Update on sentinel lymph node methods and pathology in breast cancer. Diagnostics (Basel). 2024;14(3):252. DOI: 10.3390/diagnostics14030252","Sappey P.C. Anatomie, physiologie, pathologie des vesseaux lymphatiques consideres chez l’homme et les vertebres. Paris A; 1885.","Cieśla S., Wichtowski M., Poźniak-Balicka R., Murawa D. The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (Part 2.). NOWOTWORY Journal of Oncology. 2021;71(1):62–9. DOI: 10.5603/NJO.2021.0011","Ramakrishnan R. Surgical anatomy. In.: Dev B., Joseph, L.D. (eds) Holistic approach to breast disease. Singapore: Springer; 2023. DOI: 10.1007/978-981-99-0035-0_1","Bland K.I. Topographic anatomical relationships of the breast, chest wall, axilla, and related sites of metastases. In: Klimberg V., Kovacs T., Rubio I. (eds) Oncoplastic breast surgery techniques for the general surgeon. Cham: Springer; 2020. DOI: 10.1007/978-3-030-40196-2_2","Kantharia S., Gadgil A., Cherian S., Basu P., Lucas E. Atlas of breast cancer early detection. IARC Cancerbase No. 17. Lyon: International Agency for Research on Cancer; 2023.","Varghese S. A. Secondary lymphedema: pathogenesis. J Skin Sex Transm Dis. 2021;3(1):7–15. DOI: 10.25259/JSSTD_3_2021","Welch D.R., Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011–27. DOI: 10.1158/0008-5472.CAN-19-0458","Nathanson S., Nelson L. Interstitial fluid pressure in breast cancer, benign breast conditions and breast parenchyma. Ann Surg Oncol. 1994;1(4):333–8. DOI: 10.1007/BF03187139","Zhou H., Lei P.J., Padera T.P. Progression of metastasis through lymphatic system. Cells. 2021;10(3):627. DOI: 10.3390/cells10030627","Jana S., Muscarella R.A. Jr, Jones D. The multifaceted effects of breast cancer on tumor-draining lymph nodes. Am J Pathol. 2021;191(8):1353–63. DOI: 10.1016/j.ajpath.2021.05.006","Зикиряходжаев А.Д., Грушина Т.И., Старкова М.В., Казарян Л.П., Волкова Ю.И., Багдасарова Д.В. и др. Методы диагностики сторожевого лимфатического узла у больных раком молочной железы. Сибирский онкологический журнал. 2020;19(5):88–96. DOI: 10.21294/1814-4861-2020-19-5-88-96","Riis M. Modern surgical treatment of breast cancer. Ann Med Surg (Lond). 2020;56:95–107. DOI: 10.1016/j.amsu.2020.06.016","Kett K., Varga G., Lukacs L. Direct lymphography of the breast. Lymphology. 1970;3(1):2–12. PMID: 4317224","White K.P., Sinagra D., Dip F., Rosenthal R.J., Mueller E.A., Lo Menzo E., et al. Indocyanine green fluorescence versus blue dye, technetium-99M, and the dual-marker combination of technetium-99M + blue dye for sentinel lymph node detection in early breast cancer-meta-analysis including consistency analysis. Surgery. 2024;175(4):963–73. DOI: 10.1016/j.surg.2023.10.021","Olivier F., Courtois A., Jossa V., Bruck G., Aouachria S., Coibion M., et al. Sentinel lymph node mapping with patent blue dye in patients with breast cancer: a retrospective single institution study. Gland Surg. 2021;10(9):2600–7. DOI: 10.21037/gs-21-415","Morton D.L., Wen D.R., Wong J.H., Economou J.S., Cagle L.A., Storm F.K., et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9. DOI: 10.1001/archsurg.1992.01420040034005","Simmons R., Thevarajah S., Brennan M.B., Christos P., Osborne M. Methylene blue dye as an alternative to isosulfan blue dye for sentinel lymph node localization. Ann Surg Oncol. 2003;10(3):242–7. DOI: 10.1245/aso.2003.04.021","Perenyei M., Barber Z.E., Gibson J., Hemington-Gorse S., Dobbs T.D. Anaphylactic reaction rates to blue dyes used for sentinel lymph node mapping: systematic review and meta-analysis. Ann Surg. 2021;273(6):1087–93. DOI: 10.1097/SLA.0000000000004061","Alex J.C., Krag D.N. Gamma-probe guided localization of lymph nodes. Surg Oncol. 1993;2(3):137–43. DOI: 10.1016/0960-7404(93)90001-f","D’Eredita G., Ferrarese F., Cecere V., Massa S.T., de Carne F., Fabiano G. Subareolar injection may be more accurate than other techniques for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol. 2003;10(8):942–7. DOI: 10.1245/aso.2003.01.022","Shimazu K., Tamaki Y., Taguchi T., Takamura Y., Noguchi S. Comparison between periareolar and peritumoral injection of radiotracer for sentinel lymph node biopsy in patients with breast cancer. Surgery. 2002;131(3):277–86. DOI: 10.1067/msy.2002.121378","Cody H.S., Fey J., Akhurst T., Fazzari M., Mazumdar M., Yeung H., et al. Complementarity of blue dye and isotope in sentinel node localization for breast cancer: univariate and multivariate analysis of 966 procedures. Ann Surg Oncol. 2001;8(1):13–9. DOI: 10.1007/s10434-001-0013-9","Anan K., Mitsuyama S., Kuga H., Saimura M., Tanabe Y., Suehara N., et al. Double mapping with subareolar blue dye and peritumoral green dye injections decreases the false-negative rate of dye-only sentinel node biopsy for early breast cancer: 2-site injection is more accurate than 1-site injection. Surgery. 2006;139(5):624–9. DOI: 10.1016/j.surg.2005.11.007","Aron A., Zavaleta C. Current and developing lymphatic imaging approaches for elucidation of functional mechanisms and disease progression. Mol Imaging Biol. 2024;26(1):1–16. DOI: 10.1007/s11307-023-01827-4","Kamata A., Miyamae T., Koizumi M., Kohei H., Sarukawa H., Nemoto H., et al. Using computed tomography lymphography for mapping of sentinel lymph nodes in patients with breast cancer. J Clin Imaging Sci. 2021;11:43. DOI: 10.25259/JCIS_33_2021","Vidal-Sicart S., Rioja M.E., Prieto A., Goñi E., Gómez I., Albala M.D., et al. Sentinel lymph node biopsy in breast cancer with 99mTc-Tilmanocept: a multicenter study on real-life use of a novel tracer. J Nucl Med. 2021;62(5):620–7. DOI: 10.2967/jnumed.120.252064","Aragon-Sanchez S., Oliver-Perez M.R., Madariaga A., Tabuenca M.J., Martinez M., Galindo A., et al. Accuracy and limitations of sentinel lymph node biopsy after neoadjuvant chemotherapy in breast cancer patients with positive nodes. Breast J. 2022;2022:1507881. DOI: 10.1155/2022/1507881","Lazar A.M., Mutuleanu M.D., Spiridon P.M., Bordea C.I., Suta T.L., Blidaru A., et al. Feasibility of sentinel lymph node biopsy in breast cancer patients with axillary conversion after neoadjuvant chemotherapy. A single-tertiary centre experience and review of the literature. Diagnostics (Basel). 2023;13(18):3000. DOI: 10.3390/diagnostics13183000","Cuccurullo V., Rapa M., Catalfamo B., Cascini G.L. Role of nuclear sentinel lymph node mapping compared to new alternative imaging methods. J Pers Med. 2023;13(8):1219. DOI: 10.3390/jpm13081219","Chahid Y., Qiu X., van de Garde E.M.W., Verberne H.J., Booij J. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients. EJNMMI Res. 2021;11(1):54. DOI: 10.1186/s13550-021-00793-8","Mushtaq S., Bibi A., Park J.E., Jeon J. Recent progress in technetium-99mlabeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials (Basel). 2021;11(11):3022. DOI: 10.3390/nano11113022","Blidaru A., Bordea C.I., Radu M., Noditi A., Iordache I. Sentinel lymph node biopsy techniques. In: Breast cancer essentials: perspectives for surgeons. Cham: Springer; 2021. P. 487–98. DOI: 10.1007/978-3-030-73147-2_43","Britton T.B., Solanki C.K., Pinder S.E., Mortimer P.S., Peters A.M., Purushotham A.D. Lymphatic drainage pathways of the breast and the upper limb. Nucl Med Commun. 2009;30(6):427–30. DOI: 10.1097/MNM.0b013e328315a6c6","Noguchi M., Yokoi M., Nakano Y. Axillary reverse mapping with indocyanine fluorescence imaging in patients with breast cancer. J Surg Oncol. 2010;101(3):217–21. DOI: 10.1002/jso.21473","Israel O., Pellet O., Biassoni L., De Palma D., Estrada-Lobato E., Gnanasegaran G. et al. Two decades of SPECT/CT — the coming of age of a technology: An updated review of literature evidence. Eur J Nucl Med Mol Imaging. 2019;46(10):1990–2012. DOI: 10.1007/s00259-019-04404-6","Николаева Е.А., Крылов А.С., Рыжков А.Д., Батыров Х.Х., Пароконная А.А., Билик М.Е. и др. Диагностическая ценность методов радионуклидной визуализации сторожевого лимфатического узла при раке молочной железы. Сибирский онкологический журнал. 2022;21(2):12–23. DOI: 10.21294/1814-4861-2022-21-2-12-23","Luan T., Li Y., Wu Q., Wang Y., Huo Z., Wang X., et al. Value of quantitative SPECT/CT lymphoscintigraphy in improving sentinel lymph node biopsy in breast cancer. Breast J. 2022;2022:6483318. DOI: 10.1155/2022/6483318","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Ou X., Zhu J., Qu Y., Wang C., Wang B., Xu X., et al. Imaging features of sentinel lymph node mapped by multidetector-row computed tomography lymphography in predicting axillary lymph node metastasis. BMC Med Imaging. 2021;21(1):193. DOI: 10.1186/s12880-021-00722-0","Wen S., Liang Y., Kong X., Liu B., Ma T., Zhou Y., et al. Application of preoperative computed tomographic lymphography for precise sentinel lymph node biopsy in breast cancer patients. BMC Surg. 2021;21(1):187. DOI: 10.1186/s12893-021-01190-7","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Benjamin J., O’Leary C., Hur S., Gurevich A., Klein W.M., Itkin M. Imaging and interventions for lymphatic and lymphatic-related disorders. Radiology. 2023;307(3):e220231. DOI: 10.1148/radiol.220231","Engels S., Michalik B., Meyer L.M., Nemitz L., Wawroschek F., Winter A. Magnetometer-guided sentinel lymph node dissection in prostate cancer: rate of lymph node involvement compared with radioisotope marking. Cancers (Basel). 2021;13(22):5821. DOI: 10.3390/cancers13225821","Scally N., Armstrong L., Mathers H. A single centre experience in the use of superparamagnetic iron oxide as an alternative tracer in sentinel node biopsy in early breast cancer. Ann Breast Surg 2022;6:2. DOI: 10.21037/abs-21-24","Pantiora E., Eriksson S., Wärnberg F., Karakatsanis A. Magnetically guided surgery after primary systemic therapy for breast cancer: implications for enhanced axillary mapping. Br J Surg. 2024;111(2):znae008. DOI: 10.1093/bjs/znae008","Lorek A., Steinhof-Radwanska K., Zarębski W., Lorek J., Stojcev Z., Zych J., et al. Comparative analysis of postoperative complications of sentinel node identification using the sentimag® method and the use of a radiotracer in patients with breast cancer. Curr Oncol. 2022;29(5):2887–94. DOI: 10.3390/curroncol29050235","Aribal E., Çelik L., Yilmaz C., Demirkiran C., Guner D.C. Effects of iron oxide particles on MRI and mammography in breast cancer patients after a sentinel lymph node biopsy with paramagnetic tracers. Clin Imaging. 2021;75:22–6. DOI: 10.1016/j.clinimag.2020.12.011","Abidi H., Bold R.J. Assessing the Sentimag system for guiding sentinel node biopsies in patients with breast cancer. Expert Rev Med Devices. 2023;21(1–2):1–9. DOI: 10.1080/17434440.2023.2284790","Makita M., Manabe E., Kurita T., Takei H., Nakamura S., Kuwahata A., et al. Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med Imaging. 2020;20(1):58. DOI: 10.1186/s12880-020-00459-2","Samiei S., Smidt M.L., Vanwetswinkel S., Engelen S.M.E., Schipper R.J., Lobbes M.B.I., et al. Diagnostic performance of standard breast MRI compared to dedicated axillary MRI for assessment of node-negative and node-positive breast cancer. Eur Radiol. 2020;30(8):4212–22. DOI: 10.1007/s00330-020-06760-6","Chen S.T., Lai H.W., Chang J.H., Liao C.Y., Wen T.C., Wu W.P., et al. Diagnostic accuracy of pre-operative breast magnetic resonance imaging (MRI) in predicting axillary lymph node metastasis: variations in intrinsic subtypes, and strategy to improve negative predictive value-an analysis of 2473 invasive breast cancer patients. Breast Cancer. 2023;30(6):976–85. DOI: 10.1007/s12282-023-01488-9","Song S.E., Cho K.R., Cho Y., Jung S.P., Park K.H., Woo O.H., et al. Value of breast MRI and nomogram after negative axillary ultrasound for predicting axillary lymph node metastasis in patients with clinically T1-2 N0 breast cancer. J Korean Med Sci. 2023;38(34):e251. DOI: 10.3346/jkms.2023.38.e251","Atallah D., Moubarak M., Arab W., El Kassis N., Chahine G., Salem C. MRI-based predictive factors of axillary lymph node status in breast cancer. Breast J. 2020;26(11):2177–82. DOI: 10.1111/tbj.14089","Kim J.A., Wales D.J., Yang G-Z. Optical spectroscopy for in vivo medical diagnosis—a review of the state of the art and future perspectives. Prog Biomed Eng. 2020;2:042001. DOI: 10.1088/2516-1091/abaaa3","Hanna K., Krzoska E. Shaaban A.M, Muirhead D., Abu-Eid R., Speirs V. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer. 2022;126(8):1125–39. DOI: 10.1038/s41416-021-01659-5","Barkur S., Boitor R.A., Mihai R., Gopal N.S.R., Leeney S., Koloydenko A.A., et al. Intraoperative spectroscopic evaluation of sentinel lymph nodes in breast cancer surgery. Breast Cancer Res Treat. 2024;207(1):223–32. DOI: 10.1007/s10549-024-07349-z","Buzatto I.P.C., Dos Reis F.J.C., de Andrade J.M., Rodrigues T.C.G.F., Borba J.M.C., Netto A.H. Axillary ultrasound and fine-needle aspiration cytology to predict clinically relevant nodal burden in breast cancer patients. World J Surg Oncol. 2021;19(1):292. DOI: 10.1186/s12957-021-02391-3","Zhu Y., Fan X., Yang D., Dong T., Jia Y., Nie F. Contrast-enhanced ultrasound for precise sentinel lymph node biopsy in women with early breast cancer: a preliminary study. Diagnostics (Basel). 2021;11(11):2104. DOI: 10.3390/diagnostics11112104","Cui Q., Dai L., Li J., Shen Y., Tao H., Zhou X., et al. Contrast-enhanced ultrasound-guided sentinel lymph node biopsy in early-stage breast cancer: a prospective cohort study. World J Surg Oncol. 2023;21(1):143. DOI: 10.1186/s12957-023-03024-7","Fan Y., Luo J., Lu Y., Huang C., Li M., Zhang Y., et al. The application of contrast-enhanced ultrasound for sentinel lymph node evaluation and mapping in breast cancer patients. Quant Imaging Med Surg. 2023;13(7):4392–404. DOI: 10.21037/qims-22-901","Marino M.A., Avendano D., Zapata P., Riedl C.C., Pinker K. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools. Oncologist. 2020;25(2):e231–42. DOI: 10.1634/theoncologist.2019-0427","Tan H., Wu Y., Bao F., Zhou J., Wan J., Tian J., et al. Mammographybased radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer. Br J Radiol. 2020;93(1111):20191019. DOI: 10.1259/bjr.20191019","Zheng M., Huang Y., Peng J., Xia Y., Cui Y., Han X., et al. Optimal selection of imaging examination for lymph node detection of breast cancer with different molecular subtypes. Front Oncol. 2022;12:762906. DOI:10.3389/fonc.2022.762906","Wilkinson L., Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. DOI: 10.1259/bjr.20211033","Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2024.","Yang S.X., Hewitt S.M., Yu J. Locoregional tumor burden and risk of mortality in metastatic breast cancer. NPJ Precis Oncol. 2022;6(1):22. DOI: 10.1038/s41698-022-00265-9","Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence with or without axillary dissection in patients with invasive breast cancer and sentinel node metastasis. Sci Rep. 2021;11(1):19893. DOI: 10.1038/s41598-021-99359-w","Zhang-Yin J., Mauel E., Talpe S. Update on sentinel lymph node methods and pathology in breast cancer. Diagnostics (Basel). 2024;14(3):252. DOI: 10.3390/diagnostics14030252","Sappey P.C. Anatomie, physiologie, pathologie des vesseaux lymphatiques consideres chez l’homme et les vertebres. Paris A; 1885.","Cieśla S., Wichtowski M., Poźniak-Balicka R., Murawa D. The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (Part 2.). NOWOTWORY Journal of Oncology. 2021;71(1):62–9. DOI: 10.5603/NJO.2021.0011","Ramakrishnan R. Surgical anatomy. In.: Dev B., Joseph, L.D. (eds) Holistic approach to breast disease. Singapore: Springer; 2023. DOI: 10.1007/978-981-99-0035-0_1","Bland K.I. Topographic anatomical relationships of the breast, chest wall, axilla, and related sites of metastases. In: Klimberg V., Kovacs T., Rubio I. (eds) Oncoplastic breast surgery techniques for the general surgeon. Cham: Springer; 2020. DOI: 10.1007/978-3-030-40196-2_2","Kantharia S., Gadgil A., Cherian S., Basu P., Lucas E. Atlas of breast cancer early detection. IARC Cancerbase No. 17. Lyon: International Agency for Research on Cancer; 2023.","Varghese S. A. Secondary lymphedema: pathogenesis. J Skin Sex Transm Dis. 2021;3(1):7–15. DOI: 10.25259/JSSTD_3_2021","Welch D.R., Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011–27. DOI: 10.1158/0008-5472.CAN-19-0458","Nathanson S., Nelson L. Interstitial fluid pressure in breast cancer, benign breast conditions and breast parenchyma. Ann Surg Oncol. 1994;1(4):333–8. DOI: 10.1007/BF03187139","Zhou H., Lei P.J., Padera T.P. Progression of metastasis through lymphatic system. Cells. 2021;10(3):627. DOI: 10.3390/cells10030627","Jana S., Muscarella R.A. Jr, Jones D. The multifaceted effects of breast cancer on tumor-draining lymph nodes. Am J Pathol. 2021;191(8):1353–63. DOI: 10.1016/j.ajpath.2021.05.006","Зикиряходжаев А.Д., Грушина Т.И., Старкова М.В., Казарян Л.П., Волкова Ю.И., Багдасарова Д.В. и др. Методы диагностики сторожевого лимфатического узла у больных раком молочной железы. Сибирский онкологический журнал. 2020;19(5):88–96. DOI: 10.21294/1814-4861-2020-19-5-88-96","Riis M. Modern surgical treatment of breast cancer. Ann Med Surg (Lond). 2020;56:95–107. DOI: 10.1016/j.amsu.2020.06.016","Kett K., Varga G., Lukacs L. Direct lymphography of the breast. Lymphology. 1970;3(1):2–12. PMID: 4317224","White K.P., Sinagra D., Dip F., Rosenthal R.J., Mueller E.A., Lo Menzo E., et al. Indocyanine green fluorescence versus blue dye, technetium-99M, and the dual-marker combination of technetium-99M + blue dye for sentinel lymph node detection in early breast cancer-meta-analysis including consistency analysis. Surgery. 2024;175(4):963–73. DOI: 10.1016/j.surg.2023.10.021","Olivier F., Courtois A., Jossa V., Bruck G., Aouachria S., Coibion M., et al. Sentinel lymph node mapping with patent blue dye in patients with breast cancer: a retrospective single institution study. Gland Surg. 2021;10(9):2600–7. DOI: 10.21037/gs-21-415","Morton D.L., Wen D.R., Wong J.H., Economou J.S., Cagle L.A., Storm F.K., et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9. DOI: 10.1001/archsurg.1992.01420040034005","Simmons R., Thevarajah S., Brennan M.B., Christos P., Osborne M. Methylene blue dye as an alternative to isosulfan blue dye for sentinel lymph node localization. Ann Surg Oncol. 2003;10(3):242–7. DOI: 10.1245/aso.2003.04.021","Perenyei M., Barber Z.E., Gibson J., Hemington-Gorse S., Dobbs T.D. Anaphylactic reaction rates to blue dyes used for sentinel lymph node mapping: systematic review and meta-analysis. Ann Surg. 2021;273(6):1087–93. DOI: 10.1097/SLA.0000000000004061","Alex J.C., Krag D.N. Gamma-probe guided localization of lymph nodes. Surg Oncol. 1993;2(3):137–43. DOI: 10.1016/0960-7404(93)90001-f","D’Eredita G., Ferrarese F., Cecere V., Massa S.T., de Carne F., Fabiano G. Subareolar injection may be more accurate than other techniques for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol. 2003;10(8):942–7. DOI: 10.1245/aso.2003.01.022","Shimazu K., Tamaki Y., Taguchi T., Takamura Y., Noguchi S. Comparison between periareolar and peritumoral injection of radiotracer for sentinel lymph node biopsy in patients with breast cancer. Surgery. 2002;131(3):277–86. DOI: 10.1067/msy.2002.121378","Cody H.S., Fey J., Akhurst T., Fazzari M., Mazumdar M., Yeung H., et al. Complementarity of blue dye and isotope in sentinel node localization for breast cancer: univariate and multivariate analysis of 966 procedures. Ann Surg Oncol. 2001;8(1):13–9. DOI: 10.1007/s10434-001-0013-9","Anan K., Mitsuyama S., Kuga H., Saimura M., Tanabe Y., Suehara N., et al. Double mapping with subareolar blue dye and peritumoral green dye injections decreases the false-negative rate of dye-only sentinel node biopsy for early breast cancer: 2-site injection is more accurate than 1-site injection. Surgery. 2006;139(5):624–9. DOI: 10.1016/j.surg.2005.11.007","Aron A., Zavaleta C. Current and developing lymphatic imaging approaches for elucidation of functional mechanisms and disease progression. Mol Imaging Biol. 2024;26(1):1–16. DOI: 10.1007/s11307-023-01827-4","Kamata A., Miyamae T., Koizumi M., Kohei H., Sarukawa H., Nemoto H., et al. Using computed tomography lymphography for mapping of sentinel lymph nodes in patients with breast cancer. J Clin Imaging Sci. 2021;11:43. DOI: 10.25259/JCIS_33_2021","Vidal-Sicart S., Rioja M.E., Prieto A., Goñi E., Gómez I., Albala M.D., et al. Sentinel lymph node biopsy in breast cancer with 99mTc-Tilmanocept: a multicenter study on real-life use of a novel tracer. J Nucl Med. 2021;62(5):620–7. DOI: 10.2967/jnumed.120.252064","Aragon-Sanchez S., Oliver-Perez M.R., Madariaga A., Tabuenca M.J., Martinez M., Galindo A., et al. Accuracy and limitations of sentinel lymph node biopsy after neoadjuvant chemotherapy in breast cancer patients with positive nodes. Breast J. 2022;2022:1507881. DOI: 10.1155/2022/1507881","Lazar A.M., Mutuleanu M.D., Spiridon P.M., Bordea C.I., Suta T.L., Blidaru A., et al. Feasibility of sentinel lymph node biopsy in breast cancer patients with axillary conversion after neoadjuvant chemotherapy. A single-tertiary centre experience and review of the literature. Diagnostics (Basel). 2023;13(18):3000. DOI: 10.3390/diagnostics13183000","Cuccurullo V., Rapa M., Catalfamo B., Cascini G.L. Role of nuclear sentinel lymph node mapping compared to new alternative imaging methods. J Pers Med. 2023;13(8):1219. DOI: 10.3390/jpm13081219","Chahid Y., Qiu X., van de Garde E.M.W., Verberne H.J., Booij J. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients. EJNMMI Res. 2021;11(1):54. DOI: 10.1186/s13550-021-00793-8","Mushtaq S., Bibi A., Park J.E., Jeon J. Recent progress in technetium-99mlabeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials (Basel). 2021;11(11):3022. DOI: 10.3390/nano11113022","Blidaru A., Bordea C.I., Radu M., Noditi A., Iordache I. Sentinel lymph node biopsy techniques. In: Breast cancer essentials: perspectives for surgeons. Cham: Springer; 2021. P. 487–98. DOI: 10.1007/978-3-030-73147-2_43","Britton T.B., Solanki C.K., Pinder S.E., Mortimer P.S., Peters A.M., Purushotham A.D. Lymphatic drainage pathways of the breast and the upper limb. Nucl Med Commun. 2009;30(6):427–30. DOI: 10.1097/MNM.0b013e328315a6c6","Noguchi M., Yokoi M., Nakano Y. Axillary reverse mapping with indocyanine fluorescence imaging in patients with breast cancer. J Surg Oncol. 2010;101(3):217–21. DOI: 10.1002/jso.21473","Israel O., Pellet O., Biassoni L., De Palma D., Estrada-Lobato E., Gnanasegaran G. et al. Two decades of SPECT/CT — the coming of age of a technology: An updated review of literature evidence. Eur J Nucl Med Mol Imaging. 2019;46(10):1990–2012. DOI: 10.1007/s00259-019-04404-6","Николаева Е.А., Крылов А.С., Рыжков А.Д., Батыров Х.Х., Пароконная А.А., Билик М.Е. и др. Диагностическая ценность методов радионуклидной визуализации сторожевого лимфатического узла при раке молочной железы. Сибирский онкологический журнал. 2022;21(2):12–23. DOI: 10.21294/1814-4861-2022-21-2-12-23","Luan T., Li Y., Wu Q., Wang Y., Huo Z., Wang X., et al. Value of quantitative SPECT/CT lymphoscintigraphy in improving sentinel lymph node biopsy in breast cancer. Breast J. 2022;2022:6483318. DOI: 10.1155/2022/6483318","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Ou X., Zhu J., Qu Y., Wang C., Wang B., Xu X., et al. Imaging features of sentinel lymph node mapped by multidetector-row computed tomography lymphography in predicting axillary lymph node metastasis. BMC Med Imaging. 2021;21(1):193. DOI: 10.1186/s12880-021-00722-0","Wen S., Liang Y., Kong X., Liu B., Ma T., Zhou Y., et al. Application of preoperative computed tomographic lymphography for precise sentinel lymph node biopsy in breast cancer patients. BMC Surg. 2021;21(1):187. DOI: 10.1186/s12893-021-01190-7","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Benjamin J., O’Leary C., Hur S., Gurevich A., Klein W.M., Itkin M. Imaging and interventions for lymphatic and lymphatic-related disorders. Radiology. 2023;307(3):e220231. DOI: 10.1148/radiol.220231","Engels S., Michalik B., Meyer L.M., Nemitz L., Wawroschek F., Winter A. Magnetometer-guided sentinel lymph node dissection in prostate cancer: rate of lymph node involvement compared with radioisotope marking. Cancers (Basel). 2021;13(22):5821. DOI: 10.3390/cancers13225821","Scally N., Armstrong L., Mathers H. A single centre experience in the use of superparamagnetic iron oxide as an alternative tracer in sentinel node biopsy in early breast cancer. Ann Breast Surg 2022;6:2. DOI: 10.21037/abs-21-24","Pantiora E., Eriksson S., Wärnberg F., Karakatsanis A. Magnetically guided surgery after primary systemic therapy for breast cancer: implications for enhanced axillary mapping. Br J Surg. 2024;111(2):znae008. DOI: 10.1093/bjs/znae008","Lorek A., Steinhof-Radwanska K., Zarębski W., Lorek J., Stojcev Z., Zych J., et al. Comparative analysis of postoperative complications of sentinel node identification using the sentimag® method and the use of a radiotracer in patients with breast cancer. Curr Oncol. 2022;29(5):2887–94. DOI: 10.3390/curroncol29050235","Aribal E., Çelik L., Yilmaz C., Demirkiran C., Guner D.C. Effects of iron oxide particles on MRI and mammography in breast cancer patients after a sentinel lymph node biopsy with paramagnetic tracers. Clin Imaging. 2021;75:22–6. DOI: 10.1016/j.clinimag.2020.12.011","Abidi H., Bold R.J. Assessing the Sentimag system for guiding sentinel node biopsies in patients with breast cancer. Expert Rev Med Devices. 2023;21(1–2):1–9. DOI: 10.1080/17434440.2023.2284790","Makita M., Manabe E., Kurita T., Takei H., Nakamura S., Kuwahata A., et al. Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med Imaging. 2020;20(1):58. DOI: 10.1186/s12880-020-00459-2","Samiei S., Smidt M.L., Vanwetswinkel S., Engelen S.M.E., Schipper R.J., Lobbes M.B.I., et al. Diagnostic performance of standard breast MRI compared to dedicated axillary MRI for assessment of node-negative and node-positive breast cancer. Eur Radiol. 2020;30(8):4212–22. DOI: 10.1007/s00330-020-06760-6","Chen S.T., Lai H.W., Chang J.H., Liao C.Y., Wen T.C., Wu W.P., et al. Diagnostic accuracy of pre-operative breast magnetic resonance imaging (MRI) in predicting axillary lymph node metastasis: variations in intrinsic subtypes, and strategy to improve negative predictive value-an analysis of 2473 invasive breast cancer patients. Breast Cancer. 2023;30(6):976–85. DOI: 10.1007/s12282-023-01488-9","Song S.E., Cho K.R., Cho Y., Jung S.P., Park K.H., Woo O.H., et al. Value of breast MRI and nomogram after negative axillary ultrasound for predicting axillary lymph node metastasis in patients with clinically T1-2 N0 breast cancer. J Korean Med Sci. 2023;38(34):e251. DOI: 10.3346/jkms.2023.38.e251","Atallah D., Moubarak M., Arab W., El Kassis N., Chahine G., Salem C. MRI-based predictive factors of axillary lymph node status in breast cancer. Breast J. 2020;26(11):2177–82. DOI: 10.1111/tbj.14089","Kim J.A., Wales D.J., Yang G-Z. Optical spectroscopy for in vivo medical diagnosis—a review of the state of the art and future perspectives. Prog Biomed Eng. 2020;2:042001. DOI: 10.1088/2516-1091/abaaa3","Hanna K., Krzoska E. Shaaban A.M, Muirhead D., Abu-Eid R., Speirs V. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer. 2022;126(8):1125–39. DOI: 10.1038/s41416-021-01659-5","Barkur S., Boitor R.A., Mihai R., Gopal N.S.R., Leeney S., Koloydenko A.A., et al. Intraoperative spectroscopic evaluation of sentinel lymph nodes in breast cancer surgery. Breast Cancer Res Treat. 2024;207(1):223–32. DOI: 10.1007/s10549-024-07349-z","Buzatto I.P.C., Dos Reis F.J.C., de Andrade J.M., Rodrigues T.C.G.F., Borba J.M.C., Netto A.H. Axillary ultrasound and fine-needle aspiration cytology to predict clinically relevant nodal burden in breast cancer patients. World J Surg Oncol. 2021;19(1):292. DOI: 10.1186/s12957-021-02391-3","Zhu Y., Fan X., Yang D., Dong T., Jia Y., Nie F. Contrast-enhanced ultrasound for precise sentinel lymph node biopsy in women with early breast cancer: a preliminary study. Diagnostics (Basel). 2021;11(11):2104. DOI: 10.3390/diagnostics11112104","Cui Q., Dai L., Li J., Shen Y., Tao H., Zhou X., et al. Contrast-enhanced ultrasound-guided sentinel lymph node biopsy in early-stage breast cancer: a prospective cohort study. World J Surg Oncol. 2023;21(1):143. DOI: 10.1186/s12957-023-03024-7","Fan Y., Luo J., Lu Y., Huang C., Li M., Zhang Y., et al. The application of contrast-enhanced ultrasound for sentinel lymph node evaluation and mapping in breast cancer patients. Quant Imaging Med Surg. 2023;13(7):4392–404. DOI: 10.21037/qims-22-901","Marino M.A., Avendano D., Zapata P., Riedl C.C., Pinker K. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools. Oncologist. 2020;25(2):e231–42. DOI: 10.1634/theoncologist.2019-0427","Tan H., Wu Y., Bao F., Zhou J., Wan J., Tian J., et al. Mammographybased radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer. Br J Radiol. 2020;93(1111):20191019. DOI: 10.1259/bjr.20191019","Zheng M., Huang Y., Peng J., Xia Y., Cui Y., Han X., et al. Optimal selection of imaging examination for lymph node detection of breast cancer with different molecular subtypes. Front Oncol. 2022;12:762906. DOI:10.3389/fonc.2022.762906"],"dc.citation.ru":["Wilkinson L., Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. DOI: 10.1259/bjr.20211033","Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2024.","Yang S.X., Hewitt S.M., Yu J. Locoregional tumor burden and risk of mortality in metastatic breast cancer. NPJ Precis Oncol. 2022;6(1):22. DOI: 10.1038/s41698-022-00265-9","Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence with or without axillary dissection in patients with invasive breast cancer and sentinel node metastasis. Sci Rep. 2021;11(1):19893. DOI: 10.1038/s41598-021-99359-w","Zhang-Yin J., Mauel E., Talpe S. Update on sentinel lymph node methods and pathology in breast cancer. Diagnostics (Basel). 2024;14(3):252. DOI: 10.3390/diagnostics14030252","Sappey P.C. Anatomie, physiologie, pathologie des vesseaux lymphatiques consideres chez l’homme et les vertebres. Paris A; 1885.","Cieśla S., Wichtowski M., Poźniak-Balicka R., Murawa D. The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (Part 2.). NOWOTWORY Journal of Oncology. 2021;71(1):62–9. DOI: 10.5603/NJO.2021.0011","Ramakrishnan R. Surgical anatomy. In.: Dev B., Joseph, L.D. (eds) Holistic approach to breast disease. Singapore: Springer; 2023. DOI: 10.1007/978-981-99-0035-0_1","Bland K.I. Topographic anatomical relationships of the breast, chest wall, axilla, and related sites of metastases. In: Klimberg V., Kovacs T., Rubio I. (eds) Oncoplastic breast surgery techniques for the general surgeon. Cham: Springer; 2020. DOI: 10.1007/978-3-030-40196-2_2","Kantharia S., Gadgil A., Cherian S., Basu P., Lucas E. Atlas of breast cancer early detection. IARC Cancerbase No. 17. Lyon: International Agency for Research on Cancer; 2023.","Varghese S. A. Secondary lymphedema: pathogenesis. J Skin Sex Transm Dis. 2021;3(1):7–15. DOI: 10.25259/JSSTD_3_2021","Welch D.R., Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011–27. DOI: 10.1158/0008-5472.CAN-19-0458","Nathanson S., Nelson L. Interstitial fluid pressure in breast cancer, benign breast conditions and breast parenchyma. Ann Surg Oncol. 1994;1(4):333–8. DOI: 10.1007/BF03187139","Zhou H., Lei P.J., Padera T.P. Progression of metastasis through lymphatic system. Cells. 2021;10(3):627. DOI: 10.3390/cells10030627","Jana S., Muscarella R.A. Jr, Jones D. The multifaceted effects of breast cancer on tumor-draining lymph nodes. Am J Pathol. 2021;191(8):1353–63. DOI: 10.1016/j.ajpath.2021.05.006","Зикиряходжаев А.Д., Грушина Т.И., Старкова М.В., Казарян Л.П., Волкова Ю.И., Багдасарова Д.В. и др. Методы диагностики сторожевого лимфатического узла у больных раком молочной железы. Сибирский онкологический журнал. 2020;19(5):88–96. DOI: 10.21294/1814-4861-2020-19-5-88-96","Riis M. Modern surgical treatment of breast cancer. Ann Med Surg (Lond). 2020;56:95–107. DOI: 10.1016/j.amsu.2020.06.016","Kett K., Varga G., Lukacs L. Direct lymphography of the breast. Lymphology. 1970;3(1):2–12. PMID: 4317224","White K.P., Sinagra D., Dip F., Rosenthal R.J., Mueller E.A., Lo Menzo E., et al. Indocyanine green fluorescence versus blue dye, technetium-99M, and the dual-marker combination of technetium-99M + blue dye for sentinel lymph node detection in early breast cancer-meta-analysis including consistency analysis. Surgery. 2024;175(4):963–73. DOI: 10.1016/j.surg.2023.10.021","Olivier F., Courtois A., Jossa V., Bruck G., Aouachria S., Coibion M., et al. Sentinel lymph node mapping with patent blue dye in patients with breast cancer: a retrospective single institution study. Gland Surg. 2021;10(9):2600–7. DOI: 10.21037/gs-21-415","Morton D.L., Wen D.R., Wong J.H., Economou J.S., Cagle L.A., Storm F.K., et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9. DOI: 10.1001/archsurg.1992.01420040034005","Simmons R., Thevarajah S., Brennan M.B., Christos P., Osborne M. Methylene blue dye as an alternative to isosulfan blue dye for sentinel lymph node localization. Ann Surg Oncol. 2003;10(3):242–7. DOI: 10.1245/aso.2003.04.021","Perenyei M., Barber Z.E., Gibson J., Hemington-Gorse S., Dobbs T.D. Anaphylactic reaction rates to blue dyes used for sentinel lymph node mapping: systematic review and meta-analysis. Ann Surg. 2021;273(6):1087–93. DOI: 10.1097/SLA.0000000000004061","Alex J.C., Krag D.N. Gamma-probe guided localization of lymph nodes. Surg Oncol. 1993;2(3):137–43. DOI: 10.1016/0960-7404(93)90001-f","D’Eredita G., Ferrarese F., Cecere V., Massa S.T., de Carne F., Fabiano G. Subareolar injection may be more accurate than other techniques for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol. 2003;10(8):942–7. DOI: 10.1245/aso.2003.01.022","Shimazu K., Tamaki Y., Taguchi T., Takamura Y., Noguchi S. Comparison between periareolar and peritumoral injection of radiotracer for sentinel lymph node biopsy in patients with breast cancer. Surgery. 2002;131(3):277–86. DOI: 10.1067/msy.2002.121378","Cody H.S., Fey J., Akhurst T., Fazzari M., Mazumdar M., Yeung H., et al. Complementarity of blue dye and isotope in sentinel node localization for breast cancer: univariate and multivariate analysis of 966 procedures. Ann Surg Oncol. 2001;8(1):13–9. DOI: 10.1007/s10434-001-0013-9","Anan K., Mitsuyama S., Kuga H., Saimura M., Tanabe Y., Suehara N., et al. Double mapping with subareolar blue dye and peritumoral green dye injections decreases the false-negative rate of dye-only sentinel node biopsy for early breast cancer: 2-site injection is more accurate than 1-site injection. Surgery. 2006;139(5):624–9. DOI: 10.1016/j.surg.2005.11.007","Aron A., Zavaleta C. Current and developing lymphatic imaging approaches for elucidation of functional mechanisms and disease progression. Mol Imaging Biol. 2024;26(1):1–16. DOI: 10.1007/s11307-023-01827-4","Kamata A., Miyamae T., Koizumi M., Kohei H., Sarukawa H., Nemoto H., et al. Using computed tomography lymphography for mapping of sentinel lymph nodes in patients with breast cancer. J Clin Imaging Sci. 2021;11:43. DOI: 10.25259/JCIS_33_2021","Vidal-Sicart S., Rioja M.E., Prieto A., Goñi E., Gómez I., Albala M.D., et al. Sentinel lymph node biopsy in breast cancer with 99mTc-Tilmanocept: a multicenter study on real-life use of a novel tracer. J Nucl Med. 2021;62(5):620–7. DOI: 10.2967/jnumed.120.252064","Aragon-Sanchez S., Oliver-Perez M.R., Madariaga A., Tabuenca M.J., Martinez M., Galindo A., et al. Accuracy and limitations of sentinel lymph node biopsy after neoadjuvant chemotherapy in breast cancer patients with positive nodes. Breast J. 2022;2022:1507881. DOI: 10.1155/2022/1507881","Lazar A.M., Mutuleanu M.D., Spiridon P.M., Bordea C.I., Suta T.L., Blidaru A., et al. Feasibility of sentinel lymph node biopsy in breast cancer patients with axillary conversion after neoadjuvant chemotherapy. A single-tertiary centre experience and review of the literature. Diagnostics (Basel). 2023;13(18):3000. DOI: 10.3390/diagnostics13183000","Cuccurullo V., Rapa M., Catalfamo B., Cascini G.L. Role of nuclear sentinel lymph node mapping compared to new alternative imaging methods. J Pers Med. 2023;13(8):1219. DOI: 10.3390/jpm13081219","Chahid Y., Qiu X., van de Garde E.M.W., Verberne H.J., Booij J. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients. EJNMMI Res. 2021;11(1):54. DOI: 10.1186/s13550-021-00793-8","Mushtaq S., Bibi A., Park J.E., Jeon J. Recent progress in technetium-99mlabeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials (Basel). 2021;11(11):3022. DOI: 10.3390/nano11113022","Blidaru A., Bordea C.I., Radu M., Noditi A., Iordache I. Sentinel lymph node biopsy techniques. In: Breast cancer essentials: perspectives for surgeons. Cham: Springer; 2021. P. 487–98. DOI: 10.1007/978-3-030-73147-2_43","Britton T.B., Solanki C.K., Pinder S.E., Mortimer P.S., Peters A.M., Purushotham A.D. Lymphatic drainage pathways of the breast and the upper limb. Nucl Med Commun. 2009;30(6):427–30. DOI: 10.1097/MNM.0b013e328315a6c6","Noguchi M., Yokoi M., Nakano Y. Axillary reverse mapping with indocyanine fluorescence imaging in patients with breast cancer. J Surg Oncol. 2010;101(3):217–21. DOI: 10.1002/jso.21473","Israel O., Pellet O., Biassoni L., De Palma D., Estrada-Lobato E., Gnanasegaran G. et al. Two decades of SPECT/CT — the coming of age of a technology: An updated review of literature evidence. Eur J Nucl Med Mol Imaging. 2019;46(10):1990–2012. DOI: 10.1007/s00259-019-04404-6","Николаева Е.А., Крылов А.С., Рыжков А.Д., Батыров Х.Х., Пароконная А.А., Билик М.Е. и др. Диагностическая ценность методов радионуклидной визуализации сторожевого лимфатического узла при раке молочной железы. Сибирский онкологический журнал. 2022;21(2):12–23. DOI: 10.21294/1814-4861-2022-21-2-12-23","Luan T., Li Y., Wu Q., Wang Y., Huo Z., Wang X., et al. Value of quantitative SPECT/CT lymphoscintigraphy in improving sentinel lymph node biopsy in breast cancer. Breast J. 2022;2022:6483318. DOI: 10.1155/2022/6483318","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Ou X., Zhu J., Qu Y., Wang C., Wang B., Xu X., et al. Imaging features of sentinel lymph node mapped by multidetector-row computed tomography lymphography in predicting axillary lymph node metastasis. BMC Med Imaging. 2021;21(1):193. DOI: 10.1186/s12880-021-00722-0","Wen S., Liang Y., Kong X., Liu B., Ma T., Zhou Y., et al. Application of preoperative computed tomographic lymphography for precise sentinel lymph node biopsy in breast cancer patients. BMC Surg. 2021;21(1):187. DOI: 10.1186/s12893-021-01190-7","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Benjamin J., O’Leary C., Hur S., Gurevich A., Klein W.M., Itkin M. Imaging and interventions for lymphatic and lymphatic-related disorders. Radiology. 2023;307(3):e220231. DOI: 10.1148/radiol.220231","Engels S., Michalik B., Meyer L.M., Nemitz L., Wawroschek F., Winter A. Magnetometer-guided sentinel lymph node dissection in prostate cancer: rate of lymph node involvement compared with radioisotope marking. Cancers (Basel). 2021;13(22):5821. DOI: 10.3390/cancers13225821","Scally N., Armstrong L., Mathers H. A single centre experience in the use of superparamagnetic iron oxide as an alternative tracer in sentinel node biopsy in early breast cancer. Ann Breast Surg 2022;6:2. DOI: 10.21037/abs-21-24","Pantiora E., Eriksson S., Wärnberg F., Karakatsanis A. Magnetically guided surgery after primary systemic therapy for breast cancer: implications for enhanced axillary mapping. Br J Surg. 2024;111(2):znae008. DOI: 10.1093/bjs/znae008","Lorek A., Steinhof-Radwanska K., Zarębski W., Lorek J., Stojcev Z., Zych J., et al. Comparative analysis of postoperative complications of sentinel node identification using the sentimag® method and the use of a radiotracer in patients with breast cancer. Curr Oncol. 2022;29(5):2887–94. DOI: 10.3390/curroncol29050235","Aribal E., Çelik L., Yilmaz C., Demirkiran C., Guner D.C. Effects of iron oxide particles on MRI and mammography in breast cancer patients after a sentinel lymph node biopsy with paramagnetic tracers. Clin Imaging. 2021;75:22–6. DOI: 10.1016/j.clinimag.2020.12.011","Abidi H., Bold R.J. Assessing the Sentimag system for guiding sentinel node biopsies in patients with breast cancer. Expert Rev Med Devices. 2023;21(1–2):1–9. DOI: 10.1080/17434440.2023.2284790","Makita M., Manabe E., Kurita T., Takei H., Nakamura S., Kuwahata A., et al. Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med Imaging. 2020;20(1):58. DOI: 10.1186/s12880-020-00459-2","Samiei S., Smidt M.L., Vanwetswinkel S., Engelen S.M.E., Schipper R.J., Lobbes M.B.I., et al. Diagnostic performance of standard breast MRI compared to dedicated axillary MRI for assessment of node-negative and node-positive breast cancer. Eur Radiol. 2020;30(8):4212–22. DOI: 10.1007/s00330-020-06760-6","Chen S.T., Lai H.W., Chang J.H., Liao C.Y., Wen T.C., Wu W.P., et al. Diagnostic accuracy of pre-operative breast magnetic resonance imaging (MRI) in predicting axillary lymph node metastasis: variations in intrinsic subtypes, and strategy to improve negative predictive value-an analysis of 2473 invasive breast cancer patients. Breast Cancer. 2023;30(6):976–85. DOI: 10.1007/s12282-023-01488-9","Song S.E., Cho K.R., Cho Y., Jung S.P., Park K.H., Woo O.H., et al. Value of breast MRI and nomogram after negative axillary ultrasound for predicting axillary lymph node metastasis in patients with clinically T1-2 N0 breast cancer. J Korean Med Sci. 2023;38(34):e251. DOI: 10.3346/jkms.2023.38.e251","Atallah D., Moubarak M., Arab W., El Kassis N., Chahine G., Salem C. MRI-based predictive factors of axillary lymph node status in breast cancer. Breast J. 2020;26(11):2177–82. DOI: 10.1111/tbj.14089","Kim J.A., Wales D.J., Yang G-Z. Optical spectroscopy for in vivo medical diagnosis—a review of the state of the art and future perspectives. Prog Biomed Eng. 2020;2:042001. DOI: 10.1088/2516-1091/abaaa3","Hanna K., Krzoska E. Shaaban A.M, Muirhead D., Abu-Eid R., Speirs V. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer. 2022;126(8):1125–39. DOI: 10.1038/s41416-021-01659-5","Barkur S., Boitor R.A., Mihai R., Gopal N.S.R., Leeney S., Koloydenko A.A., et al. Intraoperative spectroscopic evaluation of sentinel lymph nodes in breast cancer surgery. Breast Cancer Res Treat. 2024;207(1):223–32. DOI: 10.1007/s10549-024-07349-z","Buzatto I.P.C., Dos Reis F.J.C., de Andrade J.M., Rodrigues T.C.G.F., Borba J.M.C., Netto A.H. Axillary ultrasound and fine-needle aspiration cytology to predict clinically relevant nodal burden in breast cancer patients. World J Surg Oncol. 2021;19(1):292. DOI: 10.1186/s12957-021-02391-3","Zhu Y., Fan X., Yang D., Dong T., Jia Y., Nie F. Contrast-enhanced ultrasound for precise sentinel lymph node biopsy in women with early breast cancer: a preliminary study. Diagnostics (Basel). 2021;11(11):2104. DOI: 10.3390/diagnostics11112104","Cui Q., Dai L., Li J., Shen Y., Tao H., Zhou X., et al. Contrast-enhanced ultrasound-guided sentinel lymph node biopsy in early-stage breast cancer: a prospective cohort study. World J Surg Oncol. 2023;21(1):143. DOI: 10.1186/s12957-023-03024-7","Fan Y., Luo J., Lu Y., Huang C., Li M., Zhang Y., et al. The application of contrast-enhanced ultrasound for sentinel lymph node evaluation and mapping in breast cancer patients. Quant Imaging Med Surg. 2023;13(7):4392–404. DOI: 10.21037/qims-22-901","Marino M.A., Avendano D., Zapata P., Riedl C.C., Pinker K. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools. Oncologist. 2020;25(2):e231–42. DOI: 10.1634/theoncologist.2019-0427","Tan H., Wu Y., Bao F., Zhou J., Wan J., Tian J., et al. Mammographybased radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer. Br J Radiol. 2020;93(1111):20191019. DOI: 10.1259/bjr.20191019","Zheng M., Huang Y., Peng J., Xia Y., Cui Y., Han X., et al. Optimal selection of imaging examination for lymph node detection of breast cancer with different molecular subtypes. Front Oncol. 2022;12:762906. DOI:10.3389/fonc.2022.762906"],"dc.citation.en":["Wilkinson L., Gathani T. Understanding breast cancer as a global health concern. Br J Radiol. 2022;95(1130):20211033. DOI: 10.1259/bjr.20211033","Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена — филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2024.","Yang S.X., Hewitt S.M., Yu J. Locoregional tumor burden and risk of mortality in metastatic breast cancer. NPJ Precis Oncol. 2022;6(1):22. DOI: 10.1038/s41698-022-00265-9","Sanvido V.M., Elias S., Facina G., Bromberg S.E., Nazário A.C.P. Survival and recurrence with or without axillary dissection in patients with invasive breast cancer and sentinel node metastasis. Sci Rep. 2021;11(1):19893. DOI: 10.1038/s41598-021-99359-w","Zhang-Yin J., Mauel E., Talpe S. Update on sentinel lymph node methods and pathology in breast cancer. Diagnostics (Basel). 2024;14(3):252. DOI: 10.3390/diagnostics14030252","Sappey P.C. Anatomie, physiologie, pathologie des vesseaux lymphatiques consideres chez l’homme et les vertebres. Paris A; 1885.","Cieśla S., Wichtowski M., Poźniak-Balicka R., Murawa D. The surgical anatomy of the mammary gland. Vascularisation, innervation, lymphatic drainage, the structure of the axillary fossa (Part 2.). NOWOTWORY Journal of Oncology. 2021;71(1):62–9. DOI: 10.5603/NJO.2021.0011","Ramakrishnan R. Surgical anatomy. In.: Dev B., Joseph, L.D. (eds) Holistic approach to breast disease. Singapore: Springer; 2023. DOI: 10.1007/978-981-99-0035-0_1","Bland K.I. Topographic anatomical relationships of the breast, chest wall, axilla, and related sites of metastases. In: Klimberg V., Kovacs T., Rubio I. (eds) Oncoplastic breast surgery techniques for the general surgeon. Cham: Springer; 2020. DOI: 10.1007/978-3-030-40196-2_2","Kantharia S., Gadgil A., Cherian S., Basu P., Lucas E. Atlas of breast cancer early detection. IARC Cancerbase No. 17. Lyon: International Agency for Research on Cancer; 2023.","Varghese S. A. Secondary lymphedema: pathogenesis. J Skin Sex Transm Dis. 2021;3(1):7–15. DOI: 10.25259/JSSTD_3_2021","Welch D.R., Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011–27. DOI: 10.1158/0008-5472.CAN-19-0458","Nathanson S., Nelson L. Interstitial fluid pressure in breast cancer, benign breast conditions and breast parenchyma. Ann Surg Oncol. 1994;1(4):333–8. DOI: 10.1007/BF03187139","Zhou H., Lei P.J., Padera T.P. Progression of metastasis through lymphatic system. Cells. 2021;10(3):627. DOI: 10.3390/cells10030627","Jana S., Muscarella R.A. Jr, Jones D. The multifaceted effects of breast cancer on tumor-draining lymph nodes. Am J Pathol. 2021;191(8):1353–63. DOI: 10.1016/j.ajpath.2021.05.006","Зикиряходжаев А.Д., Грушина Т.И., Старкова М.В., Казарян Л.П., Волкова Ю.И., Багдасарова Д.В. и др. Методы диагностики сторожевого лимфатического узла у больных раком молочной железы. Сибирский онкологический журнал. 2020;19(5):88–96. DOI: 10.21294/1814-4861-2020-19-5-88-96","Riis M. Modern surgical treatment of breast cancer. Ann Med Surg (Lond). 2020;56:95–107. DOI: 10.1016/j.amsu.2020.06.016","Kett K., Varga G., Lukacs L. Direct lymphography of the breast. Lymphology. 1970;3(1):2–12. PMID: 4317224","White K.P., Sinagra D., Dip F., Rosenthal R.J., Mueller E.A., Lo Menzo E., et al. Indocyanine green fluorescence versus blue dye, technetium-99M, and the dual-marker combination of technetium-99M + blue dye for sentinel lymph node detection in early breast cancer-meta-analysis including consistency analysis. Surgery. 2024;175(4):963–73. DOI: 10.1016/j.surg.2023.10.021","Olivier F., Courtois A., Jossa V., Bruck G., Aouachria S., Coibion M., et al. Sentinel lymph node mapping with patent blue dye in patients with breast cancer: a retrospective single institution study. Gland Surg. 2021;10(9):2600–7. DOI: 10.21037/gs-21-415","Morton D.L., Wen D.R., Wong J.H., Economou J.S., Cagle L.A., Storm F.K., et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9. DOI: 10.1001/archsurg.1992.01420040034005","Simmons R., Thevarajah S., Brennan M.B., Christos P., Osborne M. Methylene blue dye as an alternative to isosulfan blue dye for sentinel lymph node localization. Ann Surg Oncol. 2003;10(3):242–7. DOI: 10.1245/aso.2003.04.021","Perenyei M., Barber Z.E., Gibson J., Hemington-Gorse S., Dobbs T.D. Anaphylactic reaction rates to blue dyes used for sentinel lymph node mapping: systematic review and meta-analysis. Ann Surg. 2021;273(6):1087–93. DOI: 10.1097/SLA.0000000000004061","Alex J.C., Krag D.N. Gamma-probe guided localization of lymph nodes. Surg Oncol. 1993;2(3):137–43. DOI: 10.1016/0960-7404(93)90001-f","D’Eredita G., Ferrarese F., Cecere V., Massa S.T., de Carne F., Fabiano G. Subareolar injection may be more accurate than other techniques for sentinel lymph node biopsy in breast cancer. Ann Surg Oncol. 2003;10(8):942–7. DOI: 10.1245/aso.2003.01.022","Shimazu K., Tamaki Y., Taguchi T., Takamura Y., Noguchi S. Comparison between periareolar and peritumoral injection of radiotracer for sentinel lymph node biopsy in patients with breast cancer. Surgery. 2002;131(3):277–86. DOI: 10.1067/msy.2002.121378","Cody H.S., Fey J., Akhurst T., Fazzari M., Mazumdar M., Yeung H., et al. Complementarity of blue dye and isotope in sentinel node localization for breast cancer: univariate and multivariate analysis of 966 procedures. Ann Surg Oncol. 2001;8(1):13–9. DOI: 10.1007/s10434-001-0013-9","Anan K., Mitsuyama S., Kuga H., Saimura M., Tanabe Y., Suehara N., et al. Double mapping with subareolar blue dye and peritumoral green dye injections decreases the false-negative rate of dye-only sentinel node biopsy for early breast cancer: 2-site injection is more accurate than 1-site injection. Surgery. 2006;139(5):624–9. DOI: 10.1016/j.surg.2005.11.007","Aron A., Zavaleta C. Current and developing lymphatic imaging approaches for elucidation of functional mechanisms and disease progression. Mol Imaging Biol. 2024;26(1):1–16. DOI: 10.1007/s11307-023-01827-4","Kamata A., Miyamae T., Koizumi M., Kohei H., Sarukawa H., Nemoto H., et al. Using computed tomography lymphography for mapping of sentinel lymph nodes in patients with breast cancer. J Clin Imaging Sci. 2021;11:43. DOI: 10.25259/JCIS_33_2021","Vidal-Sicart S., Rioja M.E., Prieto A., Goñi E., Gómez I., Albala M.D., et al. Sentinel lymph node biopsy in breast cancer with 99mTc-Tilmanocept: a multicenter study on real-life use of a novel tracer. J Nucl Med. 2021;62(5):620–7. DOI: 10.2967/jnumed.120.252064","Aragon-Sanchez S., Oliver-Perez M.R., Madariaga A., Tabuenca M.J., Martinez M., Galindo A., et al. Accuracy and limitations of sentinel lymph node biopsy after neoadjuvant chemotherapy in breast cancer patients with positive nodes. Breast J. 2022;2022:1507881. DOI: 10.1155/2022/1507881","Lazar A.M., Mutuleanu M.D., Spiridon P.M., Bordea C.I., Suta T.L., Blidaru A., et al. Feasibility of sentinel lymph node biopsy in breast cancer patients with axillary conversion after neoadjuvant chemotherapy. A single-tertiary centre experience and review of the literature. Diagnostics (Basel). 2023;13(18):3000. DOI: 10.3390/diagnostics13183000","Cuccurullo V., Rapa M., Catalfamo B., Cascini G.L. Role of nuclear sentinel lymph node mapping compared to new alternative imaging methods. J Pers Med. 2023;13(8):1219. DOI: 10.3390/jpm13081219","Chahid Y., Qiu X., van de Garde E.M.W., Verberne H.J., Booij J. Risk factors for nonvisualization of the sentinel lymph node on lymphoscintigraphy in breast cancer patients. EJNMMI Res. 2021;11(1):54. DOI: 10.1186/s13550-021-00793-8","Mushtaq S., Bibi A., Park J.E., Jeon J. Recent progress in technetium-99mlabeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials (Basel). 2021;11(11):3022. DOI: 10.3390/nano11113022","Blidaru A., Bordea C.I., Radu M., Noditi A., Iordache I. Sentinel lymph node biopsy techniques. In: Breast cancer essentials: perspectives for surgeons. Cham: Springer; 2021. P. 487–98. DOI: 10.1007/978-3-030-73147-2_43","Britton T.B., Solanki C.K., Pinder S.E., Mortimer P.S., Peters A.M., Purushotham A.D. Lymphatic drainage pathways of the breast and the upper limb. Nucl Med Commun. 2009;30(6):427–30. DOI: 10.1097/MNM.0b013e328315a6c6","Noguchi M., Yokoi M., Nakano Y. Axillary reverse mapping with indocyanine fluorescence imaging in patients with breast cancer. J Surg Oncol. 2010;101(3):217–21. DOI: 10.1002/jso.21473","Israel O., Pellet O., Biassoni L., De Palma D., Estrada-Lobato E., Gnanasegaran G. et al. Two decades of SPECT/CT — the coming of age of a technology: An updated review of literature evidence. Eur J Nucl Med Mol Imaging. 2019;46(10):1990–2012. DOI: 10.1007/s00259-019-04404-6","Николаева Е.А., Крылов А.С., Рыжков А.Д., Батыров Х.Х., Пароконная А.А., Билик М.Е. и др. Диагностическая ценность методов радионуклидной визуализации сторожевого лимфатического узла при раке молочной железы. Сибирский онкологический журнал. 2022;21(2):12–23. DOI: 10.21294/1814-4861-2022-21-2-12-23","Luan T., Li Y., Wu Q., Wang Y., Huo Z., Wang X., et al. Value of quantitative SPECT/CT lymphoscintigraphy in improving sentinel lymph node biopsy in breast cancer. Breast J. 2022;2022:6483318. DOI: 10.1155/2022/6483318","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Ou X., Zhu J., Qu Y., Wang C., Wang B., Xu X., et al. Imaging features of sentinel lymph node mapped by multidetector-row computed tomography lymphography in predicting axillary lymph node metastasis. BMC Med Imaging. 2021;21(1):193. DOI: 10.1186/s12880-021-00722-0","Wen S., Liang Y., Kong X., Liu B., Ma T., Zhou Y., et al. Application of preoperative computed tomographic lymphography for precise sentinel lymph node biopsy in breast cancer patients. BMC Surg. 2021;21(1):187. DOI: 10.1186/s12893-021-01190-7","Li P., Sun D. Advanced diagnostic imaging of sentinel lymph node in early stage breast cancer. J Clin Ultrasound. 2022;50(3):415–21. DOI: 10.1002/jcu.23151","Benjamin J., O’Leary C., Hur S., Gurevich A., Klein W.M., Itkin M. Imaging and interventions for lymphatic and lymphatic-related disorders. Radiology. 2023;307(3):e220231. DOI: 10.1148/radiol.220231","Engels S., Michalik B., Meyer L.M., Nemitz L., Wawroschek F., Winter A. Magnetometer-guided sentinel lymph node dissection in prostate cancer: rate of lymph node involvement compared with radioisotope marking. Cancers (Basel). 2021;13(22):5821. DOI: 10.3390/cancers13225821","Scally N., Armstrong L., Mathers H. A single centre experience in the use of superparamagnetic iron oxide as an alternative tracer in sentinel node biopsy in early breast cancer. Ann Breast Surg 2022;6:2. DOI: 10.21037/abs-21-24","Pantiora E., Eriksson S., Wärnberg F., Karakatsanis A. Magnetically guided surgery after primary systemic therapy for breast cancer: implications for enhanced axillary mapping. Br J Surg. 2024;111(2):znae008. DOI: 10.1093/bjs/znae008","Lorek A., Steinhof-Radwanska K., Zarębski W., Lorek J., Stojcev Z., Zych J., et al. Comparative analysis of postoperative complications of sentinel node identification using the sentimag® method and the use of a radiotracer in patients with breast cancer. Curr Oncol. 2022;29(5):2887–94. DOI: 10.3390/curroncol29050235","Aribal E., Çelik L., Yilmaz C., Demirkiran C., Guner D.C. Effects of iron oxide particles on MRI and mammography in breast cancer patients after a sentinel lymph node biopsy with paramagnetic tracers. Clin Imaging. 2021;75:22–6. DOI: 10.1016/j.clinimag.2020.12.011","Abidi H., Bold R.J. Assessing the Sentimag system for guiding sentinel node biopsies in patients with breast cancer. Expert Rev Med Devices. 2023;21(1–2):1–9. DOI: 10.1080/17434440.2023.2284790","Makita M., Manabe E., Kurita T., Takei H., Nakamura S., Kuwahata A., et al. Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med Imaging. 2020;20(1):58. DOI: 10.1186/s12880-020-00459-2","Samiei S., Smidt M.L., Vanwetswinkel S., Engelen S.M.E., Schipper R.J., Lobbes M.B.I., et al. Diagnostic performance of standard breast MRI compared to dedicated axillary MRI for assessment of node-negative and node-positive breast cancer. Eur Radiol. 2020;30(8):4212–22. DOI: 10.1007/s00330-020-06760-6","Chen S.T., Lai H.W., Chang J.H., Liao C.Y., Wen T.C., Wu W.P., et al. Diagnostic accuracy of pre-operative breast magnetic resonance imaging (MRI) in predicting axillary lymph node metastasis: variations in intrinsic subtypes, and strategy to improve negative predictive value-an analysis of 2473 invasive breast cancer patients. Breast Cancer. 2023;30(6):976–85. DOI: 10.1007/s12282-023-01488-9","Song S.E., Cho K.R., Cho Y., Jung S.P., Park K.H., Woo O.H., et al. Value of breast MRI and nomogram after negative axillary ultrasound for predicting axillary lymph node metastasis in patients with clinically T1-2 N0 breast cancer. J Korean Med Sci. 2023;38(34):e251. DOI: 10.3346/jkms.2023.38.e251","Atallah D., Moubarak M., Arab W., El Kassis N., Chahine G., Salem C. MRI-based predictive factors of axillary lymph node status in breast cancer. Breast J. 2020;26(11):2177–82. DOI: 10.1111/tbj.14089","Kim J.A., Wales D.J., Yang G-Z. Optical spectroscopy for in vivo medical diagnosis—a review of the state of the art and future perspectives. Prog Biomed Eng. 2020;2:042001. DOI: 10.1088/2516-1091/abaaa3","Hanna K., Krzoska E. Shaaban A.M, Muirhead D., Abu-Eid R., Speirs V. Raman spectroscopy: current applications in breast cancer diagnosis, challenges and future prospects. Br J Cancer. 2022;126(8):1125–39. DOI: 10.1038/s41416-021-01659-5","Barkur S., Boitor R.A., Mihai R., Gopal N.S.R., Leeney S., Koloydenko A.A., et al. Intraoperative spectroscopic evaluation of sentinel lymph nodes in breast cancer surgery. Breast Cancer Res Treat. 2024;207(1):223–32. DOI: 10.1007/s10549-024-07349-z","Buzatto I.P.C., Dos Reis F.J.C., de Andrade J.M., Rodrigues T.C.G.F., Borba J.M.C., Netto A.H. Axillary ultrasound and fine-needle aspiration cytology to predict clinically relevant nodal burden in breast cancer patients. World J Surg Oncol. 2021;19(1):292. DOI: 10.1186/s12957-021-02391-3","Zhu Y., Fan X., Yang D., Dong T., Jia Y., Nie F. Contrast-enhanced ultrasound for precise sentinel lymph node biopsy in women with early breast cancer: a preliminary study. Diagnostics (Basel). 2021;11(11):2104. DOI: 10.3390/diagnostics11112104","Cui Q., Dai L., Li J., Shen Y., Tao H., Zhou X., et al. Contrast-enhanced ultrasound-guided sentinel lymph node biopsy in early-stage breast cancer: a prospective cohort study. World J Surg Oncol. 2023;21(1):143. DOI: 10.1186/s12957-023-03024-7","Fan Y., Luo J., Lu Y., Huang C., Li M., Zhang Y., et al. The application of contrast-enhanced ultrasound for sentinel lymph node evaluation and mapping in breast cancer patients. Quant Imaging Med Surg. 2023;13(7):4392–404. DOI: 10.21037/qims-22-901","Marino M.A., Avendano D., Zapata P., Riedl C.C., Pinker K. Lymph node imaging in patients with primary breast cancer: concurrent diagnostic tools. Oncologist. 2020;25(2):e231–42. DOI: 10.1634/theoncologist.2019-0427","Tan H., Wu Y., Bao F., Zhou J., Wan J., Tian J., et al. Mammographybased radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer. Br J Radiol. 2020;93(1111):20191019. DOI: 10.1259/bjr.20191019","Zheng M., Huang Y., Peng J., Xia Y., Cui Y., Han X., et al. Optimal selection of imaging examination for lymph node detection of breast cancer with different molecular subtypes. Front Oncol. 2022;12:762906. DOI:10.3389/fonc.2022.762906"],"dc.identifier.uri":["http://hdl.handle.net/123456789/8926"],"dc.date.accessioned_dt":"2025-07-09T13:58:59Z","dc.date.accessioned":["2025-07-09T13:58:59Z"],"dc.date.available":["2025-07-09T13:58:59Z"],"publication_grp":["123456789/8926"],"bi_4_dis_filter":["lymph node dissection\n|||\nlymph node dissection","лимфодиссекция\n|||\nлимфодиссекция","fluorescent labeling\n|||\nfluorescent labeling","radioimmunodetection\n|||\nradioimmunodetection","метастазы\n|||\nметастазы","рак молочной железы\n|||\nрак молочной железы","lymphoscintigraphy\n|||\nlymphoscintigraphy","sentinel lymph node\n|||\nsentinel lymph node","лимфатические узлы\n|||\nлимфатические узлы","сигнальный лимфатический узел\n|||\nсигнальный лимфатический узел","радиоиммунная диагностика\n|||\nрадиоиммунная диагностика","metastases\n|||\nmetastases","лимфосцинтиграфия\n|||\nлимфосцинтиграфия","флуоресцентная маркировка\n|||\nфлуоресцентная маркировка","биопсия\n|||\nбиопсия","lymph nodes\n|||\nlymph nodes","breast cancer\n|||\nbreast cancer","biopsy\n|||\nbiopsy"],"bi_4_dis_partial":["lymphoscintigraphy","метастазы","рак молочной железы","биопсия","breast cancer","sentinel lymph node","radioimmunodetection","лимфатические узлы","сигнальный лимфатический узел","lymph node dissection","радиоиммунная диагностика","fluorescent labeling","metastases","lymph nodes","флуоресцентная маркировка","biopsy","лимфосцинтиграфия","лимфодиссекция"],"bi_4_dis_value_filter":["lymphoscintigraphy","метастазы","рак молочной железы","биопсия","breast cancer","sentinel lymph node","radioimmunodetection","лимфатические узлы","сигнальный лимфатический узел","lymph node dissection","радиоиммунная диагностика","fluorescent labeling","metastases","lymph nodes","флуоресцентная маркировка","biopsy","лимфосцинтиграфия","лимфодиссекция"],"bi_sort_1_sort":"metastases to regional lymph nodes in breast cancer: current views of detection methods","bi_sort_3_sort":"2025-07-09T13:58:59Z","read":["g0"],"_version_":1837178069085847552}]},"facet_counts":{"facet_queries":{},"facet_fields":{},"facet_dates":{},"facet_ranges":{},"facet_intervals":{}},"highlighting":{"2-7794":{"dc.description.abstract.ru_RU":[" которого вызвала трудности на всех этапах, включая посмертное\nпатологоанатомическое исследование"],"dc.description.abstract":[" которого вызвала трудности на всех этапах, включая посмертное\nпатологоанатомическое исследование"],"dc.description.abstract_hl":[" которого вызвала трудности на всех этапах, включая посмертное\nпатологоанатомическое исследование"]},"2-7897":{"dc.description.abstract.ru_RU":[" возникновением слабовидения и даже полной слепоты. Трудности в диагностике ГВ обычно\nвозникают из-за разнообразия"],"dc.description.abstract":[" возникновением слабовидения и даже полной слепоты. Трудности в диагностике ГВ обычно\nвозникают из-за разнообразия"],"dc.description.abstract_hl":[" возникновением слабовидения и даже полной слепоты. Трудности в диагностике ГВ обычно\nвозникают из-за разнообразия"]},"2-8033":{"dc.fullRISC.ru":[" квалификационной категории со стажем более 10 лет. Наибольшие технические трудности\nвозникали при мобилизации"],"dc.fullRISC":[" квалификационной категории со стажем более 10 лет. Наибольшие технические трудности\nвозникали при мобилизации"]},"2-8043":{"dc.fullRISC.ru":[" поверхностей шеи, имела\nтехнические трудности в силу того, что жировая ткань\nраспространена диффузно и не имеет"],"dc.fullRISC":[" поверхностей шеи, имела\nтехнические трудности в силу того, что жировая ткань\nраспространена диффузно и не имеет"]},"2-8036":{"dc.fullRISC.ru":[" иммунных\nмеханизмов, что определяет трудности при выборе таргетных мишеней с целью специфического лечения"],"dc.fullRISC":[" иммунных\nмеханизмов, что определяет трудности при выборе таргетных мишеней с целью специфического лечения"]},"2-8037":{"dc.fullRISC.ru":[" получения одного\nспектра может потребоваться много времени, что может\nсоздавать трудности при использовании"],"dc.fullRISC":[" получения одного\nспектра может потребоваться много времени, что может\nсоздавать трудности при использовании"]}}} -->По вашему запросу найдено документов: 6