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Abstract Recently, Hod has shown that Thorne’s hoop
conjecture ( C(R)

4πM(r≤R)
≤ 1 ⇒ horizon) is violated by sta-

tionary black holes and so he proposed a new inverse hoop
conjecture characterizing such black holes (that is, horizon
⇒ H =πA

C2
eq

≤ 1). In this paper, it is exemplified that sta-

tionary hairy black holes, endowed with Lorentz symmetry
violating Bumblebee vector field related to quantum gravity
and dilaton field of string theory, also respect the inverse con-
jecture. It is shown that stationary hairy singularity, recently
derived by Bogush and Galt’sov, does not respect the con-
jecture thereby protecting it. However, curiously, there are
two horizonless stationary wormholes that can also respect
the conjecture. Thus one may also state that throat ⇒ H ≤1,
suggesting that the inverse conjecture may be a necessary but
not sufficient proposition.

1 Introduction

Thorne’s hoop conjecture is of fundamental importance in
black hole physics and has since been a topic of great interest
in the literature. However, Hod [1] has shown that the con-
jecture is intriguingly violated for spinning black holes and
a unified version of the conjecture applicable to black holes
and charged horizonless compact objects is thus unavailable.
With this in mind, Hod [2] has introduced a new geomet-
rical proposal that stationary black holes are characterized
by an inverse hoop conjecture A ≤C2

π
, where A and C are

respectively the black hole surface area and the circumfer-
ence length of the smallest ring that can engulf the black hole
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horizon in every direction. This area-circumference inequal-
ity has been exemplified by Hod [2] for the generic Kerr–
Newman–(anti)-de Sitter black holes:

Δr (r+) = 0, (1)

H(M, Q, a,Λ) = πA
C2

eq

=
(
1 + 1

3Λa2
)
r2+

r2+ + a2
≤ 1, (2)

where Δr (r) = r2 −2Mr+a2 +Q2 − 1
3Δr2(r2 +a2)+Q2,

r = r+ is the horizon radial coordinate, Ceq is the equatorial
circumference length of horizon, Q is the electric charge, a
is the spin, Λ is the cosmological constant (It would be only
fair to callH the Hod function, a prototype of which for static
black holes was already defined and denoted by H in [3]). The
inequality (2) embodying the inverse conjecture is consistent
also with a time-dependent (oscillating) equatorial and polar
circumferences of non-stationary black hole horizons [4].

The purpose of this paper is to explicitly demonstrate that
Hod’s inverse conjecture is respected also by spinning hairy
black holes such as the Lorentz symmetry violating Bumble-
bee field related to quantum gravity and dilaton field of string
theory, while singularity with scalar hair does not respect it
thereby protecting the conjecture. However, the conjectured
inequality H ≤1 describing stationary black hole horizon
cannot exclude stationary uncharged horizonless wormholes
suggesting that the inverse conjecture may be necessary but
not a sufficient condition.

2 Bumblebee gravity spinning black hole

The spinning Kerr-like black hole [5] metric in the Bumble-
bee gravity in Boyer–Lindquist coordinates is

dτ 2 = gttdt
2 + grrdr

2 + gθθdθ2 + gϕϕdϕ2 + 2gtϕdtdϕ,

(3)
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where � ≥ 0 is the Lorentz symmetry violating parameter
defined by λ = √

1 + � and

gtt = −
(

1 − 2Mr

Σ

)
, (4)

grr = Σ

Δ
, (5)

gθθ = Σ, (6)

gϕϕ = Ξ

Σ
sin2 θ, (7)

gtϕ = 2aMrλ

Σ
sin2 θ, (8)

Σ = r2 + λ2a2 cos2 θ, (9)

Δ = r2 − 2Mr

λ2 + a2, λ �= 0 (10)

Ξ = (r2 + λ2a2)2 − Δλ4a2 sin2 θ. (11)

Following the method as outlined in [2], we obtain, using
Δ(r+) = 0,

A = 4π(r2+ + λ2a2), (12)

Ceq = 2π

(
r2+ + λ2a2

r+

)

, (13)

H = πA
C2

eq

= r2+
r2+ + λ2a2

≤ 1, (14)

which is what we wanted to explicitly demonstrate. Equality
holds when a = 0.

3 Kerr–Sen stringy spinning black hole

This black hole of heterotic string theory [6–9] in Boyer–
Lindquist coordinates in the Einstein frame is given by the
metric components with the definitions

Σ = r2 + a2 cos2 θ + 2rξ, (15)

Δ = r2 − 2mr + a2, (16)

Ξ = (r2 + a2 cos2 θ + 2rξ)2 − Δa2 sin2 θ, (17)

where ξ is the string parameter defined by

ξ = m sinh2 α, (18)

and the mass M , dilaton charge Q and spin J are parametrized
as

M = m

2
(1 + cosh 2α), Q = m√

2
sinh 2α,

J = am

2
(1 + cosh 2α). (19)

At ξ = 0, one recovers the Kerr solution. Following the
method as outlined in [2], we obtain, using Δ(r+) = 0,

A = 4π(r2+ + a2 + 2r+ξ), (20)

Ceq = 2π
r2+ + a2 + 2r+ξ
√
r2+ + 2r+ξ,

(21)

so that

H = r2+ + 2r+ξ

r2+ + a2 + 2r+ξ
≤ 1. (22)

Once again, equality holds only in the spinless case, a = 0.

4 Bogush–Galt’sov spinning singularity

A recent example of exact spinning singular solution belong-
ing to Einstein’s gravity of minimally coupled scalar field φ

is given by Bogush and Galt’sov [10]. The general form of
the metric is given by

dτ 2 = − f (dt − ωi dx
i )2 + f −1hi j dx

i dx j , (23)

where the function f , the one-form ωi and the 3-metric hi j
are functions of space coordinates xi (i = 1, 2, 3).The rele-
vant functions are

f (r, θ) = Δ − a2 sin2 θ

r2 + a2 cos2 θ
, (24)

ω(r, θ) = − 2aMr sin2 θ

Δ − a2 sin2 θ
, (25)

hi j dx
i dx j = H(r, θ)

(
dr2 + Δdθ2

)
+ Δ sin2 θdϕ2, (26)

H(r, θ) = Δ − a2 sin2 θ

Δ

(
1 + b2 sin2 θ

Δ

)− Σ2

b2

, (27)

Δ(r) = (r − M)2 − b2, (28)

φ = φ∞ + Σ

2b
log

r − M + b

r − M − b
, (29)

b =
√
M2 − a2 ⇒ b < M. (30)

Note that Σ = 0 leads to the Kerr black hole. The Ricci
scalar is

R = 2Σ2

Δ(r2 + a2 cos2 θ)

(
1 + b2 sin2 θ

Δ

)Σ2

b2

, (31)

which diverges on the “horizon”Δ(rs) = 0 (inverted commas
by the authors of [10]). The singular radius is

rs = M + b, b2 > 0. (32)
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In the extremal limit b2 = M2 − a2 → 0,

H = Δ − a2 sin2 θ

Δ
exp

(
−Σ2 sin2 θ

Δ

)
, (33)

φ = φ∞ + Σ√
Δ

. (34)

The Bogush–Galt’sov singular solution satisfies all energy
conditions since the scalar field couples to gravity with cor-
rect sign. Let us find the equatorial circumference length of
horizon Ceq under the conditions dt = 0, dr = 0 yielding
from the metric (23-30) the surface metric

dS2 = f −1HΔdθ2 + ( f −1Δ sin2 θ − f ω2)dϕ2. (35)

On the equatorial plane, θ = π/2, so the total length encir-
cling the singular equator Δ(rs) = 0 with dϕ → 2π is given
by

Ceq = 2π

√
− f ω2 (36)

= 2π.2M (37)

which is surprisingly independent of rs but the area of the
singular surface is

A = 2π

∫ π

0

√
pqdθ, (38)

p = f −1HΔ,

q = f −1Δ sin2 θ − f ω2 (39)

√
pq =

[ (
Δ − a2 sin2 θ

)
Δ

{(
r2 + a2 cos2 θ

)2
(40)

− 4a2r2M2 sin2 θ

} (
1 + b2 sin2 θ

Δ

)− Σ2

b2
]−1/2

.

(41)

Noting that, when Δ(rs) → 0,
(

1 + b2 sin2 θ
Δ

)− Σ2

b2 → 0, we

have
√
pq → ∞ so that

A →∞. (42)

Thus, it follows that

H =πA
C2

eq

= ∞,

which is consistent with the singular nature of the solu-
tion. Thus the conjecture applicable for black holes is pre-
served. We next consider two examples of horizonless com-
pact objects known as wormholes.

5 Damour–Solodukhin stationary wormhole

The static Damour–Solodukhin wormhole [11] has been gen-
eralized to a stationary wormhole by Bueno et al [12] having

the metric of the same form as (3–11) but with only a rede-
fined Δ → Δ̂ given by

Σ = r2 + a2 cos2 θ, (43)

Δ̂ = r2 − 2M(1 + δ2)r + a2, δ �= 0 (44)

gϕϕ =
[
(r2 + a2) + 2Mra2 sin2 θ

Σ

]
sin2 θ, (45)

where δ is the parameter representing deviation from Kerr
black hole. Physical and geometrical properties have been
well studied. For instance, Bueno et al [12] studied quasi-
normal modes of gravitational waves and Karimov et al [13]
studied its accretion signatures. These studies compared the
wormhole signatures with those of Kerr black holes that could
be of interest in the experimental search for wormholes.

The throat (not a horizon [12]) appears at

Δ̂ = 0 ⇒ rth = (1 + δ2)M +
√
M2(1 + δ2)2 − a2. (46)

The angular part of the metric is that of the Kerr and hence
it directly follows that

H =πA
C2

eq

≤ 1. (47)

The inverse conjecture is obviously well satisfied.

6 Teo stationary wormhole

This is also a well discussed spinning wormhole [14] having
a general form of the metric

dτ 2 = −N 2dt2 + dr2

1 − b(r)
r

+r2K 2[dθ2 + sin2 θ(dϕ − ωdt)2], (48)

where the arbitrary functions N , K and ω depend only on
r and θ . The topology of the wormhole, distinct from that
of a black hole, has been discussed in detail by the author
himself [14] and several others (see, e.g., [15]) and hence
omitted here. The function b, called the shape function,
has to be independent of θ to avoid curvature singularity,
that is, ∂θb(r, θ) = 0. The metric represents two identical
regions, interior and exterior, that are joined at the throat
r = b(rth) = rth. The redshift function N (r, θ) should
be horizonless for traversability as required in the stan-
dard Morris-Thorne wormhole, i.e., N should be finite and
nonzero, so that no curvature singularities and event horizons
occur. But if we do not require physical traversability, there
can be horizons such that N (r, θ) can be zero at some chosen
radius but H is independent of N (r, θ). Remarkably, it has
been shown in [14] that for some choices of N , K and ω,
the wormhole though it has no horizon can nonetheless have
ergoregions around the throat from where energy could be
extracted by the Penrose process.
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The circumferential length of the throat and the area of the
throat surface are respectively (dt = 0, r = rth, θ = π/2,
ϕ → 2π ):

Ceq = 2πrthK (49)

A = 4πr2
thK

2 (50)

yielding

H =πA
C2

eq

= 1.

Here the conjecture is marginally satisfied.

7 Remarks

The above results indicate that the unified inverse hoop con-
jecture (horizon ⇒ H ≤ 1) due to Hod has come to stay
for stationary black holes having the same status as that of
Thorne’s hoop conjecture for static black holes. However,
unlike the former which involves mass, the latter is defined
purely geometrically depending only on the angular part of
a given metric. For instance, H = 1 holds trivially on any
spherical surface even in flat spacetime. In principle, how-
ever, any metric could be regarded as a black hole solution of
general relativity provided we are ready to accept physically
uninteresting forms of stress tensor and such spacetimes may
be tailored to violate the relation (H ≤ 1), a concern already
noted in [2]. Singular solutions may appear even with well
known stress tensors such as the Bogush–Galt’sov solution
for minimally coupled scalar field, which however protects
the conjecture by violating it.

Two curious examples of stationary horizonless worm-
holes that have been well studied since their very incep-
tion. It was pointed out above that they can also respect the
conjecture. This suggests that one may regard H ≤1 as a
necessary but not a sufficient condition since the conjecture
allows wormholes (uncharged horizonless compact objects)
for which one may state that: throat ⇒ H =πA

C2
eq

≤ 1. How-

ever, the main purpose of this paper was to point out the
efficacy of the conjecture going beyond Kerr–Newman–de
Sitter black holes by extending it to the regime of stationary
hairy black holes.
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