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A B S T R A C T   

The degradation process of lithium-ion batteries has memory, i.e. it has long-range dependence (LRD). In this 
paper, an iterative model of the generalized Cauchy (GC) process with LRD characteristics is proposed for the 
remaining useful life (RUL) prediction of lithium-ion batteries. The GC process uses two independent parameters, 
fractal dimension and Hurst exponent, to measure the LRD of the degradation process. The diffusion term of the 
GC iterative model is replaced by the increment of the GC time sequences, constructed via the autocorrelation 
function (ACF) to describe uncertainty and the LRD characteristics of the lithium-ion batteries capacity degra-
dation. Linear and nonlinear drift terms are used to explain the degradation trend of the lithium-ion batteries 
capacity. A comparison is made with fractional Brownian motion (FBM) and long-short-term memory (LSTM) 
network models to show how the GC iterative model has the best performance in RUL prediction of lithium-ion 
batteries.   

1. Introduction 

Lithium-ion batteries gradually degrade and age by usage, eventually 
leading to functional failure [1,2]. RUL prediction is an important task 
for lithium-ion batteries reliability. It can be based on the estimate of the 
failure time obtained based on state-of-health monitoring, and can guide 
predictive maintenance strategies for reducing accident risk [3]. The 
degradation of lithium-ion batteries is a long-term, slow process [4]. 
Generally, the capacity in the cycle of charging and discharging is 
considered as a suitable feature to reflect the degradation trend and, 
thus, it can be used as health indicator. Then, the RUL of lithium-ion 
batteries can be defined with respect to a minimum capacity threshold 
level, typically 20–30% of the rated capacity [5]. In this way, the RUL 
prediction problem is transformed into a capacity prediction problem 
with reference to the preset failure threshold (FT). 

The existing RUL prediction methods for lithium-ion batteries can be 
mainly divided into three categories: filtering methods, artificial intel-
ligence methods and stochastic process methods. Wang et al. [6] 

developed a degradation method based on a spherical particle filter to 
achieve RUL prediction of lithium-ion batteries. Zheng and Fang [7,8] 
proposed a hybrid prediction model based on unscented Kalman filter to 
achieve RUL prediction of lithium-ion batteries. Other developments of 
filtering methods, such as particle filter and Kalman filter, can be found 
in [9-11]. Filtering methods have obvious advantages under certain 
application conditions [12], but there are also three main disadvantages 
that hinder the feasibility of their use in practical applications of 
lithium-ion batteries RUL prediction: in general, the prediction accuracy 
of filtering methods is susceptible to ambient temperature and time- 
varying current [13]; particle filtering methods suffer the problem of 
particle paucity due to resampling [14]; particle filtering methods may 
have difficulties in determining the key parameters to describe the 
process of lithium-ion battery capacity degradation [15]. Zhang et al. 
[2] developed a RUL prediction method based on LSTM recurrent neural 
network. Chen et al. [16] proposed a prediction model based on 
empirical mode decomposition and deep recurrent neural network to 
show the LSTM can give good prediction accuracy. Nuhic et al. [17] 
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proposed a method based on support vector machines to predict the RUL 
of lithium-ion batteries. Li et al. [18] developed a least squares support 
vector machine model, based on data-driven and model fusion, to pre-
dict the RUL of lithium-ion batteries. Li et al. [19] proposed an Elman 
neural network model to predict the RUL of lithium-ion batteries. The 
disadvantages of artificial intelligence methods are that mainly the ex-
pected value of the RUL can be obtained, whereas the uncertainty in the 
prediction can be achieved only at the expense of large computational 
efforts [13]. In addition, the artificial intelligence methods require large- 
scale training data and overtraining can cause the problem of falling in a 
local optimum [20]. The stochastic process methods for RUL prediction 
have good characteristics, useful also for characterizing the uncertainty 
in the prediction of the degradation process of lithium-ion batteries. 
These methods perform the RUL prediction based on probability theory 
and the development of a stochastic model. The stochastic model can 
flexibly reflect the uncertainty of the degradation process [21]. For this 
reason, they are finding applications in lithium-ion batteries RUL pre-
diction [22], e.g. based on Markov process and Wiener process [22,23]. 

Since the degradation of lithium-ion batteries is a continuous and 
slow process, it has LRD characteristics [24]. However, modeling based 
on Wiener process relies on the Markov hypothesis [21], and the in-
cremental independence of the Wiener process cannot reflect the LRD 
characteristics of the lithium-ion batteries degradation process. To 
overcome this limitation, in this paper we propose a GC iterative model 
with LRD characteristics to predict the RUL of lithium-ion batteries. 

Li defined a GC process with LRD characteristics and associated 
uncertainty to describe fractal time sequences [25]. The LRD charac-
teristic of the GC process is evaluated by its ACF, which is composed of 
the fractal dimension D and the Hurst exponent H [26]. If the ACF in-
tegral 

∫+∞
− ∞ R(τ)dτ = ∞ of the GC process diverges, the GC process is 

considered to have LRD characteristics [27]. The GC process satisfies 
LRD, which means that its ACF slowly decays to the extent of integral 
divergence, so that the correlation between two different points that are 
far apart in time cannot be ignored. Based on the integration of the 
above-mentioned ACF, Lim and Li obtained that the GC process satisfies 
the LRD characteristic when 0 < (4 − 2D)(2 − 2H) ≤ 1 [27]. Therefore, 
the LRD characteristics are jointly described by the Hurst exponent H 
and the fractal dimension D, and the GC time sequences are randomly 
generated considering the ACF of the GC, which captures the uncer-
tainty in the process [25]. Therefore, the GC iterative model not only 
overcomes the problem of accounting for the LRD characteristics of the 
lithium-ion batteries degradation process, which the Markov process 
and the Wiener process cannot, but also overcomes the problem of 
representing the uncertainty in the prediction, which cannot be inex-
pensively achieved by the artificial intelligence methods. The FBM 
model is another model with LRD characteristics, which can be used to 
predict the RUL of lithium-ion batteries [24]. However, there is a linear 
relationship H+D = 2 between H and D, so that only one parameter can 
be used to describe the LRD characteristics. When 0.5 < H < 1, the FBM 
has LRD characteristics [24]. Compared with the FBM model, the su-
periority of the GC iterative model lies in the availability of the two 
parameters H and D, which are independent of each other: this makes 
the GC iterative model more flexible than FBM to describe the LRD 
characteristics. 

In this paper, linear and nonlinear drift terms (such as a power 
function drift term) are used to describe the degradation trend of 
lithium-ion batteries. In addition, the diffusion term of the GC iteration 
model is replaced by the increment of the GC time sequences to solve the 
problem of the uncertainty and LRD characteristic prediction of the 
lithium-ion batteries degradation process. Then, the parameters of the 
GC iterative model are obtained by the maximum likelihood estimation 
(MLE) method. The first arrival time of the lithium-ion batteries RUL can 
be obtained by evaluating when capacity exceeds the preset FT. 
Furthermore, the probability density function (PDF) of the RUL can be 
obtained by Monte Carlo simulation [28,29]. Finally, real data of 

lithium-ion battery capacities are used to verify the feasibility of the GC 
iterative model, and a comparison is made with FBM and LSTM. 

The organization of this paper is as follows. The LRD characteristics 
of the GC process are briefly discussed in Section 2. In Section 3, we 
describe the iterative model based on the GC process and the procedure 
for estimating the parameters of the iterative model. In Section 4, the 
lithium-ion batteries RUL is predicted by the GC iterative model, and a 
comparison is made with the FBM and LSTM models. Finally, the 
conclusion of this paper is given in Section 5. 

2. The LRD characteristics of the generalized Cauchy process 

To analyze the LRD characteristics of the GC process, it is essential to 
introduce the ACF. Li et al. [25] gave the definition of ACF for the GC 
process: 

ry(τ) = E[y(t + τ)y(t) ] = (1 + τα)
− β/α (1)  

where τ > 0, β > 0, 0 < α ≤ 2, and y(t) is GC process. When α = 2 and 
β = 2, the GC process degenerates into a classical Cauchy process. 

In the GC process, the LRD characteristics are described by param-
eters D and H, which reflect the local and global properties, respectively. 
The parameter α can be described by the fractal dimension D, which is a 
measure for roughness, and the parameter β can be described by the 
Hurst exponent H, which is a measure of self-similarity. The specific 
relationships are β = 2 − 2H, α = 4 − 2D [27]. 

If the ACF of a stochastic process y(t) satisfies 
∫+∞

0 ry(τ)dτ = ∞, it is 
said that the stochastic process satisfies LRD. According to the definition 
of LRD, we obtain that when 0 < αβ ≤ 1, the GC process satisfies the 
LRD condition [27]: 
∫ +∞

0
ry(τ)dτ =

∫ +∞

0
(1 + τα)

− β/αdτ = ∞ if 0 < αβ ≤ 1 (2) 

That the GC process satisfies LRD means that its ACF slowly decays to 
the extent of integral divergence, so that the correlation between two 
different points that are far apart in time cannot be ignored. When 
0 < αβ ≤ 1, the range of Hurst exponent values is 
0 < (4 − 2D)(2 − 2H) ≤ 1. The ACF with two parameters is described in 
Fig. 1. It is shown that the ACF curve has not yet decayed to zero after a 
long time under LRD condition: the high H and low D values contribute 
to the slow decay of the ACF curve, until the integral of the ACF in Eq. 
(2) diverges. 

Next, the LRD characteristics are explained from the perspective of 
PDF. Carrillo et al. gave the PDF of the GC process [30]: 

Fig. 1. The ACF of the GC process.  
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fGC(y) =
ρΓ(2/ρ)γ

2
(

Γ(1/ρ))2
(γρ + |y − u|ρ)− 2/ρ (3)  

where u is position parameter, the γ is range parameter, the ρ is heavy- 
tailed parameter. Γ(⋅) represents the gamma function. In Fig. 2, the in-
fluence of the parameters of the GC process on the PDF is shown. 

The range parameter u is the symmetry axis of the PDF. The range 
parameter γ indicates the discrete degree of the PDF. The smaller the 
range parameter, the more concentrated the value of the points in the 
PDF. The heavy-tailed parameter ρ indicates the heavy tailed degree of 
the PDF. The smaller the heavy-tailed parameter, the heavier the tail of 
the PDF. The GC process is a heavy-tailed distribution when 0 < ρ ≤ 2. 
From Taqqu’s law [30], we can obtain that the stochastic process x(t)
exhibits a heavy-tail in the PDF, which is equivalent to the LRD char-
acteristics in the ACF. In fact, the ACF of the GC process can be written as 
ry(t1, t2) = E[y(t1)y(t2) ] = ∬ y(t1)y(t2)fGC(y; t1,t2)dy(t1)dy(t2), according 
to Eq. (1): therefore, the slow decay of the PDF leads to the slow decay of 
the ACF. 

3. Iterative model 

3.1. Iterative model based on generalized Cauchy process 

Since the degradation of lithium-ion batteries is a continuous and 
slow process, it has LRD characteristics. In this paper, we use the GC- 
driven diffusion term to describe the uncertainty and LRD characteris-
tics of the degradation process of lithium-ion batteries. Similarly to the 
stochastic differential equation of Wiener process and FBM, the sto-
chastic differential equation of the GC iterative model is written as 
[31,32]: 

dX(t) = λφ(t)dt+ σ(t)dGC(t) (4)  

where X(t) is the degradation process of lithium-ion batteries capacity. 
The λφ(t) is the drift term, reflecting the degradation trend. The 
σ(t)dGC(t) is the diffusion term, reflecting the degradation uncertainty 
and LRD characteristics. In this paper, the linear drift term λ and 
nonlinear drift term (such as a power function drift term λtb) are used to 
reveal the degradation trend of lithium-ion batteries. We bring the drift 
term and the simplified diffusion term σ into Eq. (4) to obtain Eqs. (5) 
and (6): 

M1 : dX(t) = λdt+ σdGC(t) (5)  

M2 : dX(t) = λtbdt + σdGC(t) (6)  

where dGC(t) is the increment of the GC time sequences. In Figs. 3 and 4, 

the linear and power function degradation trends under different pa-
rameters are simulated, respectively. 

where λ > 0 indicates the upward degradation trend, λ < 0 indicates 
the downward degradation trend, and the value of λ reflects the 
degradation speed. The larger the λ, the faster the degradation speed. 
The parameter b reflects the speed at which the power function de-
generates. The larger the value of b, the faster the degradation speed. 

The specific construction steps of the increment of the GC time 
sequence are as follows. 

Step 1: The power spectrum S(ω) is the Fourier transform of the ACF. 

S(ω) = F
[
(1 + |τ|α)− β/α

]
(7) 

Let h(t) be the impulse response and H(ω) be the Fourier transform of 
h(t). We have the relationship S(ω) = |H(ω)|

2, between S(ω) and H(ω). 
According to the relationship between the impulse response h(t) and the 
power spectrum S(ω), we put Eq. (7) into Eq. (8) to obtain: 

h(t) = F− 1
[ ̅̅̅̅̅̅̅̅̅̅

S(ω)
√ ]

= F− 1
{

F
[
(1 + |τ|α )− β/α

]0.5
}

(8) 

Step 2: The GC time sequence can be constructed by convolution of 
the white noise and impulse response. According to the relationships β =

2 − 2H,α = 4 − 2D, the specific expression is [25]: 

Fig. 2. PDF of the GC process.  

Fig. 3. Linear degradation trend.  

Fig. 4. Power function degeneration trend.  
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GC(t) = w(t)*h(t) = w(t)*F− 1

⎧
⎪⎨

⎪⎩
F

⎡

⎣
(
1 + |τ|4− 2D )− 2− 2H

4− 2D

⎤

⎦

0.5 ⎫
⎪⎬

⎪⎭
(9)  

where w(t) is the Gaussian white noise time sequence, the symbol * 
represents convolution. 

Step 3: Set the time interval and construct the difference dGC(t) =
GC(t +1) − GC(t) of the time sequences to obtain the increment accord-
ing to Eq. (9). Based on the above GC time sequence construction steps, 
the specific flowchart is shown in Fig. 5. 

In Fig. 6, the GC time sequence is generated with H = 0.6 and D =

1.4, and the corresponding GC incremental time sequence is shown in 
Fig. 7. 

3.2. Parameter estimation of the iterative model 

In Eqs. (5) and (6), five unknown parameters need to be estimated, i. 
e., H, D, λ, σ and b. These unknown parameters are recorded as Φ =

[H,D, λ, σ, b]T. The parameters H and D in the ACF of the GC process are 
not coupled with the parameters λ, σ, and b, and thus can be estimated 
separately. The Hurst exponent H is estimated by the rescaled range (RS) 
method [33], and the fractal dimension D is estimated by the box 
dimension method [33]. The nonlinearity of the power law drift term 
makes it hard to obtain a specific solution of b. We solve this problem 
through the Nelder-Mead simplex algorithm [34]. Eventually, we use 
the MLE method to estimate the parameters λ and σ. The specific steps 
for parameter estimation are as follows. 

Step 1: Obtain the estimated value Ĥ of the Hurst exponent H by the 
RS method [33]. 

R
S
=

max
1≤i≤N

Xi,N − min
1≤i≤N

Xi,N
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N− 1

∑N

i=1
(Xi − 〈X〉)2

√ (10)  

where 〈X〉 is the mean of the degradation process of lithium-ion batteries 
capacity, Xi and Xi,N are deviations. R is range and S is standard devia-
tion. According to the logarithmic relationship between N and R/S, the 
estimated value of H is obtained from the following equation: 

ln
R
S
= HlnN +C (11)  

where C is a constant. The estimated value Ĥ of Hurst exponent H is the 
slope of the least square fitting of N and R/S in logarithmic coordinates. 

Step 2: Calculate the estimated value D̂ of the fractal dimension D by 
the box dimension method [33]: 

D̂ = lim
l→0

ln(Nl)

ln(1/l)
(12)  

where l is the side length of the squares and Nl is the total number of 
squares occupied by the degradation process of lithium-ion batteries 
capacity. 

Step 3: Take the estimated values of Ĥ and D̂ into the LRD evalua-
tion: if 0 < (4 − 2D)(2 − 2H) ≤ 1 is not satisfied, the GC iterative model 
cannot be used to predict the RUL of the lithium-ion batteries; if it is 

satisfied, the Ĥ and D̂ are put into Eq. (9) to generate the GC time 
sequences. 

Step 4: Use the MLE method to obtain the estimated values λ̂ and σ̂. 
The observed values of the degradation process at ordered times t0, t1,⋯ 
, tn are denoted as X = [X0,X1,⋯,Xn]

T. Let θ = [φ’(t1),φ’(t2),⋯,φ’(tn)]T. 
Suppose that the increment of the GC process follows a normal distri-
bution. According to the independent property of the GC increment, x =

[X1 − X0,X2 − X1,⋯,Xn − Xn− 1]
T is a multi-dimensional normal distri-

bution, and follows a normal distribution x N(λθ, σ2Cov). Cov is the 
covariance matrix of the GC process. According to the joint PDF of the 
multi-dimensional normal distribution [24], the likelihood function is 
obtained as follows: 

Fig. 5. Flowchart of the procedure for generating the incremental time sequences.  

Fig. 6. GC time sequence.  

Fig. 7. Increment of GC time sequence.  
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g(x) =
(
2πσ2)− n

2|Cov|−
1
2exp

[

−
1

2σ2(x − λθ)T Cov− 1(x − θT)
]

(13) 

Take the logarithm of Eq. (13) to obtain Eq. (14): 

ln(g) = −
n
2

ln
(
2πσ2) −

1
2

ln|Cov| −
1

2σ2(x − λθ)T Cov− 1(x − λθ) (14) 

Calculate the partial derivatives of equation (14) with respect to λ 
and σ2, and set the partial derivatives to zero to obtain the estimated 
values λ̂ and σ̂ , respectively: 

λ̂ =
θT Cov− 1x
θT Cov− 1θ

(15)  

σ̂ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
(x − λθ)T Cov− 1(x − λθ)

√

(16) 

Step 5: Use Nelder-Mead simplex algorithm and fminsearch function 
in MATLAB to obtain the estimated value b̂. 

Step 6: Take the results of parameter estimation into Eqs. (5) and (6). 
The specific flowchart of parameter estimation procedure is shown in 
Fig. 8. 

3.3. Remaining useful life prediction 

The aim is to predict the RUL of the lithium-ion batteries by devel-
oping a GC iterative model. The first prediction time (FPT) is the starting 
point of the prediction. Generally, lithium-ion batteries functional fail-
ure occurs when the capacity exceeds the FT for the first time, which is 
called end-of-life (EOL). The relationship between RUL, EOL, and FPT is 
shown schematically in Fig. 9. Some jump points on the capacity 
degradation of lithium-ion batteries are described by the fluctuations of 
the GC time sequence with LRD characteristics. The degradation process 
of lithium-ion batteries capacity reaches the FT for the first time as [35]: 

TEOL = inf{TEOL : X(TEOL) ≥ w0|X(0) < w0 } (17)  

where w0 is the given FT, TEOL represents the moment when the fault 
threshold w0 is reached for the first time, inf is the infimum, X(t) is the 
degradation process of lithium-ion batteries capacity. 

When the starting point of prediction does not satisfy t = 0, the RUL 
is defined as [29,35]: 

RUL = inf{RUL : X(t + RUL) ≥ w0|X(t) < w0 } (18)  

where t is the FPT, RUL is the predicted RUL. In the RUL prediction of 
lithium-ion batteries, RUL is represented by the number of cycles of 
charge and discharge. The predicted RUL can be obtained by the GC 
iterative model and the equation (18). The RUL prediction schematics is 
presented in Fig. 9. 

The generated GC time sequences is not deterministic and the actual 
RUL cannot be accurately reflected by few estimated values of RUL. To 
consider the prediction uncertainty in the RUL, we use Monte Carlo 
simulation to generate RUL values for obtaining the PDF of the RUL. We, 
then, take the most probable value of the RUL (corresponding to the 
maximum value of PDF) as point value. 

4. Case study 

We consider the lithium-ion batteries capacity data from NASA Ames 
database to verify the feasibility of the GC iterative model [36]. The 
ambient temperature is 24 ◦C. Repeated charging and discharging cycles 
are induced to cause accelerated lithium-ion batteries aging. The ca-
pacity generated by the charge and discharge cycles is taken as a suitable 
health indicator to describe the degradation process of lithium-ion 
batteries. The experiment is terminated when the lithium-ion batteries 
drop below the preset FT, equal to 1.4Ahr. The capacity degradation 
process of four lithium-ion batteries (B0005, B0006, B0007, B0018) is 
shown in Fig. 10. 

The GC iterative prediction model gives also the uncertainty of 
prediction, The B0006 lithium-ion batteries with large capacity fluctu-
ation is selected for illustration, and we compare the linear drift term 

Fig. 8. Flowchart of parameter estimation procedure.  

Fig. 9. RUL prediction schematics.  

Fig. 10. Degradation process of lithium-ion batteries capacity.  
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and power function drift term RUL prediction results of lithium-ion 
batteries. The first 50 capacity data are selected as training samples to 
obtain the estimated values of unknown parameters of the GC iterative 
model. The estimated value of the Hurst exponent H by the RS method is 
shown in Fig. 11: the slope of line fitting in logarithmic coordinates is 
the estimated value of the Hurst exponent H and is equal 0.7537. The 
parameters estimation results of the GC iterative model are reported in 
Table 1. 

Then, the PDF of the RUL for 10 different prediction starting points is 
obtained by the Monte Carlo method, and shown in Fig. 12 at 10 
different time points. The PDF of the RUL obtained by using two drift 
terms (M1 and M2) are both shown in Fig. 12. The blue straight line 
represents the actual RUL, and the five-pointed star represents the 
estimated value of the RUL. We obtain EOL = 109 when the B0006 
lithium-ion batteries capacity exceeds FT (1.4Ahr) for the first time. The 
RUL estimates of M1 and M2 are reported in Table 2. 

To compare the prediction accuracy, the typical indicators, mean 
absolute error (MAE), root mean square error (RMSE) and health degree 
(HD), are used. The MAE reflects the average value of the absolute error. 
The smaller the MAE, the more accurate the prediction: 

MAE =
1
m
∑m

i=1

⃒
⃒RULi − RUL*

i

⃒
⃒ (19)  

where RULi is the predicted RUL obtained at the i-th prediction starting 
point, RUL*

i is the actual RUL obtained at the i-th prediction starting 
point, m = 10 is the number of predictions. The RMSE describes the 
dispersion degree of the difference. The smaller the RMSE, the more 
accurate the prediction: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(
RULi − RUL*

i

)2
√

(20) 

The HD is a statistic of the degree of the fitting, reflecting the degree 
of interpretation. The closer the HD is to 1, the closer the predicted RUL 
and the actual RUL are: 

HD = 1 −
∑m

i=1

(
RULi − RUL*

i

)2

∑m
i=1

(
RULi − RUL

)2 (21)  

where RUL is the mean value of RULi. 
In Table 3, the error analysis shows that the prediction accuracy of 

the M1 model is higher than that of the M2 model. The reason is that the 
linear drift term can reflect the degradation process of the lithium-ion 
battery capacity more accurately, which is consistent with the results 
in Fig. 10. Then, the comparison is made with the FBM and LSTM models 

to verify the superiority of the GC iterative model in the accuracy of 
lithium-ion batteries RUL prediction. Both GC and FBM models use the 
linear drift term. The parameter estimation results of FBM is shown in 
Table 4. 

The PDF comparison of lithium-ion battery RUL by using GC, FBM 
and LSTM models is shown in Fig. 13. The RUL estimates of the three 
models are given in Table 5. 

The MSE, RMSE and HD are used also to compare the prediction 
accuracy of the different models considered. The comparison of the 
prediction accuracy of the GC, FBM and the LSTM models is described in 
Table 6. 

Fig. 11. RS method to estimate Hurst exponent.H  

Table 1 
Parameters estimation of GC iterative model.  

Model H  D  λ  σ  b  

M1  0.7537  1.1606 − 0.0047  0.4752  – 
M2  0.7537  1.1606 − 0.0060  0.4778  1.1321  

Fig. 12. Estimated PDF of the RUL by M1 and M2 for comparison.  

Table 2 
RUL prediction by different drift terms in the GC iterative model  

Prediction starting 
point 

Actual 
RUL 

RUL predicted by GC 
(M1) 

RUL predicted by GC 
(M2) 

50 59 60 61 
55 54 56 55 
60 49 52 46 
65 44 46 42 
70 39 41 37 
75 34 35 31 
80 29 28 28 
85 24 22 23 
90 19 21 17 
95 14 15 13  

Table 3 
Accuracy indicators of RUL prediction  

Model MAE RMSE HD 

M1  1.7000  1.8166  0.9840 
M2  1.8000  1.9494  0.9816  

Table 4 
Parameter estimation of FBM  

H  λ  σ   

0.7537 − 0.0042  0.4865  
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Compared with the FBM and LSTM models, the MAE and RMSE of 
the GC model are lower, and the HD is close to 1. The experimental 
results show that the prediction accuracy of the GC iterative model is 
higher than FBM and LSTM models in the prediction of lithium-ion 
batteries RUL. The reason is that the GC iterative model with two in-
dependent parameters can describe the LRD characteristics more flex-
ibly than the FBM with a single parameter. 

5. Conclusion 

This paper proposes an iterative model with LRD characteristics and 
applies it to predict lithium-ion batteries RUL. The specific conclusions 
are as follows. 

(1) Accurate prediction of lithium-ion batteries RUL is of great sig-
nificance to equipment safety and maintenance. In this paper, a 
method for predicting the lithium-ion batteries RUL using a GC 
iterative model is introduced. Firstly, this paper has introduced 
that the LRD characteristics of the GC iterative model are 
simultaneously described by the fractal dimension and the Hurst 
exponent. Therefore, the GC iterative model with two indepen-
dent parameters can reflect the LRD characteristics more flexibly 
than the FBM with a single parameter. Then, the diffusion term is 

replaced by the increment of the GC time sequences to reflect 
uncertainty and LRD characteristics of the lithium-ion batteries 
capacity degradation. Finally, the comparison made with FBM 
and LSTM models shows that the GC iterative model has better 
prediction accuracy.  

(2) The GC iterative model is only for the prediction of LRD time 
sequences: research on the short-range dependent time sequences 
still needs to be deepened. 
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