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A B S T R A C T   

Background/aims: Colon cancer remains a life-threating disease with increasing morbidity and mortality 
worldwide despite the advancement in modern medical treatment. Therefore, novel and effective anti-colon 
cancers drugs are urgently needed. In this study, we investigated the anti-metastatic property EnDuo, a modi-
fied version of Endostar, and the underlying mechanisms. 
Methods: Colon cancer cells were treated with different concentrations of EnDuo (50 μg/mL, 100 μg/mL, 200 μg/ 
mL), and Endostar (100 μg/mL) as positive control. Cell Counting Kit-8 assay was performed to test the effect of 
EnDuo on cell viability. A scratch wound assay and transwell assay were employed to evaluate the relocation and 
motility of malignant colon cells following treatment with EnDuo. Western blot analysis was used to determine 
inhibitory effects of EnDuo by detecting the phosphorylation level of AKT and ERK proteins, and the expression 
of MMP-2 and MMP-9 proteins. 
Results: Our results showed that EnDuo impedes the migration of colon cancer cells in a dose-dependent manner. 
At the molecular level, EnDuo induced a significant reduction in the phosphorylation of AKT and ERK proteins, 
and inhibited the expression of MMP-2 and MMP-9 proteins. 
Conclusions: Collectively, these results demonstrate that EnDuo exhibits a comparable anti-metastatic effect by 
suppressing the migration of colon cancer cells. Possibly, EnDuo interrupts the PI3K/AKT/ERK signaling 
pathway to arrest cell migration. Our study provides a novel insight to the potential clinical applications of 
EnDuo against colon cancers in the future.   

1. Introduction 

Globally, colorectal cancer (CRC) is rated the second most common 
cancer diagnosed in women and the third frequently diagnosed malig-
nancy in men [1]. The global incidence of CRC is on a positive trajectory, 
with the number of new cases rising from 1.2 million in 2008 [2] to over 
1.8 million in the year 2018, and approximately a million deaths ex-
pected [3]. Early diagnosis of the disease has been associated with 
successful treatment outcome including surgical intervention. However, 
advanced stage of CRC is often difficult to treat, and characterized by a 
high chance of relapse [4]. Neoadjuvant and adjuvant chemotherapeutic 

agents are commonly used before and post-surgery respectively. 5-Fluo-
rouracil (5-FU), capecitabine (xeloda), irinotecan (camptosar), oxali-
platin (eloxatin), and trifluridine/tipiracil (Lonsurf) are commonly used 
chemotherapeutic agents in the treatment of CRC. These agents are 
however associated with various side effects including drug resistance 
and toxicity [5,6]. The adverse effects associated with the various 
chemotherapeutic agents demand the need to find new ways to improve 
existing drugs while hunting for better alternatives, especially 
chemo-preventive drugs [7]. Thus, there is a pressing necessity for new 
chemo-preventive or chemotherapeutic agents which are safer to the 
user and provides optimum protection or curative effect against CRC. 

* Corresponding author at: Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, 510623, China. 
E-mail address: elina.idiiatullina@mail.ru (E. Idiiatullina).  

Contents lists available at ScienceDirect 

Biomedicine & Pharmacotherapy 

journal homepage: www.elsevier.com/locate/biopha 

https://doi.org/10.1016/j.biopha.2020.111136 
Received 14 August 2020; Received in revised form 9 December 2020; Accepted 10 December 2020   

mailto:elina.idiiatullina@mail.ru
www.sciencedirect.com/science/journal/07533322
https://www.elsevier.com/locate/biopha
https://doi.org/10.1016/j.biopha.2020.111136
https://doi.org/10.1016/j.biopha.2020.111136
https://doi.org/10.1016/j.biopha.2020.111136
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biopha.2020.111136&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biomedicine & Pharmacotherapy 134 (2021) 111136

2

Recent studies have derived bioactive compounds from natural prod-
ucts, and these compounds have demonstrated efficacy as 
chemo-preventive drugs or chemotherapeutic drugs. Additionally, 
studies have shown that some of these bioactive compounds enhance the 
efficacy of some chemotherapeutic agents. 

One of the major characteristics associated with cancers in general 
and is responsible for most deaths, is their potential to assume a state of 
metastasis [8,9]. This is when cancer cells inside the primary tumor 
separate from neighboring cells and invade the basal membrane. Sub-
sequently, regional invasion ensues via epithelial-mesenchymal transi-
tion (EMT) [10–12]. Hence, any agent which can curb the growth 
repression, invasion and migration of cancer cells in the colon with 
minimal or no side effect could be essential in the treatment CRC, and 
possibly other cancers. 

Endostatin, a 20-kDa C-terminal part of collagen XVIII, is endoge-
nously produced, and it has been shown to be among the most effective 
agents of anti-angiogenesis in experimental models [13,14]. Endostatin 
was discovered in a murine hemangioendothelioma cell line in the year 
1997, and its discovery has led to an increased understanding in 
angiogenesis. Recombinant endostatin effectively blocks angiogenesis 
and suppresses metastasis and primary tumors in animal models without 
any obvious side effects [15–17]. Even though endostatin has been 
approved by the US food and drug administration (FDA), its clinical 
efficacy has not been as effective as anticipated. A new recombinant 
human endostatin, called Endostar, with extra nine amino acid 
(MGGSHHHHH) sequence has been shown to be at least twice as 
effective as endostatin in tumor models in animal [18]. In the 2005, 
Endostar was accepted by the State Food and Drug Administration of 
China for the treatment of non-small-cell lung cancer. Nevertheless, the 
molecular mechanisms of endostatin and endostar in the suppression of 
tumor growth are still not clear [17]. 

Matrix Metalloproteinases (MMPs) are a family of transmembrane 
proteolytic zinc-containing enzymes, and can collectively digest 
approximate all extracellular matrix and basal membrane components 
[19]. This characteristic of MMPs contributes substantially to promoting 
tumor metastasis and angiogenesis [20,21]. Specifically, the gelatinases 
(MMP-2 and MMP-9) activities correlate with the invasive capability of 
cancers of the neck, head squamous cell carcinomas [22,23], and in 
breast malignancy [24]. MMPs are excreted as inactive zymogens with a 
pro-peptide domain, and they only become biologically active upon the 
cleavage of the pro-peptide. Actuation of MMPs can be reached in vitro 
by aminophenylmercuric acetic acid derivative (APMA) [25], or in vivo 
in a system with various proteases such as tumor-related trypsinogen-2 
(TAT-2) [26–28]. Kim et all [28] have indicated that endostatin sub-
stantially decreases intrusion of endothelial cells and tumor cells into a 
reconstituted basal membrane by suppressing the synergistic activities 
of MT1-MMP/MMP-2 and the activation of proMMP-2 [29,30]. It has 
been proven that certain MMPs (such as MMP-3, MMP-9, MMP-12, 
MMP-13, MMP-20, MMP-2 and MMP-14) can produce endostatin con-
taining peptides from human XVIII collagen type, with contrasting 
molecular weight (20–30 kDa) [31]. These peptides hinder the migra-
tion and proliferation of human umbilical vein endothelial cells [32]. 

The enhanced anti-cancer activity demonstrated following modifi-
cation of endostatin to endostar suggests alternative modifications of 
endostatin could result in a more enhanced therapeutic efficacy against 
various cancers. It has been reported that the folded structure of endo-
statin can influence the antitumor activity of insoluble endostatin 
derived from Escherichia coli [33]. Shorter versions of endostatin were 
therefore synthesized, and the antitumor properties of the NH2-terminal 
27-amino acid endostatin peptide were found to be comparable to 
full-length endostatin [34]. Similarly, different peptides consisting of 
different amino acids lengths have been developed and investigated for 
their ability to inhibit tumor growth [35]. Against this background, 
‘EnDuo’, a novel derivative of Endostar, was investigated for its thera-
peutic potency in vitro using selected colon cancer cell lines. The evi-
dence from this study suggests that EnDuo exhibits inhibitory effects on 

the proliferation and migration of colon cancer cells. Mechanistically, 
EnDuo interrupts the PI3K/AKT and ERK/MAPK pathways, and restricts 
the expression of MMP- 2/9 in vitro. 

2. Materials and methods 

2.1. Cell lines 

The following three human colon cancer cell lines were used in this 
study: (1) The SW 620 colorectal adenocarcinoma cells. These cells 
synthesize small amount of carcinoembryogenic antigens and are highly 
tumorigenic in nude mice. The established cell line consists of small, 
spherical and bipolar cells resembling microvilli; (2) HT 29 colorectal 
adenocarcinoma, is a cell line with epithelial morphology. In addition to 
being used as a xenograft tumor model for colorectal cancer, the HT-29 
cell line is also used as an in-vitro model to study absorption, transport, 
and secretion by intestinal cells, and (3) HCT 116 colorectal carcinoma 
cells are adherent with an epithelial morphology. Following implant 
into immunocompromised mice, the cells form primary tumors and 
metastasize. All the cells were acquired from the Cell Bank of the Chi-
nese Academy of Science (Shanghai, China). The cells were grown in 
RPMI-1640 medium (Model Number 61870150. Lot: 1930752, GIBCO, 
Grand Island, NY, USA) complemented with 10 % fetal bovine serum 
(FBS) (Catalog Number 76237-676, Hyclone, Logan, UT, USA), and 100 
U/mL penicillin, and incubated in a 5% CO2 humidified atmosphere at 
37 ◦C. 

2.2. Reagents 

Purified form of endostar was purchased from Simcere Pharmaceu-
tical Research Co., Ltd. (Shandong, China). Stocks of synthetic EnDuo (1 
μg/mL) were synthesized by Harbin Medical University (Harbin, China) 
and were delivered in sterile distilled water, and stored at − 20 ◦C. 
Phenylmethylsulfonyl fluoride (PMSF) (CAS Number 329-98-6) was 
obtained from Sigma-Aldrich. Bicinchoninic acid (BCA) protein assay kit 
and RIPA lysis buffer were bought from Beyotime Institute of Technol-
ogy (Shanghai, China). The primary antibodies used in this study 
include p-AKT (Ser473) rabbit mAb (1:1,000; cat. no. 4060), AKT rabbit 
mAb (1:1,000; cat. no. 4691), phospho-p44/42 MAPK (ERK1/2) 
(Thr202/Tyr204) rabbit mAb (1:1,000; cat. no. 4370), p44/42 MAPK 
(ERK1/2) rabbit mAb (1:1,000; cat. no. 4695), MMP-2 rabbit mAb 
(1:1,000; cat. no. 87809), MMP-9 rabbit mAb (1:1,000; cat. no. 13667), 
GAPDH rabbit mAb (1:1,000; cat. no. 2118) and Horseradish 
peroxidase-conjugated goat anti-rabbit IgG secondary antibody 
(1:1,000; cat. no. 7074) were all acquired from Cell Signaling Tech-
nology, Inc. (Danvers, MA, USA). 

2.3. Cell counting Kit-8 assay 

Cell Counting Kit-8 (CCK-8) assay was performed to test the effect of 
EnDuo on the viability of the cancer cells. Firstly, 5 × 103 cells in 100 μl 
per well were seeded in 96-well flat-bottomed plates for 24 h to accli-
matize. The cells were then treated with varied concentrations of the 
drug and incubated for 48 h. When the treatment duration was over, 10 
μl of CCK-8 was added to each well, and the plate incubated for addi-
tional 4 h in a humidified CO2 incubator at 37 ◦C. The absorbance of 
each well was measured with a microplate reader at 450 nm. The cells 
viability was estimated by the formular: (Mean absorbance of control – 
Mean absorbance of treatment)/Mean absorbance of control. 

2.4. Wound healing assay 

The cells were cultured in a 6-well plate with complete medium until 
90 % confluence growth. The confluent cell monolayer was wounded by 
streaking across it using a sterile 200 μL pipette tip. After that the plate 
was washed three times with PBS to remove cell debris. Afterwards, 
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initial image of the wound were captured and the cells incubated with 
medium containing EnDuo (0− 200 μg/mL) or Endostar (100 μg/mL) for 
72 h. The degree of wound closure was measured microscopically at 
different time points. The migration rate was presented as the ratio of 
the migrated distance of the cells in the experimental group to that of the 

control group. Three autonomous experiments were conducted in trip-
licate and the results presented as mean ± SD. 

Fig. 1. Cell viability of colon cancer cells assessed by CCK-8 assay following treatment with EnDuo and Endostar. Viability of SW 620 (A), HT 29 cells (B) and HCT 
116 (C) after treatment with EnDuo and Endostar for 24 h. The value for each concentration tested represents the mean ± SD of three independent experiments with 
six replicates. *P < 0.01 vs control. 

Fig. 2. Scratch wound assay assessment of the inhibitory effect of EnDuo on colon cancer migration following treatment with EnDuo and Endostar (0-200 μg/mL). 
Respective representative images showing the wound-induction and quantification of wound closured restriction compared to the control for (A) 620, (C) HT 29 and 
(E) HCT 116 colon cancer cells (Scale bar 200 mm). The data are presented as the mean ± SD of three independent experiments in triplicate. #P < 0.05 vs. the 
control, *P < 0.01 vs. the control. 
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2.5. Transwell migration assay 

The transwell migration assay technique was employed to assess the 
effect of EnDuo on the colon cancer cell lines. A polycarbonate transwell 
chamber with 8 μm pore diameter (Coming Costar, Cambridge, MA, 
USA) was used. Colon cancer cells treated with EnDuo (0− 200 μg/mL) 
or Endostar (100 μg/mL) for 24 h were trypsinized and suspended at 1 ×
106 cells/mL in RPMI1640 medium without serum as a final concen-
tration. Cell suspension was loaded into the upper chamber, and the 
medium with 10 % FBS as a chemoattractant was applied to the lower 
chamber. The setup was incubated at 37 ◦C for 24 h. After incubation, 
the non-migrated cells in the upper chamber were removed with a cot-
ton swab. The migrated cells were fixed with 100 % methanol and then 
stained with 1% crystal violet in 2% ethanol. Images of the stained cells 
were captured at nine different fields, and the number of cells 
enumerated and presented as the average cell count. The experiment 
was repeated at least three different time in triplicated and the results 
shown as mean ± SD. 

2.6. Western blot analysis 

The colon cancer cells were seeded into a 6-well plate at a density of 
2 × 105 cells/well for 24 h. After acclimatizing, the cells were incubated 
with different concentrations of EnDuo (0− 200 μg/mL) and Endostar 
(100 μg/mL) for another 24 h. This was followed by collection and lysing 
of the cells with a cocktail of RIPA cell lysis buffer and a protease in-
hibitor PMSF. The lysates were incubated for 30 min on ice and 
centrifuged at 8,000 × g for 15 min at 4 ◦C. The supernatant of the ly-
sates was collected and stored at − 80 ◦C for use in subsequent 

experiments. Concentration of the protein was determined using the 
BCA protein assay kit. About 20 μg of the protein was separated by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and blotted to a polyvinylidenefluoride (PVDF) membrane, blocked with 
5% skimmed milk and trice washed with Tris Buffered Saline with 
Tween 20 (TBST). The membrane was incubated with primary mAb at 4 
◦C overnight. After washing with TBST, the membrane was incubated in 
Horseradish peroxidase-COnjugated goat anti-rabbit IgG secondary 
antibody for 1 h at room temperature. The protein bands were visualized 
after applying an enhanced chemiluminescence (Odyssey, LI-COR Bio-
sciences, Lincoln, NE, USA). 

2.7. Statistical analysis 

All data were presented as the mean ± SD of three autonomous ex-
periments performed in triplicate. Statistical analysis was performed by 
one-way analysis of variance (ANOVA). In all instances, P < 0.05 was 
considered statistically significant. 

3. Results 

3.1. EnDuo did not produce significant toxic effects on SW 620, HT 29 
and HCT 116 colon cancer cells 

To evaluate the effect of EnDuo on cell viability, the CCK-8 assay 
technique was used. As shown in Fig. 1, EnDuo did not induce significant 
cytotoxic effect on the colon cancer cells at concentrations 50 μg/mL and 
100 μg/mL compared to the control. However, there was a significant 
inhibitory effect at concentration 200 μg/mL compared to the control. 

Fig. 3. Inhibitory effect of EnDuo and Endostar on colon cancer migration assessed using the transwell technique (A) (Scale bar 200 mm). The effect of EnDuo and 
Endostar (0-200 μg/mL) on the migration of SW 620, HT 29 and HCT 116 colon cancer cells. Representation of images captured at three different fields and the 
results analyzed by Image J software. Proportion of migrated cells of (B) SW 620, (C) HT 29, and (D) HCT 116 cells relative to the control group. The data are 
presented as the mean ± SD of three independent experiments in triplicate. #P < 0.05 vs. the control, *P < 0.01 vs. the control. 
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Comparing the 100 μg/mL Endostar to EnDuo, we observed no signifi-
cant association between the two agents in terms of cell viability. This 
observation suggests that EnDuo confers growth restriction on the colon 
cancer cells in a concentration-dependent manner. 

3.2. EnDuo inhibits the migration of colon cancer cells in vitro 

Assessment of the relocation and motility of the colon cancer cells in 
the presence of EnDuo was first demonstrated by the scratch wound 
assay. As shown in Fig. 2A and B, EnDuo effectively inhibited the 
migration of SW 620 cells after 48 h of treatment, and exhibited an 
enhanced migration inhibition after 72 h of treatment. In the case of HT 
29 cells, the inhibition of migration by EnDuo was observed as early as 
12 h post treatment and was sustained even after 72 h. The migration 
rate decreased gradually with increasing time and EnDuo concentration 
in contrast to the control group (Fig. 2C and D). In a similar manner, 
EnDuo arrested the migration of HCT 116 cells 24 h post treatment and 
the effect was sustained after 72 h, suggesting EnDuo’s potency is time 
and concentration dependent (Fig. 2F and E). Even though there were 
variations in the time for significant observable wound closure inhibi-
tion, the study proved that EnDuo significantly suppresses the migration 
of colon cancer cells, and the effect is both time and concentration 
dependent. Furthermore, we investigated the inhibitory effect of EnDuo 
on the migration of colon cancer cells by transwell assay as presented in 
Fig. 3. After 24 h treatment, EnDuo markedly decreased the quantity of 
migrating cancer cells. This observation was in conformity with the 
wound scratch test, which testified that EnDuo suppresses the move-
ment of colon cancer cells. 

3.3. EnDuo reduces the expression of MMP-2/-9 in colon cancer cells 

Matrix metalloproteinases (MMPs) have the potential to degrade 
extracellular matrix (ECM) to promote EMT of cancer cells. From the 
MMPs family, MMP-2 and MMP-9 are associated with the metastasis of 
tumors and are exceptionally expressed [36]. We therefore, studies the 
expression of MMP-2 and MMP-9 in the current study by western blot to 
determine the possible anti-invasive activity of EnDuo. As shown in 
Fig. 4, EnDuo (50− 200 μg/mL) decreased the expression of MMP-2 and 
MMP-9 in SW 620, HT 29 and HCT 116 colon cancer cells 
concentration-wise. 

3.4. EnDuo decreases the phosphorylation of ERK and AKT in colon 
cancer cells 

Studies have shown that the downstream signaling molecules Ras/ 
MEK/ERK and PI3K/AKT pathways are set off by the complex FAK-Src, 
are is connected to the metastasis and survival of cancer cells [37]. 
Therefore, the phosphorylation of key molecules, AKT and ERK, in these 
pathways were determined by western blot. As demonstrated in Fig. 5, 
the phosphorylation of AKT and ERK was decreased by EnDuo (50− 200 
μg/mL) concentration-wise. It is important to emphasize that there were 
no observable contrasts in the total AKT and ERK bands. Generally, the 
study illustrated that EnDuo may suppress the metastasis of colon cancer 
cells by hindering the PI3K/AKT and ERK/MAPK pathways. 

Fig. 4. Effect of EnDuo on the expression of MMP-2 and MMP-9 in colon cancer cells. The inhibitory effect of EnDuo and Endostar (0-200 μg/mL) on the expression of 
MMP-2 and MMP-9 in.(A) SW 620, (B) HT 29 and (C) HCT 116 cells as assessed by western blot analysis. Corresponding histograms represent the relative expression 
quantities of the target protein to the control, analyzed by Image J software. The data are presented as the mean ± SD of three independent experiments in triplicate. 
#P < 0.05 vs. control, *P < 0.01 vs. control. 
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4. Discussion 

Metastasis involves diverse, complex and exaggerated mechanisms 
which result in an uncontrollable cancer cell motility, proliferation, cell 
adhesion to ECM and ECM proteolysis. Since deaths from colon cancer is 
significantly ascribed to metastasis, there is a pressing concern globally 
to discover or create novel therapeutically helpful agents to suppress the 
metastasis of colon cancer. EnDuo is a biologically active peptide which 
promises to be a potent antitumor and chemo-preventive agent against 
malignancies. Nevertheless, information on the inhibitory impacts of 
EnDuo on the metastasis of malignant colon cells and its mechanism are 
limited. We have demonstrated in this study that EnDuo stifles the 
movement of malignant colon cells. In addition, we showed that EnDuo 
suppresses the expression of MMP-2/-9, and mechanistically, down- 
regulates the phosphorylation of ERK and AKT. This observation sug-
gests that EnDuo restrains the migration of colon cancer cells by sup-
pressing the PI3K/AKT and ERK/MAPK pathway. 

Cell apoptosis is usually induced and controlled by polygenic 

pathways, such as blockage of cell cycle and expression changes in 
correlated apoptosis genes. Signaling pathways such as ERK/MAPK and 
PI3K/AKT play crucial roles in tumor cell development, apoptosis, in-
vasion, progression and metastasis [38]. The PI3K/AKT signaling 
pathway has been well documented for its major role in breast cancer, 
lung cancer, cervical cancer, colon cancer and other types of cancers 
[39–41], and this pathway represents an attractive target for anticancer 
therapeutics. Activation of AKT is linked to malignancies, demonstrating 
that p-AKT is an autonomous prognostic marker for cancer patients [42]. 
MAPK family and its subfamily ERK, can be actuated by various growth 
factors and cytokines to influence proliferation and apoptosis of cells 
[43]. Turning on ERK induces the activation many downstream genes 
including Cyclin D1, which plays a role in the transformation of ma-
lignant cell. Most notably, programmed death of cell and growth inhi-
bition of tumor cells ensue following blockage of AKT or ERK signaling 
pathway [44]. Our findings support these reports as EnDuo inhibited the 
expression of p-AKT, and p-ERK. 

The PI3K/AKT/mTOR signaling hub is fundamental to the 

Fig. 5. Effect of EnDuo on the expression and phosphorylation of AKT and ERK in colon cancer cells. The inhibitory effects on the expression levels of phosphorylated 
and total AKT and ERK in (A) SW 620, (B) HT 29 and (C) HCT 116 colon cancer cells analyzed by western blotting. Corresponding histograms represent the relative 
expression quantities of the target proteins to the control analyzed by Image J software. The data are presented as the mean ± SD of three independent experiments in 
triplicate. #P < 0.05 vs. the control, *P < 0.01 vs. the control. 

E. Idiiatullina et al.                                                                                                                                                                                                                             



Biomedicine & Pharmacotherapy 134 (2021) 111136

7

development and support of colorectal cancer cells, and is crucial in the 
proliferation, protection from apoptosis, angiogenesis and metastasis 
[45]. The advancement of efficient treatment of colon cancer may 
require the inhibition of the AKT pathway. Nonetheless, many studies 
have reported on the potential anticancer agents inhibiting the AKT 
pathway, and more are yet to successfully complete clinical trials 
[46–49]. Decreased activation of AKT in growth-retarded tumor cell 
have been reported by past investigations [46–49]. Additionally, pre-
vious investigations have demonstrated that targeting the PI3K/AKT 
signaling pathway with anti-sense small interfering (si)RNA or small 
molecule inhibitors results in the suppression of tumorigenesis and 
tumor invasion [50,51]. 

The migratory capacity of cancer cells gives them the opportunity to 
move to surrounding tissues, eventually leading to metastasis. As 
observed in this study, EnDuo suppressed the ECM proteolytic degra-
dation. MMPs, a family of zinc-containing endopeptidases, play a crucial 
role in the process of ECM degradation [52]. In this work, it was found 
that the expression of MMP-2 and MMP-9 in SW 620, HT 29 and HCT 
116 colon cancer cells were markedly inhibited by EnDuo. Previous 
studies have demonstrated that decreased expression of MMP-2 and 
MMP-9 in cancer cells are strongly identified with the inhibition of 
PI3K/AKT and ERK, which are FAK downstream targets [53,54]. Enac-
ted AKT prompts the invasion and metastasis of cancer cells by pro-
moting the secretion of MMPs [55,56]. It has been proposed that MAP 
family kinases are possibly involved in the signaling processes that 
regulate MMPs, including MMP-9 [57]. 

In conclusion, this study has shown that EnDuo is capable of inhib-
iting the migration of cancer cells in vitro. Also, EnDuo hinders the 
expression of MMP-2 and MMP-9, and arrests AKT and ERK phosphor-
ylation. Perhaps, EnDuo exhibits its anti-metastasis property via sup-
pressing the PI3K/AKT/ERK signaling pathway. However, an expanded 
in vivo study will be required to further elucidate the full potential of 
EnDuo against colon cancer, and possibly other cancers. 
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