ISSN 1070-3632, Russian Journal of General Chemistry, 2017, Vol. 87, No. 8, pp. 1872–1875. © Pleiades Publishing, Ltd., 2017. Original Russian Text © G.Z. Raskildina, V.F. Valiev, I.V. Ozden, S.A. Meshcheryakova, L.V. Spirikhin, S.S. Zlotskii, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 8, pp. 1386–1389.

> LETTERS TO THE EDITOR

Synthesis of Pyrinidine-2,4(1*H*,3*H*)-dione Derivatives Containing N-Alkyl Substituents

G. Z. Raskildina^{*a*}*, V. F. Valiev^{*a*}, I. V. Ozden^{*a*}, S. A. Meshcheryakova^{*b*}, L. V. Spirikhin^{*c*}, and S. S. Zlotskii^{*a*}

^a Ufa State Petroleum Technological University, ul. Kosmonavtov 1, Ufa, Bashkortostan, 450062 Russia *e-mail: graskildina444@mail.ru

^b Bashkir State Medical University, Ufa, Bashkortostan, Russia

^c Ufa Institute of Chemistry, Russian Academy of Sciences, Ufa, Bashkortostan, Russia

Received May 11, 2017

Abstract—6-Methyluracil derivatives containing a *gem*-dichlorocyclopropane and a 1,3-dioxolane fragments were synthesized for the first time. The condensation of 6-methyluracil with chloromethyl derivatives gives a mixture of N¹- and N³-monosubstituted products, and the profound N-alkylation of this compound provides disubstituted uracils. The structure of the synthesized compounds was studied by H¹ and ¹³C NMR spectroscopy and their relative antioxidant activity was evaluated by luminol-dependent chemiluminescence measurements.

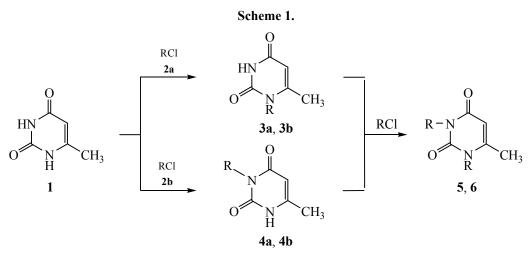
Keywords: 6-methyluracil, N-alkylation, gem-dichlorocyclopropane, 4-(chloromethyl)-1,3-dioxolane, antioxidant properties

DOI: 10.1134/S1070363217080369

6-Methyluracil [6-methylpyrimidine-2,4(1*H*,3*H*)-dione] and its derivatives exhibit broad-spectrum biological and pharmacological activities and are successfully used in medical chemistry [1, 2]. Substituted uracils are most commonly prepared by N-alkylation of 6-methyluracil by polyfunctional halomethyl derivatives [3, 4]. Among N¹- and N³-substituted compounds of this series, efficient antioxidants and anti-inflammatory agents were found [5, 6].

In this connection we considered it of interest to prepare *gem*-dichloropropane and cycloacetal derivatives of 6-methyluracila **1** and estimate their biological activity. To this end, we performed condensation of 6-methyluracil **1** with accessible chloromethyl-*gem*-dichlorocyclopropane **2a** and 4-chloromethyl-1,3-dioxolane **2b** [7].

It was found that the reaction of 6-methyluracil **1** with chlorides **2a** and **2b** under the studied conditions (**1** : **2** = 1 : 1, K₂CO₃, DMF, triethylbenzylammonium chloride, 90°C, 4–8 h) gives a mixture of N¹- and N³-monosubstituted products **3a**, **3b** and **4a**, **4b** (yield 25–30%) in the ratios **3a** : **4a** = 6 : 1 and **3b** : **4b** = 4 : 1 (Scheme 1).


With a double excess of chlorides 2a and 2b and after a long reaction time (10–12 h), the formation of disubstituted uracils 5 and 6 was observed (yields 30–40%).

The structure of compounds **3–6** was established by ¹H and ¹³C NMR spectroscopy. Complete assignment of the proton and carbon signals was performed using the COSY, HSQC, and HMBC spectra.

Krivonogov et al. [3] analyzed the ¹H NMR spectra of a series of substituted uracils to show that the N¹H proton signal of N³-substituted derivatives appears at 8–9.5 ppm, whereas the N³H proton signal of N¹substituted derivatives appears at 10–11 ppm. The ¹H NMR spectrum of a mixture of compounds **3a** and **4a** shows NH proton signals at 10.2 and 9.7 ppm with the intensity ratio of 6 : 1, which implies the prevalence of the N¹-substituted isomer.

The same intensity ratios have the signals of the methyl groups at the uracil C⁶ carbon at 2.17 (**3a**) and 2.35 ppm (**4a**), as well as the C⁵H proton signals at 5.61 (**3a**) and 5.63 ppm (**4a**).

The *gem*-dichlorocyclopropane protons resonate in their characteristic region (2.06–2.14 ppm). The dia-

R = (2,2-dichloropropyl)methyl (2a, 3a, 4a, 5), 1,3-dioxolan-4-ylmethyl (2b, 3b, 4b, 6).

stereotopic protons of the methylene group at $C^{3'}$ appear as two doublets of doublets at 1.51 (${}^{2}J = 10.0$, ${}^{3}J = 7.2$ Hz) and 1.59 ppm (${}^{2}J = 10.0$, ${}^{3}J = 4.7$ Hz). The signals of the methyl protons at C^{4'}, too, are registered as doublets of doublets at 4.18 (${}^{2}J = 13.6$, ${}^{3}J = 5.1$ Hz) and 4.0 ppm (${}^{2}J = 13.6$, ${}^{3}J = 9.7$ Hz). The JMOD 13 C NMR spectrum provides unequivocal evidence for the structure of compound **3a**. The characteristic signals of the uracil fragment appear at 153.1 (C²) and 162.4 ppm (C⁴); the signals of the methine C⁵ carbon are observed at 100.1 ppm. The quaternary C⁶ carbon signal appears at 150.4 ppm.

The substitution of the N¹ and N³ atoms was proved by the HMBC spectroscopy. The ¹H–¹³C NMR spectrum of N¹-substituted compound **3a** shows crosspeaks between protons at C⁴" and the uracil C² (153.1 ppm) and C⁶ atoms (150.4 ppm). The ¹H–¹³C NMR spectrum of N³-derivative **4a** shows cross peaks between protons at C⁴" and the uracil C² (151.4 ppm) and C⁴ atoms (164.4 ppm).

The structure of disubstituted uracils **5** and **6** is confirmed by the lack in the ¹H NMR spectra of NH proton signals at 9-11 ppm and by the presence of alkyl signals in the ¹H and ¹³C NMR spectra.

We estimated the influence of compounds **3–6** on in vitro free-radical oxidation processes in model systems generating reactive oxygen species (ROS) and in systems modulating lipid peroxidation (LPO). The antioxidant activity assay was performed in DMSO by measuring chemilumiscence by known procedures [5, 6]. Control measurements were performed in the absence of antioxidants. The reference was 5-hydroxy-6-methyluracil, a well-known free-radical oxidation inhibitor for biological systems. The main parameters that were estimated were the total chemiluminescence (*S*) and maximum flash amplitude (I_{max}).

As seen from the table, compounds 3-6 exhibit antioxidant activity of different degree. Compound 6which contains two 1,3-dioxolane fragments ranks first in the ability to inhibit ROS generation and compares in activity with 5-hydroxy-6-methyluracil.

The mixture of isomers 3a and 4a, as well as compounds 5 and 6 only slightly decreased the luminescence light sum in the model LPO reaction system, whereas the mixture of isomers 3b and 4benhanced chemiluminescence, acting as an oxidant.

The resulting data show that the synthesized 6methyluracil derivatives are promising objects for further biological activity research.

Synthesis of compounds 3 and 4. A mixture of 0.05 mol of 6-methyluracil 1, 0.065 mol of K_2CO_3 , 0.15 g of triethylbenzylammonium chloride, and 18 mL of DMF was stirred at room temperature for 2 h and allowed to stand at that temperature for 8 h. Alkylating agent 2a (or 2b), 0.055 mol, was then added, the mixture was vigorously stirred for 4 (2a) or 8 h (2b) at 90°C, cooled down, and allowed to stand for 8 h. The precipitate was filtered off, and the filtrate was evaporated. The residue was treated with 15 mL of 10% KOH, treated with chloroform (3×10 mL), and the combined extract was dried over MgSO₄. The solvent was distilled off, and the residue was chromatographed on KSKG silica (63–200 µm), eluent benzene-ethanol (19:1). The target compounds were isolated as isomer mixtures 3a/4a and 3b/4b.

Compound	ROS model		LPO model	
	<i>S</i> , %	<i>I</i> _{max} , %	<i>S</i> , %	$I_{\rm max}, \%$
Control	100	100	100	100
5-Hydroxy-6-methyluracil	32	39	49	51
3a + 4a	82	84	90	86
3b + 4b	62	64	151	123
5	62	66	78	69
6	22	42	87	87

Changes in the total chemiluminescence (S) and maximum flash amplitude (I_{max}) of the model systems generating ROS and mimicking LPO in the presence of 6-methyluracil derivatives **3**–**6**^a

^a Data are presented as the percentage of control. Sample volume 0.01 mL.

1-[(2,2-Dichlorocyclopropyl)methyl]-6-methylpyrimidine-2,4(1H,3H)-dione (3a) and 3-[(2,2-dichlorocyclopropyl)methyl]-6-methylpyrimidine-2,4-(1H,3H)-dione (4a). Yield 30%, mp 130–131°C. **Compound 3a.** ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 1.51 (1H, $C^{3'}H_{A}$, ${}^{2}J = 10.0$, ${}^{3}J = 7.2$), 1.59 d.d (1H, $C^{3'}H_{B}$, $^{2}J = 10.0$, $^{3}J = 4.7$), 2.06–2.14 m (1H, C²'H), 2.17 s (3H, C⁷H₃), 4.0 d.d (1H, C⁴'H_A, ${}^{2}J$ = 13.6, ${}^{3}J$ = 9.7), 4.18 d.d (1H, C⁴'H_A, ${}^{2}J$ = 13.6, ${}^{3}J$ = 5.1), 5.61 s (1H, C⁵H), 10.20 s (1H, NH). ${}^{13}C$ NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 18.75 (C⁷), 26.28 (C^{3'}), 28.26 ($C^{2'}$), 40.32 ($C^{4'}$), 58.6 ($C^{1'}$), 100.1 (C^{5}), 150.4 (C^{6}), 153.1 (C^{2}), 162.4 (C^{4}). Compound 4a. ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 1.52 m (1H, C³"H_B), 1.75 d.d (1H, $C^{3''}H_A$, ${}^2J = 10.3$, ${}^3J = 7.4$), 1.94–1.99 m (1H, $C^{2"}H$), 2.35 s (3H, $C^{7}H_{3}$), 4.12 d.d (1H, $C^{4"}H_{A}$, $^{2}J = 14.0, \ ^{3}J = 4.8), \ 4.30 \ d.d \ (^{2}J = 14.0, \ ^{3}J = 4.5), \ 5.63$ s (1H, C⁵H), 9.70 s (1H, NH). ¹³C NMR spectrum $(CDCl_3), \delta_C, ppm: 20.5 (C^7), 26.1 (C^{3"}), 34.5 (C^{2"}),$ 45.2 (C⁴"), 62.8 (C¹"), 100.1 (C⁵), 151.4 (C²), 154.4 $(C^{6}), 164.4 (C^{4}).$

1-(1,3-Dioxolan-4-ylmethyl)-6-pyrimidine-2,4-(1*H*,3*H*)-dione (3b) and 3-(1,3-dioxolan-4-ylmethyl)-6-pyrimidine-2,4(1*H*,3*H*)-dione (4b). Yield 25%, mp 122–123°C. Compound 3b. ¹H NMR spectrum (CDCl₃), δ, ppm (*J*, Hz): 2.27 s (3H, C⁷H₃), 3.42–3.56 m (2H, C⁶H₂), 3.65 d.d (1H, C⁵H_A, ²*J* = 9.1, ³*J* = 7.4), 3.72 d.d (1H, C⁵H_B, ²*J* = 9.1, ³*J* = 5.2), 4.16 t.d (1H, C⁴H, ³*J* = 7.4, 5.2, 3.8), 4.62 s (1H, C²H_A), 4.68 s (1H, C²H_B), 5.55 s (1H, C⁵H), 10.57 s (1H, NH). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 17.9 (C⁷), 44.4 (C⁶), 73.5 (C⁵), 74.4 (C⁴), 94.7 (C²), 98.2 (C⁵), 151.4 (C⁶), 152.8 (C²), 160.9 (C⁴). Compound 4b. ¹H NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm (*J*, Hz): 2.27 s (3H, C⁷H₃), 3.45–3.61 m (2H, C^{6"}H₂), 3.62 d.d (1H, C^{5"}H_A, ²*J* = 8.9, ³*J* = 4.9), 3.69 d.d (1H, C^{5"}H_B, ²*J* = 8.9, ³*J* = 6.8), 4.10 t.d (1H, C^{4"}H, ³*J* = 6.8, 4.9, 4.2), 4.62 s (1H, C^{2"}H_A), 4.68 s (1H, C^{2"}H_B), 5.59 s (1H, C⁵H), 9.57 s (1H, NH). ¹³C NMR spectrum (CDCl₃), δ_{C} , ppm: 20.9 (C⁷), 41.6 (C^{6"}), 70.6 (C^{4"}), 76.1 (C^{5"}), 95.1 (C^{2"}), 103.2 (C⁵), 151.2 (C⁶), 152.8 (C²), 162.4 (C⁴).

Compounds 5 and 6 were prepared in a similar way using a double excess (0.11 mol) of the corresponding alkylating agent.

1,3-Bis[(2,2-dichlorocyclopropyl)methyl]-6-methylpyrimidine-2,4(1*H*,3*H*)-dione (5). Yield 40%. ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 1.48–1.58 m (2H, C³'H₂), 1.69–1.78 m (2H, C³'H₂), 1.92–2.10 m (1H, C²'H), 2.08–2.17 m (1H, C²''H), 2.32 s (3H, C⁷H₃), 3.95–4.04 m (2H, C⁴'H₂), 4.15 d.d (1H, C⁴''H_A, *J* = 4.8, 13.4), 4.35 d.d (1H, C⁴''H_B, *J* = 2.6, 4.5), 5.65 s (1H, C⁵H). ¹³C NMR spectrum (CDCl₃), δ_{C} , ppm: 20.21 (C⁷), 26.21 (C³''), 26.52 (C³), 28.39 (C²), 28.84 (C^{2''}), 41.40 (C^{4''}), 44.92 (C^{4'}), 59.65 (C^{1''}), 68.15 (C^{1'}), 102.2 (C⁵), 151.1 (C⁶), 152.3 (C²), 161.8 (C⁴).

1,3-Bis(1,3-dioxolan-4-ylmethyl)-6-methylpyrimidine-2,4(1*H***,3***H***)-dione (6).** Yield 35%. ¹H NMR spectrum (CDCl₃), δ , ppm (*J*, Hz): 2.22 s (3H, C⁷H₃), 3.61–3.68 m (2H, C^{6°}H₂), 3.69–3.75 m (2H, C^{6°}H₂), 3.86 d.d (1H, C^{5°}H_A, ²*J* = 8.6, ³*J* = 4.7), 3.97 d.d (1H, C^{5°}H_B, ²*J* = 8.6, ³*J* = 4.7), 4.05 d.d (1H, C^{5°}H_A, ²*J* = 9.0, ³*J* = 5.0), 4.24 d.d (1H, C^{5°}H_B, ²*J* = 9.0, ³*J* = 6.6), 4.32–4.37 m (2H, C^{4°}H, C^{4°}H), 4.76 s (1H, C^{2°}H_A), 4.84 s (1H, C^{2°}H_B), 4.98 s (1H, C^{2°}H_A), 5.00 s (1H, C^{2°}H_B), 5.55 s (1H, C⁵H). ¹³C NMR spectrum (CDCl₃), δ_{C} , ppm: 20.3 (C⁷), 42.2 (C^{6°}), 47.2 (C^{6°}), 67.3 (C^{5°}), 67.6 $(C^{5"})$, 72.8 $(C^{4"})$, 73.5 $(C^{4'})$, 94.7 $(C^{2'})$, 95.1 $(C^{2"})$, 101.6 (C^{5}) , 152.1 (C^{2}) , 152.3 (C^{6}) , 161.8 (C^{4}) .

Chromatographic analysis of the reaction products was performed on a CarloErba HRGC 5300 Mega Series chromatograph with FID, carrier gas helium, flow rate 30 mL/min, column length 25 m, oven temperature program programmed temperature from 50 to 280°C at 8 deg/min, detector temperature 250°C, injector temperature 300°C. The EI mass spectra were measured on Fisons (50 m DB 560 guartz capillary column) and Thermo Focus DSO II GC-MS systems temperature 200°C, direct probe (ion source temperature 50-270°C, heating rate 10 deg/min, $50(2.5 \times 10^{-4})$ m ThermoTR-5MS column, helium flow rate 0.7 mL/min). The NMR spectra were obtained on a Bruker AVANCE-500 spectrometer in CDCl₃.

AKNOWLEDGMENTS

The work was financially supported by the Russian Science Fund (project no. 15-13-10034) and the President of the Russian Federation (grant for young researchers and PhD students no. SP-1960.2015.4).

REFERENCES

- Munasipova, D.A., Meshheryakova, S.A., and Kataev, V.A., Bash. Khim. Zh., 2013, vol. 20, no. 1, p. 11.
- Azas, N., Rathelot, P., Djekou, S., Delmas, F., Gellis, A., Di Giorgio, C., Vanelle, P., and Timon-David, P., *Farmaco*, 2003, vol. 58, no. 12, p. 1263. doi 10.1016/ j.farmac.2003.07.009.
- Krivonogov, V.P., Kozlova, G.G., Belaya, E.A., Spirikhin, L.V., and Abdrakhmanov, I.B., *Russ. J. Gen. Chem.*, 2004, vol. 74, no. 5, p. 830. doi 10.1023/ B:RUGC.0000039091.94471.75
- Fattakhov, A.H., Lobov, A.N., Gimadieva, A.R., Mustafin, A.G., and Abdrakhmanov, I.B., *Vestn. Bash. Univ.*, 2012, vol. 17, no. 4, p. 1710.
- Petrova, I.V., Kataev, V.A., Meshheryakova, S.A., Nikolaeva, K.V., Munasipova, D.A., and Farkhutdinov, R.R., *Med. Vestn. Bashkortost.*, 2013, vol. 8, no. 4, p. 64.
- Petrova, I.V., Kataev, V.A., Meshheryakova, S.A., Nikolaeva, K.V., Munasipova, D.A., and Farkhutdinov, R.R., *Med. Vestn. Bashkortost.*, 2013, vol. 8, no. 6, p. 163.
- Borisova, Y.G., Raskildina, G.Z., Kazakova, A.N., and Zlotsky, S.S., *Russ. J. Gen. Chem.*, 2015, vol. 85, no. 1, p. 200. doi 10.1134/S1070363215010351