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A B S T R A C T   

The machine remaining useful life (RUL), the job-machine release time and the correlation between the main-
tenance duration and the machine enlistment age are, in this paper, collectively emphasized at the parallel 
machine scheduling problem. Based on this, a corresponding mixed integer programming model is constructed to 
minimize the makespan and the processing loss beyond the machine RUL threshold, where a discrete teaching 
and learning based optimization algorithm is applied to solve this NP-hard problem, and a fault mode-assisted 
gated recurrent unit (FGRU) life prediction method is used to guide the predictive maintenance initiation time 
of all machines. In addition, this paper demonstrates that the FGRU method is more accurate than three common 
methods (Encoder-Decoder Recurrent Neural Network, Bidirectional Long Short-Term Memory and GRU) 
through two actual bearing degradation cases, and shows through three benchmark cases that the joint decision- 
making can effectively reduce the time cost of manufacturing enterprises.   

1. Introduction 

In the increasingly competed market, the job-shop scheduling 
problem (JSP) is derived from the pursuit of continuous profit in 
manufacturing enterprises. The constraints in the JSP generally include 
the job arrival time, the job delivery time, the job deterioration effect, 
the machine processing cost, the machine functional attributes, shop 
geographical distribution, etc. The scheduling objectives of JSP roughly 
include the makespan, the total delay time, the total production cost, 
etc. And its frameworks have been roughly divided into single machine, 
parallel machine, flow shop, hybrid flow shop and other targeted modes. 
Traditional parallel machine scheduling can be described as: m constant- 
speed machines with similar functional properties need to process n 
different jobs with only one process. As an extension of single machine 
scheduling and a very important research field in scheduling family, the 
parallel machine scheduling is extensively used in the actual semi-
conductor manufacturing, wafer fabrication and call-in service center, 
and has attracted extensive attention of scholars since McNaughton [1] 

made the first study on it. 
With the hysterical pursuit of better processing continuity, major 

industrial entities and research institutions have begun to implement 
attempts on various production models and scheduling theories. Mönch 
and Shen [2] studied a parallel machine scheduling problem with 
weighted delivery time as the objective function in distributed 
manufacturing environment. Basiri et al [3]. constructed a flexible 
parallel machine scheduling model for the reality of fuzzy processing 
time, sequence-dependent setup time and reentrant jobflow, where a 
Pareto-based multi-objective meta-heuristics was proposed. Li et al [4]. 
investigated a parallel machine scheduling problem with 
position-dependent deteriorating jobs and DeJong’s learning effects in 
an uncertain system, which is fairly consistent with the intermediate 
products in chemical industry and the employees in human-computer 
interaction processing, respectively. Xu et al [5]. studied a parallel 
machine scheduling rule for the outside processing and the due window, 
motivated by the flexible delivery time and the sharing of 
trial-manufacture jobs among groups. Xiao et al [6]. analyzed the 
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parallel machine scheduling in green manufacturing from the aspects of 
time cost and carbon emissions, and that conformed to the national 
policy of carbon neutralization. Beside the parallel machine framework, 
Zhang et al [7]. presented a two-stage hybrid flow shop scheduling 
problem (HFSP) with reentrant and limited waiting time constraints 
based on block painting operations. Gao et al [8]. addressed a flexible 
job shop scheduling problem (FJSP) with the constraints of fuzzy pro-
cessing time and new job insertion based on artificial bee colony. 
Abdelmaguid et al [9]. studied the proportionate multiprocessor open 
shop scheduling problem (PMOSP) in which the processing time on a 
given center is not job-dependent. To sum up, they all have established 
the mixed integer programming models suitable for their concerned 
attributes, which has always been the materialization direction of 
traditional parallel machine problem. 

The said literature have made a basic assumption that all jobs to be 
processed are released at zero time, which has undeniable application 
prospects in deterministic orders, such as schoolroom administration 
and port unloading. However, in many cases, e.g. call center supply, 
health code verification and wine-making, the job arrival time uncer-
tainty has brought many troubles to the subsequent resource allocation 
and personnel arrangement, easily leading to the congestion of trans-
portation channels and the idle of equipment for a long time. That 
greatly limits the applicability of the flawed hypothesis. Especially in the 
handling of intermediates (MI) with deterioration effect, the said 
assumption may bring the direct risk of MI waste and the secondary risk 
of equipment scrapping. The job arrive time has become a recognized 
major technical issue. To protect direct beneficiaries against such lia-
bility, a handful of scholars have made finite restrictions on the job 
arrival time. Long et al [10]. investigated the steelmaking-continuous 
casting production scheduling problem, and solved the dilemma of job 
release time fluctuation to some extent. Cevikcan and Durmusoglu [11] 
added a workload regulation module in the parallel machine system to 
determine when and where the jobs are released to the workshop under 
what conditions. Zhou et al [12]. addressed an energy-efficient sched-
uling problem with unequal job arrival times including productivity and 
energy cost measures, and provided decision makers with a good 
approximation of Pareto solutions. To summarize, manufacturing ser-
vice systems with indefinite orders rely on the ability to deal with the 
random job arrival times. 

In the same way, the importance of machine release time in sched-
uling underlying settings is also noted well. For instance, in component 
highly correlated and personnel intensive systems, e.g. engine assembly, 
machines may be frequently and unexpectedly occupied when new or-
ders arrive. Nevertheless, in the literature published in the past few 
decades, the machine release time consideration is mainly limited to 
single machine scheduling [13], and they even crudely presume that all 
machines are available at time zero in other scheduling frameworks 
[14]. Instead, to provide a feasible machine allocation table for each job 
within the maximum allowable waiting time, the backstage supporters 
not only need to provide a limited buffer for deterministic orders, but 
also make the ultimate solution comply with local regulations and other 
cost constraints, which makes the scheduling model more complex and 
difficult to solve. The readable mathematical model and optimization 
algorithm with lower time complexity are worth discussing. Mario[13] 
and Defersha[15] are two pioneers in the machine release time filed, 
those interested can refer to them more. 

The current machine availability is reflected not only in whether it is 
occupied by other jobs, but also in the machine performance. Today, 
defect and fatigue evolution will occur at any time as machines become 
more sophisticated, which causes emergent incidents or slow-changing 
breakdowns, and then makes it unavailable during shutdown mainte-
nance. Adiri et al. [16]. first noticed the unavailability reality caused by 
machine failure and stated a single machine flow-time scheduling 
problem with a single breakdown. Wang et al [17]. addressed a proac-
tive scheduling problem with stochastic machine breakdown arising 
from steel production. Abbas et al [18]. thought the emergent failures 

would disrupt pre-established planning. In total, they have made a 
forward-looking theoretical discussion on the predictive maintenance 
for different types of machine failures. During practical production, for 
the continuous benefits and low restart costs, e.g. die change and relo-
cation [19], the mainstream maintenance has undergone the funda-
mental change from periodical or corrective maintenance to well-timed 
predictive maintenance around machine status, which not only can 
avoid redundant interference-induced unnecessary stoppages, but also 
prevent overdue renovation-induced cascading failures. Be careful here, 
although some literature have considered the machine unavailability 
constraint, they tend to focus on periodic or single maintenance and 
evade the changing reliability, like the Refs. [16–18]. Such an unreal-
istic intention is not valid in many real-world applications. Therefore, at 
present, how to balance production scheduling and preventive mainte-
nance, how to make the machine continuously have good operation 
state and high reliability, and then how to realize the harmonious unity 
of scheduling, maintenance and reliability still are key issues to be 
solved in the realization of intelligent manufacturing. 

As a foundation for studying complicated systems, the joint decision- 
making in single machine has been widely deliberated. Kacem [20] 
proposed a single machine scheduling case with a fixed maintenance 
interval, where all machines had only one definite unavailability period. 
Yu et al [21]. believed multi-cycle maintenance interval in single ma-
chine system with non-preemptive jobs were rigid and known in 
advance. Zou and Yuan [22] attached the constraints, a maximum 
allowable maintenance interval and a fixed maintenance duration, to 
the single machine scheduling with job rejection. For parallel machine 
systems with predictive maintenance, Hsieh and You [23] thought that 
current maintenance cycle was flexible, and it only depended on the job 
number in a continuous processing batch since the last maintenance. 
Marsili et al [24]. assumed the maintenance based on short and frequent 
interruptions had less impact on the system operability compared to 
those based on longer and sporadic interventions. Pang et al [25]. said 
that the flexible maintenance cycle was applicable to a part of machines, 
and it only related to the machine service age. In conclusion, the current 
quantitative criteria of unavailability constraints of machines basically 
do not match the current reliability indicators of machines. There is still 
no unified standard for the communication bridge between maintenance 
trigger and machine reliability. Fortunately, over the past a few decades, 
failure distribution model of manufacturing systems, a criterion for 
quantifying the machine ability to perform specific functions, has been 
intensively investigated. By considering the deterioration effect of jobs 
and machine, Cui et al [26]. studied the Weibull function for single 
machine system, whose strategy is to perform predetermined mainte-
nance to recover the system whenever the machine performance from 
Weibull was lower than the reliability threshold. It is also called 
threshold based maintenance strategy. Tao et al [27]. introduced 
recursive decline factor and failure rate rise factor into Weibull distri-
bution in incomplete maintenance scenario. Sousa et al [28]. used a 
radial basis function to reduce unnecessary maintenance insertion and 
resource delivery for corroded pipelines. Inspired by the fault perception 
classification, Ke et al [29]. evaluated each machine reliability based on 
the memoryless property of adjacent maintenances. It is worth noting 
that, for simplicity, they followed the condition based maintenance 
strategy, “maintenance at reliability threshold”. In fact, on the one hand, 
early maintenance can enhance product yield rate, reduce the overhaul 
cost and ensure the consistency of job physical properties, on the other 
hand, when machine reliability exceeds the given threshold, partial 
maintenance resources, e.g. spare parts inventory and outsourcing 
supply, may not meet the necessary conditions for immediate mainte-
nance, which means that reliability threshold should be regarded as the 
latest maintenance cordon rather than the maintenance trigger. 
Furthermore, from their point of view, the maintenance duration asso-
ciated with each breakdown was treated as expected or fixed values. On 
the contrary, in many engineering practices, the maintenance durations 
of machines in different degradation stages are actually discrepant. In 
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view of the gaps among current maintenance strategy, duration and 
realistic maintenance concept, this paper sets a linear relationship be-
tween maintenance duration and machine reliability, where the 
near-optimal maintenance initiation time wound be determined by the 
optimization algorithm described later within the reliability threshold, 
and no longer entirely controlled by the time when the reliability 
threshold is exceeded for the first time. 

Subsequently, most literature including [21–29] utilize a 
ready-made statistical model for off-line monitoring of machines as the 
maintenance guidance, without online considering dynamic service 
environment-induced stochastic fault modes, e.g. unlubrication 
friction-created headstock overheating and transilient load-associated 
tool resonance. By the same token, although Failure Mode/Effect and 
Criticality Analysis (FMEA/FMECA) can predetermine the relative 
severity and probability of failures, what it is essentially dealing with is 
the failure possibility of a machine before the service or in a static ser-
vice environment, not the failure probability of the monitored system on 
the go or in the dynamic service environment, nor can it give the 
approximate duration range of the fragile parts from early failure to 
complete failure. Rather than acquiring the time-variant failure proba-
bility of monitored components in the dynamic environment, we prefer 
to predict the degradation duration of monitored components to total 
failure, which can help business owners plan some time-bound prepa-
rations in advance. 

In the interests of monitoring life-circle machine reliability on line, 
inspired by the ideas of literature [30,31], our motivation is to develop a 
data-driven remaining useful life (RUL) prediction model considering 
the influence of stochastic fault modes on RUL prediction accuracy 
throughout the lead time. To the best of our knowledge, this is an early 
attempt to combine RUL prediction with the joint decision-making of 
maintenance and scheduling. Nowadays, the intelligent transformation 
is making the monitoring data gradually change from the production 
by-product to the production key [32]. Through the analysis and mining 
of massive degradation data, the experience- or model-driven mainte-
nance management of manufacturing unit is ushering in a significant 
revolution [33,34]. And indeed, that is what generalized predictive 
maintenance did, which integrates condition monitoring, fault diag-
nosis, RUL prediction, maintenance decision-making and maintenance 
activities into the dispatching automation system. Nonetheless, scholars 
in the RUL field prefer to pursue the improvement of RUL prediction 
accuracy, rather than inquire into the specific maintenance logic around 
resource supply [35,36], which is the stand aloof from intricate indus-
trial society to a certain extent. In its way, our modest contribution is 
kind of the first application exploration of RUL prediction in parallel 
machine system. 

Eventually, by pulling together three latent terms in the parallel 
machine system: job-machine release times, predicted RUL (online 
reliability) and maintenance duration associated with enlistment age, in 
this article, a joint decision-making for minimizing makespan and 
machining penalty beyond RUL threshold is formulated with the aim of 
obtaining the near-optimal job production/sequence sequences, job- 
machine combination and maintenance initiation time. Nevertheless, 
evaluating the MRP-II coherence under the uncertain maintenance 
duration and reliability is not straightforward and facing three chal-
lenges as following: (1) due to the uncertainty of job-machine release 
time, the idle time of waiting for jobs or machines is a stochastic 
quantity, which is challenging to propagate the uncertainty to the 
makespan; (2) under the stochastic maintenance duration and initiation 
time, the existing evaluation methods for maintenance insertion are no 
longer effective; (3) resolving the parallel machine scheduling and 
preventive maintenance model under the RUL guidance is computa-
tionally tedious, and it involves more constraints. Consequently, it ne-
cessitates the development of a short-cut discrete optimization 
algorithm to reduce the calculation burden. 

In the combinatorial optimization, especially for the parallel ma-
chine system, the branch delimitation algorithm that can uniquely find 

the optimal solution has heavy computational burden, so here it is not 
considered. The heuristic or meta-heuristic algorithms are more effec-
tive because they do not require the objective function to satisfy specific 
conditions or have favorable mathematical properties [37]. These al-
gorithms (particle swarm optimization (PSO) [38], whale optimization 
algorithm (WOA) [39], fruit fly optimization algorithm (FOA) [40], etc.) 
have attracted more and more attention and are widely used in various 
engineering problems. As one of the most representative heuristic al-
gorithms, teaching and learning based optimization (TLBO) algorithm 
has been developed by Rao et al. [41] and does not require any specific 
parameters. Its entire optimization process includes the teaching stage 
and the learning stage. In the teaching stage, each learner learns from 
the teacher (the best learner). In the learning stage, each learner learns 
from the other learner in a random manner. Due to the relatively 
competitive global search and convergence performance, TLBO has long 
been regarded as a bright new star among many heuristic algorithms 
[42]. Despite all this universalism, all original meta heuristic algorithms 
are based on the resolution of continuous functions. In order to realize 
the successful execution of the optimizer on the discrete combinatorial 
optimization, this paper needs to encode the discrete variables that 
job-machine combination and job processing/release sequence into the 
continuous computable variables, and then establish a discrete TLBO 
algorithm. 

To recognize the unique novelties of this work, comparing with the 
existing joint scheduling planning and predictive maintenance models, 
the main contributions of our work can be summarized as the following 
three aspects: (1) A new joint decision-making model for scheduling 
planning and predictive maintenance is put forth for the parallel ma-
chine system, where the proposed discrete teaching-learning based 
optimization algorithm is treated as the solver; (2) The job-machine 
release time, the job release sequence and the maintenance duration 
flexibility are considered into influence factors interactively, then a 
novel data-driven remaining useful life prediction method reconciled by 
stochastic fault modes is formulated to guide all maintenance activities. 
And it is the first time that data-driven remaining useful life prediction is 
considered in the dynamic preventive maintenance policy of parallel 
machines; (3) We made comparative experiments using two degenera-
tion datasets and three job-machine benchmark data. And the results 
have proved the efficiency and superiority of the proposed RUL pre-
diction method and joint decision-making model of parallel machines. 

The remainder of this paper is organized as follows: Section 2 
descripts the basis scheduling assumptions and RUL problem definition 
Section 3. formulates the new joint decision-making of parallel machine 
scheduling and predictive maintenance, and explains the discretization 
process of TLBO algorithm Section 4. introduces the structures of fault 
mode-assisted RUL prediction process in detail Section 5. starts the 
comparative test and the experimental analysis, and Section 6 concludes 
this study and discusses some future works. 

2. Preliminaries 

In this section, to clearly state the joint decision-making (SPM) and 
RUL prediction problems, we roughly standardize the framework of 
parallel machine system, the premise assumptions of joint decision- 
making and the RUL conception. 

2.1. SPM framework and assumptions 

SPM can be described as follows: n different jobs with fixed pro-
cessing volume and only one process need to be processed on m 
identical-speed machines with inconsistent initial RULs, where (1) all 
machines are multifunctional, that is, any one of m machines can process 
any job, (2) any job is considered to be ready for delivery after it is 
completely processing by any machine, (3) all jobs can be delivered in a 
batch only after they are all processed completely, (4) in the start of a 
scheduling period, whether the jobs arrive and whether machines are 
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idle are equivocal, (5) only processing behaviors can and must cause 
gradual machine performance degradation, (6) during the processing, 
the vibration data monitored from the vulnerable parts of the machine is 
input into the proposed RUL prediction model, and the predicted RUL 
temporarily represents the on-line reliability value of the whole machine 
at the corresponding time, (7) a limited number of maintenance activ-
ities are launched before the above online reliability value is less than 
the RUL threshold for the first time, (8) each machine maintenance 
duration is positively related to the enlistment age of the corresponding 
machine at the initiation time of corresponding maintenance activity. 
Our purpose is to determine an appropriate job-machine combination 
and a job processing/release sequence through the discrete TLBO, so as 
to minimize the makespan and the processing penalty beyond the RUL 
threshold. Remarkably, the introduction of the penalty is only to 
decrease the MIP model complexity. At the later iteration stage, this 
penalty will be reduced to zero, that is, all jobs will be processed within 
the RUL threshold in the final solution. Additionally, eight basic as-
sumptions of the joint decision-making are itemized as follows: (1) the 
processing time of each job and the RUL threshold of each machine are 
fixed and known in advance, (2) the jobs are released sequentially where 
each releasion cannot be interrupted and preempted, (3) the switching 
time between two consecutive items is ignored, (4) the maintenance and 
the processing both cannot be interrupted, and the former are only 
carried out in two consecutive jobs, (5) the fault is irrelevant among all 
machines and each predictive maintenance makes the machine “as good 
as new,” (6) one machining position of a machine can only process one 
job, and one job can only be processed by one machining position of a 
machine, (7) the number of machine maintenance times is less than the 
number of its machining positions, and the maintenance resources are 
adequate, (8) in order to save experimental time and labor cost, the 
paper uses the accelerated degradation data of the machines, and thus, 
the units of corresponding job processing time and RUL of machines are 
replaced by minutes. 

2.2. RUL conception 

RUL prediction is an engineering discipline working on the predic-
tion of the future state or response of a given system based on the syn-
thesis observations, calibrated mathematical models and simulation. It 
generally refers to the study of predicting the specific time at which the 
component will no longer be able to have its expected functional 
performance. 

For a specific component, let H(t) = {H0,H1,…,Ht} be its cumula-
tive degradation paths up to the tst time period with H0 = 0, and let 
T0→i= {t0, t1,…, ti} and X0→i = {x0, x1,…, xi} denote the history of the 
monitoring time and corresponding raw degradation signals, respec-
tively, where the degradation path in the tst period is Ht =

G(XWs∗t→Ws∗t+Sl), XWs∗t→Ws∗t+Sl = {xWs∗t ,xWs∗t+1,…,xWs∗t+Sl} ∈X0→i. G(⋅)
is a health indicator extraction function, Ws and Sl are the step size and 
the length of the signal sliding window for X0→i, respectively. In this 
setting, the first failure time of monitored component is usually defined 
as formula (1), and the current RUL is usually expressed as the formula 

(2): 

T = inf{Ws ∗ t : Ht ≥ D|X0→i} (1)  

RUL = inf{Ws ∗ r : Ht+r ≥ D|X0→i} (2)  

where D represents the given threshold level of the environment in 
which the monitored object is located. We can see that both of T and RUL 
are pertinent to the historical degradation paths and current degradation 
path (Fig. 1a). To be clear, RUL prediction is not necessary at the 
beginning of operation due to the fact that the performance degradation 
is rather slow at this stage, while the embedding of RUL prediction at the 
rapid degradation stage is mandatory because of the abrupt increasing of 
degradation uncertainty. That is uneconomical to predict RUL too early 
or too late. However, the boundary between the two stages is vague, 
limiting the faster and more economical applications of RUL prediction. 
Thus, the first prediction time (FPT) is expected to appropriately 
determined (Fig. 1b). 

3. Problem formulation 

3.1. SPM formulation 

In this study, there are m machines and n jobs in total, j is seen as the 
machine index, lj jobs will be assigned to machine j, that is, lj is the 
number of machining positions where k is the machining position index. 
i′ and i are called the job number, and the orderly release position of 
each job is recorded as g′ or g. The release preparation duration and the 
release time of job i are denoted as qi and Qi, respectively, the processing 
duration of job i is recorded as pi. The processing duration and 
completion time in the machining position k of machine j are expressed 
as Pjk and Cjk, respectively. The parallelizable release time of machine j is 
denoted as bj. In order to cope with the possible concurrence of machine 
maintenance and waiting for jobs, the candidate time Wjk waiting for job 
releasion at the machining position k is introduced. And whether ma-
chines are maintained is expressed in binary numbers, if the mainte-
nance is performed before the machining position k of machine j, it is 
recorded as Yjk = 1, otherwise recorded as Yjk = 0. Similarly, if job i is 
released at the release position g, it is recorded as Vig = 1, otherwise 
Vig = 0. If machine j processes job i at its machining position k, it is 
recorded as Xijk = 1, otherwise Xijk = 0. In addition, note that the 
maintenance duration of machine j before machining position k is Tjk 

and the enlistment age of machine j after machining position k is μjk. For 
the RUL notation, we note that RULPM

j is the RUL threshold of machine j, 
RULt

j is the predicted RUL series of machine j in the time period t, RULt
j is 

the predicted RUL value of machine j at the time point t, and RULin
j is the 

initial rated life of machine j. In the last signature, it is denoted that the 
time when the predicted RUL is less than the RUL threshold for the first 
time is tfirst on the real timeline. An example is shown in Fig. 2. 

The total objective function F of the joint decision-making problem 
can be formulated as: 

Fig. 1. The symbolization of RUL and FPT.  
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minF = max
j

Cjlj + u
∑

Cjk∈t
Pjk, s.t.RULPM

j > RULt
j (3)  

where the former is the makespan of all jobs and the latter is a weighted 
machining penalty beyond RUL threshold, u is the weight coefficient for 
the machining penalty beyond RUL threshold, which takes a larger 
positive value so that this item decreases to 0 during the later stage of 
iteration. It is worth noting that we only take the sum of the processing 
duration of all jobs whose completion time is beyond the machine RUL 
threshold as the machining penalty. The following is the formulaic 
process for calculating the makespan of all jobs. 

First, the range of each index value is specified in formula (4) where 
n different jobs are allocated to m parallel machines, and lj jobs are 
assigned to machine j. Then, through formulae 5–(7), the values of 
maintenance instruction Yjk, processing instruction Xijk and release in-
struction Vjg are limited to a certain range. And the lower limit of release 
time of each job is obtained by cumulative summation in chains struc-
ture in formula (8). Formula (9) gets the processing duration of each 
machining position by enumerating and searching. Next, considering 
that machine degradation only occurs in the machining stage, in order to 
distinguish the actual production process with the maintenance stage 
and the waiting stage for job arrival, the concept of machine enlistment 
age is introduced through formula (10), which is also the forerunner of 
calculating predictive maintenance time. After that, the linear rela-
tionship among each maintenance duration, the enlistment age at the 
corresponding time and the initial rated life of machine is established 
through the formula (11). And the formula (12) deduces the candidate 
time for the machines to wait for the arrival of the jobs. The reason why 
it is called “candidate time” is that waiting for the arrival of jobs and 
maintenance activities can be parallel, that is, when the maintenance 
duration is greater than the candidate waiting time, the real waiting 
time is subject to the current maintenance duration. 

To sum up, the completion time of each machining position is 
determined by four aspects: (1) the duration for processing the corre-
sponding job at the machining position and the processing durations of 
all previous jobs in the same machine, (2) the durations of all previous 
preventive maintenance activities before the machining position, (3) the 
machine release time, (4) the waiting time for the job in the machining 
position and the waiting time for all jobs before the machining position. 
We express the completion time of each machining position through the 
formula (13) and the temporal logic. Ultimately, the function transition 
of the RUL threshold from the trigger to the alert is determined by the 
formula (14). 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i, i′ , g, g′

∈ {1, 2,…, n}
k ∈

{
1, 2,…, lj

}

j ∈ {1, 2,…,m}

∑m

j=1
lj = n

(4)  

⎧
⎪⎪⎨

⎪⎪⎩

∑lj

k=2
Yjk ≤ lj − 1,∀k ≥ 2, j

Yj1 = 0
Yjk ∈ {0, 1}

(5)  

where, in the normal production course, in order to improve the reli-
ability of the machines, it is necessary to insert several maintenance 
activities between adjacent machining positions in time, that is, without 

interrupting the production process, preventive maintenance in the MIP 
model can only be executed at the end of each job. And Yj1 = 0 means all 
machines have no faults after being released and do not need mainte-
nance, and because maintenance is only performed between adjacent 
machining positions, the maximum number of maintenance is lj − 1. 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑m

j=1

∑lj

k=1
Xijk = 1,∀i

∑n

i=1
Xijk = 1,∀j, k

Xijk ∈ {0, 1}

(6)  

where the first part formulates the assumption that a job can only be 
processed at one machining position of one machine, while the second 
part standardizes the assumption that a machining position of a machine 
can only process one job. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vig ∈ {0, 1},
∑n

g=1
Vig = 1, ∀i

∑n

i=1
Vig = 1, ∀g

(7)  

where the first part formulates the assumption that a job can only be 
released at one releasion position, while the second part standardizes the 
assumption that a releasion position can only release one job. 

Qi ≥
∑g

g′ =1

∑n

i′ =1

Vi′ g′ qi′ ,∀g, i= argmax
i′

Vi′ g (8)  

where all jobs are released in a certain order, that is, after the job in the 
releasion position g is fully released, the job in the releasion position g +
1 can be released, so, the release time of each job is highly related to the 
releasion durations of all jobs released before it. Considering the influ-
ence of the switching duration between adjacent job releasions, the 
lower bound form is used to describe the job releasion time, while the 
equality constraint is still used in the subsequent iterative refinement. 

Pjk =
∑n

i=1
Xijkpi, ∀j, k (9)  

where the processing duration of the machine j at the machining posi-
tion k is the processing duration of the job assigned to this position. By 
accumulating the product of the job processing indication Xijk at the 
position k of machine j and the job processing duration pi, the corre-
sponding processing duration Pjk at this position can be retrieved. 

μjk =

{
μj(k− 1)

(
1 − Yjk

)
+ Pjk, k ≥ 2

Pj1, k = 1 (10)  

where the enlistment age is jointly determined by all previous process-
ing durations of the machine and whether it has been maintained at each 
machining position. Before the initial machining position, the machine 
is considered healthy and will not be maintained, so the enlistment age 
after the initial machining position is Pj1. In each subsequent machining 
position, if the machine is maintained before a position, due to the 
assumption of "as good as new", the enlistment age is updated to 0, and 
then the machining duration of the position is regarded as the enlistment 
age after the position. If the machine is not maintained before a position, 
the enlistment age after the position is the sum of the machining 

Fig. 2. The sequence of processing jobs and performing preventive maintenance on machine j.  
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duration of the position and the enlistment age after the last position. 

Tjk =

⎧
⎪⎨

⎪⎩

Yjk⋅round

(

λ
μj(k− 1)

RULin
j

)

, k ≥ 2

0, k = 1

(11)  

where, in this work, we assume that the machine maintenance duration 
is directly proportional to the current enlistment age and inversely 
proportional to the initial rated life of the corresponding machine. 
Especially, for the first machining position, the machine is just put into 
use and does not need maintenance, so the maintenance durations of all 
machines before the first position are always 0. In addition, the main-
tenance instruction Yjk introduced in the first part is only to simplify the 
representation. Separately, if the machine is maintained, the actual 
maintenance duration is calculated in detail, otherwise, the mainte-
nance duration is always 0. Significantly, the round function is intro-
duced to ensure that all times involved in the MIP model are in integer 
form, and λ is the comprehensive proportion coefficient. 

Wjk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max

(
∑n

i=1
Xijk⋅Qi − bj, 0

)

, k = 1

max

(
∑n

i=1
Xijk⋅Qi − Cj(k− 1), 0

)

, k ≥ 2
(12)  

where all jobs have the release time constraint, so the possible waiting 
time for jobs is bound to occupy the production programme and increase 
the completion time of some jobs. 

Specifically, there are two cases: (1) the candidate waiting time for 
job before the first machining position is jointly determined by the 
machine release time and the release time of the job to be machined at 
the first machining position. If the job release time is greater than the 
machine release time, the candidate waiting time for job is the difference 
between the said job release time and the corresponding machine 
release time, otherwise it is 0. It should be noted that there is no 
maintenance activity before this position, so this said candidate waiting 
time is also the real waiting time; (2) the candidate waiting times for 
jobs before the second and subsequent machining positions are jointly 
determined by the release time of the job to be machined at the corre-
sponding machining position and the completion time of the last 
machining position. If the said job release time is greater than the said 
completion time, the candidate waiting time for job is the difference 
between the said job release time and the said completion time, other-
wise, it is 0. 

Cjk ≥

{
bj + Wjk + Pjk, k = 1
Cj(k− 1) + max

(
Wjk,Tjk

)
+ Pjk, k ≥ 2 (13)  

where the item defines the agreement that the processing start time of a 
job must be after the processing completion time of the job at the last 
machining position in the same machine. 

In particular, (1) the completion time of the first machining position 
is greater than the sum of the machine release time, the candidate 
waiting time for job before the first machining position and the 
machining duration at the first machining position, (2) The completion 
time of the subsequent machining positions shall be greater than the sum 
of the completion time of corresponding last machining position, the 
processing duration and the real waiting time for job in corresponding 
machining position. The real waiting time for job takes the maximum 
value between the candidate waiting time and the maintenance duration 
in the same period. 

Yj(k+1)⋅
(
Cjk +Tj(k+1)

)〈
tfirst,∀RULPM

j > RULtfirst
j , j, k (14)  

where, there are two cases: (1) when there is no maintenance in front of 
a machining position, that is, Yj(k+1) = 0, the inequality is always true; 
(2) when there is maintenance in front of a machining position, that is, 

Yj(k+1) = 1, the end time of the corresponding maintenance activity, 
which is equal to the sum of the completion time of the last position and 
the maintenance duration itself, should be before the machine RUL 
threshold. 

In light of the convention that orders are usually sent to customers as 
a whole, in the proposed MIP model, the relevant cost is evaluated from 
the perspective of the completion time of the last job. Note that the 
previously completed jobs will also increase the inventory cost in vain. 
So the extended inventory cost objective function will be discussed in 
the follow-up work. Next, we will minimize the total objective formula 
(3) by iterating the discrete TLBO described later until the maximum 
number of iterations is met. 

3.2. Discrete TLBO formulation 

Obviously, the above joint decision-making is a NP-hard problem. In 
order to overcome the high time complexity, many population-based 
heuristic stochastic optimization (PHS) algorithms are used to deal 
with such NP-hard problems. In this study, the combination of dis-
cretization code and TLBO algorithm is tailored to seek for the global 
optimal solution of this specific problem. We call it “discrete TLBO”. The 
original TLBO is inspired from the learning and teaching behaviors in a 
classroom, where learners are regarded as search points distributed in 
the decision variable space corresponding to the population of solutions 
in PHSs. Specifically, in this paper, the decision variable space refers to 
all scheduling and maintenance plans consisting of various job release 
sequences, job-machine combinations, job processing sequences and 
predictive maintenance nodes. The learner with the best fitness is 
defined as the teacher in the classroom. That is, the plan with the 
minimum objective function value F got by the formula (3) is regarded 
as the teacher of the classroom. Unlike traditional PHSs, the iterative 
evolution process of original TLBO includes the teaching phase and the 
learning phase. To enhance the average knowledge level of the class, 
learners improve their knowledge levels by learning from the teacher in 
the teaching phase, and they also improve their knowledge levels by 
learning interactively (group discussion) from another learner selected 
randomly in learning phase. The whole propagation of original TLBO is 
explained below. 

For a minimization optimization problem with D-dimensional deci-
sion variables, let Xk = {x1

k , x
2
k ,…, xD

k } represents the kth learner (search 
point) and f(Xk) represents the fitness function (F) of this learner, NI is 
the number of learners in the population. The kth learner Xk = {x1

k , x
2
k ,

…, xD
k } in the classroom can be randomly initialized generated by Xj

k =

Xmin
j + rand⋅(Xmax

j − Xmin
j ), where Xmin

j and Xmax
j are the lower and upper 

bounds of the jth dimensional decision variable, respectively, rand is a 
random number within [0, 1]. During the teacher phase, learners 
improve their knowledge levels by learning from the difference between 
the teacher and the mean of the class, and the kth learner Xk in the 
classroom would update its knowledge according to the mechanism: 

newXj
k = Xj

k + randj ×
(
Teacherj − TF ×Xj

mean

)
(15)  

where Teacherjis the jth dimensional decision variable of current best 
learner (search point) in the classroom, Xj

mean = 1
NI
∑NI

k=1Xj
k is the current 

average knowledge level of the classroom in the jth dimension, newXj
k is 

the knowledge level of the kth learner in the jth dimension after teaching 
phase, randj is the jth element in the random vector whose each element 
is a random number within the range [0, 1]. The value of TF is either 1 or 
2, which decides the magnitude of the mean to be changed. After 
learning from the teacher, the better learner between the learner and the 
new generated learner will be selected to enter the following learning 
phase, where the “better” meaning is that the smaller fitness function 
value. 

In the learning phase, the learners will increase their knowledge 
through interaction among themselves. For the kth learner Xk in the 
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classroom, the updating mechanism is expressed as follows: 

newXj
k =

⎧
⎨

⎩

Xj
k + randj⋅

(
Xj

k − Xj
r

)
, iff (Xk) < f (Xr)

Xj
k + randj ×

(
Xj

r − Xj
k

)
, otherwise

(16)  

where Xr = {X1
r ,X2

r ,…Xj
r,…,XD

r } is a randomly selected learner in the 
classroom, r ∕= k. newXj

k is the knowledge level of the kth learner in the 
jth dimension after learning phase. f(Xk) and f(Xr) are the fitness values 
of the learner Xk and Xr respectively. Similarly, after learning from the 
other learner, the better learner between the learner and the new 
generated learner will be selected to enter the next teaching phase. And 
repeat the above until the maximum number of iterations is met. It 
should be noted that through the two stages, the decision variables may 
overflow their upper and lower limits. If overflowing, they only need to 
be re-selected randomly within their boundary range. 

In the present problem, the job release sequence variable, job 
machining sequence variable, matching relationship variable between 
machines and jobs, and maintenance node variable cannot be directly 
applied to the mathematical operations. In this paper, we map these 
discrete variables to the continuous real coding based on the ranked 
order value and the random grouping. The specific process is as follows. 

In the kth learner, for the job releasing sequences, a priority sequence 
vector Sek = (Se1k, Se2k,⋯, Seik,⋯, Senk) is created by Seik = 1 + rand ×
(n − 1), n denotes the number of jobs in an order, k is the learner index. 
Then, we convert the priority sequence vector Sek to the releasing per-
mutation sequence Sk by decreasing order. The location code in Sek 
represents the job index, while the location code in Sk represents the 
machining sequence index. The value at position i of the vector Sek is 
displayed at position j of the vector Sk after the vector Sek sorting, which 
means that the job i will be machined in the position j without consid-
ering the allocation relationship between the machines and the jobs. The 
priority machining sequence vector Prk = (pr1k, pr2k,⋯, prik,⋯, prnk) and 
the corresponding permutation sequence vector Pk are also set in the 
same way. For the matching relationship of machines and the jobs, we 
use the radian coding to digitize combinatorial numbers that cannot be 
mathematically operated, where, a radian vector Rak = (Ra1k,Ra2k,⋯,

Raik,⋯,Rank) is first created, Raik = 2π × rand. Then, we convert the 
radian vector Rak to the combination vector Cvk = (Cv1k,Cv2k,⋯,Cvik,

⋯,Cvnk) by the radian limit (17). For the predictive maintenance ac-
tivity of machines, an initial maintenance vector Mdk = (md1k,md2k,⋯,

mdik, ⋯, mdhk), mdik = rand(⋅) is randomly generated, then a mainte-
nance node vector Mnk = (mn1k,mn2k,⋯,mnik,⋯,mnhk) wound be ob-
tained by the formula (18). 

Cvik = fix
(

mod (Raik, 2π)
/(

2π
m

))

+ 1 (17)  

mnik = mod (round(mdik), 2) (18)  

where m is the number of all machines in one workshop, fix(⋅), mod (⋅)
and round(⋅) are the quotient function, remainder function and rounding 
function, respectively. mnik = 1 means that the machine for machining 
the job i needs to be repaired before processing the job i, mnik = 0 means 
the machine for preparing machining job i does not need to be repaired 
before processing the job i, h is the difference between the number of all 
the same values and the number of the same value categories in the 
vector Cvk. Such principle of valuing can ensure that there is no main-
tenance insertion before the first machining position of all machines. 

In order to illustrate the discretization logic for Xk = {Sek,Prk,Rak,

Mdk} more clearly, we give the following numerical example: if the job 
number n = 6, the machine number m = 3, we can randomly generate 
the priority sequence vector Sek = (2.7901,4.5272,2.6809,1.3392,
3.8207, 5.0027) with n = 6 elements in the range of 1 to n = 6, the 
priority machining sequence vector Prk = (1.9004,3.0210,5.7248,
2.8977, 4.0091,2.7728) with n = 6 elements in the range of 1 to n = 6, 

and the radian vector Rak = (3.6701, 0.0499,6.2312,5.3382,2.1706,
4.2087) with n = 6 elements in the fixed range of 0 to 2π. Then, the 
priority sequence vector Sek will become the releasing permutation 
sequence vector Se′

k = (5.0027,4.5272,3.8207, 2.7901,2.6809,1.3392)
after the descending sort of Sek. In the same way, the sorted priority 
machining sequence vector Pr′

k = (5.7248,4.0091,3.0210,2.8977,
2.7728,1.9004) can be obtained by sorting Prk in the descending order. 
We can see the first element 5.0027 of Se′

k comes from the sixth element 
of Sek, then the first element of the releasing permutation sequence Sk is 
6. And the second element 4.5272 of Se′

k comes from the second element 
of Sek, then the second element of the vector Sk is 2. We can deduce the 
whole releasing permutation sequence Sk = (6, 2,5, 1,3, 4) from this. In 
the same way, we can get the whole permutation sequence vector Pk =

(3, 5,2, 4,6, 1) by the vectors Pr′

k and Prk. Sk = (6,2, 5,1, 3,4) means 
that the job release sequence is the job 6, job 2, job 5, job 1, job 3 and job 
4 in turn, and Pk = (3, 5,2, 4,6, 1) means that the job machining 
sequence before assigning to machines is the job 3, job 5, job 2, job 4, job 
6 and job 1 in turn. In addition, through the formula (17), the combi-
nation vector Cvk = (2, 1, 3,3, 2,3) can be gained. The element 1 in the 
vector Cvk is its second element, while the second element in the per-
mutation sequence vector Pk is 5, which means that the machine 1 only 
processes the job 5. Similarly, the element 2 in the vector Cvk is its first 
and fifth elements, while the first and fifth elements in the permutation 
sequence vector Pk are 3 and 6, which means that the machine 2 pro-
cesses the job 3 and job 6 in turn. In the same way, the machine 3 will 
process the job 2, job 4 and job 1 in turn. 

At this stage, for the vector Cvk = (2, 1, 3, 3, 2, 3), the number of 
element 1 is 1 (the machine 1 has one job to process), the number of 
element 2 is 2 (the machine 2 has two jobs to process), and the number 
of element 3 is 3 (the machine 3 has three jobs to process). So, without 
considering the maintenance for the machines with no jobs and only one 
job, there are a total of 5 insertable maintenance positions in the 
assumption that maintenance activities can only be inserted between 
consecutive machining positions or before the first machining position, 
as shown in Fig. 3a. In addition, inspired by the assumption that any 
machine is intact before its first machining position, it is not worth 
inserting 2 maintenance activities before the first machining positions 
on the machine 2 and machine 3. Thus, there are actually h = 5-2 = 3 
candidate maintenance positions in all for all machines in the kth learner 
(the kth solution). These three candidate maintenance positions are (1) 
between the job 3 and job 6 on the machine 2, (2) between the job 2 and 
job 4 on the machine 3, and (3) between the job 4 and job 1 on the 
machine 3. 

Then, the initial maintenance vector Mdk =

(0.3427,0.7461,0.2290) with h=3 elements in the fixed range of 0–1 
can be randomly generated. Through the formula (18), the maintenance 
node vector Mnk = (0,1, 0) will be got, which can decide which candi-
date maintenance position is really selected. The element 1 in Mnk in-
dicates being selected, while the element 0 in Mnk indicates no being 
selected. We can see that the element 1 is the second element of Mnk, 
that is, the second candidate maintenance position is selected. There-
fore, as shown in Fig. 3a, a predictive maintenance activity needs to be 
inserted before machining the job 4 on the machine 3, while the main-
tenance activity is not required before other machining positions. 

As mentioned above, considering the job-machine release time, 
Fig. 3b illustrates the said representative solution with a 6-jobs and 3- 
machines case. In conclusion, all independent variables that Xijk, Yjk 
and Vig in the discrete form in the proposed MIP model can be obtained 
indirectly according to the four continuous vectors Xk = {Sek,Prk,Rak,

Mdk} and the said conversion relationship. 
The discretization strategy of TLBO algorithm is to: (1) replace the 

job release sequence through the vector Se′

k in descending order of the 
first group of random consecutive values Sek; (2) replace the job 
machining sequence through the vector Pr′

k in descending order of the 
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second group of random consecutive values Prk; (3) take the random 
consecutive values Rak as dices, and then throw these dices to the radian 
interval [0-2π] where the job-machine combination will be determined 
by all landing points; (4) judge whether the random consecutive values 
Mdk is closer to 1, where triggering maintenance if the value is closer to 
1. 

The basic steps of the discrete TLBO algorithm are as following: 
Step 1: Randomly receive an unassigned order with n jobs and m 

machines; 
Step 2: Count the machining duration of all jobs, the release prepa-

ration duration of all jobs and the release time of all machines. Set 
hyper-parameters: the maximum number of iterations Tmax, the number 
of learners NI, the comprehensive weight λ for the enlistment age and 
the initial rated life of machine, the weight coefficient u for the 
machining penalty beyond RUL threshold; 

Step 3: Randomly generate NI groups of random vectors Sek, Prk, and 
Rak in a certain range; 

Step 4: Obtain NI discrete vectors Sk, Pk, Cvk and corresponding 
scalar h indicating the number of elements of Mdk; 

Step 5: Through NIMdk in the range of [0, 1] calculate Mnk; 
Step 6: Convert Sk, Pk, Cvk and Mnk to the form of Xijk, Yjk and Vig; 
Step 7: Receive the output of the RUL prediction model, and for each 

learner, calculate the release time of each job, the processing duration of 
each machining position, the enlistment age of machines after each 
machining position, the maintenance duration before each machining 
position, the candidate waiting time for jobs before each machining 
position and the completion time of each machining position in turn; 

Step 8: Calculate the objective functions (fitness functions) of all 
learners: the sum of the makespan and the machining penalty beyond 
RUL threshold; 

Step 9 (Teaching phase): Select the best learner (search point with 
the smallest fitness value) among all current learners as the teacher, 
update other learners’ knowledge by learning from the teacher (formula 
(15)), and the better learner between the original learner and the 
updated learner will be selected to enter the following learning phase. 

Step 10 (Learning phase): Learners learn interactively through group 
discussions to increase their knowledge levels by the formula (16), and 
then the better learner between the original learner and the increased- 
knowledge learner will be selected to enter the Step 4. 

Step 11: After the maximum number of iterations is met, output the 
job release sequence, the job allocation in each machine, the job pro-
cessing sequence and each maintenance starting point corresponding to 
the best learner in the Tmax iteration. 

4. Fault mode assited RUL prediction 

In this study, the proposed RUL prediction method is divided into 
four parts: (1) the fault mode diagnosis, (2) the determination of the first 
prediction time (FPT), (3) the training of multiple candidate RUL pre-
diction models based on degeneration data with multiple different fault 
modes and (4) predicting the RUL of monitored component after the FPT 
by using the RUL prediction model corresponding to the diagnosed fault 

mode. 

4.1. Fault mode diagnosis 

Here, we first extract the deep features from fault data through one- 
dimensional convolutional neural network (1D CNN), then classify these 
features with the cross entropy cost, and finally optimize all network 
parameters in each layer by using AdaBelif optimizer [43] until the 
maximum number of iterations is met. 

1D CNN has been extensively employed as a feature extractor to cope 
with the degradation data, which has a unified process: (1) data input, 
(2) deep feature extraction, (3) feature classification Fig.4. clearly shows 
the basic structure of 1D CNN, including a feature extractor and a 
classifier. In this paper, the feature extractor is structured by a stack of 
one-dimensional convolutional building blocks, consisting of a con-
volutional layer and a pooling layer, to learn deep fault features of raw 
degradation signals, where the convolutional layer aims to extract 
multilayer high-dimensional features, while the pooling layer aims to 
reduce the feature dimension and the time complexity. 

For each convolutional layer, it firstly uses a set of convolution 
kernels to convolve outputs of last pooling layer (the convolution objects 
are raw signals if the last layer is the input layer), and then applies an 
element-wise activation function on the outputs of convolution opera-
tions. Now, let kl ∈ RF×1×C×N and pl− 1 ∈ RH×1×C denote the convolution 
kernels and the input volume, respectively, where F × 1 is the size of 
convolution kernels, C is the number of input channels, N is the number 
of convolution kernels, and H is the length of the input volume. Math-
ematically, the nth feature of the lth convolutional layer xl

n can be got by: 

xl
n = σr

(
ul

n

)
(19)  

⎧
⎪⎪⎨

⎪⎪⎩

ul
n = kl

n ∗ pl− 1 + bl
n =

∑C

c=1
kl

n,c ∗ pl− 1
c + bl

n l ≥ 2

ul
n = kl

n ∗ x + bl
n =

∑C

c=1
kl

n,c ∗ xc + bl
n l = 1

(20)  

where σr(⋅) is the rectified linear unit (ReLU) activation function, ul
n is 

the output of convolution operations, kl
n is the nth convolution kernel, ∗

is the convolution operator, and bl
n is the bias term. 

For each convolution block, its pooling layer is placed after its 
convolution layer, and then, in this paper the max pooling is selected as 
the pooling operations to reduce the dimension of each output of acti-
vation function. The operations divide the features into several non- 
overlapping segments and return their maximum values according to 
the following rule: 

pl
i,n = max

{
xl

j,n

⃒
⃒
⃒p(i − 1)+ 1 ≤ j ≤ pi

}
(21)  

where i and j are the positional indexes, pl
i,n and xl

j,n are the elements of 
corresponding positions in the features pl

n and xl
n, respectively, and p is 

the height of the segment. 

Fig. 3. Two illustrations of representative solutions. (a) Candidate maintenance position. (b) Makespan timeline.  
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High-level features, containing more easily classified degradation 
information than shallow-level features, can be obtained by stacking 
convolutional blocks in order, and then the features in the last pooling 
layer are flatten into a one dimensional vector, which is the output of the 
first fully connected layer in the classier. Similar to the common neural 
networks, the features in the second fully connected layer are computed 
as follows 

xF2 = σr
(
wF2xF1 + bF2) (22)  

where wF2 and bF2 denote the weights and bias in the layer F2. 
The softmax function is applied in the last layer of the classier to 

predict the probability distribution of the fault modes for each sample by 

P
(
y= j

⃒
⃒xF2) =

exp
((

wF3
j

)T
⋅xF2 + bF3

)

∑k
j=1exp

((
wF3

j
)T ⋅xF2 + bF3

) (23)  

where P(y = j
⃒
⃒xF2) is the probability distribution of label j for a sample, 

wF3 and bF3 represent the weights and bias in the layer F3, respectively. 
As for the backward propagation of 1D CNN, the gradient descent 

algorithm AdaBelief [43], having both the fast convergence of Adam and 
the excellent generalization of Stochastic Gradient Descent (SGD), is 
applied to optimize all network parameters by minimizing the cross 
entropy cost: 

f = argmin
θ={w,b}

1
n
∑n

i=1
J(fai, f âi) (24)  

where n is the total number of samples, J(⋅, ⋅) is the cross entropy 
function, fai and f âi denote the real fault labels and predicted fault la-
bels, respectively. 

4.2. FPT determination 

The international standard ISO 2372 [44] has gave an industry 
standard for mechanical vibration: when RMS value of the medium 
mechanical vibration signal reaches 2.0–2.2 g, the monitored compo-
nent is on dangerous ground, while other time domain characteristics 
are still lack of unified definition standard. Moreover, different from the 
stable degradation stage when RMS value maintains a little fluctuation, 
in the late stage of degradation, RMS value will rapidly increase and 
shake because that the component damage has severely affected the 
normal operation of machines. Therefore, it is reasonable to regard RMS 
value as the health indicator (HI) of machines, which can meet the de-
mand for the tracking metric and dimension reduction, as shown in the 
formulae (25) and (26). 

HI = {H0,H1,H2,…,Ht} (25)  

⎧
⎨

⎩

Ht =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Ws∗t+Sl

j=Ws∗t

(
xj
)2

/

Sl

√
√
√
√

s.t.xj ∈ XWs∗t→Ws∗t+Sl

(26)  

where t is the index of sliding window of signals for RMS, Ht denotes the 
health indictor (RMS) in the tth period of degradation data, Ws and Sl 
are the step size and window length of signals for RMS, respectively. 

The current HIs may have some random fluctuations caused by raw 
signals with environmental impacts and measurement errors, as shown 
in Fig. 5(b), which will result in the possible dispersion of RUL predic-
tion results. Isotonic regression (IR) [45], which can remove all 
descending sections, is introduced to solve this problem. 

Firstly, define a finite set of real numbers y = {y1, y2,…, yc} repre-
senting the observed response and an ordered unknown response set h =

{h1,h2,…,hc}. Then, train a model to minimize the following weighted 
sum of squared errors: 
∑c

i=1
wi(yi − hi)

2
, s.t.h1 ≤ h2… ≤ hc (27)  

where wi is the weight of the ith observed response, c is the number of 
responses, y denotes the original HIs, and h is the processed monotonous 
HIs, which is what we need. 

A number of optimization approaches have been used to solve the IR 
optimization problem, in this study, a common method Pool-Adjacent- 
Violators (PAV) [45] is considered to acquire monotonous h. Firstly, 
we need to judge whether y is monotonous. If y is monotonically 
increasing, then h=y, otherwise, (resp. yi>yi+1), the two responses will 
be replaced with their weighted mean Wmi, and the two weights wi and 
wi+1 are also replaced by their sum Smi: 

Wmi =
yiwi + yi+1wi+1

wi + wi+1
(28)  

Smi = wi + wi+1 (29) 

Next, if y1≪…≪yi− 1≪Wmi≪…≪yc, then hi = hi+1 = Wmi, and hj =

yj,j ∕= i,i+ 1. Then, if the current series is not isotonic, then the formulae 
(28) and (29) should be repeated until a sequence with global mono-
tonicity is obtained, which is consistent with the physical performance 
degradation process of machine vulnerable systems. Here, we can use 
the monotonic HI paths for reliable stage division and FPT determina-
tion to economically predict the RUL of machines. 

Finally, we use a comparison of the degradation increment per unit 
time with a given increment threshold to detect FPT. When the incre-
ment per unit time is lower than the given threshold ϑ, the monitored 
components are still at the health stage, while when the increment per 
unit time exceeds the threshold ϑ, they are regarded as entering the 
rapid degradation stage. In other words, the left side of the time period 
when the threshold is first exceeded is the FPT point. The specific pro-

Fig. 4. The illustration of 1D CNN.  
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cess is as follows: a sliding window Ri = {hi,…, hi+g− 1} with g points is 
constructed from monotonous HIs, and the slope ϑi of HI segment in the 
sliding window Ri is fitted using least square method (LSM), as shown in 
the formula (30). For each window Ri, the fitted slope ϑi is compared 
with the given threshold ϑ, if ϑi ≤ ϑ, meaning that it is at the health 
stage, the sliding window will slide with a certain step p and accept new 
degradation features in h. This step will be repeated until the time period 
when ϑi > ϑ. At this time, the first time node of Ri is taken as the 
boundary point of degradation stage and then FPT is determined. 

ϑi =

∑i+g− 1
j=i tjhj −

1
n

∑i+g− 1
j=i tj

∑i+g− 1
j=i hj

∑i+g− 1
j=i t2

j −
1
n

(∑i+g− 1
j=i tj

)2 (30)  

where tj is the corresponding time point of hj. 

4.3. RUL prediction 

Gate recurrent unit (GRU) is used to predict the RUL in this paper. 
The GRU network uses the hidden state k to memorize the historical 
fault knowledge regularly, where it only has two gates: a reset gate and 
an update gate. As shown in Fig. 6, the update gate function is to 
distinguish what degradation information should be kept in mind and 
what information should be discarded appropriately, while the reset 
gate function is to decide what to keep from the learned knowledge. The 
detailed derivation of GRU is as follows. 

In Fig. 6, ks and os denote the hidden state and the observation state 
in the sth time period. The input of prediction model hs is a nonover-
lapping segment divided from the health indicator H(t), hs ∈ H(t). The 
hidden state ks can be obtained by exploring the relationship between 
the current model input hs and the hidden state ks− 1 in the last period. 
Obviously, ks contains the current degradation information and the 
historical degradation information in the last time period. As an anal-
ogy, the current hidden state ks covers all historical information. Thus, 
GRU network can be utilized to analyze and learn some time-related 
sequence data. Specially, its reset gate rs is introduced to control the 
historical information content to be propagated from ks− 1 to ̃ks, where ̃ks 
is the hidden state candidate at the sth time period. If rs = 0, then the 
entire historical information is dismissed, while rs = 1, then the whole 
historical information is used. 

rs = σ(Wrkks− 1 +Wrhhs) (31)  

where σ(⋅) is the sigmoid function, Wrk and Wrh are the weights for ks− 1 
and hs, respectively. 

Similarly, the update gate zs helps the model decide how much in-
formation from the past should be passed on to the future. The greater 
the update gate, more historical degradation information is transferred. 
It can be obtained by (32). 

zs = σ(Wzkks− 1 +Wzhhs) (32)  

where Wzk and Wzh are the weights for ks− 1 and hs, respectively. The 
added hidden state candidate k̃s is calculated by (33). 

k̃s = tanh(W
k̃h

hs +W
k̃k
(rs ⊙ ks− 1)) (33)  

where W
k̃h 

and W
k̃k 

are the weights for hs and rs ⊙ ks− 1, respectively.⊙
represents the element-wise multiplication. 

The hidden state in the sth time period ks and the final predicted RUL 
can be gained by the formulae (34) and (35): 

ks = (1 − zs) ⊙ ks− 1 + zs ⊙ k̃s (34)  

RULs = σ(os), os = σ(Woks) (35)  

where Wo are the weight for ks. It can be seen from the formulae in the 
process of forward propagation that the parameters to be learned are 
Wrk, Wrh, Wzk, Wzh, W

k̃h
, W

k̃k 
and Wo. After getting theRULs, we can 

acquire the total loss E of a single sample at all time periods. 

E =
∑S

s=1

(
RULreal

s − RULs
)2
/

2 (36)  

where S is the total number of time periods, and RULreal
s is the real RUL 

value in the sth time period. 
All the hyper-parameters involved in the above process, e.g. the 

window length g, the sliding step p and the increment threshold ϑ, etc., 
are related to the application environment and dynamic characteristics 
of the system in which they are located. Normally, we need to use a large 
amount of historical degradation information to analyze the relationship 
between the increment per unit time and the stage division, and then 
determine them appropriately. In conclusion, the fault mode assisted 

Fig. 5. The diagram of random fluctuation. (a) Raw signals. (b) RMS.  

Fig. 6. The sketch maps for GRU. (a) Unexpanded diagram. (b) Expanded diagram.  
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GRU method (FGRU) is shown in Fig. 7. 
The summary is as follows: multi GRU networks are trained to esti-

mate RUL of monitored component offline, where reset gate discards 
some irrelevant history information, and update gate controls the his-
torical degradation information content to be propagated from the last 
hidden state to the current hidden state. The major theme of RUL pre-
diction module is that one GRU model corresponds to one kind of fault 
mode, that is to say, after FPTs of all samples are detected, each GRU is 
used to model one degradation path under one fault mode, and then 
multiple predicted RUL candidates are obtained. Finally, a unique pre-
dicted RUL value as final result output is selected from these RUL can-
didates based on the current diagnosed fault mode, as shown in Fig. 8. 

The following algorithm # gives the detailed procedures of the 
proposed method 

5. Case study 

To verity the practicability and effectiveness of the proposed 
approach, we carry out two degeneration cases for RUL prediction and 
three simulation data for the joint decision-making. All of models and 
algorithms were coded in Matlab 2018 and ran on a personal computer 
with a 2.10 GHzn2 CPU and 4.0 GB RAM. In the first degeneration case, 
an accelerated degradation test platform for roller bearings regarded as 
a vulnerable part of machine was built, and the vibration signals were 
collected online to access their degradation status. In the second 
degeneration case, XJTU-SY bearing datasets [46] were used to further 
validate the stability of our method by comparing with other common 
RUL prediction methods. In the simulation data test of means of pro-
duction, this paper compared the joint decision-making method with 
periodic maintenance strategy and other preventive maintenance 
methods. The detailed test processes are described below. 

5.1. Test configuration and data discription 

In the two degradation cases, it is considered that all bearings will 
fail completely when the amplitude of the collected signals is 10 times 
higher than that of stationary stage. The loads and speeds of two 
degradation cases are shown in Table 1. The test configurations of FGRU 
and joint decision-making are shown in Table 2, and the simulation data 
about jobs and machines are shown in Table 3, where RUL data includes 
XJTU-SY and own data not described above. 

In the first case, a simplified test-bed was established to accelerate 
the bearing degradation (reinforced SKF6205). As shown in Fig. 9a, the 
accelerated degradation test bed consisted of a three-phase motor, a 
support bearing, a roller bearing for testing, a rotating shaft with 
coupling and a hydraulic load system. The adjustable load was loaded 
onto a test bearing through an ejector. The horizontal and vertical 
mounted accelerometers were utilized to collect vibration signals in the 
intersection direction. The 3-phase motor was the exclusive motive 
source, whose speed was set and regulated by its speed controller. As 
shown in Table 1, three intact bearings (R1, R2, R3) were used to 
perform the first test. The sampling frequency was 25.6 kHz, and the 
sampling interval and duration were designated as 1 min and 1.28 s. 
After testing, we got three fault modes: (1) combined failure of cage and 
ball on R1 with the lifetime of 1639 min, (2) outer ring fault on R2 with 
the lifetime of 61 min, and (3) inner ring fault on R3 with the lifetime of 
340 min. Thus, we built three GRU networks corresponding to these 
three kinds of degradation data. Partial degradation data were shown in 
Fig. 5(a). In the second case, XJTU-SY datasets were applied to further 
access the generalization of our method by comparing with three com-
mon methods. Similarly, the layout of test bench was shown in Fig. 9b, 
where five bearings (LDK UER 204) (B1-1, B1-2, B1-3, B1-5, B3-5) were 
subjected to degradation tests. The test-bed consisted of a drive motor, a 
support bearing, a testing bearing, a rotating shaft and a manual 

Fig. 7. The procedure of FGRU.  
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hydraulic system. The sampling interval and duration were set as 1 min 
and 1.28 s, and the sampling frequency was 25.6 kHz. After testing, we 
got two fault modes: (1) outer ring fault on B1-1 with the lifetime 123 
min, B1-2 with the lifetime of 161 min, B1-3 with the lifetime of 158 min 
and B3-5 with the lifetime of 114 min, (2) compound fault of inner and 
outer ring on B1-5 with the lifetime of 52 min Fig. 10. showed partial 
life-cycle vibration signals in the second case. In this study, Encoder- 
decoder RNN (ED-RNN) [47], Bidirectional LSTM (Bi-LSTM) [48] and 
single GRU are selected as the comparison models. Their configurations 
are similar to that of the proposed method. 

5.2. Experiment results and analysis for FGRU 

In this section, we focus on the feasibility and superiority of FGRU 

prediction model according to the method process and comparison 
methods. For FPT determination, Fig. 11 shows partial RMSs (original 
HIs) of bearings in two degeneration cases. It is seen clearly that there 
are a lot of random fluctuations in the original HIs. After IR processing, 
all fluctuations are eliminated completely and the degradation trend 
shows a monotonous growth Fig. 12. presents the fitted degradation 
gradients of processed HIs of three bearings in the first case for FPT 
determination. 

According to Fig. 12, the FPTs of three bearings in the first case are 
1072 min, 3 min and 257 min, respectively. Next, we will train a fault 
diagnosis model, 1D CNN, to obtain the prior knowledge of degradation 
modes online. The diagnosis performance can achieve 100 and 99.6% 
accuracy on the training set and the testing set, which is very promising 
for the subsequent selection of GRU models. Finally, according to the 
diagnosis results, we can choose a unique GRU prediction model trained 
by corresponding fault data after FPT to predict RUL of bearings online. 
The future degradation patterns of above three bearings are shown in 
Fig. 13. In Fig.13, considering that each predicted RUL curve after its 
FPT is not immediately lower than its RUL threshold, and all FPT points 
are within the first 90% of corresponding life cycles, the predicted RUL 
of the last 10% of life cycle is used here as a display of the fast degra-
dation stage to highlight useful features. It can be clearly seen that the 
predicted RULs coincide well with the curve of real RUL, which can 
provide important dispatching guidance and sufficient time preparation 
for preventive maintenance planning. Moreover, we assume that RULs 
of bearings before their FPTs are replaced by the RULs at the FPTs, 
which does not affect the RUL prediction accuracy in the fast degrada-
tion stage whether in the testing sets or the training sets. Furthermore, 
ED-RNN, Bi-LSTM and Single GRU are also used to compare the pre-
diction accuracy and the prediction divergence of the proposed method 
after FPT point. Kyunghyun et al [47]. proposed the ED-RNN in 2014 
whose structure does not limit the sequence length of input and output, 
so it has a wide range of applications. Bi-LSTM combines the information 
of the input sequence in the forward and backward directions, and has 
achieved good results in the application scenarios of natural language 
processing and text translation. 

In Fig.13(a, b), all methods follow the trend of observed values, and 
their predicted degradation trend is more intensive than the observed 
values. Especially, in terms of congruence, the RMS and RUL predicted 
by our method are more close to the center line of the actual dispersion, 
because that the proposed model has already known the fault type of the 
input degradation trajectory before prediction, and made the necessary 
selection of candidate prediction models. On the surface, the prediction 
result of single GRU is the most consistent with the observed value, but it 
is also caused by its large dispersion, in the actual operation of machine 
tool maintenance scheduling, which is very easy to trigger false alarm of 
machine failure. The RUL prediction of ED-RNN and Bi-LSTM is too 

Fig. 8. The procedure of multiple GRU networks.  

Table 1 
Loads and speeds of two degradation cases.  

Number R1 R2 R3 B1-1/2/3/5 B3-5 

Load (kg) 500 1000 1000 1200 4000 
Speed (Hz) 20 35 30 35 10  

Table 2 
Test configurations of the proposed method.  

Parameters Values Parameters Values Parameters Values 

Epoch1 of 1D 
CNN 

180 Number of 
jobs 

20 Channel 
number in 
Conv2 

20 

Epoch2 of 
GRUs 

250 Initial θ of 
1D CNN 

0.01~0.03 Number of 
GRUs/fault 
modes 

3 

Epoch3 of 
TLBO 

1500 Weight for 
processing 
penalty u 

50 Number of 
learners 

300 

Sample length 
in 1D CNN 

1200 Initial θ of 
GRUs 

0.01~0.03 Number of 
machines 

4 

Iterative 
number of 
IR 

300 Neuron 
number in F1 
of 1D CNN 

5940 Bias size in 
Conv1/2 

20 × 1 

Learning rate 
of 1D CNN 

0.001 Neuron 
number in F3 
of 1D CNN 

3 Batch of 1D 
CNN 

50 

Number of 
convolution 
blocks 

2 Pooling size 2 Number of 
kernels 

20 

Neuron 
number in 
F2 of 1D 
CNN 

256 Channel 
number in 
Conv1 

1 Size of 
kernels 

5 × 1  
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conservative, where, at the life end of R1 bearing, it is still considered 
that there is a service life of about 350min, on the one hand, because that 
the sliding window for RMS we initially set is somewhat long and the 
dimension of available data is small enough, and the self-encoder ag-
gravates the disappearance of feature details through dimension 
reduction, on the other hand, the existing fault state of R1 bearing is only 
related to the historical degradation trend, which is contrary to the 
original design intention of Bi-LSTM. 

In Fig.13(c, d), it is clear that the performance degradation trend 
predicted by all prediction methods is no longer obvious, and seems that 
there is no rapid degradation stage here. This is not the problem of 
prediction models themselves, but the problem of the degradation data 
itself Fig.11.(b) can explain the phenomenon perfectly, where the slope 
of the degradation trend of R2 bearing does not increase significantly 
throughout the accelerated degradation test. That means that the his-
torical degradation data of R2 bearing contains a smaller difference in 
the degradation trend at different times than that of R1 bearing, which 
makes it more difficult for the prediction models to extract the historical 
degradation features. Moreover, the vibration amplitude fluctuation of 
R2 bearing rises sharply when the life is about to end, when this piece of 
data is generally used as a prediction model test set, it further exacer-
bates the dispersion of the prediction results of the comparison methods. 
Our method happens to select the degradation mode that is closest to the 
real state of the bearing at each time period, and absorbs enough 
degradation trend characteristics, so the aggregation is better than the 
comparison methods, and its predicted degradation curve basically 
hoveres near the observed RUL curve. 

In Fig.13(e, f), the output effect of the ED-RNN model is the worst 
among the four methods. Its point cloud center line is similar to a hor-
izontal line, which hardly shows any degradation information of R3 
bearing, due to its inherent characteristic of ignoring long-term degra-
dation information and feature blinding of data encoding preprocessing. 
The Bi-LSTM model can independently and comprehensively weighs the 
effect of long-term and short-term historical degradation information on 
the future degradation information, which is consistent with the reality 
that the current actual degradation state of the bearing is affected by all 
historical degradation states. Therefore, its prediction effect is slightly 
improved, and the output point cloud is more biased towards the fitted 
center line of the observed value. For the single GRU model, without 
considering the dispersion, it is the most consistent with the real 
observation point cloud, but this aptitude has almost no practical sig-
nificance, which is just to be closer to the normalized RMS dispersion. 
The original intention of our prediction is to bring the results closer to 
the degradation trend of normalized RMS. Obviously, the single GRU 
model has worked in the wrong direction here. On the contrary, the 
FGRU model recognizes this point. Although it also failed to follow the 
pace of real RUL in the later stage, its dispersion problem has been better 
solved, because it has learned a large amount of prior degradation 
knowledge that can be one-to-one with the candidate GRU models, is 
still the most excellent method among them. Ulteriorly, in addition to 
the qualitative analysis, we use RMSE and Mean Absolute Error (MAE) 
to quantitatively analyze the errors of all predicted RUL values over the 
life cycle. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
S

∑S

s=1

(
RULreal

s − RULpredict
s

)2
√

(37) 

Similarly, FPTs of the five bearings in the second case are first 
detected by IR, whose results are shown in Table 4. Then, the diagnosis 
performance of fault mode estimator gets the accuracies of 100% and 
98.4% on training sets and testing sets, respectively, which is sufficient 
for selecting the correct life prediction model. Here, taking B1-1, B1-2, 
B1-3, B3-5 and B1-5 as five examples, we use the above three compar-
ison methods and FGRU to predict their RULs. The experiment results of 
B1-5 are shown in Fig. 14. We can see that the prediction errors of our 
method are better than those of other methods. The prediction results of 
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Fig. 9. The test bed layout in the two degeneration cases. (a) The first case. (b) The second case.  

Fig. 10. The signals in the second case. (a) The horizontal direction of B1-2. (b) The horizontal direction of B1-3. (c) The horizontal direction of B1-5. (d) The vertical 
direction of B3-5. 

Fig. 11. Data preprocessing using IIR where the blue line is the original HIs while the green line is the processed HIs. (a) R1. (b) R2. (c) R3. (d) B1-1. (e) B1-2. (f) 
B1-3. 
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Fig. 12. The appropriate FPTs for three bearings in the first case where the red line is the given slope threshold and the blue line is the fitted slope. (a) R1. (b) R2. 
(c) R3. 

Fig. 13. RMS and RUL curves in the first case. (a,c,e) Normalized observed RMS value and predicted RMS value of R1, R2 and R3 bearings. (b, d, f) Real RUL value 
and predicted RUL value of R1, R2 and R3 bearings. 
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ED-RNN and Bi-LSTM are also not ideal in the test, where there is a huge 
difference between the predicted and real value. That cannot provide 
effective guidance for subsequent production scheduling. The reasons 
are that: (1) ED-RNN has insufficient control over historical information 
from a long time ago, and only has the memory ability to the recent 
historical information. Especially in the later stage of bearing degrada-
tion, the defect of local concerning makes the prediction deviation no 
longer follow the actual degradation path. (2) Bi-LSTM insignificantly 
combines the input of backward LSTM on the backward LSTM in terms 
of the degradation prediction of rotating machinery without forward 
and backward correlation, unintentionally causing the true future 
degradation states of the bearing to incorrectly affect the predicted 
future degradation state. 

Furthermore, the difference between the predicted and true RUL 
from the single GRU model is significantly improved compared with the 
previous two methods in the later life, but it is still not as good as FGRU. 
Nevertheless, it is worth noting that our method on this bearing lags 
behind the results of single GRU in terms of stability and dispersion, 
indicating that there is still room for improvement in the generalization 
of FGRU. The advantages of FGRU are mainly derived from the ability to 
judge failure modes in advance, and then to choose the appropriate life 
prediction model from multiple GRUs based on the predicted modes, 
instead of predicting RUL using a single model. Naturally, the multi- 
model strategy improves the generalization ability for the changing 
degradation paths, which is favorable especially in real industry prog-
nosis applications. Furthermore, for the quantitative analysis of per-
formance differences, the RMSE, MAE and testing times for the predicted 
RULs of five bearings in the proposed method and the compared 
methods are summarized as Table 5, where all the experiments are 

repeated for 10 trails to reduce randomness and only the predicted 
values after FPT point is calculated. It can be seen that the evaluated 
errors of the proposed method are the smallest and the prediction 
robustness is the most outstanding among the methods mentioned. And 
FGRU model generally achieves also a greater prediction performance 
on five bearings in the second case than the comparison methods. Spe-
cifically, for testing bearing B1-1, the prognosis performance with 
respect to the RMSE metric improved by approximately 45.54%, 31.51% 
and 6.18% compared to the ED-RNN-based, Bi-LSTM-based, and Single 
GRU-based models, respectively. For testing bearing B1-2, the forecast 
performance with respect to the MAE metric improved by about 21.5%, 
30.90% and 9.17% compared to above comparison methods. For the 
rolling bearing B1-3, the prediction performance with respect to the 
RMSE metric improved by almost 45.70%, 51.02% and 9.04% compared 
to the three comparison methods. For the testing bearing B3-5, the 
performance also increases by 47.27%, 48.31%, and 11.77%, respec-
tively. Unfortunately, the running time of the proposed method, e.g. 
offline testing time (resp. training time), almost is the longest one among 
that of the four methods, which is naturally affected by the sophisticated 
network structures of fault mode diagnosis model and multi GRUs. Note 
that the workshop scheduling is generally in the unit of day or month, 
therefore, when compared with the EDRNN-based model, Bi-LSTM- 
based model and Single GRU-based model, the additional running 
time of the proposed method is acceptable. 

5.3. Experiment analysis for joint decision-making 

In this section, for the joint optimization of parallel machine 
scheduling and predictive maintenance, we compare it with the 
following two mature meta-heuristic algorithms and two common pro-
duction scheduling modes in actual production: (1) Cuckoo Search al-
gorithm (CS) [49], (2) Adaptive weighted Particle Swarm Optimization 
(PSO) [50], (3) Joint decision-making with regular maintenance (RM), 
(4) Integrated decision-making no incorporating RUL of machines 
(NoRUL). Here, all methods are optimized for 900 iterations, and the 
solution dimension is 80 dimensions. The lower bounds of the generated 

Table 4 
FPTs and lifetimes of bearings in the second case.  

Bearings B1-1 B1-2 B1-3 B1-5 B3-5 

Lifetime (min) 123 161 158 52 114 
FPT (min) 75 32 58 35 6  

Fig. 14. RUL and RMS curves of B1-5. (a) RMS. (b) RUL.  

Table 5 
RMSE, MAE of predicted RULs and testing times from four life prediction models.  

Bearings B1-1 B1-2 B1-3 B1-5 B3-5 

Metrics RMSE MAE Time (s) RMSE MAE Time (s) RMSE MAE Time (s) RMSE MAE Time 
(s) 

RMSE MAE Time (s) 

ED-RNN 33.520 27.832 162.459 40.528 34.971 231.822 36.526 32.987 152.437 8.184 7.450 75.436 44.886 34.254 162.936 
Bi-LSTM 26.653 22.858 198.221 45.371 39.730 230.069 40.518 31.735 246.184 7.471 6.533 80.628 44.112 34.946 212.704 
Single 

GRU 
19.457 17.077 157.197 33.798 30.217 226.065 21.817 19.921 163.760 5.302 4.491 66.983 24.941 20.471 152.952 

FGRU 18.254 16.375 203.293 29.091 27.445 259.802 19.844 17.006 168.893 5.213 4.099 78.322 23.441 18.062 236.548  
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vectors of job release sequences, job processing sequences, job-machine 
combination and maintenance nodes are 1, 1, 0 and 0, and the corre-
sponding upper bounds are 20, 20, 2π and 1, respectively. The shared 
penalty coefficient u for processing jobs beyond the RUL threshold is set 
as 50. The hyper-parameters of the comparison methods are set as fol-
lows: (1) the nest-finding probability and Levi random path coefficient 
of CS are set as 0.25 and 1.5, (2) the acceleration coefficient, speed upper 
limit, speed lower limit, inertia weight upper limit wmax and inertia 
weight lower limit wmin of the adaptive weight PSO method are set to 
1.49445, 0.15 times the upper limit of the individual value, 0.15 times 
the lower limit of the individual value, 0.90 and 0.008, respectively, and 
the way of adaptive weighting is shown in the Eq. (38), (3) according to 
the current usage and maintenance habits of machines, the joint 
decision-making with regular maintenance preliminarily assumes that 
machines with less than 5 jobs are only maintained before processing the 
last job, while those with more than 4 jobs are maintained all before 
processing the last three jobs, and all maintenance durations of all ma-
chines are set to 40 min in the first/second cases and 25 min in the third 
case, which is not affected by the enlistment age of machines. Moreover, 
its optimization algorithm still uses the discrete TLBO, (4) unlike the 
RM, there are no restrictions on the maintenance nodes of machines in 
the NoRUL method, which are select independently by optimization 
algorithm. The same is that all maintenance durations of all machines 
are 40 min in the first/second cases and 25 min in the third case, and the 
optimization algorithm is the discrete TLBO. 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w(t) = (wmax − wmin)
1
n

∑n

i=1
Si(t) + wmin

Si(t) =

{
1, f (t)(xi) < f (t− 1)(xi)

0, f (t)(xi) ≥ f (t− 1)(xi)

(38)  

where w(t) is the adaptive weight in the tst iteration, w(1) = 0.80, Si(t) is 
the success function of particle, when the t-round fitness function is 
better than the t-1-round fitness function, it is 1, otherwise it is 0. 

After such optimization adjustment for the proposed method, we will 
get the best combination of processing/release sequences, matching 
relationships and the maintenance nodes. This combination can reliably 
ensure that all jobs are processed within the machine RUL threshold 
because of the large penalty ratio coefficient u, and then we can get a 
satisfactory makespan. Table 6 shows the processing details of simula-
tion data in the first group formed by the combination of optimized 
outputs of the proposed method. It can be seen that, without considering 
the job waiting, the items on the 1st machine are the job 17, job 5, job 8, 
the first maintenance, job 9, job 14 and job 10 in turn. The items on the 
2st machine are the job 2, the first maintenance and job 12 in turn. The 
items on the 3st machine are the job 13, the first maintenance, job 20, 
the second maintenance, job 3, job 18, job 6, the third maintenance, job 
19 and job 15 in turn. Likewise, the items on the 4st machine are the job 
7, the first maintenance, job 4, job 1, the second maintenance, job 11, 
the third maintenance and job 16 in turn. Therefore, the feasibility of the 
proposed method is proved. What needs to be clear is that, in the pro-
posed method, the maintenance duration is jointly determined by the 
rated RUL of machines (original RUL) and the current enlistment age, 
where the rated RUL is determined independently by the manufacturers 
or the business owners. 

In order to further illustrate the superiority of the proposed method, 
we conducted four comparison experiments on a computer with the 
same simulation data. Except for the differences in parameters and 
optimization structure described in the previous section, the model 
structures of the five methods are always consistent in the writing, 
whose fitness function changes are shown in Fig. 15. From Fig. 15a, we 
can obviously see that the PSO algorithm with adaptive weights can first 
reach the minimum fitness function value (the 20th iteration), but its 
result is not convergent, and even the fitness value of 4000 is obtained in 
about the 200th iteration. According to the characteristics of our Ta
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objective function, there are two main reasons for divergence: (1) 
Although the proposed model converts the discrete permutation and 
combination numbers into the continuous values of being able to count 

and multiply in advance, the mapping relationship between the 
continuous inputs and fitness function is still not a continuous function, 
and local maxima and minima widely exist in the mapping relation. This 
is the opposite of PSO focusing on continuity optimization problems. (2) 
The adaptive weight of PSO in this experiment is very sensitive to the 
proportion change of better individuals in each round of iteration, which 
is also called the individual success ratio. It has more randomness in the 
special knapsack problem of permutation and combination with 
scheduling and maintenance constraints, and cannot adaptively weigh 
the speeds of the old and new individuals as presented in the original 
contribution. Next, in Fig. 15b, we can see that the convergence of CS 
algorithm has improved a lot, but it fell into a local minimum at the 
473th iteration and stuck to it for a long time, which climbed out of the 
abyss at the 746th iteration when its fitness function decreased to 502, 
but it is still slightly inferior to discrete TLBO algorithm at that time. CS 
algorithm looks for the bird nest through Levi flight, which is a random 
walk composed of small step flight with short-distance and occasional 
large step flight with long-distance. Therefore, the nest seeking path of 
cuckoo is easy to jump between different search areas, resulting in the 
poor local fine search ability. The early optimization effect of integrated 
decision under NoRUL mode is analogous to that of CS algorithm. The 
difference is that it has a faster convergence rate where it has already 
converged at the 162nd iteration. However, for the more important 
fitness function for practical applications, the NoRUL mode is even more 
unsatisfactory, where it only obtained a fitness value of 570. The NoRUL 
model assumed that the maintenance duration is constant, which is not 
in line with ideal maintenance where the maintenance duration of ma-
chine with a long running time is generally longer, and the maintenance 
duration of machine with a shorter rated RUL is generally shorter, where 
the NoRUL model is indeed an assumption in the previous literature. 
Consequently, the result of this greater fitness value shows that it is a 
good idea to introduce the enlistment age and initial rated RUL to 
evaluate the maintenance duration. The optimization performance of 
RM mode is the worst among the five methods, and it converges at the 
408th iteration when the maximum converged fitness value of 623 
among the five methods is obtained. The regular maintenance mode 
neither considers the maintenance duration flexibility, but also believes 
that the maintenance operation is only carried out at a fixed time period, 
which is also the common operation and maintenance process in tradi-
tional industrial enterprises, being far behind the requirements of 
emerging smart factories and unmanned workshops. 

For the proposed joint decision-making method, it obtains the best 
optimization performance both in terms of the convergence speed (the 
190th iteration) and the fitness value 479. In addition, according to the 
measured data, the penalty items of processing jobs beyond RUL 
threshold after the fitness convergence are all zeros, that is, each ma-
chines will process jobs within its RUL threshold, so the fitness after 
convergence is only the makespan, which is also the smallest one among 
that of five methods, further verifying the effectiveness and superiority 

Algorithm # 
FGRU model and joint decision-making model.  

Input: N run-to-failure degradation datasets Xn of components failing in multiple fault 
modes, n ∈ {1,2,…,N}, for training. Run-to-failure datasets Xt for testing. Hyper- 
parameters of CNN (e.g. epoch1). Hyper-parameters of GRU (e.g. epoch2). Length Sl 
and step size Ws of sliding window for RMS. Length g and step size p of sliding 
window for LSM. Slope threshold ϑ. Hyper-parameters of IR, Initial population of 
discrete TLBO, Parameters for machines and jobs (in minutes). 

Output: RUL of Xt, Job release sequence, Production sequence, Maintenance nodes, 
Job-machine combination. 

1. Data processing for FPT: Shape Xn and Xt into cellular arrays with the same length. 
2. HI extraction: Get all RMSs series of Xn and Xt. 
3. Iterative isotonic regression: Monotonize RMSs of Xn and Xt. 
4. Fitting increment: Get slope of each monotonous HI segment of RMSs by LSM 

algorithm. 
5. Slope comparision: Compare the slope of each HI segment with the given constant 

threshold in chronological order. 
6. FPT detection: Get the first prediction time when the fitted slope exceeds the given 

threshold for the first time. 
7. Initialization: Construct 1D CNN and multi-GRU networks to be trained. 
8. Data processing for 1D CNN: Label Xn and Xt after FPT and normalize them. 
9. % 1D CNN Training 
10. for i = 1:epoch1 do 
11. Input random small-batch samples from processed Xn into 1D CNN; 
12. Updating parameters of 1D CNN by minimizing (24) and AdaBelief. 
13. end for 
14. Input all samples from processed Xt into trained1D CNN. 
15. Get diagnosed fault modes of Xt. 
16. Data processing for GRU: Normalize HIs of training and testing samples after the 

FPT point. 
17. %% Multi-GRUs Training 
18. for j = 1:epoch2 do 
19. Input normalized HIs of training samples after FPT into multiple GRUs along with 

the known fault modes; 
20. Update all parameters of multi-GRUs by minimizing (39) and AdaBelief. 
21. end for 
22. % RUL Prediction 
23. Input normalized HIs of testing samples after FPT into multi-GRUs along with the 

diagnosed fault modes. 
24. Select the corresponding GRU network and output the predicted RUL value by  

(38). 
25. %% Joint decision-making 
26. Establish initial population with job production/release sequences, maintenance 

nodes and job-machine combination by a series of discrete codes. 
27. While the maximum iteration is not met do 

28. Generate Xijk, Yjk, and Vig based on this round of population; 
29. Each maintenance duration and processing duration beyond RUL threshold of each 

machine in all learners, release time of all jobs, the compl-etion time of each 
position are calculated; 
30. Calculate the total objective function (3); 
31. Enter the teaching phase and the learning phase in turn by the formulae (15), (16), 

then update all continuous variables, encrypt them to get new job production/ 
release sequences, maintenance nodes and job-machine combination; 

32. end.  

Fig. 15. Comparison of optimization algorithms for joint decision-making in the first simulation case. (a) PSO. (b) CS, RM, NoRUL and discrete TLBO.  
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of the discrete TLBO-optimized and RUL-integrated workshop sched-
uling planning considering the predictive maintenance. In conclusion, 
compared with the other four approaches, either separating the RUL 
prediction of machines and maintenance operations or neglecting the 
uncertainty of maintenance nodes will lead to the deviation on decision. 
Furthermore, the Gantt charts of the near-optimal joint production and 
preventive maintenance planning using four methods and the job release 
time using discrete TLBO algorithm are given in Fig. 16. It can be seen 
from the solutions that each job can be completed as soon as possible 
within the RUL threshold to ensure the finished product mass. For all 
that, all the solutions obtained by four methods are obviously distin-
guished from each other in the makespan, where, the CS algorithm 
gained the longest makespan 1593 min, followed by 1558 min gained by 
the RM, 1480 min gained by the NoRUL and the shortest makespan 
1422 min jointly gained by the discrete TLBO algorithm and the said 
MIP model. The proposed method is about 10.7 percentage points better 
than the model with the worst makespan (1593 min). The cumulative 
maintenance durations of the integrated schemes obtained by all com-
parison methods are 238 min from our method, 316 min from the CS 
algorithm, 320 min from the NoRUL mode and 480 min from the RM 
mode in ascending order, respectively. Thus, the maintenance occupa-
tion rate of the integrated scheme from our method in the whole order 
cycle is 16.7%. 

Another obvious point is that under the support of the job release 
sequences arranged by their respective methods, the cumulative waiting 
time for jobs in the proposed joint decision-making approach is the 
shortest (8 min) among all methods, followed by 225 min gained by the 
NoRUL, 258 min gained by the RM and 304 min gained by the CS al-
gorithm, which are all caused by ignoring or generally assuming various 
constraints in the actual operation environment. At length, the CS al-
gorithm has not fully learned and understood the matching relationship 
between job release sequence and job processing sequence, where some 
jobs with late release time are arranged in the front machining positions, 
resulting in unnecessary machine idle for a long time. In RM mode, by 
default, the machines will be maintained for a fixed or expected period 
before each rear machining position. This traditional practice is not only 
a seemingly perfect isolation between the maintenance duration and the 
accumulated enlistment age of the machines, but also a waste of main-
tenance resources and brings about frequent equipment occupation, 

which is easily prone to over maintenance. And the maintenance initi-
ation time in the NoRUL maintenance mode is automatically selected 
before the RUL threshold by the optimization algorithm, which no 
longer follows the fixed or expected maintenance interval, or the state- 
based maintenance strategy. Naturally, its makespan has been slightly 
reduced, yet it still does not integrate the maintenance duration flexi-
bility with the current state of the machines, as a result, which is not the 
best one. Again, the “minute” unit in the Fig 16 and the following Fig 17 
is introduced only to cater to the premature failure of bearings in the 
accelerated degradation test, and the actual scale is still limited to weeks 
or months. 

Meanwhile, to examine the impact of different setup parameters on 
the joint decision-making of parallel machine scheduling and preventive 
maintenance, additional comparative tests using four said methods are 
conducted on two parameters, i.e., the comprehensive proportion co-
efficient (λ = 40) for the flexible maintenance duration and the fixed 
maintenance duration (25 min). The near-optimal results of the joint 
decision-making problem are presented in Fig. 17, where, the RM mode 
gained the longest makespan 829 min, followed by the makespan 821 
min gained by the CS algorithm, the makespan 743 min gained by the 
NoRUL and the shortest makespan 717 min jointly gained by the discrete 
TLBO algorithm and the said MIP model. The proposed method is about 
13.5 percentage points better than the model with the worst makespan 
(829 min). And the cumulative waiting time for jobs in the proposed 
joint decision-making approach is the shortest (55 min) among that of 
all methods, followed by 141 min gained by the NoRUL, 256 min gained 
by the RM and 410 min gained by the CS algorithm, which means that 
the total machine vacancy rate of the resulting scheme in the proposed 
method is the lowest among that of four methods, reaching 7.7%. It is 
preliminarily concluded that the expected makespan improvement ratio 
of production and the vacancy rate of machines become greater, as the 
fixed maintenance duration for the RM and NoRUL modes and the 
comprehensive proportion coefficient λ for flexible maintenance dura-
tion decrease. For the maintenance occupancy, the cumulative mainte-
nance durations of the integrated schemes obtained by all comparison 
methods are 126 min from our method, 137 min from the CS algorithm, 
150 min from the NoRUL mode and 300 min from the RM mode in 
ascending order, respectively. Thus, the best maintenance occupation 
rate of the integrated scheme from our method is 17.6%, that is, the 

Fig. 16. The Gantt charts of the near-optimal scheduling and maintenance for the second case. (a) Gantt chart originating from the CS. (b) Gantt chart originating 
from the RM. (c) Gantt chart originating from the NoRUL. (d) Gantt chart originating from the discrete TLBO. (e) All job release times originating from the 
discrete TLBO. 
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maintenance occupancy ratio increases fractionally with the decreases 
of fixed maintenance duration in the RM/NoRUL models and the coef-
ficient λ for flexible maintenance duration. From a broad angle, the 
proposed method greatly reduces the cumulative maintenance duration 
and maintenance times, by maintaining as early as possible and reducing 
the insertion of unnecessary maintenance activities, which can not only 
streamline the embedded costs of preventive maintenance and machine 
startup-shutdown, but also increase the machine in-service duration to a 
certain extent. Note that the resulting scheme from our method still is 
not optimal, for example, no maintenance is actually required before the 
fifth machining position of the second machine in Fig 17d, and inserting 
a maintenance activity there will increase the overall production cost in 
vain. 

6. Conclusions and future works 

In this paper, by taking account of (1) the online uncertainty of 
machine reliability caused by the dynamic service environment, (2) the 
random release times of jobs and machines, and (3) the relationship 
between the flexible maintenance duration and the enlistment age of 
machines, a joint decision-making MIP model of parallel machine 
scheduling and predictive maintenance is established and evaluated 
with the aim of minimizing the total makespan, where the processing 
penalty beyond RUL threshold of machines is added to the objective 
function of MIP model as an additional item to reduce the computational 
complexity. And the resulting optimization problem is resolved by a 
discrete TLBO algorithm. Especially, for the online reliability uncer-
tainty, a data-driven fault mode predictor and a variety of RUL predic-
tion models (GRUs) for different fault modes are proposed in this paper, 
where the RUL is regarded as a reliability index. In this case, when 
predicting RUL of machines, the proposed RUL prediction method can 
select the corresponding GRU module according to the fault mode 

diagnosed by the fault mode predictor. The improvement of prediction 
uncertainty and accuracy inspired by this auxiliary strategy has also 
been verified in subsequent experiments. Additionally, to reduce invalid 
prediction and computational complexity, the data preprocessing 
method of iterative isotonic regression based on gradient threshold is 
used to uniquely determine the FPT. As demonstrated in our simulation 
cases, the makespan jointly obtained by the FGRU method, MIP model 
and discrete TLBO algorithm is satisfactory, and the simplified method 
which ignores the maintenance duration flexibility, the online reliability 
uncertainty or job-machine release time can yield a large deviation in 
evaluating the order makespan. Several challenges are to be addressed 
in our future works. Firstly, in the present study the RUL of machines 
were assumed to be that of the spindle bearing, while the most intuitive 
representative for RUL of machines should be the installed tools with 
more serious abrasion. The RUL prediction for multi-vulnerable systems 
can be further considered in the specific problem. Secondly, we only 
evaluated the maintenance duration by taking account of the enlistment 
age and the rated RUL of machines. Some other statistics, e.g. product 
function attributes, spare parts inventory, third-party maintenance ser-
vice scheduling, et al., will be derived in the future work. Thirdly, in 
reality, the processing duration of jobs are essentially random variables 
in various distributed forms. Future research can focus on this as an 
entry point to increase the commercialization of the proposed integrated 
model. Fourth, benefit from the development of wireless sensing and 
integrated simulation technology, the emerging digital twin technology 
has become a hot research field, which can build a communication 
bridge between field engineers and indirect resource providers in the 
planning of production scheduling and predictive maintenance. In the 
future, the project funds will be inclined to this intelligent agent that can 
perceive, analyze, understand the environment and respond to its cur-
rent state. Lastly, other uncertainties, e.g. demand uncertainty and 
temporary order insertion, will be jointly studied in our future work, and 

Fig. 17. The Gantt charts of the near-optimal scheduling and predictive maintenance schemes for the third simulation case. (a) The Gantt chart originating from the 
CS algorithm. (b) The Gantt chart originating from the RM mode. (c) The Gantt chart originating from the NoRUL mode. (d) The Gantt chart originating from the 
discrete TLBO algorithm. (e) All job release times originating from the CS, RM, NoRUL and discrete TLBO in turn. 
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some alternative optimization methods will also be tailored to facilitate 
the joint optimization under uncertainty. 
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