
Mechanical Systems and Signal Processing 153 (2021) 107471
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp
A generalized cauchy method for remaining useful life
prediction of wind turbine gearboxes
https://doi.org/10.1016/j.ymssp.2020.107471
0888-3270/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: nh324310@163.com (H. Liu), swqls@126.com (W. Song), n18321023297@163.com (Y. Niu), enrico.zio@polimi.it (E. Zio).
He Liu a, Wanqing Song a,⇑, Yuhui Niu a, Enrico Zio b,c,d

a School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
b Energy Department, Politecnico di Milano, Via La Masa 34/3, 20156, Italy
cDepartment of Medical Physics and Computer Science, Bashkir State Medical University, Lenina st. 3, 450008 Ufa, Russia
dMINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France
a r t i c l e i n f o

Article history:
Received 18 July 2020
Received in revised form 13 October 2020
Accepted 16 November 2020

Keywords:
Generalized Cauchy process
Long-range dependent
Fractal
Gearbox degradation
Remaining useful life
a b s t r a c t

The accurate estimate of the Remaining Useful Life (RUL) of mechanical tools is a funda-
mental problem in Engineering. This prediction often implies the knowledge and applica-
tion of sophisticated mathematical methods based on fractal and Long-Range Dependence
(LRD) stochastic processes. However, the existing RUL prediction methods based on
stochastic model cannot simultaneously consider the fractal and LRD characteristics of
the equipment degradation process. This paper describes a new RUL prediction model
based on the Generalized Cauchy (GC) process, which is a stochastic process with indepen-
dent parameters. That is, the GC process uses the fractal dimension D and Hurst index H to
describe the fractal and LRD characteristics of the degradation sequence, respectively.
Then, the GC process is taken as the diffusion term, describing the uncertainty of the degra-
dation sequence, to establish the GC degradation model, and the power law and exponen-
tial forms are used to describe the nonlinear drift of the degradation sequence. The
stochastic volatility of the degradation sequence causes the equipment RUL unable to be
predicted for a long time. This article uses the largest Lyapunov index to reveal the maxi-
mum prediction range of RUL. The analysis of actual equipment degradation verifies the
effectiveness of the degradation model based on power law drift and GC process. The pre-
diction results of the comparative case show that the prediction performance of the GC
degradation model is better than Brownian motion, fractional Brownian motion, and long
short-term memory neural network.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, how to solve the problems of environmental pollution and the reduction of non-renewable energy have
become increasingly crucial. As a renewable green energy source, the wind power has received much more attention [1,2].
The gearbox, one of the most important components of wind turbine, whose failure will lead to the loss of wind power gen-
eration. Therefore, predictive maintenance of the gearbox is key to improving the reliable operation and power generation of
wind turbine. The accurate RUL prediction provides the basis for effective and optimized forecast maintenance.
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The RUL prediction is mainly based on physics models and data analysis methods [3–5]. The physics-based method relies
on the knowledge and control of the equipment physical structure, so that it is restricted to the specific properties of the
single equipment. This makes it impossible to obtain a general RUL prediction model [6,7]. The data-based RUL prediction
method has instead gradually becoming the core technology of equipment predictive maintenance. As a class of data-
driven methods, for RUL prediction several methods based on neural networks [8–10], support vector machines [11,12], Kal-
man filter [13], etc. have been proposed. However, these methods require a large amount of training data, resulting in a com-
putationally highly expensive RUL prediction [14,15].

Alternative data-driven methods, based on stochastic process, are recently proposed (see e.g. [16–18]). However, these
methods based on Brownian motion(Bm) [19], inverse Gaussian process [20], gamma process [21] and other stochastic
degradation models [22–24] rely on the Markov assumption. Although these stochastic models do not require a complicated
training process to fit the degradation information of equipment data. A challenging problem, for these models, is that the
equipment degradation is a Long-Range Dependence (LRD) process [25]. So that, the incremental independence of the Mar-
kov model is difficult to fit the LRD characteristics of the equipment degradation process. The fitting performance between
the degradation model and the equipment data is important for prediction accuracy of RUL. Therefore, how to describe a
degradation model with LRD characteristics is a key issue to improve the prediction accuracy of RUL.

A Long Short-TermMemory (LSTM) neural network can provide a feasible solution for the RUL prediction. Based on a spe-
cial recursive structure, LSTM uses past and current output to describe the degradation process with LRD characteristics
[26,27]. However, it is not easy to give accurate RUL prediction by the complex structure and training process of the LSTM
neural network. In addition, the complex and variable load of wind turbines in the degradation process of the gearbox shows
nonlinear and non-stationary characteristics. Therefore, a more general stochastic degradation model with LRD characteris-
tics has been applied to RUL prediction [28,29]. For instance, the fractional Brownian motion (fBm) degradation model based
on the stochastic model does not require consideration of various physical factors affecting the degradation sequence, nor
does it require a complex training process [30,31,5]. It only requires the sequence generated by the stochastic model to com-
plete the characteristic analysis and fitting of the degradation data, and then realize the equipment RUL prediction.

In this model, the equipment degradation data is considered as a nonlinear fractal time series. Local irregularity is
described by the fractal index a, and global correlation characteristic is described by the long correlation index b. However,
as a widely used LRD degradation model, the fBm is unable to describe the fractal time series with strong local irregularity
and strong global correlation [32–34] due to the linear relationship b ¼ 2� a. In order to separately describe the local and
global characteristics of fractal time series, M. Li [35,36] defines a GC process that uses the fractal dimension D and the Hurst
index H to describe local irregularities and global correlations, respectively. Therefore, the RUL prediction model based on
the GC process, the GC degradation model, not only solves the problem of LSTM neural network requiring a large number
of training samples, but also provides a scheme for describing complex degradation data. That is, compared with the LSTM
neural network, the accuracy and length of the RUL prediction obtained by the GC degradation method have better advan-
tages in the case of the same sample. In addition, the sequence generated by the GC process depends on the model param-
eters of the historical degradation data. The GC degradation model only needs to calculate the model parameters once to
complete the RUL prediction, which is also called multi-step prediction. However, the LSTM neural network needs to be
trained and predicted at each point until the predicted value exceeds the fault threshold. Therefore, the RUL prediction pro-
cess of GC degradation model has lower computational complexity than LSTM neural network.

The LRD characteristics of the GC process are generally revealed by the Autocorrelation Function (ACF) that is defined by
the fractal dimension D and the Hurst index H. That is, the GC process is an LRD process if the ACF is not integrable or sum-
mable at infinity. At this time, the ranges of the D and the H are defined in H 2 0:5;1ð Þ and D 2 1;2½ Þ.

In order to take into account both the randomness and the LRD characteristic of the degradation process, the GC process is
taken as a diffusion term to describe a degradation model. The diffusion term reveals the uncertainty of the equipment
degradation process. The trend of the degradation process is mainly determined by the drift term. Therefore, the drift term
of the GC degradation model is taken in the form of exponential drift and power rate drift, to overcome the nonlinearity of
the degradation process. Then, a difference equation [37] and the incremental distribution are used to obtain an iterative
form of the GC degradation model. Besides, the incremental distribution of the GC process is obtained from the GC sequence
generated by the fractional linear system theory [38], which relies on Gaussian assumptions and probability statistics.

The non-linearity and volatility of equipment degradation data make the results of RUL prediction uncertain. Therefore,
the few results predicted by the GC degradation model for equipment degradation data cannot describe the actual RUL. In
order to improve the efficiency of this model, we propose to use the Monte Carlo method and the weak convergence theory
[39,40], so that we can easily obtain the approximate analytical formula of the probability density function of the RUL pre-
dicted value. The uncertainty of the gearbox degradation leads to a decrease in the RUL prediction accuracy with increasing
prediction time. The Lyapunov exponent will also be used to calculate the maximum prediction range of the degradation
data, ensuring accuracy the RUL prediction result of the gearbox [41].

On the other hand, the degradation data are significantly affected by the external environment, so some data preprocess-
ing is necessary. In this paper, data are pre-processed by using time domain feature factors [42,27] and Kernel Principal Com-
ponent Analysis (KPCA) [43,44].

In the case study, several gearbox degradation data sets [26] are used to verify the validity of the proposed GC degrada-
tion model. The gearbox degradation sequence, processed by KPCA, is used as the input sequence for parameter estimation.
The variogram estimator [45], the detrended fluctuation analysis [46] and the maximum likelihood method [47] will be con-
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sidered to calculate the parameters of the GC degradation model.. The Bm, the fBm degradation model and the LSTM neural
network is also applied to make a comparison and to show the better efficiency of proposed method. The RUL prediction
results are analyzed by the Maximum Relative Error (MRE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), Health Degree (HD) and Score of Accuracy (SOA) [48,26].

This paper is organized as follows: Section 2 analyzes the characteristics of gearbox degradation data. The GC incremental
modeling process is given in Section 3. Section 4 describes the GC degradation model and introduces the parameter estima-
tion method. Section 5 uses the GC degradation model to predict the RUL of the gearbox. The conclusion is given in Section 6.

2. Analysis of gearbox degradation data

2.1. KPCA

Principal component analysis is the most commonly used feature extraction method [49]. It performs dimensionality
reduction on samples to obtain fusion sequences with obvious features. However, the essence of principal component anal-
ysis is to process the data through linear mapping, and it is not possible to obtain good results when processing nonlinear
degradation data. KPCA combined with kernel function and component analysis, which can not only effectively process non-
linear data, but also provide more feature information. In this paper, KPCA is used to analyze various time domain feature
factor sequences F ¼ F1; F2; � � � ; Fi½ � (as shown in Table 1 [42,27]) of gearbox degradation data. The data processing process
of KPCA is given in detail in [44].

Dimensional factor is greatly affected by energy and is insensitive to the weak trends of the initial degradation stage. Tra-
ditional l dimensionless factor can accurately extract the weak degradation of the initial stage, but the extraction accuracy
reduces gradually as the degradation continues. A new class of dimensionless factors has been proposed, which is insensitive
to energy and can accurately extract the degradation of the initial stage. According to the cumulative contribution rate, KPCA
selects the main components that contain degradation information above 95% as the input sequence for the next step.

2.2. Fractal Characteristics

The fractal characteristics of time series usually use fractal index a and long correlation index b to describe [36]:
Table 1
Time do

Sym

Feat
Sym
Feat
Rxx 0ð Þ � Rxx sð Þ � c1 sj ja; s! 0ð Þ ð1Þ
Rxx sð Þ � c1s�b; s! 1ð Þ ð2Þ
where RXX �ð Þ is the ACF of the time series, s is the time lag, c1 is constant. Eqs. (1) and (2) are established under the conditions
of s ! 0 and s! 1, respectively, which means that a and b describe local volatility and overall correlation. The ranges of a
and b are defined in 0 < a 6 2 and 0 < b < 1. The smaller the value, the more obvious the local fluctuation and the higher the
overall correlation of the fractal time series.

2.3. Maximum prediction range

The non-stationary and non-linear characteristics reveal that the trend of fractal time series has obvious uncertainty,
which leads to the decline of long-term prediction accuracy. In this paper, the maximum prediction range of the fractal time
series is analyzed with the Lyapunov exponent in chaos theory [42,41]. The RUL of the gearbox is accurately predicted within
this range. The maximum prediction range g is as follows:
g ¼ 1
j

ð3Þ
where j is maximum Lyapunov exponent, which is obtained by the small data amount method [50].

3. Incremental modeling of GC process

In the field of fractal time series, the stationary Gaussian process in the form of ACF described by Eq. (4) is called the GC
process [33].
main feature factor sequence.

bol F1 F2 F3 F4 F5

ure factor Skip-over Similarity Margin Waveform Kurtosis
bol F6 F7 F8 F9
ure factor Skewness Peak Pulse Vibration intensity
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Rxx sð Þ ¼ 1þ sj j4�2D
� ��1�H

2�D ð4Þ
where D is the fractal dimension and H is the Hurst parameter,

3.1. The properties of the GC process

In the GC process, D and H can be described by a and b in the following way:
D ¼ 2� a
2
;H ¼ 1� b

2
ð5Þ
Therefore, the fractal characteristics indicate that D and H reveal the local irregularities and global LRD characteristics of
the GC process when 1 6 D < 2;0:5 < H < 1, respectively. The correlation of the GC process can be observed by the ACF
curve, as shown in Fig. 1(a). The GC process can flexibly describe fractal time series due to the independent nature of param-
eters, such as low fractal and weak LRD, high fractal and strong LRD. The fBmwith a linear relationship can only describe low
fractal and strong LRD or high fractal and weak LRD sequences, as shown in Fig. 1(b).

When H takes a higher value, the ACF curve declines slowly with a significant tailing phenomenon. According to Taqqu
law, time series with heavy tailing can also exhibit LRD characteristics. It is verified that the LRD characteristics of GC process
become stronger with the increase of H.

In general, the LRD process is a self-similar process, but the GC process only meets a weak self-similar property, also
known as local self-similar. The global self-similarity of the GC process is obtained by Lamperti transformation. The ACF
of the GC process after the Lamperti transformation has the following form (see Fig. 2):
Ryy sð Þ ¼ 1þ ln 1þ s
t

� �h i4�2D
� �2H�2

ð6Þ
3.2. Modeling of GC incremental distribution

The GC process relies on the Gaussian assumption.Its increment follows a Gaussian distribution and can be obtained using
probability statistics.

Ortigueira fractal linear system theory [38] shows that convolution through white noise and filters can produce a station-
ary time series:
x tð Þ ¼ w tð Þ � h tð Þ ¼
Z t

0
h t � sð Þw sð Þds ð7Þ
where w tð Þ is white noise, h tð Þ is the impulse function, and x tð Þ is the generated stationary time series. In this article, a non-
stationary Gaussian white noise and the impulse function generated by the ACF of the GC process are convolved to obtain the
GC sequence. The specific form is as follows:
X tð Þ ¼ w tð Þ � F�1 F 1þ sj j4�2D
� ��1�H

2�D

� �0:5
" #

ð8Þ
where F �ð Þ and F�1 �ð Þ are Fourier transform and inverse transform, respectively. The GC sequence generated by different
parameters is shown in Fig. 3.
Fig. 1. ACF curve.
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Fig. 2. Three-dimensional ACF curve of Lamperti transformation.
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Make multiple differences for the generated GC sequence, and obtain the incremental distribution of the GC process by
probability statistics:
DGC tð Þ ¼ GC t þ sð Þ � GC tð Þ½ � � N 0; dsð Þ ð9Þ

Fig. 4 shows the specific modeling process of GC incremental distribution.
It should be noted that the larger the simulation numbers, the closer the incremental fitting of the GC sequence is to the

true distribution. However, if the simulation numbers are too large, the real-time applicability may become worse and the
fitting value may be too high. If the real-time applicability of high effect is too pursued, the GC incremental distribution may
have a low fitting value. This article discusses the optimal number of simulation through the analysis of the incremental dis-
tribution generation process. It ensures that the real-time applicability and the fitting effect of the GC incremental distribu-
tion are considered simultaneously. Table 2 reveals the time required for different simulation numbers. Fig. 5 shows the
distribution of GC increments for different simulation numbers.
Fig. 3. GC numerical sequence.
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Fig. 4. GC incremental distribution modeling process.

Table 2
Time required for each part of the incremental distribution generation process.

Simulation number Hurst index Fractal dimension GC sequence Differential process Statistical process

30,000 4.813s 0.442s 0.101s
20,000 1.383s 0.434s 0.096s
10,000 0.045s 0.019s 0.382s 0.412s 0.09s
5000 0.107s 0.387s 0.086s

Fig. 5. The incremental distribution of the GC sequence. The red curve represents the assumed Gaussian distribution. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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The results in Table 2 and Fig. 5 reveal a problem: when the simulation numbers are too small, although the time is
shorter, the GC increment distribution obtained by statistics is lower than the actual distribution; when the simulation num-
bers are too large, the GC incremental distribution takes a longer time and is greater than the actual distribution. Therefore,
an appropriate simulation numbers can not only obtain a GC incremental distribution that is close to the true distribution,
but also ensure better real-time applicability. Through experimental analysis, this paper generates a GC sequence of 20000
simulations to get the incremental distribution.
6
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4. Degradation modeling and RUL prediction based on GC process

4.1. GC degradation model

The degradation state of the gearbox at time t can be characterized by [31]:
X tð Þ ¼ l
Z t

0
u t; hð Þdt þ dBH tð Þ ð10Þ
where l
R t
0 u t; hð Þdt represents the nonlinear drift term of the overall degradation trend of the degradation process, l is the

drift coefficient, h is a vector with unknown parameters, d is a constant diffusion coefficient and BH tð Þ is the fBm. The gen-
eralized form of the degradation model is obtained using Ito’s theorem [51,52], that is, l and d are replaced by the time func-
tions / xð Þ and x xð Þ, and the interference term BH tð Þ is represented by w xð Þ. Eq. (11) can be rewritten as:
X tð Þ ¼ / tð Þ
Z t

0
u t; hð Þdt þx tð Þw tð Þ ð11Þ
The fBm degradation model uses fBm as an interference term [31]. Based on the principle, this article considers the GC
process as a random interference term with LRD properties. The general expression of the GC degradation model is as
follows:
X tð Þ ¼ / tð Þ
Z t

0
u t; hð Þdt þx tð ÞGC tð Þ ð12Þ
Simplify the GC degradation model and obtain the following form:
X tð Þ ¼ lu tð Þ þ dGC tð Þ ð13Þ

where l and d are the drift and diffusion parameters of the GC degradation model. u tð Þ is a time-dependent function used to

describe the overall trend of the degradation process equivalent to
R t
0 u t; hð Þ. It can be described by linear function, power

rate function and exponential drift function [53]. The GC degradation model can be rewritten into the following three forms:
M0 : X tð Þ ¼ X 0ð Þ þ lt þ dGC tð Þ; ð14Þ
M1 : X tð Þ ¼ X 0ð Þ þ ltb þ dGC tð Þ; ð15Þ
M2 : X tð Þ ¼ X 0ð Þ þ lebt þ dGC tð Þ; ð16Þ
where M0;M1;M2 represents linear, power law and exponential drifts, respectively, and b represents the variability of the
nonlinear degradation process. Since the degradation process of gearbox is a nonlinear time series, the linear function cannot
be described well. Fig. 6 shows the simulation paths for three forms of drift. In this paper, the power rate and exponential
function are used to describe the nonlinear drift of the GC degradation model.The nonlinearity of the exponential term and
power law drift makes it difficult to obtain the analytical form of b. This paper uses the Nelder-Mead simplex algorithm and
fminsearch function to solve the estimated value of b.

4.2. Parameter estimation of GC degradation model

4.2.1. Parameter estimation of Hurst index and fractal dimension
There are many mature techniques for estimating D and H. For example, the box dimension method, Root mean square

method and Power spectral density method are used to calculate the estimated value of D; The rescaled range method, wave-
let analysis method and Hilbert-Huan method are used to calculate the estimated value of H. However, there are always
some deviations in the above methods. This article will use variogram estimator and detrended fluctuation analysis methods
to estimate D and H, respectively. The specific estimation process is described in [45,46].

4.2.2. Parameter estimation of drift parameter and diffusion parameter
For the parameter estimation of l and d, this paper uses the maximum likelihood estimation method. In the estimation

process, the ACF of the GC process is used to calculate the value of l and d, whose specific process is as follows.
Step 1: The observation data from t0 to tk is used as a sample input sequence and written as a vector form

X ¼ X0;X1; . . . ;Xk½ �T, and its increment x ¼ X1 � X0;X2 � X1; . . . . . . ;Xk � Xk�1½ �T follows a multi-dimensional normal distribu-
tion x � N lu; d2Q

� 	
according to the Gaussian assumption of the GC process, where

u ¼ u t1ð Þ �u t0ð Þ;u t2ð Þ �u t1ð Þ; � � � ;u tkð Þ �u tk�1ð Þ½ �T is the mean vector, and r2Q is a covariance

matrix,Qij ¼ 1þ i� jj jsð Þ4�2D
� ��1�H

2�D
represents the position of each element in Q .

Step 2: Calculate the logarithmic form of the likelihood function f x;l; dð Þ according to the principle of maximum likeli-

hood method l̂; d̂
� �

¼ argmax
l;d

f x;l; dð Þ.
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Fig. 6. Path simulation with different drift.
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l x;l; dð Þ ¼ � k
2 ln 2pð Þ � k ln d� 1

2 ln Qj j
� 1

2d2
x� luð ÞTQ�1 x� luð Þ ð17Þ
Step 3: The logarithmic form of the likelihood function is:
l x;l; dð Þ ¼ � k
2
ln 2pð Þ � k ln d� 1

2
ln Qj j � 1

2d2
x� luð ÞTQ�1 x� luð Þ ð18Þ
Step 4: Calculate Eq. (20) for partial derivatives of l and d, and set the partial derivative value to 0,
@‘
@l ¼

@ �k
2 lnð2pd2Þ�1

2 ln Qj j� 1
2d2

x�luð ÞTQ�1 x�luð Þ
� �

@a

¼
@ � 1

2d2
x�luð ÞTQ�1 x�luð Þ

� �
@a

¼
@ � 1

2d2
xTQ�1x�luTQ�1x�xTQ�1luþl2uTQ�1uð Þ

� �
@l

¼ � �uTQ�1x�xTQ�1uþ2luTQ�1uð Þ
2d2

¼ 0

ð19Þ

@‘

@d2
¼

@ �k
2 lnð2pd2Þ�1

2 ln Qj j� 1
2d2

x�luð ÞTQ�1 x�luð Þ
� �

@d2

¼ � k
2d2

þ x�luð ÞTQ�1 x�luð Þ
2 d2ð Þ2 ¼ 0

ð20Þ
Step 5: Solve Eqs. (21) and (22) obtain the maximum likelihood estimates of l and d:
l̂ ¼ uTQ�1x

uTQ�1u
ð21Þ
8
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d̂ ¼
ffiffiffiffiffiffi
r̂2

p
¼ 1

k

xTQ�1x
� �

uTQ�1u
� �

� uTQ�1x
� �2

uTQ�1u

0
B@

1
CA

1
2

ð22Þ
The randomness and non-linearity of fractal time series make small changes in parameter estimates have a significant
impact on the prediction convergence, as shown in Fig. 7. Therefore, it is necessary to discuss the convergence of parameter
estimators. It can better guarantee the accuracy of parameter estimates and the prediction convergence of the GC degrada-
tion model.

Substitute x ¼ luþ dDGC tð Þ into l̂ ¼ uTQ�1x
uTQ�1u
l̂ ¼ lþ d
uTQ�1DGC tð Þ
uTQ�1u

ð23Þ
E l̂½ � ¼ l means that the estimator l̂ of the drift parameter is an unbiased estimator. Calculate the variance of Eq. (25):
Var l̂½ � ¼ d2
uTQ�1QQ�1x

uTQ�1u
� �2 ¼ d2

uTQ�1u
ð24Þ
Var l̂½ � 6 Ck2H�2 can be obtained by Gerschgorin Circle theorem, where C is a constant. Because the range of H is limited to
0:5;1ð Þ;Var l̂½ � ! 0 when k ! 1. Therefore, the estimator l̂ of the drift parameter is convergent. Performing the same cal-
culation process on the estimator d̂ of the diffusion parameter can verify that it is also convergent and unbiased.

4.3. RUL prediction

In order to achieve predictive maintenance of the gearbox, this paper sets an initial failure threshold. When the degrada-
tion state exceeds this threshold, it starts to predict the RUL of the gearbox. Fig. 8(a) and (b) define the RUL prediction pro-
cess in which the degradation process shows an upward and downward trend, respectively.

Therefore, the next degradation state at time tk can be expressed in the iterative difference form of the GC degradation
model, which is defined as follows:
X tk þ lkð Þ ¼ X tkð Þ þ l u tk þ lkð Þ �u tkð Þ½ �
þd GC tk þ lkð Þ � GC tkð Þ½ � ð25Þ
where lk is the time increment, and GC tk þ lkð Þ � GC tkð Þ ¼ DGC tð Þ � N 0; dsð Þ.
The time series generated by the GC process is non-stationary and nonlinear. The generation process is random. Thus, the

few results predicted by the GC degradation model for gearbox degradation data cannot describe the actual RUL. The non-
linear drift term of the GC degradation model makes it difficult to derive the probability density distribution of the predicted
value of RUL. Based on the Gaussian assumption and weak convergence assumption of the GC process [39,40], the approx-
imate analytical formula of the probability density function can be derived. Then, the Monte Carlo method is used to gen-
erate a large number of RUL prediction results. The maximum value of the probability density distribution of RUL
prediction results represents the predicted value of RUL (see Fig. 9). Fig. 10 shows the whole process of GC degradation
model predicting RUL.
Fig. 7. The influence of drift parameters and diffusion parameters on the degradation process.

9



Fig. 8. Definition of RUL prediction.

Fig. 9. RUL prediction principle of GC degradation model.

Fig. 10. Incremental distribution of GC sequences.
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f Lk Mj lkð Þ ffi d lkð Þ½ �12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p d 0ð Þ½ �12 R lk

0 d sð Þ½ �12ds
q � w� X tkð Þ � lu lk þ tkð Þ þ lu tkð ÞR lk

0 d sð Þ½ �12ds
þ ldu lk þ tkð Þ

d lkð Þ½ �12

( )

� exp � w� X tkð Þ � lu lk þ tkð Þ þ lu tkð Þ½ �2

2 d 0ð Þ½ �12 R lk
0 d sð Þ½ �12ds

" #
ð26Þ
10
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5. Case study

5.1. Case 1

To verify the validity of the GC degradation model, the gearbox degradation data sets collected from the gear contact fati-
gue test rig are used for simulation. The test bench is the FZG test bench of the company STRAMA, which consists of a torque
controller, a cooling lubrication controller, a gear test box and an operating system. The structure of the test rig and gearbox
is shown in Fig. 11. In the gearbox degradation experiment, the oil flow is 4L/ h; the cooling temperature is 70	C; the material
of the gear is 40 Cr and the vibration signal of the gearbox degradation is collected by the accelerometer fixed on the gearbox.
The test stops when the maximum amplitude of the collected vibration signal exceeds the threshold. In order to verify the
generality of the GC degradation model, this case study uses the GC degradation model for two sets of gearbox degradation
data in different environments. The specific parameters are shown in Table 3.
5.1.1. Preprocessing of gearbox degradation data
This case uses the time domain feature factors Fi and KPCA to analyze the original vibration signal shown in Fig. 12. The

gearbox degradation trend after the extraction of Fi is shown in Fig. 13. Using KPCA for further analysis, the main compo-
nents with a cumulative contribution rate of more than 95% are selected. The process is shown in Fig. 14.

Fig. 14 means that 95% of the information on the degradation of the two sets of gearboxes is included in the first 5 or 4
main components. Therefore, the KPCA sequence that fuse the first 5 or 4 main components is obtained, as shown in Fig. 15.
It can be seen that the degradation sequence has obvious inflection at points 554 and 375. At this instance, the working
phase of the gearbox is divided into normal operation and slow degradation phase.

Eq. (5) indicates that the parameters a and b describing fractal characteristics can be obtained from the estimated values
of D and H. The fractal characteristic parameters of the KPCA sequence are shown in Table 4, and the maximum prediction
range is also given in Table 4.
5.2. Validity analysis of GC degradation model

In this case, we use the GC degradation model (M1 and M2) to predict the RUL of Gearbox1. The degradation state of the
gearbox corresponding to point 554 in the KPCA sequence is preset as the first failure threshold. The actual RUL of the gear-
box has a length from the predicted start point 544 and predicted end point 600, indicating that the predicted length is
within the maximum prediction range. Therefore, the GC degradation model with LRD characteristics can make the RUL pre-
diction results more accurate.

In the previous RUL prediction process, the RUL of all points is predicted by using a set of parameters of prediction stating
points. The nonlinear disturbance and drift term of the degradation model lead to small changes in parameters that have a
significant impact on the prediction accuracy. In this case, the metabolic method is used to iterate the input sequence to cal-
culate the model parameters of each set of prediction starting points. After obtaining the model parameters of the initial pre-
diction starting point, the data before the prediction sample is deleted and the latest data is added until the next prediction
starting point is included. The prediction samples are kept in equal dimensions to calculate the model parameters of the next
prediction starting point. as shown in Fig. 16. From the perspective of the length of the paper, this case only gives some
parameters of a degradation model, as shown in Table 5. Fig. 17 shows the RUL prediction results of Gearbox1.

The SOA, HD, RMSE and MAPE are introduced to analyze the predictive performance of the M1 and M2 degradation model
in Table 6. The box plot is also used in this case to give the relative error between the actual and predicted RUL, as shown in
Fig. 18, which gives the prediction error of the two models in more detail.
Fig. 11. Structure of test bench and gearbox.
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Table 3
Experimental parameters of gearbox degradation.

Data sets Lifetime Sampling Operating

Gearbox 1 600 min Time:10s Period:20s Speed: 500r/min Torque:1400 N⁄m
Gearbox 2 400 min Time:10s Period:50s Frequency:50 kHz

Fig. 12. Original vibration signal of gearbox degradation.

Fig. 13. Degeneration trend of time domain feature factors.

Fig. 14. Cumulative contribution rate of principal components.
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The analysis of the error results in Table 6 shows that the GC degradation model can effectively predict the RUL of gear-
box. The values of RMSE and MAPE are inversely proportional to the prediction performance of the GC degradation model;
HD and SOA values are directly proportional to the fitting performance of the model. As a result, we can deduce that the pre-
diction performance of the M1 model is better than M2, which verifies that the GC process obey the heavy-tailed character-
12



Fig. 15. KPCA sequence.

Table 4
Fractal characteristics of KPCA sequence.

a b j g

Gearbox 1 1.2176 0.6692 0.0125 80
Gearbox 2 1.1226 0.505 0.0145 68

Fig. 16. Principles of metabolism method.

Table 5
Parameter estimation of GC degradation models (M1 and M2).

Model Predict starting point H D l d b

564 0.638 1.221 0.0356 0.477 0.919
568 0.636 1.222 5.95E�03 0.503 1.369
572 0.6623 1.192 6.25E�03 0.5 1.397
576 0.659 1.188 0.003 0.491 1.067

M1 580 0.719 1.17 0.006 0.555 0.924
584 0.708 1.157 0.016 0.521 0.702
588 0.708 1.172 0.579 0.5755 0.396
592 0.726 1.181 1.172 0.641 0.216
596 0.716 1.174 1.351 0.620 0.198

M2 564 0.638 1.221 0.514 0.467 0.016
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Fig. 17. Comparison of RUL prediction results of GC degradation models (M1 and M2). The red curve shows the probability density distribution of RUL
prediction value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Prediction results analysis of M1 and M2.

SOA HD RMSE MAPE

M1 0.9513 0.9902 1.0274 0.0532
M2 0.9129 0.9206 1.7795 0.1385

Fig. 18. Relative error distribution between predicted and actual RUL.
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istic of decay with power rate. Fig. 18 shows that the relative error distribution of MI is relatively concentrated. Besides, the
GC process that obeys the power law decay has stable prediction performance.

5.3. General analysis of GC degradation model

The case 2 uses the Gearbox2 under different sampling conditions to verify the generality of the proposed model. The fBm
and the Bm model are classic LRD and incremental independent stochastic degradation models respectively. The LSTM is a
classic neural network algorithm. They are introduced as comparison model to reveal the advantages of the GC degradation
model. The modeling process is shown in [31,54,55]. In this case, the degradation state corresponding to point 375 is set as
the first failure threshold. The sample sequence length is n = 100. The stochastic model parameters of Gearbox2 are shown in
Table 7. Because of the uncertainty of prediction, Fig. 19 shows the probability density distribution of the GC, the fBm, the
LSTM and Bm prediction RUL.
Table 7
Parameter estimation of GC degradation models (M1 and M2).

Model Predict starting point H D l d b

GC 0.5313 1.3048 0.5286 0.5446 0.1991
fBm 375 0.5313 – 0.5715 0.1326 0.1762
Bm – – 0.4228 0.2839 0.3069
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Fig. 19. RUL prediction comparison.

Table 8
Prediction results analysis of M1 and M2.

SOA HD RMSE MAPE

GC 0.9640 0.9790 1.0000 0.0866
fBm 0.8351 0.8934 2.2546 0.2149
LSTM 0.8311 0.8829 2. 3629 0.2095
Bm 0.6761 0.7325 3.5707 0.3258

Fig. 20. Relative error between predicted and actual RUL.
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The prediction results of Gearbox2 data are still analyzed using several evaluation indicators mentioned in case 1, as
shown in Table 8 and Fig. 20. The analysis results prove the generality of the GC degradation model, which can be widely
applied to the RUL prediction of the gearbox. Also, it shows that the prediction performance of the GC degradation model
is better than the fBm, the LSTM and the Bm.

5.4. Case 2

In order to objectively prove the generality of the GC degradationmodel, the FEMTO-ST organization publishes the full life
data of rolling bearing in the PHM 2012 Data Challenge. The data are obtained by experiments on the PRONOSTIA test bench,
which are applied to this case. The PRONOSTIA test bench mainly has a rotating part (gearbox and two motors), a degrada-
tion generating part (mainly the generation of radial force) and a measuring part (vibration sensor, etc.). Fig. 21 shows the
specific structure of the platform. During the operation of the PRONOSTIA platform, the vibration sensor composed of two
accelerometers is sampled at a frequency of 25.6 kHz, and the vibration signal is recorded every 0.1 min with a sampling
time of 0.1 s. The FEMTO-ST organization provides three sets of run-to-failure data for different load environments. In this
case, 2463 samples collected under the working conditions of 1800 rpm and 4000 N are selected as the verification sequence
of the GC degradation model.

Similar to the operating environment of gear, the bearing degradation process is also disturbed by factors such as noise
and has a complex trend, as shown in Fig. 22. Following the data preprocessing process of Case 1, this case uses the time
domain feature factors Fi to extract bearing degradation trends. Some characteristic factors shown in Fig. 23 have similar
15



Fig. 21. The structure of the PRONOSTIA platform.

Fig. 22. Original vibration signal of bearing degradation.

Fig. 23. Bearing degradation trend after feature factor extraction.
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degradation trend. Therefore, this case uses the KPCA method to analyze the 9 degradation trends and eliminate redundant
indicators to obtain a degradation sequence that integrates different feature trends. In this case, four feature factors with a
cumulative contribution of more than 95% are selected as the main components of the KPCA method, as shown in Fig. 24.

The variogram estimator and the detrended fluctuation analysis methods are used to calculate the parameters D and H of
the degradation sequence in Fig. 24(b). The fractal dimension and long correlation index obtained by D and H are shown in
Table 9.

In this case, the end of bearing life threshold is set to 16. From the bearing degradation sequence given in Fig. 24, it can be
found that the bearing has no obvious degradation in the first half of the operation process. The fluctuation of the charac-
teristic value belongs to normal bearing wear. Therefore, this case chooses 2400 points as the starting point to predict
the RUL. The degradation characteristics at this time have changed significantly, and the actual RUL is also within the max-
imum prediction range. At this instance, the RUL value predicted by the GC degradation model can better reflect the health of
the bearing.
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The fBm, the LSTM and the Bm are also introduced as comparison models in this case to verify the effectiveness of the GC
model. The parameter estimates of the stochastic degradation model are shown in Table 10. The probability distribution of
RUL obtained by the four different prediction methods is shown in Fig. 25(a), and the predicted value of RUL is shown in
Fig. 25(b). In order to objectively compare the prediction performance of the four methods, SOA, HD, RMSE, MAPE and rel-
ative error are used to analyze the error between the predicted value and the actual RUL value, as shown in Table 11 and
Fig. 26.

From the parameter value given in Table 10, the Hurst index H and the fractal dimension D of the bearing degradation
sequence are approximately linear relationships H ¼ 2� D. Therefore, the error analysis of the GC degradation model is
not much better than the fBm model. In Table 6 of Case 1, the relationship between the Hurst index H and the fractal dimen-
sion D of the gearbox degradation sequence tends to be independent. As a result, the prediction of the GC degradation model
is significantly better than the fBm model. These two cases verify that the GC degradation model has better predictive per-
formance in a variety of degradation sequences. The principle of LSTM neural network requires a lot of training data to get
Fig. 24. KPCA analysis process.

Table 9
Fractal characteristics of bearing degrada-
tion sequence.

a b j g
1.2762 0.733 0.0044 227

Table 10
Prediction performance of different methods.

Model H D l d b

GC 0.6302 1.3120 6.66e�10 1.5504 4.4215
fBm 0.6302 – 3.10e�10 0.3645 4.5699
Bm – – 7.16e�06 0.7725 0.9307

Fig. 25. Predicted results of bearing RUL.
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Table 11
Prediction results analysis of M1 and M2.

SOA HD RMSE MAPE

GC 0.5387 0.9897 1.5014 0.1085
fBm 0.4847 0.9793 2.1389 0.1433
Bm 0.3223 0.9396 4.5993 0.2668
LSTM 0.4918 0.9734 3.0509 0.1692

Fig. 26. Relative error between predicted value and actual RUL.
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accurate prediction results. However, the small amount of training data given in this case is far from reaching the training
accuracy required by the neural network. Thus, the GC degradation model can obtain higher prediction accuracy in the case
of a small amount of training data. The Bmmodel cannot describe the time dependence of the degradation sequence, its pre-
diction performance is far lower than that of the GC degradation model.
6. Conclusion

In this paper, the GC degradation model with long-range dependence and fractal has been described and applied for the
prediction of the remaining useful life of gearbox. The main conclusions are as follows:

1. The autocorrelation function curves under different parameters reveal that the generalized Cauchy process is more flex-
ible than the single-parameter model in describing fractal time series.

2. The preprocessing results of the equipment degradation data verify the effectiveness of kernel principal component anal-
ysis. The characteristics of the degradation sequence show that the fractal dimension and long-range dependence of the
degradation data in different environments are different. The Hurst index and the fractal dimension are independent of
each other, which can better allow the generalized Cauchy process to describe the degradation sequence. This can ensure
the prediction accuracy of the remaining service life within the maximum prediction range.

3. The remaining useful life prediction of the equipment degradation data shows that the prediction performance of the GC
degradation model in the form of nonlinear power rate drift is better than the exponential drift form, which verifies the
heavy tail property of the generalized Cauchy process with power rate decay. The generality of the generalized Cauchy
degradation model is verified by predicting the remaining useful life of the equipment degradation data sets with differ-
ent conditions. At the same time, the comparison case of various remaining useful life prediction methods verifies that
the generalized Cauchy degradation model has superior prediction performance.
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