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Abstract. Carbon nanotubes (CNTs) have a unique combination of physical and mechanical 

properties, which makes them attractive for a number of applications. Investigation of the 

mechanical response of a CNT bundle under conditions of plane strain (uniaxial and biaxial 

lateral compression), since it can be used as an elastic damper for vibration and shock 

protection. In this work, using a chain model with a reduced number of degrees of freedom, the 

behaviour of a CNT bundle under uniaxial lateral compression is investigated. Quasistatic 

loading is used to calculate the elastic constants of the bundle. Dynamic loading reveals the 

propagation of shock waves of two types: the faster one propagates with the speed of 

longitudinal sound and causes insignificant deformation of the CNT cross sections, while the 

second one propagates approximately three times slower and leads to the collapse of the CNTs. 

1. Introduction 

Carbon nanotubes (CNTs) are attracted to each other by relatively weak van der Waals forces and can 

create molecular crystals, also called CNT bundles [1-3]. CNT bundles can be obtained by various 

techniques [4,5]. They have excellent mechanical properties, since individual CNT has a very high 

tensile strength in the range from 11 to 63 GPa, tensile Young's modulus ranging from 1.0 to 1.3 TPa 

and a high strain to fracture of about 10% [6,7]. In addition, CNTs are flexible, lightweight, good 

thermal and electrical conductors; therefore, they can be offered for a number of applications [8, 9]. 

The most important mechanical applications of CNTs are high-strength ropes [2, 10], fibers [11, 12], 

composites with a polymer and metal matrix [12, 13], solid lubricants [14], shock protecting structures 

[15], etс. Computer simulation studies contribute to a better understanding of the physical and 

mechanical properties of CNT bundles. Transformation of a vertically aligned into a horizontally 

aligned CNT forest by applying pressure has been studied in [16,17]. The shell model has been used to 

describe an ensemble of CNTs of different morphology [18]. The applicability of the beam, plate and 

shell models to the analysis of the mechanical properties of nanomaterials has been analyzed in 

[19,20]. CNTs having diameter is above a threshold value can exist either in circular or collapsed state 

[21-23]. For the study of mechanical response of CNT bundles the nonlinear coarse-grained potentials 

has been developed [24]. In order to reduce the number of degrees of freedom considered in 

simulation of some sp2-carbon nanostructures, the chain model has been developed [25]. This model 

was successfully applied to modeling of structure and properties of carbon nanoribbon folds and 

scrolls [25-29] and surface ripplocations [30]. In the works [31,32], the chain model was extended to 
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the study of CNTs under lateral compression in plane strain conditions. Damping properties of CNT 

bundle were described in [33]. Mechanical properties and phase transitions in CNT bundle under 

lateral compression were analyzed in [34,35]. Twisted graphene nanoribbons show enhanced 

resistance to axial compression [36,37]. Solitary waves [30,38] and shock waves [39] in nanomaterials 

have also been analyzed, although dynamic problems remain much less studied.  

So far, the chain model was used for the analysis of static loading of CNT bundles [31-35], and in 

this work, we also consider dynamical loading (shock compression).  

2. Simulation details and numerical results 

2.1.  Simulation setup 

The CNT bundle consists from single walled CNTs of the same diameter with a zigzag orientation. 

The z-axis of the Cartesian coordinate system is directed along the axes of CNTs. The bundle cross 

section is parallel to the xy-plane. The CNT cross sections form a triangular lattice with the close 

packed direction aligned with the x-axis [see figure 1(a)]. The computational cell includes 10×12 

(8×200) nanotubes for static (dynamic) problem. The boundary conditions are periodic. The CNT 

bundle is treated under the plain strain condition. Each CNT cross section is represented by 30 carbon 

atoms, and each atom represents a rigid row of atoms parallel to the CNT axis (z-axis). Each atom has 

two degrees of freedom, the x- and y-components of the displacement vector.  

Quasistatic compression is performed along the x-axis (xx <0, yy = 0) and dynamic loading along 

the y-axis (xx = 0, yy <0). Quasistatic compression is done in a stepwise manner with the increment 

xx=-0.005 followed by relaxation. Absolute value of the volumetric strain | |=|xx+yy|/2=xx/2 is 

used as the measure of quasistatic strain. Shock compression loading is performed by moving the 

upper row of CNTs down and fixing positions of atoms in the bottom row of CNTs. The upper row 

moves with the velocity V=-1000m/s, which is the speed of a bullet.  

2.2.  Quasistatic loading 

We firstly present the simulation results for quasistatic loading. In figure 1 CNT structure at different 

levels of uniaxial compression along the x-axis are shown: (a) | |=0, (b) | |=0.08 and (c) | |=0.3. In 

(b) the undeformed structure has translational symmetry with single CNT in a primitive translational 

cell. Uniaxial compression results in elliptization of CNT cross sections keeping the crystallinity of the 

structure. At | |=0.07 a phase transition with period doubling in two directions occurs. It can be seen 

that in (b) the CNT bundle has translational symmetry with four CNTs in a primitive translational cell. 

At | |=0.12 another phase transition takes place when CNTs start to collapse. With increasing 

compressive strain the fraction of collapsed CNTs gradually increases and in (c) at | |=0.3 almost all 

CNTs are collapsed.  

 

 

Figure 1. CNT bundle structure evolution during uniaxial compression along the x-axis: (a) initial 

state at | | = 0, (b) period doubling for the primitive translational cell at | |=0.08 and (c) almost all 

CNTs are collapsed at | |=0.3. 
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In figure 2(a) the stress-strain curves are presented. It can be seen that in the range 0<| |<0.07 

stress components grow rapidly with strain and compressive stress xx is greater than yy. We do not 

show the shear stress because it is close to zero. At | |=0.07 stress components show a sharp change in 

the slope and in the range 0.07<| |<0.12 they vary linearly with strain. At | |=0.12 a drop of stress 

components takes place due to the collapse of some CNTs. 

We then calculate elastic constants (Poisson's ratios xy and yx, Young's moduli Exx and Exy and 

shear modulus G) for the CNT bundle as the functions of volumetric strain. The Poisson's ratios are 

shown in figure 2(b), while the Young's moduli in figure 2(c). Interestingly, Poisson's ratios in the 

range 0<| |<0.07 are close to unity and they approach this value with increasing compressive strain. 

Even more interesting is that in the range 0.07<| |<0.12 yx is negative and xy remains positive with 

the value close to 0.3. This means that in this range of volumetric strain CNT bundle is a partial 

auxetic. Young's moduli and shear modulus grow linearly with compressive strain in the range 0<| 

|<0.07. The shear modulus exhibits a considerable increase in the range 0.07<| |<0.12, while Young's 

moduli a smaller in this range of strain. 

 

 

Figure 2. (a) Stress-strain curves. Change in (b) Poisson's ratios and (c) in shear modulus and 

Young's moduli with compressive volumetric strain. 

2.3. Dynamic loading 

We now turn to the presentation of the results of dynamical loading of CNT bundle, which are given 

in figure 3. In (a) one can see the vertical displacements of the centres of gravity of CNTs at t1=10 ps 

(black line), t2=20 ps (red line) and t3=30 ps (blue line). Note that the horizontal rows of CNTs are 

numbered by the index n. In (b), as the function of n, the ellipticity of CNTs is shown as the ratio of 

the minimal to maximal diameters. In (c) and (d) the averaged energies of valence bonds and valence 

angles, respectively are shown as the functions of n. Comparison of the results shown in (a) and (b) 

suggests that propagation of the faster wave results in a weak elliptization of CNTs with 

Dmin/Dmax=0.9. The second slow wave leads to collapse of CNTs with Dmin/Dmax=0.2. As it follows 

from (c), energies of valence bonds are approximately same in the collapsed and non-collapsed CNTs. 

On the other hand, the energies of the valence angle [see in (d)], as expected, are much higher in the 

collapsed CNTs as compared to CNTs with small ellipticity.  

3. Conclusions 

Molecular dynamics simulations of quasistatic and dynamic lateral compression of CNT bundle in 

plane strain state were performed. Quasistatic compression along the close packed direction of the 

bundle (along the x-axis) has revealed that in the crystalline structural state with single CNT in the 

primitive translational cell Poisson’s ratios are close to unity and approach this value with increasing 

compressive strain. It should be noted that most elastic bodies have Poisson's ratio close to 0.3, and the 

value of Poisson's ratio, close to unity, is extremely large. This means that the CNT bundle exhibits 

unusual elastic properties. When CNT bundle has crystalline structure with four CNTs in the primitive 

translational cell, one of the two Poisson’s ratios becomes negative meaning that the bungle is a partial 

auxetic. Shock compression of CNT bundle in the direction normal to the close packed direction 
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(along the y-axis) has revealed propagation of two waves moving with different velocities. The faster 

wave caused small elliptization of CNTs, while the following slow wave causes their collapse. Results 

presented in this work demonstrate that elastic bodies composed of highly deformable units, such as 

CNT cross sections, can demonstrate unusual mechanical properties. In future works, the chain model 

can be extended for 2D materials other than graphene [41]. 

 

 

Figure 3. Displacements of the centers of mass of nanotubes under compression (a), minimal to 

maximal diameter ratio (b), energy valence bonds (c) and angles (d) at loading speed of 1000 m/c. t1, t2 

and t3 correspond to the simulation time 10 ps - black curve, 20 ps - red curve and 30 ps -blue curve. 
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