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a b s t r a c t 

In this study we use the fractional Lévy stable motion (fLsm) to establish a finite iterative forecasting 

model with Long Range Dependent (LRD) characteristics. The LRD forecasting model considers the in- 

fluence of current and past trends in stochastic sequences on future trends. We find that the discussed 

model can accurately forecast the trends of stochastic sequences. This fact enables us to introduce the 

fLsm as the fractional-order model of Lévy stable motion. Self-similarity and LRD characteristics of the 

flsm model is introduced by using the relationship between self-similar index and the characteristic in- 

dex. Thus, the order Stochastic Differential Equation (FSDE) which describes the fLsm can be obtained. 

The parameters of the FSDE were estimated by using a novel characteristic function method. The forecast- 

ing model with the LRD characteristics was obtained by discretization of FSDE. The Monte Carlo method 

was applied to demonstrate the feasibility of the forecasting model. The power load forecasting history 

data demonstrates the advantages of our model. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Forecasting of non-stationary stochastic sequences have been

ncreasingly recognized in recent years. Many models have been

eveloped to forecast the trend of such stochastic sequences as

eural network [1] , support vector machine [2] , nonlinear fore-

asting models [3] , fuzzy adaptive [4,5] , etc. Since the mentioned

odels require a large number of training samples and other

imitations, scholars have proposed to apply stchastic mathe-

atical models to the field of stochastic sequence forecast,e.g.,

amma processes [6] , Markov processes [7,8] , and Wiener pro-

esses [9] . There are many slow change processes in engineering

ith stochastic and the LRD, and the characteristics of LRD are

trong dependence at large intervals or lags. However, the exist-

ng stochastic models fail adequate reflect the interdependence

f stochastic sequences ( Fig. 1 ). In this article, we propose a

Lsm-based stochastic forecasting model with LRD characteristics.

he stochastic LRD model comprehensively considers the influ-

nce of the current and past states on the future states ( Fig. 2 ),
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nd dummyTXdummy-(can accurately forecast the trend of the

tochastic sequence [10–13] . The fractional Brownian motion

odel with Gaussian and LRD characteristics is widely applied

n this field [14–16] . In fact, stochastic sequences in practical ap-

lications have generally non-Gaussian properties [17] . Following

ractical situations, in this study we propose a forecasting model

or stochastic sequences, which is based on fLsm with LRD and

on-Gaussian characteristics [18] . 

Lévy motion (or Lévy process) is a stochastic process with

tationary and independent increment, which is characterized by

eavy-tailed distribution and infinite variance. The Lévy motion

odel can be applied to non-Gaussian distributions [19] . Such

istributions as the Gaussian, Cauchy, and Poisson can obtained as

articular cases of the Lévy motion [17] . In addition, the special

ases for Lévy motion also include Lévy flights and Lévy walks

20–22] . When the incremental process of Lévy motion exhibit

arge jumps, the Lévy motion is called the Lévy flight. The length

f these jumps is the subject of Lévy process with the power

aw tails. These jumps are also known as Lévy walks,which en-

ance the possibility to encounter sparsely distributed targets.

he flexibility of Lévy motion modeling makes it universal for

 broad range of stochastic problems [17,23,24] . In general, the

orresponding definitions give different fractional Lévy motion if
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Fig. 1. Forecasting process of independent model. 

Fig. 2. Forecasting process of LRD model. 
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driving different Lévy motion [25,26] , and refer to all different

forms of fractional Lévy motion as the fractional Lévy motion

group. Thus, more attention has been given to this issue. The fLsm

driven by Lévy stable motion is mainly studied in this article. 

The Lévy stable motion is described by parameters α, β , μ, δ
[27] where the heavy-tailed degree of the probability density func-

tion is determined by the characteristic index α; the symmetry pa-

rameter β is used to describe how the skewed probability density

function is spread around the centerline; μ indicates the location

of a distribution; the dispersion degree is described by the scale

parameter δ. We also note that the probability density function

with the Lévy stable distribution does not have a closed expres-

sion, except for several exceptions. Therefore, the model character-

istics are generally described by the characteristic function [28,29] .

Earlier, Benassi et al. [30] introduced real-valued harmonic

fractional Lévy processes, which are obtained by Lévy motion

that have moments of every order. These processes have Holder

paths and are locally asymptotically self-similar. Meanwhil, the

moving-average fractional Lévy processes [31] , which are the-

fields parameterized by a d-dimensional space, were introduced.

These processes have Holder path and are locally self-similar.

Non-anticipative fractional Lévy processes [32] are introduced

by general Lévy motion with the zero mean, finite variance and

without Brownian component, and they are not self-similar. As the

fractional order model of Lévy motion, the fractional Lévy motion

also describes the LRD characteristics [18] while describing the

heavy-tailed distribution of stochastic processes, where LRD rep-

resents the relationship between the current value of a stochastic

process and its historical values. 

The fLsm is developed by Samorodnitsky et al. [14,18,33] , and

this model has explicit parameters for the stochastic differential

equation, while other fractional Lévy motion models do not. The

fLsm can be modified to other models if the characteristic index

α changed, e.g., for α= 2 , the model transforms into fractional

Brownian motion. Moreover, the LRD of fLsm is determined by the

characteristic and self-similar indices α and H [28,34] , respectively.
or αH > 1, the subsequent value of random sequence can be

alculated from the previous sequence. 

The fLsm can describe stochastic sequences with non-Gaussian

nd heavy-tailed properties, and can degenerate to fractional

rownian motion when the parameters of fLsm change [18] , which

an be modeled flexibly for random sequences. Application of frac-

ional Brownian motion in stochastic sequences, which exhibiting

RD characteristics is a well-formed technique [15,35] , but the

Lsm rarely applies for forecasting of stochastic sequences. Hence,

he finite iterative forecasting model with LRD characteristics

ased on the fLsm can be used forecasting for a wide range of

tochastic sequences. 

The fLsm can describe stochastic sequences with non-Gaussian

nd heavy-tailed properties, and can degenerate to fractional

rownian motion when the parameters of fLsm change [18] , which

an be modeled flexibly for random sequences. Application of the

ractional Brownian motion for stochastic sequences,which exhibit

RD characteristics is a well-formed technique [15,35] , but the

Lsm rarely applies for forecasting of stochastic sequences. Hence,

he finite iterative forecasting model with LRD characteristics

ased on the fLsm can be used forecasting for a wide range of

tochastic sequences. 

Since the fractional Lévy motion with LRD is not away a

emimartingale processes [25,32] , Itos formula cannot be applied.

ractional Itos formula [36–38] was applied to stochastic differ-

ntial equation of Lévy stable motion [28] and the FSDE was

btained in this article. Then, the fractional Black–Scholes model

39,40] is extended and the parameterized FSDE is obtained. The

Lsm is discretized by Taylor series expansion of fractional order

41] and substituted into the discrete FSDE. Finally, the expressions

f the fLsm finite difference iterative forecasting model proposed

as obtained by using discrete FSDE and difference equation. 

Many mathematical methods, which deal with the probability

ensity function are not applicable due to the lack of a closed form

or the fLsm model [27] . The parameter estimation error is greatly

nfluenced by the estimation method. Several parameter estimation

ethods were compared by in refs [27,29,42] , where it is argued

hat the accuracy of the characteristic function method superiors

ther existing methods. Following this argument, we use the char-

cteristic function method to estimate the parameters of FSDE [29] .

This article is organized into five sections: The fLsm is intro-

uced in Section 2 , where we also analyze the model and LRD

haracteristics. The FSDE is proposed in Section 3 , and the finite-

ifference iterative forecasting model is established by making

he difference FSDE. The methodology of parameter estimation for

he fractional order stochastic differential equation is given in the

ppendix. The power load forecasting results show the feasibility

f the finite-difference iterative forecasting model ( Section 4 ).

ome concluding remarks are given in Section 5 . 

. Fractional Lévy stable motion: properties 

A distribution is said to be stable whenever a linear com-

ination of two independent random variables has the same

istribution as the original distribution, which can be written as

ollows [17] : 

 1 + x 2 · · · + x n 
�= ax + b. 

ere a and b are constants; x i are independent and identically

istributed random variables, and 

�= denote equality in distribution

ense. 

.1. Characteristic of Lévy stable motion 

The Lévy stable motion represents a non-Gaussian random

rocess with LRD and high variability, which is often commonly
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Fig. 3. Influence of different characteristic index values on the probability density 

function. 

Fig. 4. Influence of different symmetry parameter values on the probability density 

function. 
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Fig. 5. The probability density function for different location parameter. 

Fig. 6. The probability density function for different scale parameter. 
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ncountered in natural processes. In the absence of a precise

robability density function function [18,33] : 

 ( θ : α, β, δ, μ) = E 
[
e jθx 

]
= 

{ 

exp 

{ 
jμθ−δ| θ | α

[ 
1 − jβ θ

| θ | tan ( πα
2 ) 

] } 
,α � =1 

exp 

{ 
jμθ−δ| θ | α

[ 
1+ jβ θ

| θ | 
2 
π ln | θ | 

] } 
,α=1 

, 

(1

here the characteristic index α ranges within the inter-

al:0 < α ≤ 2. A clearer heavy tailed phenomenon of probability

ensity function for different α is shown in Fig. 3 . If we intro-

uce parameter β ranging within the interval −1 ≤ β ≤ 1 , and

enote it as the skewness index, then for β > 0, the probability

ensity function is right-skewed (and left-skewed for β < 0). The

ymmetric stable distribution corresponds to β = 0 , (see Fig. 4 );

∈ R is the location parameter, which indicates the mean ( Fig. 5 ).

he spread parameter, δ > 0 represents the discrete nature of the

istribution ( Fig. 6 ). 

.2. Fractional Lévy stable motion model 

The fLsm model is given by the following stochastic integral

17,18,43] : 

 H,α(t) = 

∫ ∞ 

−∞ 

{
a 
[
( t − s ) 

H−1 /α
+ − ( −s ) 

H−1 /α
+ 

]
+ b 

[ 
( t − s ) 

H−1 /α

− − ( −s ) 
H−1 /α
−

] } 

Mds, (2) 
here a and b are the arbitrary constants, x H−1 /α
+ = 0 for x ≤

 and x H−1 /α
+ = x H−1 /α for x > 0 , M ∈ R is the symmetric L ́e vy

table random measure, and H is the self-similarity parameter. 

Similarly, we can also define the fLsm as the following

iemann-Liouville fractional integral [44] : 

 H,α( t ) = 

1 

	( H + 1 / 2 ) 

∫ t 

0 
( t − τ ) 

H−1 / 2 d L α( τ ) , (3) 

here L α( τ ) is the symmetric Lévy stable distribution, 	( · ) is the

amma function. Fig. 7 shows the fLsm sequence generated with

ifferent α values for H = 0 . 75 . We observe that the random walk

f the fLsm sequence increases as α increases. 

.3. Characteristic of fractional Lévy stable motion incremental 

rocesses 

The incremental process for fLsm [i.e., the fractional Lévy stable

oise is introduced by the fractional Gaussian noise] is derived by

amoradnitsky and Taqqu [17] , Kogon and Manolakis [45] 

 H ( t ) = B H ( t + 1 ) − B H ( t ) 

= 

∫ ∞ 

−∞ 

{ a [( t + 1 − s ) 
H−1 / 2 
+ − ( −s ) 

H−1 / 2 
+ 

]
+ b 

[
( t + 1 − s ) 

H−1 / 2 
− − ( −s ) 

H−1 / 2 
−

]} ω ( s ) ( ds ) , 

(4) 

here ω( s ) is the Gaussian white noise. Representation of frac-

ional Lévy stable noise is acquired by transforming the exponent
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Fig. 7. FLsm generated with different α = 2 , 1 . 75 , 1 . 5 , 1 . 25 , respectively, H = 0 . 75 . 
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in Eq. (4) from H − 1 / 2 to H −1 / α, and a white noise generated

Lévy stable motion replaces the Gaussian white noise as the

driving function. The fractional Lévy stable noise is defined by: 

l H,α( t ) = L H,α( t + 1 ) − L H,α( t ) 

= 

∫ ∞ 

−∞ 

{ a [( t + 1 − s ) 
H−1 /α
+ − ( −s ) 

H−1 /α
+ 

]
+ b 

[
( t + 1 − s ) 

H−1 /α
− − ( −s ) 

H−1 /α
−

]} ω α( s ) ( ds ) , 

(5)

where ω α( s ) is the Lévy stable white noise. Fig. 8 shows the

fractional Lévy stable noise sequence generated with different α,

where H = 0 . 75 . We observe that the influence of noise increases

as parameter α increases. 

2.4. Long-range dependence and self-similarity of fractional Lévy 

stable motion 

If the stochastic process satisfies the scale invariance, then it is

a self-similar, and defined by the identity: 

x ( t ) 
�= a −H x ( at ) . 
he methods, which are used to calculate self-similar param-

ters, include absolute value method, periodogram estimation

ethod, wavelet estimation method, rescaled range method etc

15,46,47] . High accuracy is achieved if the rescaled range method

s used [15] . Consequently, we use the rescaled range method

or estimation of the self-similar parameters in LRD random

rocess. 

Symmetric Lévy stable motion is 1/ α self-similar, namely,

 α( t ) 
�= a −1 / αL α( at ) for all a > 0. Laskin et al. [44] proved that

he fLsm is a self-similar process with self-similar parameter

 −1 / 2 + 1 /α. The incremental process { L H, α( t 2 )- L H, α( t 1 )} is also

elf-similar with H −1 / 2 + 1 /α. 

The sequence has LRD characteristics for H ∈ (1/2, 1)

12] . Hence, we limit parameter value H to the range (1/2,

). We note that the fLsm model has no long memory when

 < α < 1 . α ∈ ( 1 , 2 ) to ensure that it has the LRD characteristic

18] . The key feature of the fLsm model is that parameters α, H

re not independent, since the fLsm has LRD condition for αH > 1,

.e. H > 1/ α [17,18] . 
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Fig. 8. Fractional Lévy stable noise generated with different α = 2 , 1 . 75 , 1 . 5 , 1 . 25 , respectively, H = 0 . 75 . 
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. Finite difference iterative forecasting model 

.1. Stochastic differential equation of fractional Lévy stable motion 

The stochastic differential equation for Lévy stable motion was

roposed by Janicki et al. [17,28,48] , which reads as follows 

 X ( t ) = a ( t , X ( t ) ) d t + b ( t , X ( t ) ) d L α( t ) X ( 0 ) = X 0 . (6) 

q. (6) can be represented in the integral form: 

 ( t ) = X 0 + 

∫ t 

0 

a ( s, X ( s −) ) ds + 

∫ t 

0 

b ( s, X ( s −) ) d L α( s ) , t ≥ 0 . 

(7) 

In view of the fractional Ito’s formula and derivation of stochas-

ic differential equation for fractional Brownian motion [36–38,49] ,

 α( t ) in Eq. (7) is replaced by L H, α( t ), and can be obtained the

ntegral form of FSDE is obtained: 

 H,α( t ) = X ( H,α) 0 
+ 

∫ t 

0 

a ( s, X H,α( s −) ) ds 

+ 

∫ t 

b ( s, X H,α( s −) ) d L H,α( s ) , t ≥ 0 . (8) 

0 
The differential form of Eq. (8) reads as follows: 

 X H,α( t ) = a ( t , X H,α( t ) ) d t + b ( t , X H,α( t ) ) d L H,α( t ) 

X H,α( 0 ) = X ( H,α) 0 
, (9) 

here a ( t, X ( t )) and b ( t, X ( t )) represent drifting and diffusion

unctions, respectively. 

The fractional Black–Scholes model [39,50] ,which was devel-

ped by Dai et al. [38,40,49,51] the following has expression: 

 S t = μS t d t + δS t d B H ( t ) , (10) 

here μ indicates the expected return rate, δ is the volatility

ate. In fLsm, the model reduces to fractional Brownian motion

hen α = 2 is used, μ represents the mean, and δ represents the

iffusion coefficient; meanwhile, μ is the expected value and δ is

he diffusion coefficient in 1 < α ≤ 2, At this point, the drift and

iffusion functions of the FSDE can be represented by μX H, α( t )

nd δX H, α( t ), respectively. Consequently, Eq. (9) can be rewritten

s follows: 

 X ( t ) = μX ( t ) d t + δX ( t ) d L H,α( t ) , (11) 

here constants μ, δ are calculated from the novel characteristic

unction method,which is given in the Appendix. 
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Fig. 9. FLsm and fractional Lévy stable noise simulation series generated with �t = 0 . 01 , H = 0 . 75 , α = 1 . 75 . 

Fig. 10. FLsm sequences generated with α = 1 . 5 , β = 0 , μ = 0 . 4586 , δ = 

0 . 0396 , H = 0 . 75 , X 0 = 0 . 6 , by the Monte Carlo Simulation. 

 

 

 

 

 

 

 

 

 

Fig. 11. Forecasting process. 
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3.2. Iterative forecasting model 

By using the Maruyama notation [41] d B t = w ( t ) ( dt ) 1 / 2 , the

following equations can be obtained: ∫ t 

0 

f ( τ ) ( dτ ) 
ρ = ρ

∫ τ

0 
( t − τ ) 

ρ−1 f ( τ ) dτ , (12)

dx = f ( t ) ( dt ) ρ, (13)

where 0 < ρ < 1. The incremental expression of fLsm can be

obtained by replacing f ( t ) with w α( t ): 

∫ t 

0 

w α( τ ) ( dτ ) 
H− 1 

2 
+ 1 α = 

(
H − 1 

2 

− 1 

α

)∫ τ

0 
( t − τ ) 

H− 3 
2 

+ 1 α
w α( τ ) dτ ,

(14)

d L H,α = w α( t ) ( d t ) H− 1 
2 + 1 α . (15)

The differential d L H,α can be expressed as in the finite difference

form: 

�L H,α(�t, H) = L 
H,α

(t + �t, H) − L 
H,α

(t, H) = w α( t ) ( �t ) H− 1 
2 + 1 α , 

(16)
here the time interval [0, T ] is sampled into N equal sub-

ntervals, in such a way that �t = T /N. Let T = 1 , N = 100 , �t =
 . 01 , H = 0 . 75 , α = 1 . 75 .Then the simulated fLsm and the frac-

ional Lévy stable noise can be plotted (see Fig. 9 ). 

Eq. (11) can be written the discrete form, which reads as

ollows: 

X H,α( t ) = μX H,α( t ) �t + δX H,α( t ) w α( t ) ( �t ) H− 1 
2 − 1 

α , (17)

he iterative forecasting model is obtained from the identity

X ( t ) = X ( t + 1 ) − X ( t ) : 

 H,α( t + 1 ) = L H,α( t ) + μL 
H,α ( t ) �t + δL 

H,α ( t ) w α( t ) ( �t ) H− 1 
2 − 1 

α . (18)

By using the Monte Carlo simulations [52] , most likely curves

or multiple time series can be generated. Supposing that
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Fig. 12. Real 96-hour power load and the subsequent forecasted 24-hour trend plots. 

Fig. 13. Box plot analysis of relative error. 
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Table 1 

Parameter estimation of forecasting model. 

H α μ δ

Case 1 0.7464 1.7034 638.6514 4.0435 

Case 2 0.7806 1.7104 548.8544 2.4709 

Case 3 0.8644 1.6977 691.6931 2.7441 
= 1 . 5 , β = 0 , μ = 0 . 4586 , δ = 0 . 0396 , H = 0 . 75 , X 0 = 0 . 6 , and

e simulate Monte Carlo 50 times. Fig. 10 shows the sequence

imulated by the Monte Carlo method. It can be seen that the
equences generated by Eq. (18) are the same as the sequences

enerated by fLsm model. 

. Case studying 

To verify the validity of the fLsm forecasting model, this ex-

eriment based on the fLsm forecasting model to forecasting the

ower load curve of the next 6, 12, 18 and 24 h for historical

ata. The real power load data is collected by Eastern Slovakian

lectricity Corporation [53] , which were sampled every 30 min.

hree sets of historical power load data are used as sampling

nputs, respectively, which use the R/S and the novel characteristic

unction method to calculate parameters (see Table 1 ). According
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Fig. 14. Weekend power load forecasting trend. 

Fig. 15. Box plot analysis of relative error. 
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o  
to the judgment condition αH > 1, both sets of data have LRD

characteristics. Therefore, the two sets of data are modeled by the

fLsm forecast model, respectively. The experimental process of this

article is shown in Fig. 11 . 
.1. Case 1: Workday 

To verify the power effect of the fLsm model, the power load

f the fourth week of workday in October was used as input

equence.The power load of Monday to Thursday was used as

istorical data to forecast trend of power load on Friday. Since

he electricity consumption on the workday is similar, and it is

lose to Friday from Monday to Thursday, it can accurately reflect

rend of power load data. This parameter set were substituted

nto the iterative forecasting model. Trend of historical data set

as forecasted for the subsequent 6, 12, 18 and 24 h with the

ATLAB simulation. The 24-hour forecasting trend for historical

ata is shown in Fig. 12 . Analysis of relative error of forecasting

esults, such as maximum, mean, median, stand deviation and

ean absolute percentage error(MAPE) are shown in Table 2 , and

he box plot of the relative error is shown in Fig. 13 , which shows

he maximum value of the relative error clearly. 

.2. Case 2: Workday and weekend 

We repeated the analysis of Case 1, but we used the weekend

f the first two weeks of October to forecast the power load
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Fig. 16. Weekend power load forecasting trend. 

Table 2 

The forecasting relative error (%) of power loads on adjacent dates. 

Max Mean Median Stand deviation MAPE 

6 h 0.70 −0.14 −0.2 0.39 0.08 

12 h 1.76 0.32 0.13 0.78 0.32 

18 h 3.59 0.57 0.33 1.05 0.61 

24 h 4.61 1.25 0.85 1. 52 1.49 

Table 3 

The forecasting relative error (%) of power loads on adjacent dates. 

Max Mean Median Stand deviation MAPE 

6 h 0.86 −0.18 −0.19 0.45 0.09 

12 h 1.83 0.25 0.08 0.83 0.33 

18 h 3.75 0.79 0.72 1.13 0.76 

24 h 4.89 1.3 0.76 1. 71 1.57 

t  

w  

w  

u  

f  

a

Table 4 

The forecasting relative error (%) of power loads on adjacent dates. 

Max Mean Median Stand deviation MAPE 

6 h 0.59 −0.07 −0.13 0.35 0.07 

12 h 1.44 0.27 0.33 0.53 0.24 

18 h 3.35 0.27 0.32 0.9 0.55 

24 h 3.35 0.87 0.56 1.38 1.18 

4

 

b  

l  

l  

f  

a  

i  

c  

p  

F

 

p  
rend for the next weekend. Since the power load trends over the

eekend are similar, and the power load sequence between each

eekend also has LRD characteristics. Therefore, it can also be

sed to forecast the trend of power load. Weekend power load

orecasting results and error analysis are shown in Fig. 14 , Table 3

nd Fig. 15 , respectively. 
.3. Case 3: Workday and weekend 

We repeated the analysis of Cases 1 and 2. In this case, to

etter prove the randomness of the fLsm model, we use the power

oad data simulation in the fourth week of October. The power

oad data from Wednesday to Saturday is used as historical data to

orecast the power trend on Sunday. Because Wednesday to Friday

re workday and Saturday is holiday, their electricity consumption

s different, so it reflects the randomness of the power load and

an better verify the nature of the fLsm stochastic model. Sunday

ower load forecasting results and error analysis are shown in

ig. 16 , Table 4 and Fig. 17 , respectively. 

The experimental results show that the maximum error of

ower load trend in the next 24 h is 4.61%, 4.89% and 4.34%,
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Fig. 17. Box plot analysis of relative error. 
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s

which is within the acceptable range of industry. Accurate load

forecasting is the guarantee for realizing scientific of electric power

dispatching scheme, which is beneficial to plan power consump-

tion management, rational arrangement of grid operation mode

and unit maintenance plan. It is not only energy-saving but also an

important work to ensure reliable power supply of the grid, which

has a very important impact on reducing the cost of power genera-

tion. So, it can be explained that the power load forecast based on

the fLsm finite difference iterative forecasting model is effectively. 

At the same time, in order to analyze the effectiveness of fLsm

more comprehensively, the mean value, maximum value, median

value, standard deviation and mean absolute percentage value

of the errors of relative are given in these cases. The results in

Tables 2–4 indicate that the relative error of the forecasting result

increases if the forecasting time series increases. The forecasting

results are consistent with the LRD characteristics. As the distance

increases, the long correlation and the forecast effect gradually

decreases. It is shown that the forecasting model of long-range

dependence random sequence can be established by the fractional

Lévy stable motion, and the power load time series with random

characteristics can be effectively forecast. In other words, the

random sequences of the process of equipment degradation, the

financial markets, etc with long-range dependent characteristics

can also be effectively forecast by the iterative forecasting model. 

5. Conclusion 

In this article, we introduced the fractional Lévy stable mo-

tion model by the form of stochastic integral and incremental

process. In doing this, we analyzed the self-similarity and long-

range dependent characteristics of fractional Lévy stable motion

through the relationship between self-similarity parameter and the

characteristic index. The discrete stochastic differential equation of

fractional Lévy stable motion was obtained by the Black–Scholes

model and the Maruyama notation of the fractional order. The

long-range dependence finite difference iterative forecasting model

was established by substituting the discretized stochastic differen-

tial equation into the difference equation. The parameters of the

forecasting model are obtained by using the rescaled range analysis

and the novel characteristic function method. The model was ap-

plied for forecasting of the power load time series. The accuracy of

the forecasting results lies within the acceptable range for industry.

We have studied only the forecasting model, which is based

on the fractional Lévy stable motion. As it is known, there exist

other models, e.g., real-valued harmonic fractional Lévy processes,

which can also be viewd as the generalized model of fractional

Lévy motion and provides ideas for future research on stochastic

sequence forecasting. 
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ppendix A. Parameter estimation with the characteristic 

unction 

In the study by Xueyun Wang et al. [27,42] , several parameter

stimation are introduced and the validity of these methods is

ompared, including Quantiles method, Empirical Characteristic

unction method, Logarithmic Moment method, Monte Carlo

ethod, etc. It is concluded that the characteristic function accu-

acy method is better. The parameter estimation methodology can

e subdivided in the following steps: 

Step 1: Let x i | i =1 ... N are the sampling data for the fLsm. 

Step 2: δ estimation, 

 

ϕ(θ ;α, β, μ, δ) | = 

∣∣E{ e jθx } ∣∣ = e −δ| θ | α , (19)

n | ϕ(θ ;α, β, μ, δ) | = −δ| θ | α, (20)

= − ln | ϕ(1 ;α, β, μ, δ) | = − ln 

∣∣E{ e jx } ∣∣. (21)

he estimated δ has the form: 

ˆ = − ln | ̂  ϕ (1 ;α, β, μ, δ) | = − ln 

1 

N 

∣∣∣∣∣
N ∑ 

i =1 

e j x i 

∣∣∣∣∣. (22)

Step 3: Further, we estimate parameter α, 

α
0 = 

ln 

∣∣E{ e j θ0 x } ∣∣
ln 

∣∣E{ e jx } ∣∣ = 

ln | ̂  ϕ ( θ0 ;α, β, μ, δ) | 
ln | ̂  ϕ (1 ;α, β, μ, δ) | , (23)

ˆ = log θ0 
( 

ln | ̂  ϕ ( θ0 ;α, β, μ, δ) | 
ln | ̂  ϕ (1 ;α, β, μ, δ) | ) , (24)

here ˆ ϕ ( θ0 ;α, β, μ, δ) = 

1 
N 

∣∣∣∣ N ∑ 

i =1 

e j θ0 x i 

∣∣∣∣. 
Step 4: Parameter μ is estimated by complex domain of the

umulant generating function of fLsm, 

n ϕ ( θ0 ;α, β, μ, δ) = δ| θ | α + j 

[
δ| θ | αβ

θ

| θ | tan 

(
πα

2 

)
+ μθ

]
, 

(25)

ˆ = 

Im { θ ˆ α
0 

ln | ̂  ϕ (1 ;α, β, μ, δ) | − ln | ̂  ϕ ( θ0 ;α, β, μ, δ) | } 
θα

0 
−θ0 

. (26)

Step 5: As we know that the fLsm model drive function is

ymmetric, then 

ˆ β = 0 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100007219
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