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MECHANICS
Determination of the Mass-Flow Rate of Blood
in a Blood Vessel Using Natural Frequencies of Flexural Vibrations
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Abstract—The natural f lexural vibrations of a blood vessel with moving blood are investigated. The vessel is
subjected to the action of tensile force and pressure in it. The forces of inertia of the blood vessel, as well as
the Coriolis and centrifugal forces induced by the motion of blood, are taken into account. The wave numbers
are determined, and the frequency equation is found using the boundary conditions. Two frequencies of f lex-
ural vibrations can determine the speed parameter, the relative mass of blood per unit length of the blood ves-
sel, and, as a consequence, the mass-flow rate of blood through the blood vessel. The results obtained can be
used for the acoustic method of determining the blood speed, the relative blood mass per unit length of the
blood vessel, and the mass-flow rate of blood through it.
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In [1], we showed after the statistical processing of
the data obtained that there is a dependence of the
diameter of the total femoral vein and the blood f low
in it on the level of intra-abdominal pressure. The
investigation was carried out with participation of ten
volunteers for which we measured the diameter of the
femoral vein and the speed of blood f low in it during
laparoscopy using an ultrasound at different levels of
pressure in the abdomen generated by an insufflator.
In view of the presence of the proportional almost lin-
ear functional dependence of the diameter of the fem-
oral vein on the level of intra-abdominal pressure, we
proposed to use this indicator for monitoring the
dynamics of intra-abdominal pressure. As was noted
in [2], there is a gradual increase in the diameter of the
lumen of the central arteries with age, along with a
thickening and compaction of the vascular wall.

We consider the natural frequencies of f lexural
vibrations of a blood vessel with blood under pressure.
The case of hard pinching of edges of the blood vessel
is investigated. In the extensive literature on pipeline
vibrations, the conditions of “articulated support” and
“free ends” also widely used; however, as noted in [3],
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they are not obvious, need to be substantiated, and
possibly require replacement by others. The inverse
problem of determining the speed parameter and the
relative mass of blood per unit length of a blood vessel
is solved.

PROBLEM FORMULATION
We investigate the natural frequencies of f lexural

vibrations of a blood vessel of length L, which contains
blood moving at a constant velocity V. The blood ves-
sel is an elastic medium under pressure and tensile
force T. It is required to determine the speed parame-
ter and the relative mass of blood per unit length of the
blood vessel from the natural frequencies of f lexural
vibrations.

The equation of f lexural vibrations of the blood
vessel according to the Kirchhoff model has the form
[4–7]

(1)

where E, ρ, J, and F are the elasticity modulus, the
density, the axial moment of inertia, and the cross-
section area of the blood vessel; ρi, Pi, and Fi are the
density, the pressure inside the blood vessel, and the
cross-section area of the blood vessel lumen;  is the
blood vessel deflection, qs is the environmental stiff-
ness coefficient, x is the coordinate directed along the
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blood vessel axis, and t is the time. Passing to dimen-
sionless quantities,

we make the substitution  and
obtain the equation that determines the shape of the
flexural vibrations of the blood vessel

(2)

where ω is the circular frequency, Ri is the inner radius
of blood vessel, α is the speed parameter, and β is the
parameter of blood mass in the blood vessel.

The boundary conditions for the blood vessel
pinched at the edges are

(3)

We determine the general solution of Eq. (2) in the
form of ; then, we obtain the charac-
teristic equation for finding the unknown values of the
complex wave parameter kj = kj (α, β, R, Ω), j = 1, 2,
3, 4:

(4)

From the Ferrari formula, we find the wave num-
bers kj = kj (α, β, R, Ω) and write the general solution
of Eq. (2) in the form

(5)

Substituting Eq. (5) into boundary conditions (3),
we obtain a homogeneous set of linear equations with
respect to the unknown constants Cj. In order that the
constants Cj would not be zero simultaneously, it is
necessary that the determinant of the main matrix be
zero. This condition gives the frequency equation [8]
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In [3], the theorem was proved that, for any α and
β (R = 0), the eigenfrequencies Ω of boundary-value
problem (1), (3) are real.

Thus, in the simplest model of a blood vessel with
moving blood under pressure, the parameters R, α,
and β appear, which depend on the tension force T in
the blood vessel, the pressure Pi inside the blood ves-
sel, the lumen cross-section area Fi of the blood vessel,
and the speed V of the blood f low inside the blood ves-
sel. We dwell on the influence of these factors on the
natural frequencies of f lexural vibrations. The depen-
dences of the first and second natural frequencies of
the f lexural vibrations of the rod on the speed param-
eter α for various values of the parameter R and the
analysis of the results are presented in [8]. In contrast
to [8], we give here the formulation and solution of the
inverse problem of determining the speed parameter
and the relative linear mass of moving blood in the
blood vessel from two natural frequencies of f lexural
vibrations. The dimensionless mass f low rate m of the
blood vessel is determined by the formula

For α = 0 and R = 0, the eigenfunctions W(ξ) are
real and coincide with the eigenfunctions of a rod with
rigidly pinched ends [8].

If R = 0, β = 1, and γ = 0, then the characteristic
equation (4) admits the factorization, and its roots kj
are explicit functions of the frequency Ω. For the real
eigenfrequencies Ωn(α), a reasonably simple secular
equation is obtained, which is solved by one of the
numerical methods [9, 10].

In other cases, the roots of the characteristic equa-
tion are found using the Ferrari formulas. These for-
mulas, according to the authors of [8], were hardly
used in problems of mathematical physics and
mechanics (a rare exception is [8, 10]).

DIRECT PROBLEM

The calculations were carried out for the following
parameters of the blood vessel: the elastic modulus of
the vein [11] E = 0.853 × 106 N/m2, the density ρ =
1058.2 kg/m3, the wall thickness of the blood vessel
h = 0.5 mm, the inner radius of the blood vessel Ri =
6 mm, the axial force T = 0, the pressure inside the
blood vessel Pi = 10 mm Hg = 1333.22 Pa, the blood
density in the blood vessel ρi = 1052 kg/m3, the blood
speed inside the blood vessel V = 0.1 m/s, the length of
the blood vessel between the “supports” L = 0.1 m,
and the parameters R = –4.602, α = 0.0796, and β =
5.72. The solution of the direct problem for the vessel
with these parameters gives that the lower two eigen-
frequencies of the blood vessel are f1 = 16.21 Hz and
f2 = 46.17 Hz (Ω1 = 8.114 and Ω2 = 23.10).

ρ ρ= αβ = =
ρ ν ρ

.i i i iFV FVLm
F L FEJ



192 TIMERBULATOV et al.

Fig. 1. Dependence of the first natural frequency of the
flexural vibrations of the blood vessel on the pressure Pi
(mm Hg) inside it for the parameter β = 5.72 and various
values of the elastic modulus E = 0.853, 0.6, and 0.4 MPa
(curves 1–3, respectively).
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Fig. 2. Dependence of the first natural frequency of the
flexural vibrations of the blood vessel on the parameter R
for the speed parameter α = 0.0796 and various values of
the parameter β = 1, 3, and 5 (curves 1–3, respectively).
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Fig. 3. Dependence of the first natural frequency of the
flexural vibrations of the blood vessel on the parameter β
for the speed parameter α = 0.0796 and various values of
the parameter R = –4, 0, and 4 (curves 1–3, respectively).
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In Fig. 1, we show the dependence of the first nat-
ural frequency of the f lexural vibrations of the blood
vessel on the pressure inside the blood vessel. With
increasing pressure inside the blood vessel and
decreasing elastic modulus, the frequencies of the
flexural vibrations decrease.

In Fig. 2, we show the dependence of the first
eigenfrequency of f lexural vibrations of the blood ves-
sel on the parameter R. With increasing parameter R,
the frequencies of flexural vibrations increase. In Fig. 3,
we show the dependence of the first natural frequency
of the f lexural vibrations of the blood vessel on the
parameter β. It can be seen that, with increasing
parameter β, the frequencies of f lexural vibrations
decrease.

INVERSE PROBLEM

At the point М0(α0, β0),  and
 = u2, therefore, we can write

From these formulas, we determine dα, dβ, and
further, α0 = α0 + dα, β0 = β0 + dβ. The process of suc-
cessive approximations continues until the condition
of accuracy is satisfied. The solution to this set of
equations is determined by the method of successive
approximations in the region of the unambiguous
dependence of the parameters α and β on the fre-
quency of f lexural vibrations of the blood vessel. The
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solution of the inverse problem for the blood vessel
with the above data for γ = 0, R = 0, Ω1 = 9.1, and Ω2 =
25.1 (f1 = 18.18 Hz and f2 = 50.16 Hz) gives that α =
0.0978, β = 5.034 (V = 1.543 m/s, ρi = 924.8 kg/m3).
In Fig. 4, we show the dependence on the first fre-
quency Ω1 of f lexural vibrations of the mass-flow rate
m through the blood vessel. From the two frequencies
of f lexural vibrations, it is possible to determine the
speed parameter α, the parameter β, or the mass of
f luid per unit length and the dimensionless mass-flow
rate m of f luid in the blood vessel.

It was found that, with an increase in the force
parameter, the frequencies of the f lexural vibrations
increase. It is shown that, with an increase in the mass
DOKLADY PHYSICS  Vol. 65  No. 5  2020
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Fig. 4. Dependence of the mass f low m on the first fre-
quency Ω1 of f lexural vibrations through the blood vessel
for different frequencies Ω2 of f lexural vibrations: curve 1,
25.1; 2, 25.0; and 3, 24.9.
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of the blood vessel with liquid per unit length, a
decrease in the natural frequencies of the f lexural
vibrations of the vessel occurs. From two frequencies
of f lexural vibrations, we can determine the speed
parameter, the mass of blood per unit length, and the
dimensionless mass f low of blood through the blood
vessel.
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