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A B S T R A C T

Here, we report a novel hemizygous transition c.975G>A (p.Trp325*) in POU3F4 gene (Xq21) found in two
deaf half-brothers from one Yakut family (Eastern Siberia, Russia) with identical inner ear abnormalities
("corkscrew" cochlea with an absence of modiolus) specific to X-linked deafness-2 (DFNX2). Comprehensive
clinical evaluation (CT and MR-imaging, audiological and stabilometric examinations) of available members of
this family revealed both already known (mixed progressive hearing loss) and additional (enlargement of
semicircular canals and postural disorders) clinical DFNX2 features in affected males with c.975G>A
(p.Trp325*). Moreover, mild enlargement of semicircular canals, postural abnormalities and different types of
hearing thresholds were found in female carrier of this POU3F4-variant.

1. Introduction

One in 1000 newborns is affected by congenital deafness [1,2].
About half of all cases are hereditary and inherited by a recessive au-
tosomal pattern (70–80%) or a dominant autosomal pattern (10–20%)
[3]. The proportion of X-linked deafness (DFNX) is less than 1–2% [3].
One of the common forms of X-linked deafness is the perilymphatic
Gusher-deafness syndrome also known as the X-linked deafness-2
(DFNX2, MIM 304400) caused by pathogenic variants in the POU3F4
gene (MIM 300039, Xq21) [4]. DFNX2 is characterized by progressive
conductive and sensorineural hearing loss and a pathognomonic tem-
poral bone deformation that includes dilatation of the inner auditory
canal and a fistulous connection between the internal auditory canal
and the cochlear basal turn, resulting in a perilymphatic fluid “gusher”

during stapes surgery [4–8]. The POU3F4 gene encodes the transcrip-
tion factor POU3F4 (Brain 4). Douville et al. (1994) showed that the rat
homolog of POU3F4, called RHS2, is expressed during embryonic de-
velopment in the brain, the neural tube, and the otic vesicle at 15.5 and
17.5 days after conception [9]. More than 70 pathogenic variants (41
missense/nonsense substitutions, 11 small deletions, 3 small insertions,
15 large deletions, one large insertion, and 3 complex variants) have
been described for the POU3F4 gene in the Human Gene Mutation
Database (accessed July, 2017) [10] and 156 variants of different
clinical significance in the ClinVar Database (accessed July, 2017) [11].
However, data on the clinical characteristics and the outcomes of pa-
tients with different pathogenic POU3F4 variants causing DFNX2 are
scarce for populations worldwide.

In our previous studies in the Sakha Republic (Eastern Siberia,
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Russia), we found that hearing impairment in 192 out of 393 examined
patients (48.9%) was caused by the pathogenic variants in the GJB2
gene (MIM 220290) while the causes of ∼50% of early childhood
deafness cases have not been determined [12]. To identify the causes of
hearing loss in GJB2-negative patients (n = 98) we performed com-
puted tomography examinations and revealed one Yakut family (be-
longing to indigenous population of the Sakha Republic) with inner ear
abnormalities specific to DFNX2.

In this report, we conducted comprehensive clinical examination
including computed tomography, audiological examination, magnetic
resonance imaging, and stabilometric examination of four members of
one Yakut family (two affected half-siblings and their non-affected
parents) with Х-linked recessive deafness associated with novel variant
c.975G>A (p.Trp325*) in the POU3F4 gene.

2. Methods

2.1. Computed tomography (CT)

CT-imaging of the temporal bone was performed using the 4-slice
Siemens SOMATOM Sensation 4 CT scanner (Germany). The section
thickness of the axial plane was set to 1 mm (InnerEarSpi software). The
2D images in native axial planes were used for the visualization of
temporal bone structure.

2.2. Audiological examination (AE)

Pure tone audiometry was performed using the audiometer MAICO
ST 20 (Germany) at air conduction frequencies 0.25, 0.5, 1.0, 2.0, 4.0,
8.0 kHz and at bone conduction frequencies 0.25, 0.5, 1.0, 4.0 kHz with
5.0 dB increments. Impedance measurements were conducted using the
Interacoustics АА222 (Denmark). The degree of hearing loss was
evaluated at the hearing threshold in the speech frequency range 0.5,
1.0, 2.0, and 4.0 kHz: mild–20–40 dB, moderate–41–55 dB, se-
vere–56–70 dB, profound -> 90 dB.

2.3. Magnetic resonance imaging (MRI)

The condition of the cerebellopontine angle was estimated using
MRI on the Siemens Magnetom Espree (Germany) following a 3D CISS
sequence with a 0.9 mm slice thickness. Axial MIP-reformation (max-
imum intensity projection) with a 20 mm slab was used for visualiza-
tion of the volume of the cerebellopontine angle area.

2.4. Stabilometric examination (SE)

SE was performed using the Romberg test on the stabiloplatform ST-
150 Biomera (Russia), in the erect position, both with open and closed
eyes. Stabiloplatform is a rectangular shape unit divided into four
quadrants capable of perceiving the weight force exerted on each
quadrant.

2.5. POU3F4 gene coding region sequencing

The POU3F4 gene coding region was sequenced in the DNA samples
of five Yakut family members: both affected probands (II:3 and II:4),
their mother (I:2), sister (II:5) and the father of proband II:3 (I:1)
(Fig. 1). We also analyzed DNA samples from 68 GJB2-negative
(without changes in the GJB2 gene sequence) deaf males obtained from
the DNA Bank of the Yakut Science Centre for Complex Medical Pro-
blems (Yakutsk, Russia).

DNA was extracted from blood leukocytes using the phenol-
chloroform method. Amplification of the POU3F4 gene coding region
(exon 1) was conducted by PCR on the MJ Mini Bio-Rad (USA) ther-
mocycler with primers presented in the Supplementary Table 1
(Appendix A). PCR products were subjected to direct sequencing using

the same primers on the ABI PRISM 3130XL Applied Biosystems (USA).
Obtained nucleotide sequences were analyzed by the Sequence analysis
v.5.4 and the Chromas v.2.0 softwares and compared with the reference
sequence of the POU3F4 gene (Reference Sequence: NC_0000023.11).

2.6. PCR-RFLP analysis

Screening for c.975G>A (p.Trp325*) in the POU3F4 gene was
performed by PCR-RFLP analysis (restriction enzyme HinfI) (Appendix
A. Supplementary Table 1) in 123 DNA samples of healthy Yakut
women obtained from the DNA Bank of the Yakut Science Centre of
Complex Medical Problems (Yakutsk, Russia).

2.7. Ethical approval

Written informed consent was obtained from all individuals. This
study was approved by the local Committee on Biomedical Ethics of the
Yakut Science Centre of Complex Medical Problems (Yakutsk, Russia,
Protocol No 16, April 16, 2009).

3. Case report

We revealed identical abnormalities of the inner ear in two half-
brothers with DFNX2 (MIM 304400) from one Yakut family belonging
to indigenous population of the Sakha Republic (Fig. 1). We observed
this family during two years 2012–2014 (the ages of both brothers at
examinations were 9–10 years and 11–12 years, respectively). Both
brothers are the students of special boarding school for deaf children.
They had a prelingual hearing loss, normal intelligence, normal phy-
sical development and no changes in the GJB2 gene. All their close
relatives (mother, father and sister) had no hearing problems. We
identified a novel nucleotide substitution c.975G>A (POU3F4 gene) in
a hemizygous state in both probands (II:3 and II:4), in a heterozygous
state in their mother (I:2) and sister (II:5) (she was not subjected to a
detailed clinical examination) while variant c.975G>A was not found
in the father of proband II:3 (Fig. 1). We performed comprehensive
clinical examination including computed tomography, audiological
examination, magnetic resonance imaging and stabilometric examina-
tion in both probands (II:3 and II:4), their mother (I:2), and the father of
proband II:3.

The CT examination of both half-brothers demonstrated an ab-
normal dilatation of the internal auditory canal (IAC) as well as an
abnormally wide communication between the IAC and the inner ear
compartment (“corkscrew” cochlea with an absence of modiolus)
(Fig. 1B). The audiological examination of both half-brothers revealed
mixed (sensorineural and conductive) progressive bilateral hearing loss
(Appendix B. Supplementary Fig. 1C). The acoustic impedance for both
probands corresponded to the “As” type of tympanograms – an increase
in acoustic impedance probably due to the increasing resistance of the
cochlear endolymph (Appendix B. Supplementary Fig. 1C). MRI of the
cerebellopontine angle detected bilateral enlargements of the semi-
circular canals in probands II:3 and II:4 (Appendix B. Supplementary
Fig. 2C). Both brothers showed difficulties in maintaining the standing
position and vertical instability in the Romberg test with open and
closed eyes (Appendix B. Supplementary Fig. 2C). Stabilometry ex-
amination also revealed dystaxia probably caused by the enlarged
semicircular canals visualized by CT and MRI (Appendix B.
Supplementary Fig. 1C and Supplementary Fig. 2C). The father of
proband II:3 (without c.975G>A) did not show any clinical features of
DFNX2 (Appendix B. Supplementary Fig. 1A and Supplementary
Fig. 2A).

The mother of both probands (I:2, heterozygous for c.975G>A)
had inner auditory canal abnormalities with a cylindrical shape on the
left side and a conic shape on the right side (Fig. 1B). Moreover, she
presented different hearing thresholds (with the better ear – up to 20 dB
at low frequencies and up to 25 dB at high frequencies) and a
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tympanogram of type “As” (Appendix B. Supplementary Fig. 1B). The
proportions of her semicircular canals were enlarged compared to those
of the father of proband II:3 (without c.975G>A). In addition, she had
difficulties in maintaining the standing position and vertical instability
in the Romberg test with open and closed eyes (Appendix B.
Supplementary Fig. 2B).

4. Discussion

We revealed a novel hemizygous transition c.975G>A in the
POU3F4 gene in two deaf half-brothers from one Yakut family (Eastern
Siberia, Russia) with identical inner ear abnormalities specific to the X-
linked deafness-2 (DFNX2, MIM 304400). The c.975G>A transition
leads to a stop codon (p.Trp325*) in the evolutionary conservative and
functionally significant homeodomain of the POU3F4 (Brain 4) protein
(Appendix B. Supplementary Fig. 3). Transition c.975G>A in the
POU3F4 gene had not previously been reported in the 1000 Genomes
[13], the ESP6500 [14], and the ExAC projects [15]. In our study the
c.975G>A (p.Trp325*) variant was not found in other examined
GJB2-negative patients with hearing loss (deaf Yakut males, n = 68)
and in the control samples (healthy Yakut females, n = 123).

The comprehensive clinical examination of both half-brothers re-
vealed the association of novel truncating transition c.975G>A
(p.Trp325*) in the POU3F4 gene with inner ear malformations
(“corkscrew” cochlea with an absence of modiolus) and mixed (sen-
sorineural and conductive) progressive bilateral hearing loss. These
clinical features correspond to early reported cases of the male patients
with hemizygous pathogenic variants in the POU3F4 gene associated
with DFNX2 [16–30]. Moreover, the enlargement of semicircular canals
and the postural disorders manifesting as a moderate vertical instability
according to the Romberg test (Appendix B. Supplementary Fig. 2C)
were detected by additional MRI and computed stabilometry in two
affected siblings with c.975G>A (p.Trp325*) in the POU3F4 gene.
Thus, we believe that our findings expand currently available clinical
information [16–30] about the male patients with X-linked deafness-2
(DFNX2, MIM 304400) caused by pathogenic variants in POU3F4 gene.

In addition, thorough clinical examination of mother of the pro-
bands who was heterozygous for c.975G>A (p.Trp325*) revealed

some clinical features of the X-linked deafness-2: inner ear malforma-
tions (acoustic canal abnormalities with a cylindrical shape on the left
side and a conic shape on the right side), different types of hearing
thresholds (with the better ear – up to 20 dB at low frequencies and up
to 25 dB at high frequencies), the enlargements of semicircular canals,
and the postural disorders manifesting as a moderate vertical instability
according to the Romberg test. Similar clinical findings were observed
in some cases in females heterozygous for pathogenic variants in the
POU3F4 gene [29–37]. Available literature data on the clinical findings
in females from the DFNX2-affected families are summarized in
Supplementary Table 2 (Appendix A). Variable hearing impairment
were found in not less than 43% of the female carriers of the POU3F4
pathogenic variants and radiological abnormalities were detected in
26% of them (Appendix A. Supplementary Table 2). Observed pheno-
typic variability in the female carriers is probably due to variation in
the degree of skewing of X-inactivation and/or mosaicism for patho-
genic POU3F4 variants that requires further studies.

5. Conclusion

Novel hemizygous transition c.975G>A (p.Trp325*) in the
POU3F4 gene was revealed in two deaf half-brothers from one Yakut
family (Eastern Siberia, Russia) with identical inner ear abnormalities
specific to X-linked deafness-2 (DFNX2). The data from comprehensive
clinical evaluation (computed tomography, audiological examination,
magnetic resonance imaging and stabilometric examination) of four
members of this family expand clinical information both for the DFNX2-
affected males and for the female carriers of the pathogenic variants in
the POU3F4 gene.
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