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In this paper, a novel method base on non-Markovian Fractional Brownian Motion (FBM) is proposed for
Lithium-ion batteries remaining useful life (RUL) prediction. Firstly, the FBM degradation model is intro-
duced and the Hurst exponent (H) is calculated. Secondly, the parameters of the FBMmodel are estimated
by maximum likelihood estimation (MLE). The Fruit-fly Optimization Algorithm (FOA) is proposed to
optimize the H. Then the procedure for RUL prediction is provided. Capacity degradation data of
Lithium-ion batteries is selected as prediction case, and the RUL prediction results are given by two real
cases of RUL prediction for lithium-ion batteries. The validity of the proposed method is verified by
several evaluation criteria.
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1. Introduction

Remaining useful life (RUL) prediction of long-life products,
such as lithium-ion batteries degradation, has always been an
important research direction in reliability analysis and Prognostic
and Health Management (PHM) [1]. Accurate RUL prediction of
lithium-ion batteries plays an important role in safety, reliability
and economics. In the past few decades, various RUL prediction
methods of lithium-ion batteries have been proposed [2]. Referring
to relevant literature, it is found that RUL prediction methods are
divided into the following categories: physical method, experi-
mental method, data-driven method and hybrid method [3]. At
present, the first two methods need professional technical support
and strict experimental conditions. The methods are more com-
plex, which makes these RUL prediction methods less popularity.
Among the latter two methods, data-driven method is the most
widely used method in RUL prediction method, because they
directly uses degradation data to build prediction models [4].

Specific data-driven methods for RUL prediction of lithium-ion
batteries have advantages and disadvantages. Models based on sta-
tistical and probabilistic methods have been used for RUL predic-
tion of lithium-ion batteries [5]. Selina et al. [6] proposed a Naive
Bayes (NB) model for RUL prediction of batteries under different
operating conditions. The method needs data smoothing before
modeling [7]. The application of stochastic process model is also
popular [8]. Xu et al. [9] studied the influence of the relaxation
effect on the degradation law of lithium-ion batteries and proposed
a novel RUL prediction method based on Wiener processes. The
process has the characteristic of Markov chain but it is difficult
to apply it to the non-linear random degradation data [10,11].
Wang et al. [12] proposed a prognostic method to predict the
remaining useful life of lithium-ion batteries by the spherical cuba-
ture particle filter. The particle filter algorithm has advantages in
non-linear and non-Gaussian systems, but it has the problem of
particle degeneration and particle shortage caused by resampling
[13–15]. Liu et al. [16] and Zhang et al. [17] developed a batteries
RUL prediction method based on the Box-Cox transformation.
Data-driven methods based on artificial intelligence are popular
methods for RUL prediction in recent years [18]. Wu et al. [19] pre-
sented an online approach using feed forward neural network
(FFNN) and importance sampling (IS) to estimate lithium-ion bat-
tery RUL. However, the neural network method often falls into
local optimum because of over-training. Liu et al. [20] imple-
mented a flexible and effective on-line training strategy in RVM
algorithm to enhance the lithium-ion battery RUL prediction
ability. The disadvantage of this algorithm is that it is difficult to
implement large-scale training data [21,22]. Khumprom et al.
[23] presented the preliminary development of data-driven
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prognostic using a Deep Neural Network (DNN) approach to pre-
dict the State of Health and the RUL of the lithium-ion battery,
but the validation of deep learning model is complex.

There is a general long-range dependence between the degrada-
tion data of actual system. Generally speaking, degradation data
actually have two forms of dependence, namely long-range depen-
dence (LRD) and short-range dependence (SRD). The former means
that the future degradation states depend on the previous degrada-
tion data, the latter indicates that the former data has a negative
impact on the future [24]. Many actual system degradation models
have LRD. Traditional Markovian method is not suitable for
describing such degradation processes.

Fractional Brownian Motion (FBM) is a typical continuous non-
Markovian stochastic process with stationary and correlative
increments, and one of its forms can show LRD. The dependence
of FBM model is mainly described by the Hurst exponent (H).
According to different ranges of H, the FBM model can be divided
into three forms:0:5 < H < 1, 0 < H < 0:5 and H ¼ 0:5. The first
two forms represent the fractal characteristic of the model, that
is LRD and SRD. In particular, the third form of FBM is standard
Brownian Motion [25]. Compared with pure stochastic processes,
fractal characteristic is more common in practical applications. In
fact, FBM model has been widely used in industry, load forecasting
and signal processing. For example, due to continuous heat con-
duction, the temperature drop in the blast furnace tends to show
LRD [26]. It is noteworthy that mechanical vibration signals often
seem to be SRD but LRD may still exist in the degradation process
of rolling bearings [27]. FBM is an effective method to describe
LRD, and the value of H used to judge the dependence is the key
to the whole model. Usually H is obtained by approximate calcula-
tion. This precision is sufficient for judging the dependence. How-
ever, because it is also used for calculating the parameters of the
FBMmodel, accurate H is needed to reduce the error of RUL predic-
tion. Therefore, this paper combines Fruit-fly Optimization Algo-
rithm with the existing FBM model to improve the accuracy of
lithium-ion batteries RUL prediction.

The rest of the paper is arranged as follows. In Section 2, the
FBM degradation model based on non-Markovian characteristic
and Hurst exponent calculation is introduced. Section 3 presents
the maximum likelihood estimation of the parameters of the
FBM model and the optimization of the Hurst exponent with
FOA. Section 4 introduces the procedure of RUL prediction. In Sec-
tion 5, two RUL prediction cases are carried out based on several
sets of degradation data of lithium-ion batteries. Finally, the con-
clusion is summarized in Section 6.
2. Degradation model

W. DAI and C. C. HEYDE [28] studied the related problems of the
FBM and introduced the relationship between short-range depen-
dence (SRD) and long-range dependence (LRD), and gave the defi-
nition of stochastic differential equation driven by FBM as follows:

dXðtÞ ¼ ldt þ rBHðtÞ; ð1Þ
where XðtÞ represents the general process of degradation, l and r
represent the drift coefficient and diffusion coefficient, respectively.
BHðtÞ; t P 0f g represents the fractional Brownian motion and H is
the Hurst exponent. This exponent is also used to judge self-
similarity. The range of H is (0, 1). Generally, there are three cases
depending on the value of H:

(1) If 0 < H < 0:5, the process is short-range dependence
(2) If H ¼ 0:5, there is no dependence in the process. The best

representative process is the standard Brownian Motion
(BM).
(3) If 0:5 < H < 1, the process has a long-range dependence.

This section focuses on non-Markov degradation process. As
mentioned above, FBM is a typical zero-mean Gaussian process
with a long-range dependence and fractal characteristic when
0:5 < H < 1. Therefore, the FBM model can describe non-Markov
degradation processes. In the literature, Mandelbrot and Van Ness
[29] first introduced FBM as follows:

BHðtÞ¼ 1
CðHþ 1

2Þ
Z 0

�1
ðt� sÞH�1

2 � �sð ÞH�1
2

h i
dBðsÞþ

Z t

0
ðt� sÞH�1

2dBðsÞ
� �

ð2Þ

where t; s P 0, and CðxÞ is the Gamma function:

CðxÞ ¼
Z 1

0
tx�1e�tdt ð3Þ

In the FBM model, the Hurst exponent determines the covari-
ance of past and future. The covariance function is as follows:

CHðt; sÞ ¼ E BHðtÞBHðsÞ½ � ¼ rB
2

2
tj j2H þ sj j2H � t � sj j2H

� �
: ð4Þ

It can be seen from the above formula that FBM can be trans-
formed into standard BM when H ¼ 0:5. In other words, standard
BM is only a special form of FBM.

In order to determine whether a given time series has LRD char-
acteristic, the H needs to be calculated. There are many methods to
calculate H, which are usually divided into two types: time domain
methods and frequency domain methods. Time domain methods
usually process time series directly and calculate H by least square
fitting. Specific methods include: variance method, absolute value
estimation method, curve fitting estimation method, rescaled
range analysis method (R/S analysis method). Frequency domain
methods estimate the spectral density of the time series in the fre-
quency domain by Fourier transform. Specific methods include:
periodic graph method, Wavelet method, etc.

This paper uses the R/S analysis method to calculate H. The
reason for choosing this method is that it is a method to evaluate
the degree of self-similarity of a time series. Compared with fre-
quency domain algorithm, it is clearly and easy to implement. In
addition, if the number of samples is large enough, the effect of R/
S analysis will be better. The specific steps of R/S analysis are as
follows:

(1) The time series is divided into A sub-intervals, the length of
each sub-interval is n and the mean value of each sub-
interval is calculated.

(2) The cumulative deviations between each sub-interval are
then calculated.

(3) The extreme differences of each sub-interval are also
calculated;

(4) The standard deviations of the samples on each sub-interval
are calculated.

(5) The mean value of the ratio of range to variance between all
sub-intervals is calculated, which is the rescaled range
ðR=SÞn.

(6) When n changes, iterate steps (1) - (5) to achieve different
rescaled ranges;

(7) Logarithms of independent variable n and dependent vari-
able ðR=SÞn are taken respectively, and the slope fitted by
least squares regression is the value of H.

The process of the R/S method calculating H is shown in
Fig. 1. We show the curves of the logarithmic variations of
independent variable n and dependent variable ðR=SÞn in the first
figure. Then in the second figure, we use least square regression



Fig. 1. Calculation of H by R/S method.
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to fit two variables into an approximate straight line, the slope
of which is H.

For example, the above R/S method steps applied to the set of
available degradation process data of lithium-ion batteries and cal-
culate the value: H ¼ 0:6401. The estimated H plays a role in the
maximum likelihood estimation of the parameters of the FBM
model.

3. Parameters estimation and H-optimization

3.1. Parameters estimation

For the FBM model of Eq. (2), we need to estimate the parame-
ters l and r. Firstly, the general solution of Eq. (1) can be
calculated:

X tð Þ ¼ X0 � exp � R � ldt þ rdBHðtÞ½ �� �
¼ X � exp R T

0 ldt þ rdBHðtÞ
h i

¼ X � exp lt þ rBHðtÞ½ �

ð5Þ

Taking the logarithmic derivation of Eq. (5):

ln X tð Þð Þ ¼ Xðlt þ rBHðtÞÞ ð6Þ
Therefore, the parameter estimation of Eq. (5) is:

Yt ¼ lt þ rBH tð Þ; t P 0 ð7Þ
We can assume that the observation interval of the time series

is h, for the N observations vector Y = (Yh, Y2h,. . ., YNh)’ and the
observation time points t = (h, 2 h, . . ., Nh)’. The FBM model vector
is BH(t) = (BH(h), BH(2 h),. . ., BH(Nh))’. Then, the MLE of parameters l
and r can be conducted with the following steps [30]:

Step 1: Firstly, according to the joint density function formula
of multidimensional normal distribution:

Let the K-dimensional random vector x ¼ x1; x2; :::; xK½ � obey the
multivariate normal distribution with the probability density
function:

f l;RðxÞ ¼ f l;Rðx1; x2; :::; xKÞ ¼
1

2pð ÞK2
� 1Pj j12

� e�1
2 x�lð ÞT

P�1
x�lð Þ; ð8Þ

where K is the dimension of the random vector x, and the expected
vector l is also a K-dimensional vector. The covariance matrix is a
symmetric positive definite matrix of K � K dimension:
X
¼

r2
1 0 ::: 0
0 r2

2 ::: 0
::: ::: ::: :::

0 0 ::: r2
K

2
6664

3
7775: ð9Þ

Because the observation vector Y also obeys the multivariate
normal distribution, we substitute it into Eq. (8). Then, according
to Eq. (4), we can deduce the specific expression of each covariance
r2

H in the discrete covariance matrix
P

H:

r2
H ¼ E BHðihÞ;BHðjhÞ½ �½ �i;j¼1;2;:::N

¼ r2

2
h2H i2H þ j2H � i� jj j2H

� �
i;j¼1;2;:::N

: ð10Þ

Finally, the joint probability density function of the multidi-
mensional normal distribution of Y can be expressed as:

gðYÞ ¼ ð2pr2Þ�
N
2 CHj j�1

2exp � 1
2r2 Y � ltð Þ0C�1

H Y � ltð Þ
� 	

; ð11Þ

where CH ¼ 1
2h

2H i2H þ j2H � i� jj j2H
� �

i:j¼1;2;:::;N
.

Step 2: Next, the logarithmic likelihood function of the joint
probability density function is obtained:

ln gðYÞ ¼ �N
2
lnð2pr2Þ � 1

2
ln CHj j

� 1
2r2 Y � ltð Þ0C�1

H Y � ltð Þ ð12Þ

Step 3: In Eq. (12), we calculate the partial derivatives of
parameters l and r2 respectively and set them equal to zero.

Step 3.1: calculate the partial derivative of parameter l

@ ln gðYÞ
@l ¼

@ �N
2 lnð2pr2Þ�1

2 ln CHj j� 1
2r2

Y�ltð Þ0C�1
H Y�ltð Þ

� �
@l

¼
@ � 1

2r2
Y�ltð Þ0C�1

H Y�ltð Þ
� �

@l

¼
@ � 1

2r2
Y0C�1

H Y�lt0C�1
H Y�Y0C�1

H ltþl2t0C�1
H tð Þ

� �
@l

¼ � �t0C�1
H Y�Y0C�1

H tþ2lt0C�1
H tð Þ

2r2 ¼ 0

Because Y; t are real symmetric matrices:

t0C�1
H Y þ Y0C�1

H t ¼ ðt0Y þ tY0ÞC�1
H ¼ 2t0C�1

H Y: ð13Þ
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So the equation above can be written as lt0C�1
H t ¼ t0C�1

H Y, and
the parameter l can be expressed as:

l ¼ t0C�1
H Y

t0C�1
H t

ð14Þ

The MLE of the drift parameter l is:

l̂ ¼ t0C�1
H Y

t0C�1
H t

ð15Þ

Step 3.2: calculate the partial derivative of parameter r2

@ ln gðYÞ
@r2 ¼

@ �N
2 lnð2pr2Þ�1

2 ln CHj j� 1
2r2

Y�ltð Þ0C�1
H Y�ltð Þ

� �
@r2

¼ � N
2r2 þ Y�ltð Þ0C�1

H Y�ltð Þ
2 r2ð Þ2 ¼ 0

ð16Þ

Then, the Eq. (15) is bring into Eq. (16) to obtain:

r2 ¼ 1
N

Y0C�1
H Y

� �
t0C�1

H t
� �

� t0C�1
H Y

� �2

t0C�1
H t

ð17Þ

Similarly, the MLE of r2 is:

r̂2 ¼ 1
N

Y0C�1
H Y

� �
t0C�1

H t
� �

� t0C�1
H Y

� �2

t0C�1
H t

ð18Þ

The diffusion parameter r is the arithmetic square root of r2, so
its maximum likelihood estimation is as follows:

r̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Y0C�1
H Y

� �
t0C�1

H t
� �

� t0C�1
H Y

� �2

t0C�1
H t

vuuut ð19Þ
3.2. H-optimization

We have established the FBM model with LRD, the Hurst expo-
nent is calculated by R/S method, and the drift coefficient l and
diffusion coefficient r in the differential equation are also related
to H. The value obtained for H may not be sufficiently accurate,
so we need to optimize it. In this paper, Fruit-fly Optimization
Algorithm (FOA) is used to optimize H. FOA is a novel global search
optimization method. By simulating the unique foraging behavior
of fruit-flies in biology and based on the superior olfactory and
visual search mechanism of fruit-fly individuals, iterative process
Fig. 2. Optimizing p
is carried out in search space to achieve the results of optimization
[31]. Fig. 2 shows the process of global optimization of FOA. Since H
plays an important role in the whole RUL prediction model, FOA is
used to optimize it to achieve higher accuracy.

The specific steps of FOA for H optimization are as follows:
Step 1: Set the fitness function and the initial data: Set up all

the initial data needed by FOA: the size of population: sizepop,
the range of H and the maximum number of iterations: maxgen,
and set the RUL prediction value as the fitness function. In this
paper, we set the size of population as 50, the maximum number
of iterations as 100, and the range of H as (0.5, 1).

Step 2: Initialization: Coding according to the range constraints
of H, the location of each fruit-fly is randomly initialized. The equa-
tions of location initialization are as follows:

x ¼ xmin þ ðxmax � xminÞ � rand; ð20Þ

y ¼ ymin þ ðymax � yminÞ � rand: ð21Þ
where xmax and xmin are the maximum and minimum of x, ymax and
ymin are the maximum and minimum of y.

Step 3: Random search to find the best fruit-fly individuals:
Random H calculated from individual position values are substi-
tuted into the prediction model to calculate RUL prediction value.
The real RUL value of the actual model is the fitness reference
value. Select the closest value of RUL prediction value calculated
from all the population closer to the actual RUL value and save H
corresponding to it, as well as the location of fruit-flies at this time.
This value can be used as operational reference for subsequent
optimization.

Step 4: Update location optimization: Update the population
position, iterate again. The new optimal H is substituted into the
calculation of RUL prediction value, which is used to judge the fit-
ness value. The cycle lasts until the termination conditions are met.
The optimal value of H can achieve the best prediction result.

The flowchart of FOA to find the optimal H is shown in Fig. 3.
The H refers before and after optimization are given in Table 1,

and the drift coefficient and diffusion coefficient are compared
with those obtained in Table 1 by using actual lithium-ion batter-
ies data.
4. RUL prediction

The remaining useful life of lithium-ion batteries is defined as
the first time that the degradation process exceeds the fault
rocess of FOA.



Fig. 3. Flowchart of FOA for finding the optimal H.

Table 1
Comparison of parameters before and after optimization using FOA.

Optimization H l r

Before 0.6421 �0.0054 0.0078
After 0.6638 �0.0051 0.0080
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threshold. The threshold is based on the regulation of performance
test for lithium-ion batteries in international standards. It is con-
sidered that when the normal temperature of lithium-ion batteries
is 25� 2 �C, the lithium-ion batteries will be charged and dis-
charged steadily between 20% and 100% discharging states, until
the actual capacity of lithium-ion batteries is reduced to less than
80% of their rated capacity. Batteries that cannot maintain normal
operation need to be replaced to ensure the safety and reliability of
the normal operation of the system. Therefore, the threshold of the
groups of lithium-ion batteries databases in this paper is set to 1.4
Ah (about 70–75% of the rated capacity, due to the difference
between different groups of batteries). We set the time which first
exceed the threshold as the end-of-life (EOL) point. As shown in
Fig. 4. The EOL of lithium-ion battery #05 is equal to 124 cycles
and the EOL of lithium-ion battery #06 is equal to 109 cycles.

According to the EOL measured above, the lifetime T can be for-
mally defined as:

T ¼ inf t : XðtÞ P x Xð0Þ < xjf g; ð22Þ
where the probability density function (PDF) of T can be described
as f TðtÞ(probability density distribution shown in Fig. 2), x is the
preset constant fault threshold level based on performance require-
ments of different degradation models.

In order to utilize the actual degradation model data for predic-
tion, we set some discrete time points t0 < t1 < t2::: < tk of the
observation of the degradation states and let xk ¼ XðtkÞ represents
the observation point of the degenerate model at time tk. Then a set
of observations of the degradation state time points are

Xk
0 ¼ x0; x1; :::; xkf g, so according to the concept of EOL, we define

RUL Lk at point tk is:

Lk ¼ inf lk > 0 : Xðlk þ tkÞ P xf g; ð23Þ
The PDF of Lk is f Lk ðlkÞ. The PDF of RUL matching the degradation

model with threshold x is expressed as:

f Lk ðlkÞ ffi
r1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p r 0ð Þ½ �1=2 R lk
0 r hð Þ½ �1=2dh

q

� x� XðtkÞ � llkR lk
0 r hð Þ½ �1=2dh

þ l
r lkð Þ½ �1=2

( )

� exp � x� XðtkÞ � llk½ �2

2 r 0ð Þ½ �1=2 R lk
0 r hð Þ½ �1=2dh

" #
ð24Þ

where lk represents the actual RUL, h is the time interval. Based on
the definition of f Lk ðlkÞ, it can be seen that it is determined by the
drift coefficient l and diffusion coefficient r of the degradation pro-
cess, as well as the fault threshold x and the system states. The
flowchart of the proposed FOA + FBM method is shown in Fig. 5.

In addition, in order to verify the validity of the FBM model for
RUL prediction, we compare the predicted results using the param-
eters of Section 3 calculated by MLE with the numerical results
obtained by Monte Carlo simulation method. We select the degra-
dation model data of lithium-ion battery #05 in Fig. 2 above, and
validate our simulation prediction results according to the failure
threshold set before. Then, we randomly select the starting predic-
tion time point t and predict the final RUL according to the PDF.
Using Monte Carlo simulation, the numerical RUL distribution of
the LRD model at the same prediction time point is obtained by
1000 simulated sample paths of FBM. As shown in Fig. 6, the pre-
dicted results with the estimated parameters can approximately
match the RUL distribution obtained by Monte Carlo numerical
simulation.
5. Case study

In this section, two cases of actual lithium-ion batteries data are
used to apply the proposed FOA + FBMmodel for RUL prediction. In
order to reveal its advantages, the prediction effect of the optimized
model is compared with that of the original model in case 1. In
case 2, the Relevance Vector Machine (RVM) model, which is a
popular data-driven method, is compared with the FOA + FBM
model in the prediction of the RUL of lithium-ion batteries.

5.1. Case 1

In case 1, we test the validity of our proposed model using an
open source data set of lithium-ion batteries from the NASA Ames
prediction database [32]. Capacity represents the amount of
remaining energy of lithium-ion batteries, which can be regarded
as an important indicator of battery degradation. The experimental
data record includes two kinds of time scales: the actual time scale
and the cycle time scale. In this paper, the cycle time scale is used.
The capacity degradation process of four lithium-ion batteries is



Fig. 4. Process of RUL prediction.

Fig. 5. Flowchart of the proposed FOA + FBM method.

Fig. 6. Comparisons of PDFs obtained by the proposed method and the Monte Carlo
method. Fig. 7. Lithium-ion batteries degradation model.
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shown in Fig. 7, which are #05, #06, #07 and #18, respectively. The
failure threshold is set to 1.4 Ah.

The RUL prediction of lithium-ion battery degradation model
data is carried out by using the proposed FBM model and the
FOA optimized FBM. According to the actual effect of four degrada-
tion processes of batteries data, this paper selects two groups of
batteries #05 and #06 which are more smooth degradation pro-
cesses for experimental calculation. The reason why not using
the other two groups is that #07 battery degradation process is
slower and fails to reach the given failure threshold. While the
degradation process of #18 battery degradation process is rela-
tively short, and it is not suitable for experimental prediction.
Fig. 8 shows the PDFs comparison for #05 and #06 batteries using
the FBM and FOA + FBM. Twelve cycle time points are selected in
this experiment, # 05 battery is selected for each of the three cycle
intervals, and #06 battery is selected for each cycle interval.
Finally, this paper shows the predicted results of the two groups
of lithium-ion batteries from the initial prediction time point in
Table 2 and Table 3 respectively. The Relative Error (RE) between
the actual RUL and the predicted RUL of each prediction point is
calculated as follows:

RE ¼
RULfi � RULri
��� ���

RULri
� 100% ð25Þ

where RULfi represents the RUL between the initial prediction time
point i and the predicted EOL, and RULri represents the RUL between
the initial prediction time point i and the actual EOL.

The above two tables and the calculation of Relative Error can
only reflect the prediction effect of each prediction point. In order
to show the prediction effect of RUL for lithium-ion batteries



Table 2
RUL prediction results of #05 lithium-ion battery using FBM and FOA + FBM.

# 05 prediction time point t Actual RUL Predicted RUL by FBM Relative error (%) Predicted RUL by FOA + FBM Relative error (%)

57 67 72 7.462 63 5.970
60 64 60 6.250 66 3.125
63 61 65 6.557 58 4.918
66 58 62 6.896 56 3.448
69 55 52 5.454 57 3.636
72 52 50 3.846 54 3.846
75 49 47 4.081 51 4.081
78 46 48 4.347 48 4.347
81 43 44 2.325 42 2.325
84 40 38 5.000 41 2.500
87 37 39 5.405 36 2.702
90 34 35 2.941 34 0

Fig. 8. PDF of RUL predicted by FBM and FOA + FBM for #05, #06.
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degradation model more intuitively and comprehensively, this
paper uses quantitative error indices to evaluate the overall predic-
tion performance: Mean Square Error (MSE) and Root Mean Square
Error (RMSE) as follows:

MSE ¼ 1
N

XN
i¼1

RULfi � RULri
� �2

ð26Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

RULfi � RULri
� �2

vuut ð27Þ
where N represents the number of prediction time points. In
Table 4, all the parameters of the two prediction methods are
listed for comparison. We can see that the FBM model optimized
by FOA has higher prediction accuracy for RUL than the original
FBM by itself.

5.2. Case 2

In case 2, we select different lithium-ion batteries degrada-
tion data and compare with the RVM model. RVM model is
based on Markov process and Bayesian analysis theory. RVM



Table 3
RUL prediction results of #06 lithium-ion battery using FBM and FOA + FBM.

# 06 prediction time point t Actual RUL Predicted RUL by FBM Relative error (%) Predicted RUL by FOA + FBM Relative error (%)

69 40 45 12.500 44 10.000
70 39 44 12.820 42 7.692
71 38 42 10.526 41 7.894
72 37 33 10.810 35 5.405
73 36 33 8.333 33 8.333
74 35 38 8.571 37 5.714
75 34 32 5.882 36 5.882
76 33 31 6.060 31 6.060
77 32 34 6.250 30 6.250
78 31 29 6.451 32 3.225
79 30 32 6.667 31 3.333
80 29 30 3.448 30 3.448

Table 4
Model parameters and prediction error indices for RUL prediction.

#05 FBM #05 FOA + FBM #06 FBM #06 FOA + FBM

H 0.6421 0.6638 0.6498 0.6628
l �0.0054 �0.0051 �0.0112 �0.0100
r 0.0078 0.0080 0.0083 0.0089
MSE 8.6667 4.3333 10.0835 5.5000
RMSE 2.9431 2.0813 3.1754 2.3456

Fig. 9. Random walk lithium-ion batteries degradation model.

Fig. 10. PDF of RUL predicted by FO
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uses the calculation of autocorrelation function to judge the
prior probability. Because of the advantages of probabilistic pre-
diction, it has been used for the RUL prediction of lithium-ion
batteries [33].

The data of lithium-ion batteries in this experiment is the ran-
dom walk (RW) degraded lithium-ion batteries data set published
in 2014 in the open source database of NASA [34]. The capacity
degradation process of four lithium-ion batteries (RW9, RW10,
RW11, RW12) are shown in Fig. 9 The initial capacity of the
degradation process is 2.1 Ah. The failure threshold is also set
to 1.4 Ah.

In order to get better prediction results, we use RW12 data,
which is more smooth degradation process to predict the RUL of
lithium-ion battery. Because the degraded data length of RW bat-
teries capacity is only half of case 1. Therefore, six prediction cycle
time points are selected in this comparative experiment, one for
every two cycle time intervals. Fig. 10 shows the PDFs comparison
of RW12 lithium-ion battery predicted by FOA + FBM and RVM,
respectively.

The MSE and RMSE are still used to show the overall prediction
effect of the prediction methods. The experimental error results are
shown in Table 5.
A + FBM and RVM for RW12.

Table 5
Error evaluation indices of RUL prediction for RW12.

RW12 FOA + FBM RVM

MSE 1.2771 2.9033
RMSE 1.1301 1.7039
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6. Conclusion

In this paper, a method of predicting RUL of lithium-ion batter-
ies based on FBM model with LRD is introduced, and the H of the
predicted model is optimized by FOA. Firstly, FBM degradation
model based on non-Markovian characteristic and H calculation
is introduced and the maximum likelihood estimation of drift coef-
ficient l and diffusion coefficient r are described. Because of the
defect of fitting calculation, this paper puts forward the method
of using FOA to optimize H. The prediction process of RUL for
lithium-ion batteries degradation data is introduced in detail. The
Monte Carlo simulation method is used to compare with the pre-
diction effect of RUL. Finally, through two real cases of RUL predic-
tion for lithium-ion batteries, the FBM model combined with FOA
is compared with the original FBM model and RVM model respec-
tively. Combined with the final error evaluation indices, it is
proved that the proposed FBM model combined with FOA has bet-
ter prediction effect. The authors will improve FOA to further
improve the prediction accuracy in the future work.
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