
Vol.:(0123456789)1 3

Breast Cancer Research and Treatment (2020) 179:731–742 
https://doi.org/10.1007/s10549-019-05492-6

EPIDEMIOLOGY

Exome sequencing study of Russian breast cancer patients suggests 
a predisposing role for USP39

Ekaterina S. Kuligina1  · Anna P. Sokolenko1,2 · Ilya V. Bizin1 · Alexandr A. Romanko1,2 · Kirill A. Zagorodnev2 · 
Maria O. Anisimova2 · Daria D. Krylova3 · Elena I. Anisimova4 · Maria A. Mantseva1 · Ashok K. Varma5 · 
Syed K. Hasan5 · Valeria I. Ni1 · Andrey V. Koloskov6 · Evgeny N. Suspitsin1,2 · Aigul R. Venina1 · 
Svetlana N. Aleksakhina1 · Tatiana N. Sokolova1 · Ana Marija Milanović7 · Peter Schürmann7 · Darya S. Prokofyeva10 · 
Marina A. Bermisheva11 · Elza K. Khusnutdinova11 · Natalia Bogdanova7 · Thilo Dörk7 · Evgeny N. Imyanitov1,2,3,8,9

Received: 10 July 2019 / Accepted: 7 November 2019 / Published online: 21 November 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Purpose Germline variants in known breast cancer (BC) predisposing genes explain less than half of hereditary BC cases. 
This study aimed to identify missing genetic determinants of BC.
Methods Whole exome sequencing (WES) of lymphocyte DNA was performed for 49 Russian patients with clinical signs 
of genetic BC predisposition, who lacked Slavic founder mutations in BRCA1, BRCA2, CHEK2, and NBS1 genes.
Results Bioinformatic analysis of WES data was allowed to compile a list of 229 candidate mutations. 79 of these muta-
tions were subjected to a three-stage case–control analysis. The initial two stages, which involved up to 797 high-risk BC 
patients, 1504 consecutive BC cases, and 1081 healthy women, indicated a potentially BC-predisposing role for 6 candi-
dates, i.e., USP39 c.*208G > C, PZP p.Arg680Ter, LEPREL1 p.Pro636Ser, SLIT3 p.Arg154Cys, CREB3 p.Lys157Glu, and 
ING1 p.Pro319Leu. USP39 c.*208G > C was strongly associated with triple-negative breast tumors (p = 0.0001). In the 
third replication stage, we genotyped the truncating variant of PZP (rs145240281) and the potential splice variant of USP39 
(rs112653307) in three independent cohorts of Russian, Byelorussian, and German ancestry, comprising a total of 3216 
cases and 2525 controls. The data obtained for USP39 rs112653307 supported the association identified in the initial stages 
(the combined OR 1.72, p = 0.035).
Conclusions This study suggests the role of a rare splicing variant in BC susceptibility. USP39 encodes an ubiquitin-specific 
peptidase that regulates cancer-relevant tumor suppressors including CHEK2. Further epidemiological and functional studies 
involving these gene variants are warranted.
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Introduction

Breast cancer (BC) is the most common oncological disease 
among women [1]. A significant portion of BC incidence 
is attributed to hereditary predisposition to the disease. A 
number of highly or moderately penetrant BC-associated 
genes have been discovered in the past, including BRCA1, 
BRCA2, TP53, PTEN, STK11, PALB2, CHEK2, ATM, and 
additional candidate susceptibility genes such as BARD1, 
NBN, BLM, RAD51C, RAD51D, XRCC2, FANCM, MRE11A 
etc. [2–12]. Nevertheless, even comprehensive analysis of all 
known BC genes would be capable to find definite genetic 
cause of the disease only in 20–30% of women with overt 
clinical features of hereditary cancer syndrome [13–15]. 
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There are ongoing investigations aimed to identify novel 
BC-predisposing genes.

The first BC gene-seeking studies focused on extensive 
BC pedigrees. This approach turned out to be extremely 
successful, as exemplified by the discovery of BRCA1 and 
BRCA2 genes. However, collection of multiple-case fami-
lies is highly complicated in communities with low birth 
rate, especially in countries that experienced historical tur-
bulences in the past. Furthermore, family-based studies are 
capable to identify mainly the genes with very high pene-
trance; however, they may have limited capacity in revealing 
moderately penetrant but still medically relevant gene can-
didates. Therefore, it is common to use clinical surrogates 
of BC predisposition, such as early-onset and bilateral BC 
disease, to enrich for hereditary breast cancer [16].

Hereditary cancer studies are significantly compromised 
by genetic heterogeneity of population. Founder communi-
ties provide significant advantage in this respect; indeed, 
if a given gene plays a role in predisposition to a certain 
disease, its pathogenic alleles are usually represented by a 
few recurrent variants. Validation of newly identified gene 
candidates can then be more easily achieved via rapid and 
cost-efficient case–control studies. Importantly, some Slavic 
countries (Poland, Russia, Ukraine, and Belarus) demon-
strate highly pronounced founder effects. This is exemplified 
by a high frequency of certain recurrent BC-predisposing 
mutations e.g., in BRCA1, CHEK2, or ATM genes as well as 
clinically relevant pathogenic alleles for some other diseases 
(e.g., SCO2 c.418G > A; GJB2 c.35delG) [17–20].

We assumed that the application of exome analysis to 
genetically enriched Slavic BC patients will allow to identify 
novel BC-predisposing genes. In the present study, we there-
fore performed exome sequencing and subsequent case–con-
trol studies on Russian patients with clinical evidence of 
hereditary breast cancer.

Materials and methods

We initially included in the study 49 Russian women with 
BC, who demonstrated clinical signs of hereditary disease, 
but were lacking founder mutations in BRCA1, BRCA2, 
CHEK2, and NBN genes (Supplementary Table S1). We also 
analyzed 18 cancer-free controls to facilitate the exclusion of 
nonrelevant candidates. Exome capture was performed using 
Nextera Rapid Capture Exome kit (Illumina, USA). Whole 
exome sequencing (WES) was performed using either Illu-
mina MiSeq (16 samples) or Illumina NextSeq platform (33 
samples) with the mean depth of coverage 36× for MiSeq 
and 81× for NextSeq (Fig. 1).

The obtained paired-end reads were aligned to the refer-
ence genome (GRCh37/hg19) using the MEM algorithm of 
BWA software v.0.7.15-r1140 [https ://doi.org/10.1093/bioin 

forma tics/btp32 4] and were stored in BAM files by Samtools 
v.1.7 [https ://doi.org/10.1093/bioin forma tics/btp35 2]. Dupli-
cate reads were marked by Picard tools v.2.9.0 [http://broad 
insti tute.githu b.io/picar d]. Variants for each sample were 
called separately using HaplotypeCaller walker of Genome 
Analysis Toolkit (GATK) v.3.6 according to the GATK Best 
Practices work flow [https ://doi.org/10.1002/04712 50953 
.bi111 0s43]. We required a minimum depth of 10 and qual-
ity greater than 50 as prefilters. Single-sample variant files 
were normalized, merged, and saved to the multi-sample 
VCF-file by bcftools v.1.7 [https ://doi.org/10.1093/bioin 
forma tics/btr50 9]. The multi-sample file was annotated 
using a SnpEff v.4.3t tool [https ://doi.org/10.4161/fly.19695 
] and variants with predicted high or moderate impact were 
selected for further consideration.

The criteria for variant filtering are presented in Fig. 2. 
The selected candidates were subjected to manual inspection 
in the Integrative Genomics Viewer (IGV) browser [http://
www.broad insti tute.org/igv/home]. Sanger sequencing was 
applied to primary DNA samples (“index” cases) in order to 
validate newly identified variants.

The BC-predisposing role of candidate mutations/
genes was evaluated using 2-stage case–control analysis 
(Supplementary Fig. S1). All BC patients included in the 
study were negative for common Slavic founder mutations 
[BRCA1: c.5266dupC (5382insC), c.4034delA (4153delA), 
c.68_69delAG (185delAG); BRCA2 c.5946delT (6174delT); 
CHEK2: c.1100delC (1100delC), c.444 + 1G > A 
(IVS2 + 1G > A); NBN c.657_661delACAAA (657del5)]. 
The group of high-risk BC patients (median age: 43 years; 
range: 23–79 years) was represented by 797 women, who 
were forwarded to the N.N. Petrov Institute of Oncology 
(St.-Petersburg, Russia) between the years 2008–2018 spe-
cifically for genetic testing and had at least one clinical 
indicator of BC predisposition (1st degree family history 
of BC, bilaterality of the disease, age at onset ≤ 50 years). 
1504 consecutive BC patients (median age: 57.0 years; 
range: 24–90 years) were recruited in the N.N. Petrov Insti-
tute of Oncology (time intervals: April 2001–February 2002, 
March 2003–January 2004, June 2006–May 2007 and March 
2008–May 2008), St.-Petersburg Regional Cancer Hospital 
(February 2015–June 2015), and St.-Petersburg City Cancer 
Center (February 2017–April 2017). 132/1504 (8.8%) con-
secutive patients reported a 1st degree family history of BC 
and/or ovarian cancer; 396/1504 (26.3%) were diagnosed 
by the age ≤ 50 years; 54/1504 (3.6%) had multiple primary 
cancers (Supplementary Table S1). Cancer-free controls 
were collected at random and had a median age of 44 years 
(range: 21–82 years).

Our initial evaluation of candidate alleles involved 
an average 385 high-risk BC patients (range: 150–656) 
and 330 healthy middle-aged women (range: 150–633) 
(Supplementary Fig. S1). Promising gene variants were 
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further assessed in the extended case–control analysis, 
which included an average 1330 consecutive BC patients 
(range: 1220–1504), 356 additional high-risk BC patients 
(range: 203–412), and 716 additional healthy female con-
trols (range: 681–751). The sample size of the study varied 
from gene to gene; exact numbers of analyzed subjects are 
given in Supplementary Table S5.

Candidate genetic variants were genotyped by high 
resolution melting (HRM) analysis followed by Sanger 
sequencing of abnormally melted DNA fragments or by 
real-time allele-specific PCR (AS-PCR). The results of 
case–control analysis were statistically analyzed by SPSS 
software (version 22) using two-sided Fisher’s exact or 
Chi-square test.

Fig. 1  Work flow for the 
detection of BC-predisposing 
mutations using whole exome 
sequencing (WES)
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For replication of significant associations, we used 
the three breast cancer case–control series of the Hanno-
ver–Minsk Breast Cancer Study (HMBCS), the Hanno-
ver–Ufa Breast Cancer Study (HUBCS), and the Hannover 
Breast Cancer Study (HaBCS). All three studies have previ-
ously been described [17, 21]. In brief, the HMBCS con-
sists of 1891 breast cancer patients recruited in the Republic 
of Belarus during the years 1998–2007, and 1019 healthy 
volunteers from the same population who had no personal 
history of breast cancer at the time when entering the study. 
The HUBCS consisted of breast cancer patients unselected 
for family history who were living in the Volga Ural region 
of Russia and diagnosed during the years 2000–2007 at the 
oncological center in Ufa (Bashkortostan) and 542 volun-
teers from the same geographic regions. The HaBCS con-
sists of over 1000 unselected German breast cancer patients 

and 1013 healthy females who were living in the Lower 
Saxonian region of Germany and have been recruited at the 
Gynecology Research Unit of Hannover Medical School.

In the replication study, genotyping was carried out with 
allele-specific SNP-type assays using 192.24 Dynamic 
Arrays on a Biomark Real-time PCR platform according to 
the manufacturer’s instructions (Fluidigm Corp.). Cluster 
plots were automatically called, with manual adjustments 
wherever necessary and case–control data were analyzed 
using logistic regression analysis with STATA 12. A fixed-
effects meta-analysis of the three different case–control stud-
ies was run using the metan command in STATA.

Wherever possible, tumor tissues obtained from the 
carriers of presumably BC-predisposing mutations were 
subjected to the loss-of-heterozygosity (LOH) analysis. 
Somatic deletions of the remaining allele were evaluated 

Fig. 2  WES data analysis: filtra-
tion and prioritization strategy
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by allele-specific PCR and Sanger sequencing as described 
in [22].

Results

Forty-nine BC patients with clinical signs suggestive of 
hereditary disease were analyzed through whole exome 
sequencing (WES). Given that these patients were tested 
only against recurrent Slavic cancer-predisposing muta-
tions, this analysis expectedly led to the identification of 
a number of known BC risk alleles. In particular, 21 DNA 
samples carried mutations in BRCA1, BRCA2, PALB2, BLM, 
RAD51C, RAD50, RAD54L, FANCM, WRN, MMS22L, and 
ERCC4 genes with predicted pathogenicity (Supplementary 
Table S2). WES analysis of the remaining 28 cases identi-
fied 50,554 non-silent variants (Supplementary Table S3). 
We further filtered out alleles, which demonstrated popula-
tion frequency above 1% (ExAC database) or were present 
in our collection of 18 exomes obtained from cancer-free 
controls. This permitted us to compose a list containing 
9619 rare mutations. We included into the further analysis 
only protein-truncating variants (n = 664) and missense vari-
ants with CADD score > 25 (n = 1737). Variant filtering is 
described in Fig. 2.

We manually screened the list of these 2401 alleles and 
considered them as deserving attention if they met one of 
the below-described criteria. In particular, we prioritized 
allelic variants defined as “pathogenic/likely pathogenic” by 
the ACMG-guided scoring system INVERVAR. This five-
tier categorization system uses a total of 28 criteria based 
on different sources of data such as population frequencies, 
in silico analysis, functional experiments, and segregation 
data [23, 24].

We also compared the frequency of mutations in the 
ExAC cancer cohort versus cancer-free population and 
selected for the study the alleles producing  ORper allele > 2 
at p < 0.05 [25, 26]. Irrespective of the potential gene func-
tion, we also selected variants which occurred in our BC 
exome collection twice but appeared exceptionally rare 
or absent in the general population; we reasoned that this 
frequency (2/28, 7%) is compatible with the frequency of 
known highly penetrant pathogenic alleles in high-risk BC 
cases (e.g., BRCA1 c.5266dupC (5382insC)) [27]; CHEK2 
c.1100delC [20], etc.). Cancer-relevant functions of the 
candidate genes (involvement in DNA damage response, 
proliferation, apoptosis, cell mobility, stress response, 
etc.) were also taken into account. In addition, interac-
tions with known tumor suppressor genes and oncogenes 
were analyzed using BioGrid and String databases as well 
as by WebGestalt functional enrichment analysis (see Web 
Resources for additional information). We also considered 
mutations whose relationship with cancer has been already 

mentioned in the scientific literature. These efforts per-
mitted us to compose a list of selected candidates, which 
included 229 variants (Fig. 2, Supplementary Table S4).

Eighty-four top candidates were subjected to validation 
by Sanger sequencing of index DNA samples. The pres-
ence of the variant was confirmed for 79 (94.0%) samples. 
Pilot case–control study involving high-risk BC patients 
and healthy middle-aged women allowed to classify the 
analyzed variants for three categories (Supplementary 
Fig. S1, Supplementary Table S5). 39 alleles, although 
being present in index cases, were not detected in the 
studied group of cancer patients. Therefore, the disease-
predisposing significance of these presumably “private” 
mutations could not be evaluated within the reasonably 
powered case–control study. 29 variants demonstrated 
an apparently similar distribution in high-risk BC cases 
and controls. Finally, ten alleles were over-represented in 
BC patients, and therefore, were subjected to extended 
case–control analysis.

In the second stage of the study, BC-predisposing role 
was confirmed for six alleles: USP39 c.*208G > C, PZP 
p.Arg680Ter, LEPREL1 p.Pro636Ser, SLIT3 p.Arg154Cys, 
CREB3 p.Lys157Glu, and ING1 p.Pro319Leu. All these var-
iants were detected in the heterozygous state. The descrip-
tion of the above genes and mutations is provided in Table 1 
and Supplementary Table S6. LOH analysis revealed only 
one instance of the loss of the wild-type allele indicating 
that the somatic deletion of the remaining gene copy is not a 
key mechanism of BC pathogenesis if driven by these genes. 
We further pooled together all available BC cases and con-
sidered the distribution of the above germline variants in 
BC subgroups according to the presence of clinical signs 
of hereditary disease (family history, early-onset, presence 
of multiple cancers) (Table 2). Statistical significance was 
achieved for USP39 c.*208G > C which was strongly associ-
ated with triple-negative breast tumors (p = 0.0001), and for 
PZP p.Arg680Ter and SLIT3 p.Arg154Cys mutations which 
tended to associate with the presence of multiple cancers 
in the studied patients (p = 0.039 and 0.022, respectively).

We chose the truncating variant in PZP (p.Arg680Ter, 
rs145240281) and the putative splice variant in USP39 
(c.*208G > C in isoform 1, c.*46-1G > C in isoform 2, 
rs112653307) for further replication in the three independent 
case–control series. The results from the replication study 
are provided in Table 3. Both variants were identified in 
all three populations at heterozygote frequencies between 
0.5–1.5%. There was no indication for an association of 
PZP p.Arg680Ter (rs145240281) with breast cancer risk in 
any of the three studies nor in the combined analysis (OR 
0.87, 95% CI 0.52–1.47, p = 0.61). In case of the USP39 
variant rs112653307, we observed an increased effect size 
across studies and a nominally significant association with 
breast cancer risk in the combined analysis (OR 1.72, 95% 
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Table 1  Prevalence of USP39 c.*208G > C, PZP p.Arg680Ter, LEPREL1 p.Pro636Ser, ING1 p.Pro319Leu, SLIT3 p.Arg154Cys, and CREB3 
p.Lys157Glu alleles in high-risk and consecutive breast cancer (BC) patients

*p-values for the odds ratio (OR) significance were calculated according to Sheskin, 2004 [60]. Online calculator: https ://www.medca lc.org/calc/
odds_ratio .php

Gene name, mutation High-risk BC OR (95% 
CI) p value*

Consecutive BC OR (95% CI) Controls (%) Somatic loss of the 
remaining allele in the 
tumor

USP39
c.*208G > C

6/792 (0.75%)
17.6
[1.00–312.60]
p = 0.050

9/1340 (0.67%)
15.2
[0.89–261.79]
p = 0.060

0/1066 (0) 0/5

PZP
p.Arg680Ter

3/792 (0.38%)
4.12
[0.426–39.553]
p = 0.221

8/1504 (0.62%)
5.78
[0.721–46.246]
p = 0.068

1/1081 (0.09) 0/4

LEPREL1
p.Pro636Ser

2/797 (0.24%)
6.70
[0.321–139.828]
p = 0.220

6/1500 (0.44%)
9.28
[0.522–164.862]
p = 0.150

0/1066 (0) 1/4

SLIT3
p.Arg154Cys

10/784 (1.28%)
4.40
[1.206–16.036]
p = 0.025

13/1220 (1.07%)
3.66
[1.041–12.886]
p = 0.043

3/1023 (0.29) 0/7

CREB3
p.Lys157Glu

6/791 (0.76%)
7.62
[0.916 to 63.447]
p = 0.060

2/1224 (0.16%)
1.65
[0.149 to 18.257]
p = 0.681

1/1011 (0.1) 0/2

ING1
p.Pro319Leu

2/588 (0.34%)
8.91
[0.427–185.976]
p = 0.158

1/1200 (0.08%)
2.61
[0.106–64.260]
p = 0.556

0/1045 (0) 0/2

Table 2  Distribution of newly identified cancer-predisposing alleles in breast cancer (BC) patients depending on the presence of clinical signs of 
hereditary disease

ING1 p.Pro319Leu was not included in the analysis due to low frequency of mutations. Triple-negative BC was significantly associated with 
the presence of USP39 c.*208G > C mutation (p = 0.0001). Multiple cancers occurred statistically more often in PZP p.Arg680Ter and SLIT3 
p.Arg154Cys mutation carriers (p = 0.039 and 0.022, respectively). PZP-mutated patients diagnosed with multiple cancers were: BC + colorectal 
cancer; BC + basal cell carcinoma; bilateral BC + gastric cancer; all SLIT3-mutated cases with multiple cancers represented bilateral BC. Other 
comparisons between BC subgroups produced p-values below the statistical significance threshold

Gene name, mutation Family history of 
breast or ovarian 
cancer

Early-onset 
(≤ 50 years)

Multiple cancers Presence of any clini-
cal sign of hereditary 
BC (family history or 
early-onset or multiple 
primaries)

Triple-negative 
breast cancer

Yes No Yes No Yes No Yes No Yes No

USP39
c.*208G > C

2/314
(0.64%)

13/1818
(0.72%)

8/974
(0.82%)

7/1158
(0.60%)

0/158
(0%)

15/1974
(0.76%)

9/1228
(0.7%)

9/904
(0.7%)

11/264
(4.2%)

3/1159
(0.26%)

PZP
p.Arg680Ter

1/331
(0.30%)

10/1965
(0.51%)

6/1046
(0.57%)

5/1250
(0.4%)

3/165
(1.83%)

8/2131
(0.38%)

9/1317
(0.68%)

2/979
(0.20%)

3/266
(1.1%)

6/1167
(0.5%)

LEPREL1
p.Pro636Ser

0/330
(0%)

8/1967
(0.41%)

4/1048
(0.38%)

4/1249
(0.32%)

0/165
0%

8/2132
0.38%

4/1319
(0.30%)

4/978
(0.41%)

0/266
(0%)

8/1167
(0.7%)

SLIT3
p.Arg154Cys

2/302
(0.66%)

21/1702
(1.23%)

12/950
(1.26%)

11/1054
(1.04%)

5/145
(3.45%)

18/1859
(0.97%)

17/1189
(1.43%)

6/815
(0.74%)

5/223
(2.2%)

13/1004
(1.3%)

CREB3
p.Lys157Glu

3/304
(1.00%)

5/1711
(0.29%)

5/958
(0.52%)

3/1057
(0.28%)

1/149
(0.67%)

7/1866
(0.38%)

7/1200
(0.58%)

1/815
(0.12%)

1/223
(0.4%)

6/1010
(0.6%)

https://www.medcalc.org/calc/odds_ratio.php
https://www.medcalc.org/calc/odds_ratio.php
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CI 1.04–2.84, p = 0.035) that was consistent with the data 
obtained in the St.-Petersburg cohorts.

We also analyzed the presence of 6 candidate BC-pre-
disposing variants (USP39 c.*208G > C, PZP p.Arg680Ter, 
LEPREL1 p.Pro636Ser, SLIT3 p.Arg154Cys, CREB3 
p.Lys157Glu, and ING1 p.Pro319Leu) in 21 patients who 
carried germline mutations in known hereditary cancer 
genes (Supplementary Table  S2). No instances of co-
occurrence of known and novel BC-associated alleles were 
observed.

Discussion

This study revealed a possible contribution of six novel 
BC-predisposing genetic variants to the burden of genetic 
breast cancer risk in Russia. Two of these alleles (USP39 
c.*208G > C and PZP p.Arg680Ter) had been classified as 
a protein-truncating or splice site variant, respectively, while 
the remaining ones are missense mutations with high CADD 
score.

USP39 (ubiquitin specific peptidase 39, or snRNP 
assembly defective 1 homolog) plays a role in pre-mRNA 
splicing as a component of the spliceosome; it also main-
tains the spindle checkpoint and supports successful 
cytokinesis. Upregulation of USP39 has been associated 
with stimulation of cancer cell proliferation in vitro and 
in vivo [28]. USP39 knockdown inhibits cell proliferation 

and colony formation in breast, gastric, hepatocellular, 
etc. cancer cell lines and induces apoptosis in tumor cells 
[29–32]. Interestingly, the USP39 deubiquitinase has 
recently been identified as an upstream regulator of the 
checkpoint kinase 2, CHEK2, which plays a well-known 
role in breast cancer susceptibility. Knockdown of USP39 
led to deregulated CHEK2, compromising the DNA 
damage-induced G2/M checkpoint, decreasing apoptosis, 
and conferring cancer cells resistance to chemotherapy 
drugs and radiation treatment [33]. USP39 c.*208G > C 
(rs112653307) is a splice-acceptor variant, which is likely 
to alter the splicing of the last exon, as the usage of this 
acceptor site has been documented for the mRNA isoform 
2 of USP39. It is thus possible that it affects the processing 
of the corresponding 3’UTR. The 3’UTR of the USP39 
gene harbors a number of regulatory elements, most nota-
bly, the target site for tumor suppressor miR-133a [34–36]. 
In particular, miR-133a suppresses cell proliferation by 
targeting USP39 and predicts better prognosis in gastric 
and pancreatic cancer [37, 38]. Thus, the c.*208G > C 
(rs112653307) variant could disrupt the USP39 gene splic-
ing and prevent its downregulation by miR-133a. While 
this variant was not found in over 1000 Russian controls 
of stage 1, it affected 0.7% of Russian breast cancer cases; 
moreover, it was strongly associated with triple-negative 
breast tumors. Interestingly, its association was replicated 
in a combined analysis of three additional populations, 
although the effect size was found to be modest in these 

Table 3  Replication study 
for the PZP rs145240281 and 
USP39 rs112653307 variants

Genotyping results for the PZP rs145240281 and USP39 rs112653307 variants in the Hannover–Minsk 
Breast Cancer Study (HMBCS), the Hannover–Ufa Breast Cancer Study (HUBCS), and the Hannover 
Breast Cancer Study (HaBCS). For HUBCS, only individuals with documented Russian ancestry were 
included. Cases and Controls are given as numbers of heterozygotes versus total number
OR odds ratio; CI confidence interval
OR and p are the values from logistic regression analyses for the single studies and from a fixed-effects 
meta-analysis in the combine

Gene Variant Study Country BC cases Controls OR (95% CI) p

USP39 rs112653307
c.*208G > C

HMBCS Belarus 20/1864
(1.07%)

8/1214
(0.66%)

1.64
[0.72–3.72]

0.24

HUBCS Russia 5/446
(1.12%)

2/417
(0.48%)

2.35
[0.45–12.19]

0.31

HaBCS Germany 22/906
(2.43%)

13/890
(1.46%)

1.68
[0.84–3.35]

0.14

Combined 47/3216
(1.46%)

23/2521
(0.91%)

1.72
[1.04–2.84]

0.04

PZP rs145240281
p.Arg680Ter

HMBCS Belarus 20/1862
(1.07%)

16/1214
(1.32%)`

0.81
[0.42–1.57]

0.54

HUBCS Russia 2/447
(0.45%)

2/420
(0.48%)

0.94
[0.13–6.70]

0.95

HaBCS Germany 6/906
(0.66%)

9/891
(1.01%)

0.65
[0.23–1.84]

0.42

Combined 28/3215
(0.87%)

27/2525
(1.07%)

0.87
[0.52–1.47]

0.61
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population-based studies. From our data, USP39 repre-
sents an interesting and novel candidate breast cancer sus-
ceptibility gene.

PZP gene encodes for the so-called pregnancy zone pro-
tein which serves as an inhibitor of proteinases [39, 40]. 
Recently PZP has been described as a novel biomarker for 
predicting the prognosis of hepatocellular carcinoma [41]. 
The same loss-of-function variant (PZP p.Arg680Ter) has 
been previously identified by whole exome sequencing of 
Brazilian patients with clinical signs of hereditary breast 
cancer [42] and in a multicase breast cancer family [43]; 
no segregation data was provided in the latter report. How-
ever, our replication study suggests that the role of PZP 
p.Arg680Ter for breast cancer risk, if any, is limited and 
excludes more than 1.5-fold risks.

The four missense variants also target genes with poten-
tially relevant function in cancer development. LEPREL1 
(leprecan-like 1 protein) also known as P3H2 (prolyl 
3-hydroxylase 2) is involved in the post-translational 
modification of collagen type IV. It was shown to inhibit 
proliferation of cancer cells [44]. Methylation of this gene 
is frequently observed in estrogen receptor-positive breast 
carcinomas [45]. SLIT3 (Slit Guidance Ligand 3), also 
known as MEGF5 (Multiple EGF-Like Domains Protein 
5), has a tumor suppressor role [46, 47]. In particular, it 
was shown to inhibit growth of mammary carcinomas in 
mice [48]. Low expression of SLIT3 is associated with 
decreased sensitivity of hepatocellular carcinoma cells to 
cytotoxic therapy [49]. CREB3 (cAMP responsive element 
binding protein 3) regulates cell proliferation and migra-
tion as well as plays a role in tumor suppression [50]. 
One of CREB3 protein isoforms is able to inhibit estrogen 
receptor alpha-mediated signaling leading to suppression 
of cell division in breast cancer [51]. ING1 (inhibitor of 
growth family, member 1) gene may induce growth arrest, 
cell senescence, and apoptosis [52, 53]. Loss of ING1 
expression is characteristic for a broad range of cancer 
types [54], and decreased level of ING1 gene product is 
associated with higher rate of metastases in breast can-
cer patients [55, 56]. Although all four variants have been 
classified as potentially pathogenic by SNPEff, more work 
would be needed to determine the functional relevance of 
these missense substitutions.

None of the analyzed variants demonstrated frequent 
involvement of the somatic loss of the remaining gene copy 
in BC pathogenesis. LOH of the wild-type allele is highly 
characteristic for BRCA1 and BRCA2-driven cancers [57]; 
however, it is uncommon for BC arising in CHEK2, NBS1, 
and BLM mutation carriers [22]. It is of potential inter-
est that PZP p.Arg680Ter and SLIT3 p.Arg154Cys muta-
tions occurred at relatively high frequency in patients with 
multiple malignancies (3/165 (1.83%) and 5/145 (3.45%), 
respectively).

Unfortunately, we did not have access to DNA samples 
obtained from the affected relatives of BC patients who was 
found to carry presumably BC-predisposing germline muta-
tions. Lack of the genetic segregation data is a weakness in 
the current report. We performed a systematic analysis of 
all published family-based WES studies; however, none of 
them contained relevant information on the BC-associated 
inheritance of the candidate alleles identified within this 
study (Supplementary Fig. S2).

The newly identified candidate variants, if confirmed by 
others, will contribute only to a minor fraction of hereditary 
BC. That corresponds well with other available BC exome 
sequencing studies [58, 59]. Our study also has revealed rare 
deleterious variants in many additional candidate genes but 
the subsequent screening indicated that they were too rare 
for a variant-focused association study, and large-scale tar-
geted sequencing studies will be needed to resolve the role of 
these candidate genes for breast cancer through gene-based 
association analyses. It is likely that larger exome sequenc-
ing approaches might further be fruitful to clarify some of 
the remaining genetic burden, although there are limitations 
of this approach as previously discussed [16].

In conclusion, this study suggests six novel genetic vari-
ants, which are likely to contribute to BC predisposition. 
A variant of the CHEK2 regulator USP39 was replicated 
in additional populations. Functional studies are required 
to provide biological explanation for the observed gene-
disease associations. It is also of notice that only 36.7% 
of the 229 candidate alleles selected upon exome analysis 
were subjected to case–control validation in this report. The 
epidemiological analysis of the remaining 145 mutations is 
currently underway and is likely to reveal some additional 
breast cancer susceptibility candidate genes.
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