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1. Introduction

Carbon nanotubes (CNTs) discovered in 1991 by Iijima[1] dem-
onstrated outstanding mechanical properties with the tensile
strength higher than 100 GPa and Young’s modulus over
1 TPa.[2] Despite the fact that their actual strength is an order
of magnitude lower than the theoretically predicted value, due
to the inevitable defects,[3] for almost 30 years, they have been
recognized as the strongest material ever known. The unique

combination of properties makes CNTs
an ideal candidate to be applied in artificial
muscles,[4] drug delivery,[5] resonators,[6]

space elevator projects,[7] energy storage
and harvesting,[8,9] etc. Another important
advantage of CNTs is their relatively facile
fabrication to obtain a wide range of geo-
metric characteristics (diameter, length,
and chirality)[10,11] that can be extrapolated
to the synthesis of CNT bundles.[12,13] The
material of this type, also called a forest or
an array of CNTs, has even higher mechan-
ical properties than individual nanotubes,
because of the van der Waals interactions
between them.[14] In the study by
Karimzad Ghavidel et al.,[15] the mechani-
cal properties of CNT bundles aligned in a
liquid medium using an external electric
field were studied theoretically and
experimentally.

The success in the production and
analysis of CNTs inspires the creation

of nanotubes from other recently discovered 2D
materials.[16–21]

The low flexural rigidity of sp2 carbon nanostructures deter-
mines the main mechanism of their deformation, a change in
valence bond angles and dihedral angles, whereas the contribu-
tion from a change in the length of covalent bonds remains
small. This was demonstrated for CNTs subject to twisting[22]

and lateral compression,[23] as well as for wrinkled, twisted,
and scrolled graphene nanoribbons.[24–28] In the study by
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Carbon nanotubes (CNTs) have attracted increasing attention because of their
enormous potential in various technologies. Herein, the evolution of the
structure and elastic properties of a CNT bundle under compression in
uniaxial and biaxial regimes is analyzed using a chain model with a reduced
number of degrees of freedom. The compression stress–strain curves consist
of four stages, each of which is characterized by a specific structure and
deformation mechanism. In the first stage, all CNTs have the same cross
section; in the second stage, the translational symmetry is preserved in the
system, but with a doubled translational cell; in the third stage, CNT collapse
takes place, leading to the loss of the translational symmetry; the fourth stage
begins when all CNTs collapse. Elastic constants are calculated for the CNT
bundle under uniaxial and biaxial compression during the first two stages. In
all loading schemes, during the second stage of deformation, the CNT bundle
exhibits partial auxetic properties. The results obtained contribute to the
fundamental knowledge for the design of carbon nanomaterials with
enhanced properties.
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Elliott et al.,[29] it was found that the CNT collapse pressure does
not depend on the chirality of the nanotubes but strongly
depends on their diameter, whereas their collapse can increase
the strength by up to 30 %. Since then many attempts have been
made to find the architecture of CNT bundles with optimal
mechanical properties. Thus, in the study by Cheng et al.,[30]

it was shown that the volume of the CNT bundle can be
controlled by the application of the external electric field.
According to the study by Silva-Santos et al.,[31] the collapse
pressure of multiwalled CNTs depends essentially on both the
number of tube walls and the innermost diameter. A possibility
to reach the strength up to 3–6 GPa and Young’s modulus up to
200–350 GPa for CNT arrays and fibers was demonstrated in the
study by Zhang et al.,[32] whereas the dynamical performance was
reported to depend strongly on the nanotube interface distance,
alignment, packing density, aggregation size, and other param-
eters. The enhanced stability of bundles was attained when the
innermost diameter was smaller than 1.5 nm because of the
bundle intertube geometry-induced interactions.[33]

Because of their small size and reduced dimensionality, CNTs
can be effectively studied using computer simulations.[34,35]

Among the most common approaches, one can recall the contin-
uum shell models,[22,36,37] membrane spring model,[38,39] molec-
ular structure mechanics,[40,41] coarse-grained approach,[42] and
classical molecular dynamics (MD) simulations.[23,43,44] CNT
bundles under a tensile load can be modeled assuming that
nanotubes are rigid.[45] The MD method is the most popular
one because of its versatility and availability, which in turn
has made it possible to obtain a number of important results.
A disadvantage of the MD method in the study of CNT bundles
is the need to consider a large number of degrees of freedom that
requires large-scale computations. Models with a reduced num-
ber of degrees of freedom have been developed.[46] This work
deals with a chain model moving on a plane that was earlier
shown to be an effective tool for the consideration of carbon
nanoscrolls,[47] windings of graphene nanoribbons around
CNTs,[48] lateral compression of CNT bundles,[49–52] dynamics
of ripplocations[53] and rotobreathers,[54] and eigenfrequencies
of bending vibrations of CNTs.[55]

Materials with complex structural elements, such as particles
with rotational degrees of freedom, often exhibit anomalous
mechanical and physical properties, for example, negative
Poisson’s ratios, negative thermal expansion, or negative
compressibility.[56–58] CNT bundles under lateral plane strain
compression can be regarded as a nanomaterial composed of
highly deformable elements (circular cross sections of CNTs),
and it seems important to study their mechanical properties.

Materials with negative Poisson’s ratios are called auxetics,[59]

which expand laterally under uniaxial tension. There are many
carbon nanomaterials, such as porous graphene structures,[60]

covalently connected CNT networks,[61–65] fullerene nanotube
nanotruss networks,[66] wrinkled graphene due to the presence
of vacancies,[67] CNT heterojunctions,[68] CNT sheets
(buckypaper),[69–71] and diamond-like phases,[72–74] with such
auxetic properties. CNTs are used as reinforcing elements in
the composites with auxetic properties.[75–79] The auxeticity of
nano-/microtubes produced from orthorhombic crystals has
been reported in the study by Goldstein et al.[80]

The auxetic behavior can be demonstrated by macroscopic
tubular structures[81] as well as microscopic and nanoscopic
structures.[80–83] It was observed in the all-electron ab initio study
for the short, capped (9,0) CNTs due to endcap effects.[84]

Defected CNTs exhibit auxetic behavior and can be used to
improve the pullout energy in a CNT–polyethylene composite
via the auxetic effect.[75,85,86]

Most of the works devoted to the evolution of the structure of a
CNT array under pressure report a similar sequence of steps,
which has been confirmed experimentally,[87] namely, polygoni-
zation, collapse, and rearrangement of dog-bone components.
The deformation at each step depends on the initial configura-
tion and on the type of loading. In contrast, the evolution of
the mechanical properties of CNT bundles has not been carefully
studied.

In our previous works on the lateral compression of CNT bun-
dles, the chain model was developed,[49] the damping properties
of the bundles were analyzed,[50] and the structural characteris-
tics of the CNT bundles under biaxial compression were
reported.[51]

The aim of the present work is to conduct a detailed analysis
on the mechanical properties of the CNT bundles under plane
strain lateral compression.

In Section 2, the simulation model is described. Numerical
results are presented in Section 3. In particular, after the descrip-
tion of the CNT bundle structure evolution in Section 3.1, the
stress–strain curves are described in Section 3.2 and the elastic
constants in Section 3.3. The deformation mechanisms are
analyzed in Section 3.4. The discussion of the results and
conclusions are given in Section 4.

2. Simulation Setup

In this study, we consider the uniaxial and biaxial plane strain
compression of a bundle of CNTs. The nanotubes are oriented
along the z-axis and their circular cross sections form a close-
packed triangular lattice in the xy-plane with a close-packed
direction along the x-axis; see Figure 1.

The zigzag CNTs having a diameter D are considered.
A considerable reduction of the number of degrees of freedom
is achieved by assuming that each carbon atom of the CNT cross

Figure 1. Geometry of the CNT bundle with I� J nanotubes (I ¼ 3, J ¼ 2
in this plot, whereas I ¼ 10, J ¼ 12 is used in the simulations). Each zigzag
CNT is represented by 30 carbon atoms that move on the xy-plane. a is the
distance in the xy-plane between carbon atoms in the CNT wall, d is the
distance between the walls of the adjacent CNTs, D is the CNT diameter,
and A ¼ Dþ d is the distance between the centers of adjacent CNTs.
The length values of the sides of the computational cell in the form of
a parallelogram are I� A and J� A. The computational cell is subject
to the periodic boundary conditions.
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section represents the whole atomic row parallel to the CNT axis
(z-axis), which moves as a rigid body and has two degrees of
freedom—the components of the displacement vector in the
xy-plane. In Figure 1, the geometry parameters of the CNT bun-
dle are specified: the distance in the xy-plane between neighbor-
ing carbon atoms in the CNT wall is a; the distance between the
walls of the adjacent nanotubes is d; A ¼ Dþ d is the distance
between centers of the adjacent nanotubes. For most simula-
tions, the computational cell includes an array of 10� 12
CNTs (the case of 3� 2 CNTs is shown in Figure 1). Each CNT
cross section is represented by 30 atoms, and the total number of
atoms in the computational cell is N ¼ 10� 12� 30 ¼ 3600.
To demonstrate the effect of the computational cell size, for
the biaxial compression case, we present the results for a cell with
20� 24 CNTs (double in the size in the x- and y-axis compared
with the cell with 10� 12 CNTs).

We note that similar reduction of degrees of freedom can be
achieved for the armchair CNTs or for chiral CNTs with not very
large chiral indices. We believe that the effects observed in this
work are associated with a large difference in the bending and
tensile stiffness of the CNT wall, which is retained for CNTs
of any chirality; hence, the chirality should not be a critical factor.
With this in mind, we only consider the case of zigzag CNTs.
In the future, we plan to analyze the effect of chirality, which
can give quantitative changes in the results.

The equilibrium interatomic distance in graphene is
ρ ¼ 1.418Å. The equilibrium distance between adjacent rigid
atomic rows oriented along the z-axis is a ¼ ρ

ffiffiffi
3

p
=2 ¼ 1.228Å,

the diameter of the nanotube is D ¼ 30a=π ¼ 11.73Å, the
equilibrium distance between adjacent CNT walls under zero
pressure is d ¼ 3.088Å, and the distance between the centers
of neighboring CNTs can be found as A ¼ Dþ d ¼ 14.838Å.
Periodic boundary conditions in both directions are used. In
our simulations the units of distance, energy, and time are Å,
eV, and ps, respectively. Using these units, the mass of the car-
bon atom can be found as M ¼ 12� 1.0364� 10�4 eV ps2 Å�2.

The dynamics of the CNT bundle is described by the
Hamiltonian (total energy)[47,49]

H ¼ K þUB þUA þUvdW (1)

where the four terms in the right-hand side give the kinetic
energy of the system, energy of valence bonds, energy of valence
angles, and energy of van der Waals interactions, respectively.
The recipes for calculating these four types of energies are
described in detail in our open-access work[49] and are not repro-
duced here. The model has been successfully used to describe
the structure and peculiar mechanical properties of CNT bundles
and other carbon 2D materials.[46,48,50–54]

Step-wise, strain-controlled loading with structure relaxation
after each increment of strain is conducted. This means that per-
turbation–relaxation MD is used and thermal vibrations are not
taken into account. In other words, the study is focused on the
analysis of equilibrium structures at 0 K obtained under defor-
mation instead of force loading. Uniaxial compression along
x-axis (y-axis) is achieved by applying increments of homoge-
neous stain Δεxx ¼ �0.01 (Δεyy ¼ �0.01) to the computational
cell, whereas in the biaxial compression Δεxx ¼ Δεyy ¼ �0.01 is

used. In all cases, Δεzz ¼ 0. The deformed state of the structure
in all cases is characterized by the absolute value of volumetric
strain.

jθj ¼ jεxx þ εyyj (2)

where εxx and εyy are the accumulated strain components.
Using the perturbation–relaxation algorithm, the simulations

are conducted as follows. Each increment of homogeneous strain
is followed by the perturbation of atomic coordinates by adding
random displacements distributed uniformly over the range
from �10�6 to 10�6 Å. After that, the potential energy of the
system is minimized using the conjugate gradient method
and the equilibrium structure is obtained. Energy minimization
is conducted until the absolute value of the maximum atomic
force becomes smaller than 10�10 eVÅ�1.

The use of relaxation dynamics means that thermal fluctua-
tions are not taken into account or in other words, the simulation
temperature is T ¼ 0.

In our work, we present the tangential elastic properties,
which are calculated by applying small strains around the strain
level achieved in small increments, followed by the structure
relaxation. In this case, the linear theory of elasticity works well.

Hooke’s law for plane strain is taken in the form

σxx
σyy
σxy

0
@

1
A ¼

C11 C12 C13
C21 C22 C23
C31 C32 C33

0
@

1
A

εxx
εyy
εxy

0
@

1
A (3)

where Cij are the coefficients of the stiffness matrix.
We use the well-known approach[88] for estimating the

tangent elastic constants by calculating the average stress
values for the incremental strain components including
ðεxx , εyy, εxyÞ ¼ ð�ξ, 0, 0Þ, ðεxx , εyy, εxyÞ ¼ ð0, � ξ, 0Þ, and
ðεxx , εyy, εxyÞ ¼ ð0, 0, � ξÞ and average Cij values calculated for
positive and negative ξ. In our simulations, practically the same
result was obtained for 10�3 ≤ ξ ≤ 10�7. We take the value
ξ¼ 10�7 to minimize the effect of anisotropy introduced by
the lattice strain.

The tangent engineering elastic constants can be found as
follows.

νxy ¼ C21=C22, νyx ¼ C12=C11, Gxy ¼ C33 (4)

Exx ¼ C11ð1� νxyνyxÞ, Eyy ¼ C22ð1� νxyνyxÞ (5)

where νxy and νyx are Poisson’s ratios, Gxy is the tangent shear
modulus, and Exx and Eyy are the tangent Young’s moduli along
the x- and y-axis, respectively.

3. Simulation Results

The evolution of the CNT bundle structure is first described;
then, the stress–strain curves and elastic constants are presented
as the functions of volumetric strain for uniaxial and biaxial
compression.
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3.1. Evolution of the Structure

Figure 2 shows the evolution of the structure of the compressed
CNT bundle. The left column is for compression along x-axis, the
middle column for compression along y-axis, and the right
column for biaxial compression. For each row, the absolute value
of the volumetric strain is indicated, which increases from top to
bottom. For the structures with translational symmetry, transla-
tion cells are shown by the red lines.

In the first row, for jθj ¼ 0.07, one can see structures with the
translational symmetry where all CNTs have the same cross
section for each loading scheme. In (a) and (b), the CNTs are
in elliptical shape elongated in vertical and horizontal directions,
respectively. In (c), the CNTs are slightly polygonized, which can
hardly be seen in the scale of the figure.

For jθj ¼ 0.08 in the second row of Figure 2, a qualitative
change in the structure can be observed for all three loading
schemes. Translational symmetry is preserved in all cases, but
the size of the translation cells differs from that in the case
jθj ¼ 0.07. In (d), for compression along the x-axis, the transla-
tion cell doubles along two directions and includes four CNTs,
whereas in (e) and (f ), the period doubles in one direction and
the translation cell includes two CNTs. In the case of a compu-
tational cell with odd I and/or J, one can expect the formation of
domains of structures separated by domain walls.

The further increase in compressive strain leads to gradual
collapse of nanotubes that reach the saturation at strain slightly
above jθj ¼ 0.30, when all CNTs collapse. For compression along
the x-axis, collapsed CNTs appear at jθj ¼ 0.124 and can be seen
in (g) at jθj ¼ 0.15. In (h) and (i), at jθj ¼ 0.15, the translational
symmetry is still preserved, as for compression along the y-axis,
the CNT collapse starts at jθj ¼ 0.178 and for biaxial compression
it starts at jθj ¼ 0.151.

The last row in Figure 2 shows the structures at jθj ¼ 0.30, in
which the fraction of the remaining uncollapsed CNTs is small.

3.2. Compressive Stress–Strain Curves

Figure 3 shows the compressive stress–strain curves �σxxðjθjÞ
(the black lines) and �σyyðjθjÞ (the red lines) for (a) compression

Figure 2. Structure evolution of the CNT bundle under compression along
the x-axis (the left column) and along the y-axis (the middle column) and
biaxial compression (the right column). The volumetric strain values are
indicated for each row. For structures with translational symmetry, the red
lines show the translation cells.

Figure 3. a–c) Components of normal stress as the functions of the volu-
metric compressive strain during compression along the x-axis (a), along
the y-axis (b), and for biaxial compression (c). The black (red) lines show
σxx (σyy). Vertical dashed lines separate four stages of deformation num-
bered from I to IV. Shear stress is not plotted as it is very small in all cases.
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along the x-axis, (b) compression along the y-axis, and (c) biaxial
compression. In (c), the solid (dashed) lines present the results
for small (large) computational cell. The shear stress σxy is not
shown because in all cases it is at least an order of magnitude
smaller than the normal stresses. For all loading schemes, the
stress–strain curves feature four stages, reflecting the evolution
of the CNT bundle structure; see Section 3.1. The vertical
lines separate the stages numbered with Roman numerals
from I to IV.

Stage I is up to about jθj ¼ 0.07 with no qualitative changes in
the CNT bundle structure; see the first row of Figure 2. Within
this stage, the compressive stresses grow rapidly with the strain.
In (a) and (b), within stage I, the compressive stress along the
loading direction is only slightly higher than that in the trans-
verse direction, which means that one can expect a value of
Poisson’s ratio close to 1. The result will be confirmed in the
following section. In (c), within stage I, σxx ¼ σyy because of
the isotropy of the regular structure under biaxial compression.

The transition from stage I to stage II is accompanied by a
sharp change in the slope of the stress–strain curves, but there
is no discontinuity at the transition point. The structures with a
translation cell having a single CNT transform into periodic
structures with the doubled translation cells; see the second
row of Figure 2. The stress–strain curves within stage II are lin-
ear. Interestingly, in (a) and (b), the uniaxial compression results
in the reduction of the normal compressive strain in the lateral
direction, namely, σyy in (a) and σxx in (b) decrease. In (c), σxx
increases with the strain faster than σyy.

At the transition point from stage II to stage III, a sharp drop
of the normal compressive stresses takes place for all loading
schemes. At this point, collapsed CNTs appear in the structure,
which was described earlier.[50,51] The further increase in volu-
metric strain within stage III results in the gradual increase
in the fraction of collapsed CNTs; see the last row of
Figure 2. Stage IV begins when all CNTs collapse.

The effect of the size of the computational cell is discussed
by comparing the solid and dashed lines in Figure 3c
obtained for the small and large cells, respectively. Within
stages I and II, the results obtained for computational cells of
different sizes are practically the same. This is understandable,
as a representative volume of the crystalline structures includes
CNTs in one translation cell, which in stage I includes one CNT
and in stage II includes 1� 2 CNTs; see the third column of
Figure 2. At stage III, the effect of the cell size is noticeable,
as the representative volume for an irregular structure containing
collapsed CNTs is larger than that for crystalline structures. At
stage IV, the compressive stresses increase rapidly with the strain
because of the completely collapsed CNTs and the highly dense
structure.

It is interesting to discuss the anisotropy of various structures.
At stage I, the uniaxial compression produces weakly anisotropic
structures with elliptic CNT cross sections and that is why the
components of the normal stresses are not equal in Figure 3a,
b. The biaxial compression within stage I preserves isotropy
and in Figure 3c one has σxx ¼ σyy, as already mentioned.
The crystalline structures at stage II are anisotropic, and the
greatest anisotropy is observed upon compression along the
y-axis, because of the largest difference between σxx and σyy.

The anisotropy at stage II is the weakest for biaxial compression
and it is intermediate for compression along the x-axis. The same
trend can be seen during stages III and IV. This means that the
biaxial compression produces a nearly isotropic CNT bundle with
collapsed nanotubes; the compression along the x-axis results in
the intermediate anisotropy of the bundle and the compression
along the y-axis produces the largest anisotropy. In fact, a
close look at the structures presented in the bottom row of
Figure 2 reveals that the collapsed CNTs have a preferred hori-
zontal orientation in (k), vertical (but less pronounced) orienta-
tion in (j), and that there is no preferred orientation of collapsed
CNTs in (l).

3.3. Elastic Constants

In this section, engineering elastic constants are presented for
the crystalline structures of the CNT bundles as the functions
of volumetric strain. We recall that structures with translational
symmetry are observed upon deformation at stages I and II. The
elastic constants of the structures observed at stages III and IV
are not analyzed, as the size of the computational cell used in our
calculations is rather small and does not reflect the mechanical
properties of the irregular structures.

The dependence of Poisson’s ratios νxy (the black lines) and
νyx (the blue lines) on jθj is shown in Figure 4 for the cases
of: (a) compression along the x-axis, (b) compression along
the y-axis, and (c) biaxial compression. The vertical dashed lines
separate stage I and stage II. The horizontal dashed lines
highlight the zero value of Poisson’s ratio.

The analysis of the plots in Figure 4 reveals that within stage I,
νxy and νyx are almost equal and approach 1 with an increase in
jθj. In (a), however, νyx is slightly greater than νxy and in (b) the
opposite is true. The equality νxy ¼ νyx in (c) follows from
the isotropy of the structure shown in Figure 2c under biaxial
compression. Note that for the isotropic 2D material, the energy
conservation law suggests that the Poisson’s ratio must be within
�1 ≤ ν ≤ 1.[89] It becomes clear that the reason for the transfor-
mation of the structure during the transition from stage I to stage
II is the approach of Poisson’s ratio to the limiting value of 1.

The Poisson’s ratios at stage II differ markedly from those at
stage I. A sharp drop of both νxy and νyx is observed at the tran-
sition point. For all three loading schemes, one of the Poisson’s
ratios remains positive and the other one becomes negative,
which indicates that the structure of the laterally compressed
CNT bundle at stage II exhibits partial auxetic properties. For
compression along the x-axis, one has νxy < 0, but for compres-
sion along the y-axis and for biaxial compression, νyx < 0.

T figure out the mechanical behavior of the deformed CNT
bundle, in Figure 5 we analyze the values of tangent Young’s
moduli Exx and Eyy and tangent shear modulus G. Black, red,
and blue lines are used for illustrating Exx, Eyy, and G, respec-
tively. The vertical dashed line shows the border between stage I
and stage II.

At stage I, Exx and Eyy grow linearly with an increase in jθj for
all three loading schemes. The tangent shear modulus G also
increases with compressive strain but remains 4�5 times
smaller than the tangent Young’s moduli. Transition from stage
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I to stage II results in a sharp drop of the tangent Young’s mod-
uli. After drop, at stage II, Exx is greater than Eyy in the case of
compression along the x-axis, Exx and Exx are about the same for
compression along the y-axis, and Exx is smaller than Eyy for biax-
ial compression.

We turn to the discussion of the tangent shear modulus at
stage II. For compression along the y-axis and biaxial compres-
sion, as shown in Figure 5b,c, the tangent shear modulus
remains almost constant within the stage II and there is no a
change of the share modulus at the transition from stage I to
stage II. This means that the structures with the doubled trans-
lational cell shown in Figure 2e,f have the same shear rigidity as
the structures in Figure 2b,c. A completely different behavior of
G is observed for compression along the x-axis, see Figure 5a.
As soon as the border between the stage I and stage II is crossed,
G starts to increase with jθj and soon it becomes greater than the
tangent Young’s moduli Exx and Eyy. The increase in G can be

attributed to the formation of a special pattern of elliptic CNTs
with four nanotubes in a translational cell, see 2(d), which coun-
teracts shear deformation.

3.4. Deformation Mechanisms

Figure 6 shows the displacement vectors of the centers of gravity
of CNTs’ cross sections. The left (right) column gives the results
for jθj ¼ 0.2 (jθj ¼ 0.3). The first, second, and third rows display
the results for the compression along the x-axis, biaxial compres-
sion, and compression along the y-axis, respectively. The line seg-
ments connect the centers of gravity of CNTs in the uniformly
deformed structure with the current positions shown by the dots.
Recall that the actual CNT bundle structures at jθj ¼ 0.3 are
shown in the bottom row of Figure 2 and here they correspond
to the right column.

The results shown in Figure 6 suggest that the strain-induced
displacements of CNTs’ centers of gravity depend considerably

Figure 5. a–c) Tangent Young’s moduli and tangent shear modulus for
compression along the x-axis (a), along the y-axis (b), and for biaxial
compression (c). The black (red) lines show Exy (Eyy) and the blue line
is for the tangent shear modulus G. The vertical dashed lines separate
stage I from stage II.

Figure 4. a–c) Poisson’s ratios as the functions of the volumetric com-
pressive strain during compression along the x-axis (a), along the y-axis
(b), and for biaxial compression (c). The black (blue) lines show νxy
(νyx). Vertical dashed lines separate stage I from stage II. The horizontal
dashed line highlights the zero value of Poisson’s ratio.
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on the deformation scheme. Thus, in case of compression along
the x-axis (along a close-packed direction), vortex patterns of the
displacement vectors can be seen (the first row of Figure 6).
For the case of compression along the y-axis (normal to a
close-packed direction), the displacement vectors are much
shorter and do not produce vortexes (the bottom row of
Figure 6). In (a) and (b), the length of many displacement vectors
exceeds the distance between neighboring CNTs, but in (e) and
(f ), the length of the displacement vectors is smaller than this
distance. The length for the case of biaxial compression, shown
in (c) and (d), is naturally between those in the two uniaxial com-
pression schemes.

It can be concluded that, upon the uniaxial compression of the
CNT bundle in the direction of close packing, the CNT collapse is
accompanied by noticeable vortex-like displacements of the cen-
ters of gravity. In contrast, the main mechanism of compression
deformation perpendicular to the direction of close packing is the
collapse of CNTs with relatively small displacements.

4. Discussion and Conclusion

The elastic properties of a CNT bundle were analyzed under plain
strain lateral compression using perturbation–relaxation MD in
the framework of the chain model with a reduced number of
degrees of freedom. The uniaxial compression along the direc-
tion of close packing (the x-axis) and normal to it (the y-axis),
as well as the biaxial compression, were analyzed.

For all the loading schemes, the stress–strain curves can be
divided into four stages; see Figure 3.

Stage I: Slightly deformed CNTs form crystalline structures
with a single CNT in translation cell, see Figure 2a–c. In (a)
and (b), CNTs have elliptic cross sections elongated along the
vertical and horizontal directions, respectively, whereas in (c)
slightly polygonized CNTs are observed. The compressive stress
components grow rapidly with the strain, see Figure 3.

Stage II: CNTs having elliptic cross sections form crystalline
structures with doubled translation cells, see Figure 2d–f. In (d),
the translation cell includes four CNTs and in (e) and (f ) the cell
includes two CNTs. Transition from stage I to stage II results in a
sharp change of the slope of the stress–strain curves, and within
stage II, the compressive stress components change linearly with
the strain, see Figure 3.

Stage III: Collapsed CNTs appear in the structure and the frac-
tion of the collapsed CNTs increases with the increased compres-
sive strain, see Figure 2g,j–l. Transition from stage II to stage III
results in a sharp drop of the compressive stresses. In stage III,
the compressive stresses change slowly with the strain, see
Figure 3.

Stage IV: All CNTs collapse. The compressive stresses grow
very rapidly with the deformation, as there is no free volume
in the system, see Figure 3.

The following new results were obtained. 1) Engineering elas-
tic constants for the CNT bundle under lateral compression were
calculated as the functions of the volumetric strain for stages
I and II. Poisson’s ratios νxy and νyx are shown in Figure 4,
whereas Young’s moduli Exx , Eyy, and shear modulus G are
shown in Figure 5. The CNT bundle exhibits very unusual elastic
properties, as described later. 2) Within stage I, the bundle has
Poisson’s ratios close to 1 and approach 1 with increasing com-
pressive volumetric strain, see Figure 4. For an isotropic 2D elas-
tic material, the Poisson’s ratio cannot exceed 1, as the instability
of the structure with a single CNT inside the translation cell
arises when the Poisson’s ratio approaches 1. A transition to a
structure with a double translation cell indeed occurs at a volu-
metric strain of about 7%, see Figure 2. Note that most common
crystalline materials have Poisson’s ratios in the range from 0.25
to 0.35, so a value close to 1 for an isotropic elastic body (realized
in our simulations for biaxial compression within stage I) is
exceptionally high. 3) The CNT bundle under compression
within stage II exhibits partial auxetic properties, see Figure 4.
For the compression along the x-axis νxy < 0 and νyx > 0,
whereas for the compression along the y-axis and the biaxial com-
pression, νxy > 0 and νyx < 0. 4) Young’s moduli and shear mod-
ulus grow linearly with the compressive strain within stage I with
G being 4�5 times smaller than Exx and Eyy, see Figure 5.
In stage II, the Young’s moduli Exx and Eyy are noticeably
smaller than those in stage I. The shear modulus in stages I
and II is practically the same for compression along the y-axis
and the uniaxial compression, see Figure 5b,c. However, in
the case of the compression along the x-axis, in stage II, G is
greater than Exx and Eyy, see Figure 5a. 5) The compression
of the CNT bundle perpendicular to the direction of close pack-
ing produces the structure with collapsed CNTs having the high-
est degree of anisotropy. The biaxial compression produces
nearly isotropic structure, and the compression along the close-

Figure 6. Displacement vectors of the CNTs’ centers of gravity at jθj ¼ 0.2
(the left column) and jθj ¼ 0.3 (the right column). In the first, second, and
third rows, results for the compression along the x-axis, biaxial compres-
sion, and compression along the y-axis, respectively, are presented. The
dots show the current positions of the centers of gravity. The line seg-
ments connect the positions of the centers of gravity in the uniformly
deformed structure with the current positions.
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packed direction produces the structure with an intermediate
degree of anisotropy. Note that the degree of anisotropy can
be characterized by the difference in the compressive stress com-
ponents σxx and σyy; see Figure 3. 6) As for the mechanisms of
deformation, upon the uniaxial compression of the CNT bundle
in the direction of close packing, the CNT collapse is accompa-
nied by noticeable vortex-like displacements of the centers of
gravity, see Figure 6a,b. In contrast, the main mechanism of
compression deformation perpendicular to the direction of close
packing is the collapse of CNTs with very small displacements,
see Figure 6e,f.

The auxetic properties of isotropic and orthotropic media with
a complex structure can be described within the framework of
micropolar continuum models, see various studies.[90–93] The
skewed assembly of CNT cross sections observed at stage II
(see Figure 2) does not give an equivalent planar special ortho-
tropic continuum, and in this case more complex theories should
be developed.

The auxetic behavior observed for the crystal structures of the
CNT bundle at stage II cannot be explained by the mechanism of
rotating units,[94–97] as no noticeable rotation of the CNT cross
sections was found. Partial auxeticity is commonly observed in
strongly anisotropic materials.[98,99] The anisotropy of the consid-
ered CNT bundle at stage II, in which partial auxeticity is
observed, is low and can hardly be the cause of auxetic properties.
Possibly, the mechanism of the auxeticity of the CNT bundle as a
nanomaterial is similar to those of foam and other similar micro-
scopic and macroscopic structures.[100–103]

Further study on the effect of temperature and arrangement of
CNTs on the mechanical properties of the bundle is left for
future work. Analyses of complex structures with vortices or
crystalline domains are also reserved for future research.

Overall, the obtained data on the structure and elastic proper-
ties of CNT bundles upon lateral compression contribute to the
understanding of the deformation mechanisms of bundle-type
structures and provide guidance for the design of materials with
desired mechanical properties.
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