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a b s t r a c t

A quantitative structureeactivity relationship analysis of the 2-methylquinazolin-4-one and quinazolin-
4-imine derivatives, well-known antifolate thymidylate synthase (TYMS) inhibitors, has been performed
in the range IC50¼ 0.4÷380000.0 nmoL/L using the GUSAR 2013 program. Based on the MNA and QNA
descriptors using the self-consistent regression, 6 statistically significant consensus models for predicting
the IC50 numerical values have been constructed. These models demonstrate high and moderate prog-
nostic accuracies for the training and external validation test sets, respectively. The molecular fragments
of TYMS inhibitors regulating their antitumor activity are identified. The obtained data open opportu-
nities for developing novel promising inhibitors of TYMS.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

Thymidylate synthase (TYMS, EC2.1.1.45) is a bi-substrate
enzyme that takes part in the synthesis of deoxythymidine
monophosphate (dTMP), an important nucleotide for the DNA
synthesis [1e4]. The mechanism of dTMP biosynthesis from dUMP
is now thoroughly studied and described in a number of works
[1e7]. Synthesis of deoxythymidine monophosphate occurs in this
enzyme by transferring the methyl group from 5,10-
methylenetetrafolate (FH4, substrate I) to C5 deoxyuridylate
(dUMP, substrate II). In this process, tetrahydrofolate FH4 is
oxidized to dihydrofolate FH2, (Fig. 1S in Supplementary Material).
Subsequently, dTMP is metabolized to deoxythymidine triphos-
phate, which is a structural element of DNA molecules. The
reduction of FH2 to FH4 occurs with the participation of
toly Ya. Gerchikov, Akhat G.
his work.

llina).
dihydrofolate reductase (DHFR) although this enzyme is not the
only source of biosynthesis of substrate I (Fig. 1).

For several decades, biochemists have been actively studying
inhibitors of TYMS. As is known, the increased TYMS activity is
typical for tumor cells due to their high growth rate [8e15].
Therefore, this enzyme is a drug target of antitumor drugs classified
as antimetabolites. The TYMS activity can be inhibited using the
three strategies:

1) searching for DHFR inhibitors that indirectly inhibit TYMS;
2) searching for indirect TYMS inhibitors among the analogues of

deoxyuridylate;
3) searching for analogues of 5,10-methylenetetrafolic acid [16,17].

Inhibition of DHFR reduces the synthesis of 5,10-
methylenetetrafolic acid from folic and dihydrofolic acids, i.e., it
affects the source of the growth and development of tumor cells.
Methotrexate is a well known inhibitor of DHFR and efficient
cytostatic drug (Fig. 1). This substance is attributed to the group of
folic acid antagonists and indirectly affects the TYMS activity. The
active component of this drug irreversibly binds to dihydrofolate
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Fig. 1. Leader compounds and drugs inhibiting the DHFR and TYMS activities.

V.R. Khairullina et al. / Journal of Molecular Graphics and Modelling 85 (2018) 198e211 199
reductase and thereby inhibits the biosynthesis of thymidylate in
tumor cells. In particular, methotrexate has an immunosuppressive
effect even in relatively low doses, so it is very hard to tolerate by
patients with tumors of various etiologies due to a pronounced side
effects on the digestive and urinary systems. These pronounced
side effects are followed from the fact that the DHFR inhibitors, in
addition to the dTMP synthesis, indirectly inhibit purine biosyn-
thesis. Furthermore, it is known that the point mutations in DHFR
significantly increase the resistance of tumor cells to the DHFR
inhibitors without reducing the ability of this enzyme to suppress
purine biosynthesis [16]. Thus, the following two strategies aimed
at searching for selective TYMS inhibitors are promising.

In particular, the search for structural analogues of deoxyur-
idylate among diverse pyrimidine derivatives is performed. 5-
Fluorouracil (5-FU) is one of such analogs used to treat cancer for
more than 50 years (Fig. 2). It is known that 5-FU not itself inhibits
Fig. 2. General formulae of the antifolate-type TYMS in
the biosynthesis of dTMP from dUMP but its metabolite, viz.5-
fluorodeoxyuridine (5-FdUMP) (Fig. 1). It forms a covalent bond
with 5,10-methylenetetrahydrofolate that leads to the irreversible
inhibition of TYMS. Although 5-FdUMP alone or in combination
with other agents is efficient against various human tumor cells
(e.g., in combination with uracil in preparate Tegafur), the low
therapeutic stability and efficacy (due to its low selectivity toward
TYMS) are the main limitation of use of this drug in chemotherapy
[17,18].

The third strategy for the dTMP biosynthesis inhibitors seems
more promising. It is focused on the search for selective TYMS in-
hibitors of antifolate type. These compounds, in contrast to py-
rimidine derivatives, reveal a broader spectrum of in vivo activity
and higher therapeutic efficacy. In this aspect, the 2-amino-qui-
nazolin-4-one and 2-methyl-quinazolin-4-one derivatives are
intensively studied. These compounds are structural analogs of folic
hibitors under study with ranges of their activity.
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acid. In contrast to folic acid, the quinazolin-4-one derivatives
contain a quinazoline ring as the core fragment (instead of the
pteridine ring). Currently, several hundred quinazolin-4-one de-
rivatives have been studied as the TYMS inhibitors with different
degrees of selectivity toward this enzyme. In this group, five
compounds, CB 3717, ZD 9331, BW 1843U89, AG 337, and Tomudex,
are the most known (Fig. 1) and only one of them, Tomudex, is used
in Europe as the inhibitor of the growth of tumor cells of different
genesis. Leader compound CB 3717 has been rejected from clinical
trials due to its unacceptably high hepatic and renal toxicity, which
are associated with the poor solubility. Leader compounds ZD 9331,
AG 337, BW 1843U89 (Fig. 1) are currently undergoing various
phases of clinical trials as potential antitumor drugs. Despite its
high antitumor efficacy, Tomudex has a high inhibitory effect on
DHFR and, therefore, inhibits the purine biosynthesis. This induces
a high gastrotoxicity of this drug. In addition, the joint use of
Tomudex with leucovorin can significantly reduce the activity of
the first drug. Thus, the search for biologically active substances
that are able to selectively inhibit TYMS, and therefore slow down
the process of DNA biosynthesis in tumor cells, is an important task
of medical chemistry. However, the empirical analysis of biological
data for developing new potential chemotherapeutic drugs without
involving computational techniques in silico is a difficult task
requiring excessive needs of time and resources [16,17].

Modern medical and bioorganic chemistry focuses on the
rational synthesis of low-toxic organic compounds with a desirable
set of biological and physicochemical properties. However, the
experimental search for compounds satisfying these and other
additional requirements to potential pharmaceuticals (Lipinski's
rule of five, etc.) without virtual screening is inexpedient both in
terms of time and material costs. In this regard, QSAR/QSPR
methods are highly relevant at the stage of search for hit com-
pounds with the purpose of their further proceeding as lead com-
pounds at the preclinical stage. The use of these methods, either
alone or in combination with other virtual screening methodolo-
gies (pharmacophore search or molecular docking) allows selecting
the hit compounds for further testing. As is known, QSAR/QSPR
methods are reliable for the search for effective agonists and an-
tagonists of various receptors and selective inhibitors of enzymes
[1e23].

We have previously reported on the results of modeling some
TYMS inhibitors based on the quinazolin-4-one derivatives [24]. In
the present study, using the GUSAR 2013 program, we have studied
the quantitative structureeactivity relationship of 196 inhibitors of
thymidylate synthase of the antifolate type having the IC50 values
from the range 0.52÷24800.00 nmoL/L. We have designed the sta-
tistically meaningful QSAR models for numerical prediction of the
IC50values. These models have a high accuracy of the prediction for
the structures of training and test sets (R2

TRi¼ 0.855e0.922;
Q2

TRi¼ 0.810e0.895; R2
TS1¼0.734e0.790; R2

TS2¼ 0.800e0.835).
However, the obtained QSARmodels are directed mainly to the IC50
prediction for TYMS-inhibiting 2-methylquinazolin-4-one de-
rivatives and reveal a low prognostic ability for antifolates con-
taining hydrophilic fragments in the quinazoline fragment. To
construct statistically significant QSAR models useful for virtual
screening of virtual libraries, it is necessary to supplement the
training set with antifolates containing various substituents in the
quinazoline ring and other aromatic moieties. This should expand
the range of applicability of the QSAR consensus models.

Therefore, in this work, we have designed and validated the
QSAR consensusmodels for the search for selective TYMS inhibitors
in a series of quinazolin-4-one and quinazolin-4-imine derivatives
with the general structural formulas IeIV shown in Fig. 2. The
structures under study differ in the nature of the substituents in the
quinazoline moiety and aromatic rings attached to quinazoline by
the aliphatic linkers.

2. Computational details

A quantitative analysis of the structureeactivity relationships
was carried out only for the antifolate TYMS inhibitors. In total, 6
QSAR models M1eM6 were built. For this purpose, computer
program GUSAR 2013 (General Unrestricted Structure Activity Re-
lationships) was used [25e36]. A brief description of the capabil-
ities of this program and the algorithms of constructing the
quantitative structureeactivity relationships is provided in
Supplementary Material.

2.1. Constructing of the training and test sets

The construction of QSARmodels M1eM6was performed in the
GUSAR 2013 program in several stages based on training sets TR1
and TR2. For the validation of these models, external and internal
test sets of TS1 and TS2 were used. Training sets TR1, TR2, external
and internal test sets TS1 and TS2 have been formed based on set S1
according to the scheme shown in Fig. 3.

Set S1 contains the IC50 data for 294 direct antifolate TYMS in-
hibitors of Mus musculus. The experimental IC50 estimates of these
compounds have been obtained [37e47] under identical experi-
mental conditions by the binding method in a model system con-
taining the purified TYMS isolated from leukemia cells of mice
L1210. The structures of the simulated compounds of set S1 differ in
the nature of the linker, aromatic fragments Ar and end the mar-
ginal fragments R1, R2 (Fig. 2). Training set TR1 for constructing
QSAR models M1eM3 includes 245 structures of antifolate TYMS
inhibitors. It is formed based on set S2. The external test set TS1 is
designed to test the validity of QSAR models M1eM6. It is gener-
ated from set S3. In turn, sets S2 and S3 are obtained as a result of
splitting the set S1 in the ratio 5:1 by the following procedure:
every sixth compound was transferred from S1 to S3.

Set S2 is made up by the structures of TYMS inhibitors not
included in set S3. Previously, all structures of set S1 were ranked
by increasing IC50. Sets S4 and S5 are obtained as a result of splitting
set S2 in a 4:1 ratio as every fifth compound was transferred from
S2 to S5. Subsequently, training set TR2 and test set TS2 were
formed based on sets S4 and S5, respectively. A detailed description
of training TR1eTR2 and test sets TS1eTS2 is presented in Tables 1
and 2, respectively. A comparison of the data of these tables in-
dicates that the distributions of compounds by activity in training
and test sets are almost identical. Consequently, the mean values of
the pIC50parameter of the TYMS inhibitors from training and test
sets TR1, TR2, TS1, and TS2 almost coincide.

The structures of the compounds of training and test sets
TR1eTR2, TS1eTS2 were generated in the MarvinSketch 17.22.0
program [48] and was converted into SDF-format using the Dis-
covery Studio Visualizer program [49]. To construct QSAR models
M1eM6, we used the IC50 values in mol/L, which were then
expressed as pIC50:

pIC50 ¼ �lgðIC50Þ
As follows from Table 1, the spread of IC50 values for training set

DpIC50 exceeds 1.5, which is a necessary condition for constructing
an adequate QSAR model [29,30].

2.2. Calculation of structural descriptors

To describe the structures of compounds within the program,
two types of atom-centered descriptors were used, viz. substruc-
tural MNA (Multilevel Neighborhoods of Atoms), electrotopological



Fig. 3. Scheme of constructing the training and test sets and designing the M1eM6 QSAR consensus models (TR and TS are training and test sets, respectively, N is a number of
compounds included to the corresponding sets and arrays). Designations: 1) S1 is all data set; 2) S2 is the training set TR1 for the M1eM3 models; 3) S3 is the external test set TR1
for the M1eM6 models; 4) partition S2 in the ratio 4:1; S2 is the training set TR1 for the M1eM3 models; 5) S4 is the training set TR1 for the M4eM6 models; 3) S5 is the internal
test set TR1 for the M4eM6 models.

Table 1
Parameters of the training sets.

Comments Parameters of training sets Code of the training set

TR1 TR2

Number of training compounds NTRi 245 196
Mean pIC50value for training set pIC50ðTRiÞ 6.9090

Range of training set in pIC50 DpIC50(TRi) 4.9777
Distribution of observed response values of training sets TRi around training mean (in %) pIC50ðTRiÞ±0:5, % 30.6120 34.1837

pIC50ðTRiÞ±1:0, % 58.3670 58.6735

pIC50TRi±1:5, % 75.510 78.0612

pIC50ðTRiÞ±2:0, % 93.469 90.8163

0.10�DpIC50(TRi) 0.4978
0.15�DpIC50(TRi) 0.7467
0.20�DpIC50(TRi) 0.9955
0.25�DpIC50(TRi) 1.2444

Table 2
Parameters of the test sets.

Comments Characteristics parameters TSi Code of test sets

TS1 TS2

Number of test compounds NTSi 49 49
Mean of test set value in pIC50 pIC50ðTSiÞ 6.9621 6.9288

Range of test set in pIC50 DpIC50(TSi) 4.6438 4.6459
Distribution of observed response values of test sets TSi around test mean (in %) pIC50ðTSiÞ±0:5, % 32.6531 34.6939

pIC50ðTSiÞ±1:0, % 59.1837 59.1837

pIC50ðTSiÞ±1:5, % 77.5510 77.5510

pIC50ðTSiÞ±2:0, % 89.7959 89.7959

Distribution of observed response values of test sets TSi around train mean (in %) pIC50ðTRiÞ±0:5, % 28.5714 30.6122

pIC50ðTRiÞ±1:0, % 59.1837 59.1837

pIC50TRi±1:5, % 75.5102 75.5102

pIC50ðTRiÞ±2:0, % 93.8776 93.8776
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QNA (Quantitative Neighborhoods of Atoms) [26,27], and, addi-
tionally, three descriptors of the whole molecule (topological
length, topological volume, and lipophilicity). QNA-descriptors
were calculated automatically from the matrices of molecular
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connectivity, standard ionization potentials (IP) and electron af-
finities (EA) of each atom. Thus, they depend on the structure of the
molecule as a whole [28] and they are the basic information for
regression coefficients. Thus, the regression equations constructed
in the GUSAR 2013 program based on QNA-descriptors take into
account both the specificity and physicochemical properties of each
atom entering the training set [28,32e34].

MNA-descriptors are generated automatically based on the
structural formulae of chemical compounds without using any pre-
compiled list of structural fragments [22,26e28]. They are
computed using the PASS algorithm (Prediction of Activity Spectra
for Substances) [26,27]. The ideology of calculating QNA- andMNA-
descriptors is expounded in previous works [32,33] and
Supplementary material.

However, it noteworthy that the features of the QNA and MNA
calculations retain these descriptors without unambiguous phys-
ical interpretation. For this reason, in the commercial and academic
versions of the GUSAR 2013 program for broad use, the regression
equations are not displayed.

2.3. Selection of the optimal number of descriptors

Self-consistent regression was used as a mathematical algo-
rithm [27e33]. Previously, it has been shown [50] that self-
consistent regression (SCR) can be successfully used to generate
models from a large number of descriptors under different noise
levels in the data. This method is correctly applied to modeling
compounds with a rather high degree of similarity. The mathe-
matical apparatus of this selection methodology is presented in
works [32,33] and Supplementary material.

2.4. Constructing of the QSAR models

The GUSAR 2013 program allows constructing both partial
regression dependencies and consensus models based on them. In
this study, we use the consensus approach to construct the QSAR
models. This allows reducing the variability of the predictions.
Consensus models were designed in GUSAR 2013 automatically
based on the principle of common similarity of particular regres-
sion dependencies [28e34].

Note that each of these partial models involved by the
consensus model was made independently based on either QNA or
MNA descriptors. As a result, 6 consensus QSAR models were
designed. These models included 720 partial models. However, not
all of them had acceptable statistical parameters. To select the most
predictive models, a 20-fold crosscheck was performed for each
model. Thus, 240 models were chosen from initial 720. These
models have the R2 values exceed 0.6 (from the cross-validation
procedure after the randomized rejection of 20% of the training
set). Each of the final consensus models M1eM2, M4eM5 is made
up with 10 particular regression dependencies. Consensus models
M3 and M6 include 100 regression equations. However, as the QNA
and MNA descriptors have no direct physical meaning, the regres-
sion equations constructed on their basis are not explicitly dis-
played in the GUSAR 2013 program. Only the QSAR models
satisfying the abovementioned condition have been further used
for numerical predicting pIC50 for the compounds of the external
training set.

It should be noted that the program is able to construct QSAR
models both relying solely on one of these types of descriptors, and
on their combination in terms of the consensus approach [29,30].
At the same time, based on the consensus approach methodology,
models for quantitative prediction of biological activity for these
descriptors are calculated independently of each other. The exam-
ples of the sample QSAR GUSAR models for predicting the toxic
effects of chemical compounds are available free via the link http://
www.way2drug.com/GUSAR.
2.5. Assessment of the range of the applicability

To assess the applicability of models, GUSAR 2013 provides
three different approaches based on similarity, leverage, and ac-
curacy previously described in detail [32,33].

Similarity. Using the Pearson correlation coefficients for each
compound, program GUSAR 2013 calculated the distances toward
its three nearest neighbors in the training set in the space of in-
dependent variables obtained after SCR. The compound is consid-
ered in the range of the model's applicability if the average value of
these three distances is lower or equal to 0.7.

Leverage. The compound is considered out of the applicability
range if its leverage is larger than 99% in the distribution of the
leverage values of the training set.

Accuracy degree (AD). Here, the prediction of the applicability
range for each compound is calculated based on the prediction
error for the three most similar compounds in the test set relative
to the training set as a whole [26,27]:

ADvalue ¼ RMSE3NN=RMSEtrain

In the present study, a threshold value of 1 was used for AD.
2.6. Assessment of the quality and predictive power of the QSAR
models

2.6.1. Methodology of calculation of the pIC50 values using the
consensus approach in the GUSAR 2013 program

The predictive efficiency of the constructed QSAR consensus
models M1eM6 was estimated based on the IC50 parameter pre-
dictions for the training sets TR1-TR2 and test sets TS1eTS2. The
final predicted pIC50 value for a particular compound using any
consensus model is the weighted average predicted value of pIC50
estimated for all regression relationships included in this consensus
model. In other words, first, the degree of similarity of the tested
compound to the three structurally similar compounds of the
training set is established. Then, based on the degree of this simi-
larity, the prognosis of the numerical value of the activity for the
test compound for each regression equation entering into the
consensus model is made. After this, the calculated pIC50 values are
averaged resulting in the final pIC50 of the test compound. As in-
ternal validation, the sliding control was used with a random 20-
fold exclusion of 20% structures from the training set.
2.6.2. Statistical parameters characterizing the predictive power of
the QSAR models

The predictive power of the QSAR models evaluated using
external and internal test sets TS1 and TS2 was characterized using
two categories of metrics:

1) metrics based on the determination coefficients R2 (R2
TSi,

R2
0(TSi), Q2

F1(TSi), Q2
F2(TSi), R2mðTSiÞ, СССTSi);

2) metrics that estimate the errors for predicted pIC50 values (root
mean square errors of prediction RMSEPTSi, mean absolute er-
rors MAETSi and standard deviations S.D.TSi) [51e55]. These
statistical parameters are calculated by the program Xternal
Validation Plus 1.2 using formulas (1�15) presented in
Supplementary Material [56,57]. In addition, based on the re-
sults of the prediction of the pIC50 values for test sets TS1 and
TS2, a systematic error of the constructed consensus models
M1eM6 was evaluated using the same program.

http://www.way2drug.com/GUSAR
http://www.way2drug.com/GUSAR
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2.7. Estimation of the atomic contributions to the target activity

Additionally, the GUSAR program allows visualizing the contri-
bution of each atom into the predicted value [26e36]. This capa-
bility is implemented in the QSAR models based on the QNA
descriptors and, accordingly, in the consensus combination of the
QSARmodels designed in differentmodes. It opens opportunities to
identify “strong” and “weak” points in the biologically active mol-
ecules and, consequently, to rationalize the conclusions about the
replacement of certain fragments upon molecular design directed
to enhancing/weakening the target property.

The contribution of atoms to the activity of the antifolate TYMS
inhibitors was estimated by the consensus models M3 and M6
containing 245 and 196 structures of the inhibitors, respectively. As
reported [26e36], this procedure is implemented in the GUSAR
2013 program automatically when constructing the QSAR models
based on QNA descriptors and consensus models.
3. Results and discussion

Using the consensus approach implemented in the GUSAR 2013
program, a quantitative relationship between the structure and
inhibition efficiency of the catalytic activity of male white mice by
the quinazoline-4-one and quinazolin-4-imine derivatives IeIV
(Fig. 2) has been simulated with the general structural formulas.
Herewith, depending on the type of the descriptors (MNA or QNA),
three consensus QSAR models were obtained for each of the
training sets. In total, 6 QSAR consensus models for the prediction
of pIC50 values of the TYMS inhibitors were constructed including
240 partial regression equations. However, due to the fact that QNA
and MNA descriptors do not explicitly reflect the physicochemical
parameters of the substances compounds, the regression equations
in the GUSAR 2013 program are not displayed. Therefore, it is
impossible to estimate the contributions of each descriptors into
the simulated activity [27e36]. However, this was not among the
aims of this study. Indeed, we were solving two main problems: 1)
to demonstrate the applicability of the GUSAR 2013 program to
simulating the molecules with more than 10 mobile bonds, and 2)
to construct the QSAR models that can be used in virtual screening
of the TYMS inhibitors.

All models are characterized with a rather high descriptive po-
wer as follows from the determination coefficients calculated for
the complete (100% data) and reduced (95%) data sets TrS1eTrS2
(R2

TRi> 0.85, see Tables 3 and 4).
Designations. NTRi is the number of structures in the training set;

NPM is the number of the unique regression equations used for the
design of the consensus model; R2TRiare the averaged determination
coefficients calculated for the compounds of the training set;
Table 3
Statistical parameters and estimation of the prediction accuracy of the pIC50 values for t
DpIC50(TR1)¼DpIC50(TR2)¼ 4.9777.

Training set Consensus model NTRi NPM

QSAR models based on the QNA descriptors

TR1 М1 245 10
TR2 М4 196 10

QSAR models based on the MNA descriptors

TR1 М2 245 10
TR2 М5 196 10

QSAR models based on both QNA and MNA descriptors

TR1 М3 245 100
TR2 М6 196 100
Q2
TRiare the averaged determination coefficients calculated for the

training set with a sliding control with exception of one; FTRi is the
averaged Fisher criterion; S:D:TRi is the averaged standard devia-
tion; V is the number of variables in the regression equation.

In general, a comparative analysis of the statistical parameters
presented in Tables 3 and 4 allows concluding that the stable
regression curves with acceptable statistical characteristics
(R2

TRi> 0.6, Q2
TRi> 0.5) can be constructed in the GUSAR 2013

program both on one specific type and on both types of descriptors
(QNA or MNA).

According to Table 4, the numerical values of different criteria
R2

TRi of the descriptive abilities of models M1eM6 almost coincide
approaching to unit. The MAETRi values do not exceed 17% of
training sets TR1eTR2, which indicates a good simulation of the
target property using the GUSAR 2013 program.

where R2
TRi, R2

0(TRi), R02
0TRi,R2mðTRiÞare determination coefficients

calculated for training sets TR1 and TR2 taking into account the
average pIC50 values of these training sets; CCCTRi is the concor-
dance correlation coefficients; RMSETRi is the root mean square
error for training sets; MAETRi is mean absolute error; S.D.TRi is the
standard deviation; uNTRi is the part of training sets TRi (TR1 or
TR2) having the prognostic error not exceeding the interval pro-
portional to 0.1, 0.15, 0.20, and 0.25 of DpIC50 for training sets TR1
(a) and TR2 (b), respectively.

For the internal validation of QSAR models M1eM6, we have
applied the sliding control procedure with a 20-fold randomized
exception of 20% of the compounds of training sets TR1eTR2. The
relevant numerical data are also presented in Table 3. The numer-
ical values of the R2

TRi and Q2
TRi parameters for the compounds of

both training sets are rather close. The difference between these
parameters is less than 0.1, which indicates the stability of the
constructed regression equations. High values of the coefficients
and CCCTRi is also observed.

The discrepancies in the numerical values of the determination
coefficients R2

TRi obtained for consensus models M1eM6 in the
GUSAR 2013 and Xternal Validation Plus 1.2 programs (Tables 3 and
4) are explained with the different methodologies for calculating
these parameters. Indeed, in GUSAR 2013, the activity prediction
(pIC50 in our case) is performed according the degree of similarity
of the tested compound toward the three structurally similar
training set. Herewith, the numerical value of the activity for the
test compound within any consensus model is the weighted
average predicted pIC50 value estimated for all regression re-
lationships included in this consensus model. In other words, all
pIC50 values predicted by means of the partial regression models
included in one consensus model are averaged and result in the
final output pIC50. Accordingly, the estimation of statistical pa-
rameters is also performed separately for each particular regression
he TYMS inhibitors according to the M1eM6 consensus models;

R2TRi FTRi S:D:TRi Q2
TRi

V

0.867 42.873 0.416 0.834 28
0.812 34.001 0.493 0.771 20

0.858 39.392 0.432 0.826 28
0.836 31.793 0.465 0.795 23

0.877 45.981 0.403 0.847 28
0.841 34.681 0.458 0.803 21



Table 4
The validation parameters of the QSAR models estimated in the Xternal Validation Plus 1.2 program based on the experimental and predicted pIC50 for TYMS inhibitors of
training sets TR1 (М1eМ3) and TR2 (М4eМ6); DpIC50(TR1)¼DpIC50(TR2)¼ 4.9777.

Comments Code of the model Prediction
parameters

QSAR model used for the pIC50 prognosis for
sets TR1 and TR2

based on TR1 based on TR2

М1 М2 М3 М4 М5 М6

Classical Metrics (100% data) R2
TRi(100% data) 0.9452 0.9401 0.9517 0.9260 0.9332 0.9404

R2
0(TRi) (100% data) 0.9337 0.9327 0.9418 0.9138 0.9244 0.9297

R02
0(TRi) (100% data) 0.9119 0.9143 0.9245 0.8819 0.9009 0.9066

R2mðTRiÞ(100% data) 0.8147 0.8307 0.8308 0.7855 0.8127 0.8126

DR2
m(TRi) (100% data) 0.0637 0.0630 0.0558 0.0824 0.0712 0.0670

CCCTRi (100% data) 0.9622 0.9623 0.9671 0.9502 0.9571 0.9599
Classical Metrics (after removing 5% data with high residuals) R2

TRi (95% data) 0.9494 0.9476 0.9568 0.9327 0.9394 0.9456
R2

0(TRi) (95% data) 0.9427 0.9437 0.9510 0.9259 0.9342 0.9392
R02

0(TRi) (95% data) 0.8117 0.8310 0.8327 0.7786 0.8032 0.8062

R2mðTRiÞ(95% data) 0.8497 0.8721 0.8682 0.8294 0.8499 0.8482

DR2
m(TRi) (95% data) 0.0530 0.0504 0.0445 0.0672 0.0594 0.0553

CCCTRi (95% data) 0.9681 0.9689 0.9729 0.9582 0.9632 0.9661
Mean absolute error and standard deviation for training set (100% data) RMSETRi (100% data) 0.2907 0.2928 0.2725 0.3313 0.3104 0.2993

MAETRi (100% data) 0.2367 0.2358 0.2226 0.2739 0.2584 0.2482
S.D.TRi (100% data) 0.1691 0.1740 0.1575 0.1870 0.1724 0.1677
MAETRiþ3 � S.D.TRi (100% data) 0.7440 0.7578 0.6951 0.8349 0.7756 0.8024

Mean absolute error and standard deviation for training set (after removing 5% data
with high residuals)

RMSETRi (95% data) 0.2580 0.2604 0.2425 0.2969 0.2823 0.2695
MAETRi (95% data) 0.2145 0.2134 0.2022 0.2503 0.2382 0.2276
S.D.TRi (95% data) 0.1437 0.1497 0.1342 0.1601 0.1519 0.1448
MAETRiþ3 � S.D.TRi (95% data) 0.6456 0.6623 0.6048 0.7306 0.6939 0.6619

Distribution of prediction errors (in %) uN TRi in range 0.10�DpIC50(TRi) 7.755a 9.796a 4.898a 14.796b 10.204b 7.653b

uN TRi in range 0.15�DpIC50(TRi) 0.000a 0.000a 0.000a 1.531b 0.510b 0.510b

uN TRi in range 0.20�DpIC50(TRi) 0.000a 0.000a 0.000a 0.000b 0.000b 0.000b

uN TRi in range 0.25�DpIC50(TRi) 0.000a 0.000a 0.000a 0.000b 0.000b 0.000b

Prediction quality n/a Good
Systematic error presence n/a Absent
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model included in the consensus model used. Particularly, a set of
10 predicted pIC50pred values and 10 sets of different internal vali-
dation criteria (R2

TRi, Q2
TRi, FTRi, S.D.TRi.) is obtained for each indi-

vidual set, e.g., TR1, using the consensus model M1. Furthermore, in
GUSAR 2013, the results of the activity prediction are averaged
taking into account all 10 particular QSAR models. Similarly, the
statistical parameters are averaged too.

At the same time, in the Xternal Validation Plus 1.2 program,
calculating the statistical parameters of the external validation of
the QSARmodel is based on a comparison of the experimental pIC50
values with the averaged pIC50 pred, which are predicted using
GUSAR 2013. This procedure is performed twice: 1) for a complete
test set, and 2) for the same test set containing 95% of the original
data. However, the results of statistical analysis in this program are
not averaged [56].

Further, QSAR models M1eM6 based on TYMS inhibitors were
used to predict the numerical values of pIC50 for external test set
TS1 and internal test set TS2 containing the structural analogues of
the quinazoline derivatives IeIV (Fig. 2). The inhibitory activity of
sets TS1eTS2 has been determined under the same conditions as
for training and test set. It should be noted that the TS1eTS2 sets
were characterized by a uniform distribution of the pIC50 values
relative to the range of training sets TR1eTR2. The centers of these
sets also almost coincide with the centers of TR1eTR2. The results
of the prediction of the pIC50 values for TS1 and TS2 sets by models
M1eM6 are presented in Tables 2S and 3S in Supplementary
Material.

The prognostic potential of QSAR models M1eM6 applied to on
test sets TS1eTS2 was estimated using the Xternal Validation Plus
1.2 program. To characterize the predictive power of themodel, two
categories of metrics were used: 1) metrics based on the determi-
nation coefficients R2 (R2

TSi, R2
0(TSi), Q2

F1, Q2
F2, R2mðTSiÞ, СССTSi); and

2) metrics estimating the prediction errors for pIC50 values
(RMSEPTSi, MAETSi, and S.D.TSi). Xternal Validation Plus 1.2 also al-
lows assessing a systematic error occurring under prediction of the
pIC50 values for structures of external and internal test sets. To
avoid the false predictions related to unreliable experimental data,
the program automatically removes 5% of the compound with high
residual values. This step is also justified by the fact that most
statistical tests are usually performed at a probability level of 5%.

The statistical parameters characterizing the predictive power of
QSAR models M1eM6 based on various external validation criteria
obtained from a comparison of the predicted and experimental
pIC50 values for sets TS1 and TS2 are presented in Tables 5 and 6,
respectively.

where R2
TS1, R2

0(TS1), R02
0(TSi) are the determination coefficients

calculated, respectively, with or without taking into accout the

origin of coordinates; R2mðTS1Þ is the averaged determination coef-

ficient of the regression function calculated using the determina-
tion coefficients along with the ordinate axis (R2

m) or abscissa

(R02
m), respectively; DR2mðTS1Þis the difference between R2

m (TS1) and

R02
m(TS1i); Q2

F1(TS1), Q2
F2(TS2) are the determination coefficients

calculated for test set TS1 taking into account the average pIC50
value of the test set; CCCTS1 is the concordance correlation coeffi-
cient; MAETS1 is the mean absolute error; S.D.TS1 is the standart
deviation; uNTS1 is a percentage of the compounds of test set TS1,
for which the error of prediction does not exceed the interval
proportional to 0.1, 0.15, 0.20, and 0.25 of DpIC50 for training sets
TR1 (a) and TR2 (b), respectively.

where R2
TS2, R2

0(TS2), R02
0(TS2) are the determination coefficients

calculated, respectively, with or without taking into accout the

origin of coordinates; R2mðTS2Þ is the averaged determination coef-
ficient of the regression function calculated using the determina-
tion coefficients along with the ordinate axis (R2

m(TS2)) or abscissa



Table 5
The validation parameters of the QSAR models estimated using the Xternal Validation Plus 1.2 program based on the experimental and predicted pIC50 values of TYMS in-
hibitors of external test set TS1; DpIC50(TR1)¼DpIC50(TR2)¼ 4.9777; DpIC50(TS1)¼ 4.6438.

Comments Code of the
model

Prediction
parameters

QSAR model used for the pIC50 prognosis for set
TS1

М1 М2 М3 М4 М5 М6

Classical Metrics (100% data) R2
TS1 (100% data) 0.7856 0.8182 0.8212 0.7676 0.7826 0.8085

R2
0(TS1) (100% data) 0.7772 0.8136 0.8151 0.7639 0.7807 0.8037

R02
0(TS1) (100% data) 0.6500 0.7355 0.7324 0.6476 0.6922 0.7168

Q2
F1(TS1) (100% data) 0.7815 0.8209 0.8172 0.7689 0.7888 0.8058

Q2
F2(TS1) (100% data) 0.7703 0.8116 0.8077 0.7569 0.7779 0.7958

R2mðTS1Þ(100% data) 0.5984 0.6736 0.6565 0.6043 0.6472 0.6472

DR2
m(TS1) (100% data) 0.2003 0.1621 0.1672 0.2014 0.1819 0.1745

CCCTS1(100% data) 0.8616 0.8901 0.8880 0.8564 0.8712 0.8812
Classical Metrics (after removing 5% data with high residuals) R2

TS1 (95% data) 0.8660 0.8868 0.8851 0.8371 0.8285 0.8649
R2

0(TS1) (95% data) 0.8624 0.8859 0.8837 0.8365 0.8285 0.8642
R02

0(TS1) (95% data) 0.6793 0.7504 0.7401 0.6654 0.6774 0.7136
Q2

F1(TS1) (95% data) 0.8649 0.8872 0.8855 0.8394 0.8315 0.8661
Q2

F2(TS1) (95% data) 0.8624 0.8851 0.8834 0.8364 0.8284 0.8636

R2mðTS1Þ(95% data) 0.7559 0.8220 0.7991 0.7485 0.7610 0.7795

DR2
m(TS1) (95% data) 0.1190 0.0952 0.1000 0.1342 0.1244 0.1144

CCCTS1 (95% data) 0.9070 0.9028 0.9360 0.9090 0.9063 0.9252
Mean absolute error and standard deviation for test set TS1 (100% data) RMSEPTS1 (100% data) 0.5427 0.4914 0.4965 0.5582 0.5336 0.5117

MAETS1 (100% data) 0.3934 0.3715 0.3471 0.4259 0.4072 0.3808
S.D.TS1 (100% data) 0.3777 0.3250 0.3586 0.3646 0.3484 0.3453
MAETS1þ3 � S.D.TS1 (100% data) 1.5265 1.3465 1.4229 1.5197 1.4272 1.4167

Mean absolute error and standard deviation for test set TS1 (after removing 5% data
with high residuals)

RMSEPTS1 (95% data) 0.3992 0.3647 0.3675 0.4352 0.4458 0.3974
MAETS1 (95% data) 0.3195 0.3065 0.2789 0.3576 0.3513 0.3170
S.D.TS1 (95% data) 0.2419 0.1999 0.2419 0.2508 0.2774 0.2422
MAETS1þ3 � S.D.TS1 (95% data) 1.0453 0.9061 1.0046 1.1100 1.1835 1.0437

Distribution of prediction errors (in %) uNTS1 in range 0.10�DpIC50(TRi) 30.612a 24.490a 22.449a 34.693b 32.653b 24.490b

uNTS1 in range 0.15�DpIC50(TRi) 12.245a 10.204a 10.204a 12.245b 22.449b 12.245b

uNTS1 in range 0.20�DpIC50(TRi) 6.122a 6.122a 8.163a 8.163b 6.122b 8.163b

uNTS1 in range 0.25�DpIC50(TRi) 6.122a 4.082a 6.122a 6.122b 4.082b 4.082b

Prediction quality n/a Moderate
Systematic error presence n/a Absent
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(R02
m(TS2)), respectively; DR2mðTS2Þ is the difference between R2

m(TS2)

and R02
m(TS2); Q2

F1(TS2), Q2
F2(TS2) are the determination coefficients

calculated for test set TS2 taking into account the average pIC50
value of the test set; CCCTS2 is the concordance correlation coeffi-
cient; MAE is the mean absolute error; S.D.TS2 is the standart de-
viation; uNTS2 is a percentage of the compounds of test set TS2, for
which the error of prediction does not exceed the interval pro-
portional to 0.1, 0.15, 0.20, and 0.25 of DpIC50 for training sets TR2.

The criteria of the external validation of QSAR models M1eM6
(Tables 5 and 6) shows that the use of the full sets of the com-
pounds from TS1 and TS2 allows achieving very close determina-
tion coefficients R2

TSi and R2
0(TSi) being in the narrow ranges

0.7229e0.8212 and 0.7229e0.8156, respectively. Determination
coefficients Q2

F1(TSi) and Q2
F2(TSi) lie in the range 0.7209e0.8209

and are close to determination coefficients, R2
TSi и R2

0(TSi). However,
the Q2

F1(TSi) value is usually higher than Q2
F2(TSi), R2

TSi and R2
0TSi,

i.e., Q2
F1(TSi)>Q2

F2(TSi) (in all models), Q2
F1(TSi)> R2

TSi (in models
M2, M4-M5), Q2

F1(TSi)> R2
0(TSi) (in all models) for 100% of TS1 and

TS2 sets.
At the same time, criterion R2mðTSiÞproposed by Roy et al. [52] for

a more objective and rigorous assessment of the predictive power
of QSAR/QSPR models is rather low and lies in the range
0.5882e0.6736 for external validation of consensus models
M1eM6 using test sets TS1eTS2. Criterion DR2

m(TSi), proposed by
the same authors as an additional parameter for assessing the
quality of prediction for external model validation, in all cases does
not exceed 0.21. In all cases, for 100% of the data of TS1 and TS2 sets,
the CCCTSi coefficient obtains a satisfactory value from the range
0.8390e0.8901. All the data above indicate a moderate prognostic
ability of QSAR consensus models M1eM6with external validation.

The removal of 5% of compounds with high residues from both
test sets increases all determination coefficients used for the
external validation of models M1eM6 (Tables 5 and 6). Determi-
nation coefficients R2

TSi of sets TS1 and TS2 in the case of 95% of the
compounds lie in the range 0.8285e0.8868 and 0.8251e0.8483,
respectively. Similar conclusions can be made about changing the
R2

0(TSi) values, which increase to 0.8285e0.8859 and
0.8198e0.8364 for TS1 and TS2, respectively (in the case of 95%
data sets). After removing 5% of compounds with high residues,
determination coefficients Q2

F1(TSi) and Q2
F2(TSi) also increased to

0.8284e0.8872 and 0.8195e0.8431 for TS1 and TS2, respectively.
Herewith, in the external validation of models M1eM6 with 95% of
the original data, as in the case of the complete data set in TS1 and
TS2, there was a contradictory insignificant excess of the Q2

F1,
parameter over Q2

F2(TSi), R2
TSi, and R2

0(TSi) (Tables 5 and 6).
Removing 5% of the compounds from the TS1 and TS2 sets also

positively affects the CCC parameters and allows reducingDR2
m(TSi).

In general, based on the analysis of the determination co-
efficients, CCC, and DR2

m(TSi) criteria (Tables 5 and 6), we conclude
that all QSAR consensus models show satisfactory predictive abil-
ities with external validation on the TS1 and TS2 structures,
regardless of the volume of the sets. However, Q2

F1(TSi) >Q2
F2(TSi),

Q2
F1(TSi)> R2

TSi, Q2
F1(TSi)> R2

0(TSi) in most cases. In some cases, the
Q2

F2(TSi) and R2
0(TSi) values coincide up to the third decimal place. In

other words, consensus models M1eM6 better predict the activity
for the compounds of test sets TS1 and TS2 in comparison with the
training set, although the quality of the activity prediction for the
external test sets is usually lower than for the training samples.
These facts were noted previously by other authors [51e54]. They
suggest that the use only of the metrics based on R2 and Q2 to
evaluate the prognostic ability of QSAR models is obviously
insufficient.



Table 6
The validation parameters of the QSAR models estimated using the Xternal Validation Plus 1.2 program based on the experimental and predicted pIC50 values of TYMS in-
hibitors of external test set TS2; DpIC50(TR1)¼DpIC50(TR2)¼ 4.9777; DpIC50(TS2)¼ 4.6459.

Comments Code of the
model

Prediction
parameters

QSAR model used for the
pIC50 prognosis for set TS2

М4 М5 М6

Classical Metrics (100% data) R2
TS2 (100% data) 0.7777 0.7229 0.7945

R2
0(TS2) (100% data) 0.7660 0.7229 0.7844

R02
0(TS2) (100% data) 0.6127 0.6183 0.6583

Q2
F1(TS2) (100% data) 0.7785 0.7364 0.7936

Q2
F2(TS2) (100% data) 0.7654 0.7209 0.7814

R2mðTS2Þ(100% data) 0.5882 0.6076 0.6089

DR2
m(TS2) (100% data) 0.2068 0.2096 0.1941

CCCTS2 (100% data) 0.8540 0.8390 0.8670
Classical Metrics (after removing 5% data with high residuals) R2

TS2 (95% data) 0.8407 0.8251 0.8483
R2

0(TS2) (95% data) 0.8280 0.8198 0.8364
R02

0(TS2) (95% data) 0.5688 0.5901 0.5871
Q2

F1(TS2) (95% data) 0.8317 0.8291 0.8431
Q2

F2(TS2) (95% data) 0.8260 0.8195 0.8355

R2mðTS2Þ(95% data) 0.6840 0.6858 0.6767

DR2
m(TS2) (95% data) 0.1521 0.1560 0.1513

CCCTS2 (95% data) 0.8939 0.8942 0.9015
Mean absolute error and standard deviation for test set TS2 (100% data) RMSEPTS2 (100% data) 0.5476 0.5973 0.5286

MAETS2 (100% data) 0.4498 0.4599 0.4231
S.D.TS2 (100% data) 0.3155 0.3850 0.3200
MAETS2þ3 � S.D.TS2 (100% data) 1.3963 1.6149 1.3831

Mean absolute error and standard deviation for test set TS2 (after removing 5% data with high
residuals)

RMSEPTS2 (95% data) 0.4703 0.4819 0.4608
MAETS2 (95% data) 0.3998 0.3925 0.3781
S.D.TS2 (95% data) 0.2504 0.2827 0.2664
MAETS2þ3 � S.D.TS2 (95% data) 1.1510 1.2407 1.1772

Distribution of prediction errors (in %) uNTS2 in range 0.10�DpIC50(TR2) 38.7755 40.8163 34.6939
uNTS2 in range 0.15�DpIC50(TR2) 18.3673 18.3673 20.4082
uNTS2 in range 0.20�DpIC50(TR2) 6.1224 6.1224 2.0408
uNTS2 in range 0.25�DpIC50(TR2) 2.0408 6.1224 2.0408

Prediction quality n/a Moderate
Systematic error presence n/a Absent
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According to the results of Roy et al. [54], the predictive power of
QSARmodels can be correctly estimated using two criteria deduced
from MAE: 1) directly the MAE value itself; and 2) the range of the
spread of the predicted activities, taking into account MAE in the
interval ms (or mS.D.): MAETSi þ 3 � S.DTSi. Conventionally, the
predictive ability of a model is high if the MAE value when pre-
dicting pIC50 for test structures is 10% of the range of the pIC50
values of the training sets, onwhich the QSARmodel is based. Here,
the range of the pIC50 values of the training sets is designated as
DpIC50(TRi). The following relationship must be fulfilled: MAETSi þ
3 � S.D.TSi � 0.2�DpIC50 (TRi), where DpIC50 is the range of pIC50
values, in which the structures of training set TRi are located. At the
same time, the predictive ability of the model is low if MAETSi of the
pIC50 prediction for the test set is higher than 15% of the training set
range used for designing the QSAR model. In this case, another
relation should be satisfied: MAETSiþ3 � S.D.TSi> 0.25�DpIC50(TRi)

[54,56]. It is predicted that do not meet any of the above conditions
are considered moderate.

The analysis of the predicted pIC50 values of the of external test
sets TS1eTS2 (Tables 5 and 6), performed according to the above-
described criteria, indicates the moderate predictive power of
QSAR models M1eM6 after removing 5% of compounds with high
residues in each of them. At the same time, using 100% of these
test sets, there are discrepancies in the estimation of predictive
abilities of models M1eM6. Particularly, in all cases, the magni-
tude of MAE does not exceed the parameter
0.1�DpIC50(TR1)¼ 0.1�DpIC50(TR2)¼ 0.4978, which indicates a
rather high predictive ability of M1eM6. However, the criterion
MAETSi þ 3 � S.D.TSi¼ 1.2444 in the case of 100% of test sets TS1
and TS2 significantly exceeds the allowable threshold value
0.25�DpIC50(TRi), i.e., the predictions in this case are considered
unsatisfactory. This discrepancy may have two possible reasons:
1) the insufficient number of descriptors in the regression equa-
tion and the need to add new independent variables; 2) the
presence of experimental errors in the experimental data. As
follows from Table 3, each consensus model M1eM6 contains
more than 20 QNA and MNA descriptors. Consequently, in our
case, the discrepancy in assessing the predictive parameters of
M1eM6, depending on the percentage of the data used (100 or
95%) is probably due to the experimental errors. This conclusion is
supported by the absence of a systematic error in the prediction,
which also allows rejecting the necessity of retraining the M1-M6
models.

As follows from Tables 3e6, all QSAR models reveal moderate
prognostic ability on the structures of external and internal test sets
TS1eTS2. These models are applicable to the virtual screening of
virtual libraries and databases to search for new antifolate TYMS
inhibitors based on the quinazoline derivatives.

As a rational finalization of this step of our study, we have
performed virtual screening of the ChEMBL database using
consensus model M3 to select potential TYMS inhibitors among the
leader compounds and active components of known drugs. This
model has been chosen because it is constructed using different
types of descriptors and contains maximal number of structures.
Additionally, the predictions errors of this model is acceptable and
in most cases is close to the minimal value if we compare this
parameter for TS1 and TS2. The facts above favor reliability and
accuracy of the forecast results.

The virtual screening involved 200 quinazoline derivatives with
the pronounced antitumor and antibacterial properties and no
inhibitory activity toward thymidylate synthase. However, only 98
leading compounds and known pharmaceuticals are fitted into the



Table 7
Potential effective thymidylate synthase inhibitors selected from the ChEMBL database using virtual screening with QSAR model M3.

N� Code of compounda Applicability domain (AD) of the model Predicted IC50 value, nM

1 CHEMBL150607 in AD 740
2 CHEMBL36323 in AD 871
3 CHEMBL1738741 in AD 802
3 CHEMBL3228300 in AD 580
5 CHEMBL326511 in AD 971
6 CHEMBL146917 in AD 888
7 CHEMBL127972 in AD 734
8 CHEMBL331165 in AD 404
9 CHEMBL3228304 in AD 486
10 CHEMBL149218 in AD 908
11 CHEMBL475332/Chlorasquin in AD 440
12 CHEMBL453872/Denopterin in AD 777
13 CHEMBL459050/Diopterin in AD 120
14 CHEMBL38937 in AD 742
15 CHEMBL1783014 in AD 49
16 CHEMBL3244856 in AD 675
17 CHEMBL162414 in AD 612
18 CHEMBL67297 in AD 888
19 CHEMBL40385 in AD 897
20 CHEMBL3094439 in AD 639
21 CHEMBL126579 in AD 946
22 CHEMBL37936 in AD 564
23 CHEMBL3244859 in AD 484
24 CHEMBL38313 in AD 439
25 CHEMBL3228305 in AD 549
26 CHEMBL22708 in AD 572
27 CHEMBL118230 in AD 592
28 CHEMBL3244853 in AD 456
29 CHEMBL80133 in AD 946
30 CHEMBL75914 in AD 457
31 CHEMBL141997 in AD 455
32 CHEMBL77257 in AD 649
33 CHEMBL118927 in AD 480
34 CHEMBL3706582 in AD 822
35 CHEMBL3228303 in AD 684
36 CHEMBL435217 in AD 969
37 CHEMBL2153708 in AD 920
38 CHEMBL476400 in AD 920
39 CHEMBL586489 in AD 19

a Compound codes in the ChEMBL database (https://www.ebi.ac.uk/chembl/).
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range of the applicability of consensus-model M3. For 39 structures
from them, the predicted IC50 values are less than 1 mmoL/L. These
compounds are presented in Table 7. We assume that in living
systems these compounds should behave as multi-target drugs.
They are promising for further detailizing studies. A complete list of
the structures of potential TYMS inhibitors predicted by consensus
model M3 is presented in the Table 4S in Supplementary Material.

Thus, the approach used in the GUSAR 2013 program allows
highly reliable modeling the inhibitory activity of the quinazoline-
4-on derivatives toward TYMS and finding newantifolate inhibitors
of this enzyme.

Additionally, the structures of the quinazolin-4-one, quinazolin-
4-imine and quinolin derivatives IeIV have been analyzed. For
most of the compounds studied, the structureeactivity relationship
analysis (SAR) was previously performed [37e47] but those SAR
data have mostly a disparate nature. In the present work, we have
performed a systematic comparative study of 294 known antifolate
TYMS inhibitors and detected the functional groups permitting
modulation of their activity. The analysis of the contribution of the
structural fragments to the resulting inhibition activity has been
based on the results of comparative studies and data obtained using
the program GUSAR 2013. These have been deduced only from the
comparative reasoning.

A detailed analysis of the results is presented in Tables 5Se15S in
Supplementary Material. On the basis of numerous experimental
data, the following regularities can be revealed.
Effect of inhibition of TYMS activity by the quinazoline and
quinaline derivatives IeIV significantly depends on the nature of
the substituents R1 and R2 in positions 2, 4 and 5 of the in bicyclic
rings, acyclic linkers Y, aromatic fragments Ar and terminal R

00
1 and

R
00
2 substituents bound to the asymmetric carbon atom (Figs. 4e6).
The analysis of the structures of TYMS inhibitors I (Fig. 5) re-

veals, that the derivatives quinazolin-4-one with an unsubstituted
methylene linker at position Y, except for the compound 2
(IC50¼ 24.8 mM), exhibit moderate inhibitory activity in the range
of IC50 values¼ 3.78e9.34 mM. Substitution of a hydrogen atom in
the secondary amino group in the linker by nonpolar and weakly
polar methyl, propyl, propylene, fluoroethyl, hydroxyethyl,
hydroxybutyl, cyanomethyl and propargyl group contributes in
most cases increasing the activity containing compounds almost an
order of magnitude, irrespective of the nature of the aromatic ring
Ar (Fig. 4). In the majority of cases, with the exception of com-
pounds containing a 3 00-fluoroaromatic fragment, the maximum
positive effect in structures with a substituted methyleneamine
linker is provided by the propargyl group. In contrast, the reduction
of the activity of TYMS inhibitors with the general structural for-
mula I results in the replacement of the hydrogen atom in the
secondary amino group of the methyleneamine linker with
methoxyethyl, methoxypropyl and acetylmethylene moieties.

The replacement of the unsubstituted methyleneamine linker Y
with aminomethylene, methyleneoxy, methylenethio and thio
fragments also significantly reduces the activity of TYMS inhibitors

https://www.ebi.ac.uk/chembl/


Fig. 4. The effect of the nature of acyclic linkers on the activity of the TYMS inhibitors general formulae I. The analyzed structural fragments are indicated by dashed lines. The
arrows pointing up and down correspond to the positive and negative effects of the isolated fragment on the inhibitory activity toward TYMS.

Fig. 5. Comparison compounds in the analysis of the effect of substituents in the
position of R2 in inhibitors of TYMS with the general structural formula I.
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of the general structural formula I. It further reduces the activity of
this group of TYMS inhibitors by replacing the hydrogen atom in
the secondary amino group in the aminomethylene linker Y by on
the propargyl group (see Table 5S in Support Material). At the same
time, various modifications of the aminomethylene linker
contribute to an increase in the target property. In general, the
decrease in the activity of the considered TYMS inhibitors Iwith the
aminomethylene linker in comparisonwith their structural analogs
with the methyleneamine linker is explained by weakening the
delocalization of the electron density of unpaired nitrogen atoms
through the aromatic ring Ar.

As follows from the data of Fig. 6, replacing the 1,4-benzene ring
with 2,5-substituted thiophene leads to a sharp decrease in the
inhibition activity, regardless of the nature of substituent in the
methyleneamine linker. The same effect is caused by the replace-
ment of 1,4-benzene with 2,5-substituted thiazols with a nitrogen
atom in position 2” and 300 or 2,5-disubstituted 1,3,4-thiadiazole
(see Fig. 4, Table 6S in Supplementary Material). Isosteric replace-
ment of 1,4-benzene with 1,4-pyridine, in which the nitrogen atom
is in position 2” in most cases does not affect. The replacement of
the hydrogen atom in positions 2” and 3” of the benzene ring has an
ambiguous effect on the inhibitory activity. In some cases, the effect
of such a modification is determined by nature of the substituent in
the methylenamine linker Y ((see Table 6S in Supplementary Ma-
terial). For example, if the hydrogen atom of the secondary amino
group in the linker Y is replaced by a ethyl moiety, the introduction
of the chlorine atom into position 2” of the benzene ring increases
the target property. Replacing the hydrogen atom by propargyl
group in the secondary amino group in the same linker Y leads to
the opposite effect (see Supplementary Material). It should be
noted that the conclusions about the effect of the nature of the
aromatic ring on the activity of TYMS inhibitors, made by us in this
work, are in some cases limited to small sets of compounds avail-
able in the literature that contain methyl, ethyl and propargyl
groups in the linker. However, these data make it possible to trace
the following trend: compounds containing five-membered aro-
matic rings as an Ar substituent have slightly lower inhibitory ac-
tivity than TYMS inhibitors containing six-membered aromatic
fragments in the same position. These observations can be
explained in terms of the differences in the location of five- and six-
membered rings in comparison with the six-membered rings of p-
aminobenzoic isosters in the active center of the enzyme. The
reason for the decrease in inhibitory activity shown by the quina-
zoline derivatives in the series with five-membered aromatic
fragments is not known precisely and may be related either to a
decrease in specific interactions of the inhibitors with the enzyme
or a decrease in the total surface of these molecules, which further
leads to reducing the contacting surfaces of the binding sites.

Replacing of the hydrogen atom in the R1 position of the qui-
nazoline ring with a methyl group and a chlorine atom results in a
decrease in the activity of TYMS inhibitors of the general structural
formula I (see Table 7S in Supplementary Material).

When analyzing the effect of substituents in the R2 position of
the quinazoline ring, the following explanation should be made.
According to generally accepted standards, a compound containing
an unsubstituted hydrogen atom in the R2 position should be taken
as the standard. However, for the predominant majority of



Fig. 6. The effect of the nature of aromatic fragments and substituents in the R1 position on the activity of the TYMS inhibitors general formulae I. The analyzed structural fragments
are indicated by dashed lines. The arrows pointing up and down correspond to the positive and negative effects of the isolated fragment on the inhibitory activity toward TYMS.
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compounds with the general structural formula I, such information
is not available in the literature. It is presented only for compounds
containing a propargyl group in the linker. In this regard, for ob-
jectivity in the structural analysis of propargyl-containing TYMS
inhibitors, we introduced a system of double standards. It consists
in simultaneously taking into account two comparison compounds:
a compound with the code CHEMBL103059 (contains the hydrogen
atom in the position R2) and a compound with the code
CHEMBL434209, in the literature known as ICI 198583 (contains a
methyl group in the R2 position). The final conclusions about the
effect of substituents in this position on the activity of propargyl-
containing TYMS inhibitors were made based on a comparison of
their activity with the compound with the code CHEMBL434209
(Fig. 5). In all other cases, for the reasons mentioned above, the
compounds containing the methyl group in the R2 position were
chosen as reference substances.

It was determined that the replacement of the hydrogen atom at
the R2 position of the same ring with methyl and amino groups in
compounds with the general structural formula I results in an in-
crease in the inhibitory activity. An analogous replacement of the
hydrogen atom by more voluminous isopropyl, fluoromethyl, tri-
fluoroethyl and aromatic fragments leads to a decrease in the ac-
tivity of TYMS inhibitors of the group under discussion. (see Fig. 6
and Table 8S in Supplementary Material).

The activity of TYMS inhibitors II is significantly influenced by
the nature of the substituents at the positions R00

1 and R00
2 and their

stereoisomerism. Any replacement of the hydrogen atoms in these
positions by acyclic or heterocyclic aromatic fragments increases
the target property (see Tables 9S, 10S and 11S in Supplementary
Material). But in compounds of this series, which contain as a ter-
minal fragment a benzene moiety with a nitro group in the meta-
position, any replacement of the methyl group at position R2 by
more bulky acyclic and cyclic fragments leads to a decrease in
inhibitory activity against TYMS. The most pronounced negative
effect is observedwhen amethyleneamine group is introduced into
this position (see Table 12S in Supplementary Material).

Modification of the quinazoline fragment in position R1 by
methyl group and fluorine atomin in compounds III has a positive
effect on the target activity. The effect of the nature of the cyclic
substituents in the R1 position of in the compounds of this group
has not been experimentally studied. Due to the insufficient
experimental data, the clear effect of the substituent polarity on the
activity of the TYMS inhibitors III could not be identified (see
Table 13S in Supplementary Material).

In the quinoline derivatives with the general structural formula
IV the modification of the position of R1 (R2¼ CH3) by small acyclic
electron-donating and electron-withdrawing substituents, with
the exception of the thiomethylene group, increases their inhibi-
tory activity against TYMS. For this series of compounds, the in-
fluence of bulky cyclic substituents has not been experimentally
studied. But a similar modification of the R2 position by electron-
donor and electron-withdrawing substituents, with the exception
of the trifluoromethyl and amino groups, as well as the chlorine
atom, decreases the target activity. The greatest negative effect is
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observed when a carboxyl group is introduced into the R2 position
(see Tables 14S and 15S in Supplementary Material).

4. Conclusion

Using the QSAR methodology implemented in the GUSAR 2013
program, the structureeinhibitory activity toward thymidylate
synthase (TYMS) of 303 methylquinazolin-4-one and quinazolin-4-
imine derivatives was quantified.

The inhibitory activity of the simulated compounds lies in the
range of IC50¼ 0.4÷380000.0 nmoL/l. Based on the MNA and QNA
descriptors using the self-consistent regression method, six sta-
tistically significant QSAR consensus models have been designed,
Thesemodels are highly accurate in predicting the IC50 values of the
compounds from the training and test sets: R2

TRi > 0.6; Q2
TRi > 0.5;

and R2
TSi > 0.5. All of them can be used for virtual screening to find

new selective antifolate TYMS inhibitors among the quinazolin-4-
one derivatives.

We have shown that the algorithms underlying the construction
of the QSAR models in the GUSAR 2013 program allow simulating
biological activity of condensed heterocyclic organic compounds
with 10 and a large number of free-rotating single bonds although
the program does not utilize the ideology of 3D-QSAR. It is known
that not all the molecular docking algorithms allow obtaining
objective and reliable results for bulk molecules with a large
number of single bonds.

Thus, the approach used in the GUSAR 2013 program allows
modeling the inhibitory activity of the quinazoline-4-on and qui-
nazolin-4-imine derivatives toward TYMS with a high reliability to
search for new antifolate inhibitors of this enzyme. Based on the
structural analysis, which is the basis of this program, we have
identified the structural descriptors modulating the activity of
TYMS inhibitors. The information on the structural contribution of
various substituents to the target property can be taken into ac-
count in the development of new TYMS inhibitors. High predicted
activity of a number of compounds with known antitumor activity
suggests the mechanism of their antitumor effect.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.jmgm.2018.09.002.
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