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A B S T R A C T

The interest in discrete breathers (DB), i.e. a time-periodic and spatially localized vibrational mode in a defect
free nonlinear lattice, is related to their ability to localize vibrational energy of the order of several eV. In the
present work, for the first time, a systematic study of eight nonlinear vibrational modes localized in one spatial
dimension and delocalized in the two other dimensions is performed by means of molecular dynamics simula-
tions in defect-free single crystals of fcc metals (Al, Cu and Ni). For this goal, the standard embedded atom
method potentials are employed. Calculations are performed at a zero temperature in three-dimensional com-
putational cells. Excitation of DBs takes place via displacement of the specified atoms from their equilibrium
lattice sites according to the patterns corresponding to the delocalized nonlinear vibrational modes (DNVMs)
found earlier for a two-dimensional triangular lattice. It is revealed that only four out of the eight studied DNVMs
can support stable two-dimensional DBs with the lifetimes in the range of 24–47 ps and accumulate vibrational
energy of the order of 2 eV per atom. All excited DBs are characterized by a hard type of nonlinearity, i.e. the
frequency increases with the increasing oscillation amplitude. Obtained results indicate the presence of a wide
variety of nonlinear, spatially localized vibrational modes in three-dimensional lattices of fcc metals.

1. Introduction

In recent decades, there has been considerable interest in physical
and technological processes in which materials are exposed to influence
of high-energy particles [1]. This, in turn, causes a significant dis-
placement of atoms from their equilibrium positions in a crystal lattice,
where the nonlinear nature of interatomic interactions is fully mani-
fested. In this case, describing the scattering channels of external energy
and mechanisms of matter transport are very important. Nonlinear
lattice oscillations, which are responsible for the spatial localization of
vibrational energy, play a significant role in these processes. In parti-
cular, vibrational energy localized on a few atoms can help them to
overcome potential barriers and contribute to evolution of a defect
structure.

Nonlinear lattice oscillations can be classified as delocalized and
spatially localized. In the first case, a group of atoms oscillates with
amplitudes significantly higher than the other atoms in a crystal lattice
and possesses a translational symmetry in all coordinate directions; in
the second case, only a small group of atoms oscillates with high am-
plitudes. This stimulates for searching the ways to classify lattice os-
cillations according to various criteria, including their spatial dimen-
sion, different types of crystal lattice and chemical bonds. In this regard,

the study of various vibrational modes of large amplitude in metals is
an actual task of modern nonlinear physics.

A time-periodic and spatially localized vibrational mode in a defect
free nonlinear lattice is called discrete breather (DB). Three different
mechanisms of DB excitation in nonlinear crystals are known: (1)
spontaneous thermofluctuational generation at thermodynamic equili-
brium [2–6]; (2) an external periodic force with a frequency outside the
phonon spectrum of the system [7–9]; (3) modulation instability of a
short wave length vibrational mode, which results in spatial energy
localization in the form of large-amplitude DBs [10,11].

Intensive development of molecular dynamics methods and intera-
tomic potentials has allowed to study the properties of zero-dimen-
sional (conventional) and one-dimensional DBs in materials with dif-
ferent crystal lattices [12–27], while the properties of two-dimensional
DBs, i.e. localized in one spatial dimension and delocalized in the two
other dimensions, have not yet been sufficiently investigated in three-
dimensional lattices. Recently, such an attempt has been made in Ref.
[28], where only one (out of the eight possible) delocalized nonlinear
vibrational modes (DNVMs) has been used for excitation of two-di-
mensional DBs in fcc crystals (Al, Cu, and Ni). It turned out that DBs
excited in the (1 1 1) plane demonstrate a hard type of nonlinearity and
can exist in all three fcc metals during the time range of 17–22 ps.
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The present work is aimed to study two-dimensional DBs excited
using eight DNVMs in three-dimensional fcc single crystals (Al, Cu, and
Ni) by means of molecular dynamics simulations. It should be empha-
sized that only one-component DNVMs characterized by a single
parameter (oscillation amplitude) are considered here in contrast to the
two-component DNVMs (with two different oscillation amplitudes
within the same mode) studied recently in Ref. [29].

2. Model description and simulation setup

DNVMs are exact solutions of nonlinear equations of atomic motion,
which are completely determined by the symmetry of a crystal lattice
[30] and therefore do not depend on the type of the used interatomic
potential. Chechin and Ryabov with the help of group-theoretical ap-
proach [31,32] have derived eight one-component DNVMs in a two-
dimensional triangular lattice, which are schematically illustrated in
Fig. 1. Since a close-packed (1 1 1) plane in fcc crystal exactly re-
presents a two-dimensional triangular lattice, these DNVMs can be used
as the start configurations for excitation of two-dimensional DBs in fcc
lattice. It should be noted that according to Ref. [32], DNVMs 1, 2, 4,
and 5 are symmetrical, in which the maximal positive and negative
deviations from the equilibrium lattice positions are equal in absolute
value, while DNVMs 3, 6, 7, and 8 are asymmetrical, since for them the
positive and negative deviations are not equal.

Further, these eight DNVMs are excited and their lifetimes are in-
vestigated. If the frequency of atomic oscillations of DNVM (1) in-
creases with increasing amplitude, (2) is above the upper edge of the
phonon spectrum of the crystal, and (3) its lifetime exceeds 15 oscil-
lations, then such DNVM can be called as stable two-dimensional DB,
since atomic oscillations are localized in one direction and delocalized
in the two other directions.

Molecular dynamics simulations are performed with the use of the
LAMMPS software package [33]. Interatomic interactions in the chosen
fcc metals are described via the embedded atom method potentials
taken from the LAMMPS library [34,35]. These interatomic potentials
have been previously used to study, in particular, one-dimensional DBs
in fcc metals [26] and two-component DNVM in Ni [29]. The equili-
brium lattice constants at T = 0 K reproduced by the used interatomic
potentials are 4.05 Å for Al, 3.62 Å for Cu, and 3.54 Å for Ni.

One of the main difficulties emerging during molecular dynamics
simulations is the search of initial conditions at which DBs can be
successfully excited. Therefore, the amplitudes of initial atomic dis-
placements from the equilibrium lattice sites are varied in the wide
range of 0.05 to 0.75 Å, while the other atoms have zero initial dis-
placements. All atoms at the beginning of the simulation have zero
initial velocities. The time step is chosen equal to 1 fs, which is suffi-
cient for this type of simulations. Periodic boundary conditions are
applied along the three orthogonal directions of the computational cell.

Fig. 1. Eight one-component DNVMs found in Refs. [31,32]. DNVMs 1, 2, 4, and 5 are symmetrical, DNVMs 3, 6, 7, and 8 are asymmetrical. The red dashed line
shows the unit cell of the vibrational state in the plane. The black arrows indicate atomic displacements from the equilibrium lattice sites. The length of all
displacement vectors at the initial moment of time is the same for all atoms in DNVM and equal to A.
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All molecular dynamics simulations are performed at zero initial tem-
perature T = 0 K using the NVE thermodynamic ensemble (constant
number of atoms, volume, and energy). It should be noted that the
usage of zero temperature is preferable for the observation of the stu-
died phenomena, since the thermal fluctuations of neighboring atoms
considerably disturb oscillation of the atoms belonging to DNVM and
thus reduce the lifetime of two-dimensional DB. The duration of si-
mulations is limited to 4 × 104 timesteps, which corresponds to 40 ps.

The phonon density of states (DOS) is calculated according to the
standard method implemented in LAMMPS. The Green's function mo-
lecular dynamics method involves calculation of the dynamical matrix
based on fluctuation–dissipation theory for a group of atoms and de-
scribed in detail in Refs. [33,36]. The measure of the Green’s function is
occurred every 10 timesteps, and totally 10 million timesteps at a
constant temperature of 20 K using NVT thermodynamic ensemble
(constant number of atoms, volume, and temperature) are performed.
The DOS calculated for Al, Cu, and Ni are presented in Fig. 2. The upper
edges of phonon spectrum, which are the most important for this study,
are 10.0 THz for Al, 7.9 THz for Cu, and 10.3 THz for Ni.

The relevant data regarding the sizes of the computational cell, the
number of atoms in them, equilibrium lattice constants at T= 0 K and
the upper edge of phonon spectrum for the studied fcc metals are
summarized in Table 1.

3. Simulation results and discussion

Molecular dynamics simulations reveal that only DNVMs 2, 3, 5,
and 7 out of the eight illustrated in Fig. 1 can support stable two-di-
mensional DBs, while DNVMs 1, 4, 6, and 8 are found to be unstable in
all three fcc metals and dissipate their vibrational energy during a few
oscillation periods on the neighboring atoms in the form of small-am-
plitude waves. It should be reminded that DNVMs 2 and 5 are sym-
metrical and DNVMs 3 and 7 are asymmetrical. The simulation results

are summarized in Table 2. All atomic oscillations of the stable two-
dimensional DBs are localized in one atomic plane of the three-di-
mensional crystal, where they were initially excited. The amplitude of
atomic oscillations decreases exponentially with the distance from this
plane.

The dependences of the lifetime, oscillation frequency, and total
vibration energy per atom for four stable DBs excited based on DNVMs
2, 3, 5, and 7 on the initial amplitude A are shown in Fig. 3. In the range
of small initial amplitudes A= 0.05–0.15 Å for Al, A= 0.05–0.10 Å for
Cu, and A < 0.05 Å for Ni, the lifetimes are short and do not exceed
5 ps. It is interesting to note that the lifetime maxima are reached for
DBs excited based on DNVM 2 and are equal to 23, 47, and 37 ps at
initial amplitudes of 0.25, 0.20, and 0.20 Å for Al, Cu, and Ni, re-
spectively. The second long-lived DBs (18 ps for Al, 25 ps for Cu, and
17 ps for Ni) are excited by means of DNVM 5 at almost the same initial
amplitudes as for DNVM 2. The corresponding lifetimes of DBs excited
using DNVM 7 are noticeably lower than those for DNVM 2 and 5. DB
based on DNVM 3 can be excited only at higher amplitudes and its
lifetime is considerably lower in comparison with the other stable DBs.
As seen in Fig. 3, the lifetimes of two-dimensional DBs are rather short
outside the range of initial amplitudes specified in Table 2. The fact that
excitation of DBs in Ni begins at lower initial amplitudes as compared
with Al and Cu is due to the harder bonds between atoms in the crystal
lattice.

All two-dimensional DBs excited on the basis of one-component
DNVM 2, 3, 5, and 7 obtain a hard type of nonlinearity, i.e. demonstrate
an increase of the oscillation frequency with the increasing amplitude.
For all metals, the slope of the dependences frequency vs. initial am-
plitude at low amplitudes differs from that at higher amplitudes. It is
related to the fact that at larger atomic displacements from the equili-
brium lattice sites the core of the interatomic potential contributes
more significantly to the dynamics of the system as compared to its soft
tail. The oscillation frequencies of all stable DBs are above the upper
edge of the phonon spectrum of the corresponding fcc metals, thus
providing noninteraction with the lattice phonons.

The full (kinetic plus potential) vibrational energy per oscillating
atom of DBs excited using DNVMs 2, 3, 5, and 7 as function of initial
amplitude is demonstrated in Fig. 3. As expected, the energy increases
with the increasing amplitude. At low initial amplitudes (A ≤ 0.2 Å),
the differences between the dependences E(A) for all four stable DBs are
very small, and the data points are almost overlay each other. At higher
amplitudes (A≥ 0.2 Å) the behaviors of the curves for Al are noticeably
different for different DBs. In particular, a clear saturation of the vi-
brational energy vs. initial amplitude is seen for DBs excited by means
of DNVMs 2 and 5, but it does not occur for DB excited based on DNVM
7, and the energy continues to increase with the increasing amplitude.
At the same time, these differences are not so distinctly pronounced for
Cu and Ni even at high initial amplitudes (see Fig. 3) and corresponding
curves for these two metals behave similarly. Two-dimensional DBs
with the lifetimes longer than 5 ps can accumulate up to 0.6 eV for Al,
1.0 eV for Cu, and 1.5 eV for Ni of the vibrational energy per atom. At
higher initial amplitudes and lower lifetimes, accumulated vibrational
energy of two-dimensional DBs can reach the values of 3 eV. It is worth
noting the following tendency, which directly follows from the obtained

Fig. 2. The phonon density of states (DOS) calculated for fcc metals (Al, Cu, and
Ni).

Table 1
The sizes of the three-dimensional computational cells along the x-, y- and z-directions, number of atoms (N) used for calculation of eight DNVMs, lattice constant a0
at T = 0 K and the upper edge of phonon spectrum (ω) for the studied fcc metals.

Metal a0 (Å) ω (THz) computational cell (Å) N

DNVMs
1, 2, 4, 5

DNVMs
3, 6, 7, 8

DNVMs
1, 2, 4, 5

DNVMs
3, 6, 7, 8

Al 4.05 10.0 125.1 × 78.8 × 76.6 119.4 × 59.1 × 76.6 46,464 33,264
Cu 3.62 7.9 112.5 × 70.8 × 68.9 107.4 × 53.1 × 68.9 46,464 33,264
Ni 3.54 10.3 109.5 × 68.9 × 67.1 104.5 × 51.7 × 67.1 46,464 33,264
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Table 2
Summary of the simulation results of eight DNVMs in fcc metals (Al, Cu and Ni). The sign “+” means that stable two-dimensional DB exists, and the “–” sign means
that excitation of DB based on this DNVM does not occur. The range of initial amplitudes (in Å) at which long-lived two-dimensional DBs can be excited is presented
below.

Metal DNVMs

1 2 3 4 5 6 7 8

Al – +
0.15 ≤ A ≤ 0.55

– – +
0.15 ≤ A ≤ 0.40

– +
0.40 ≤ A ≤ 0.70

–

Cu – +
0.15 ≤ A ≤ 0.50

+
0.50 ≤ A ≤ 0.70

– +
0.15 ≤ A ≤ 0.35

– +
0.40 ≤ A ≤ 0.70

–

Ni – +
0.10 ≤ A ≤ 0.45

+
0.45 ≤ A ≤ 0.70

– +
0.15 ≤ A ≤ 0.30

– +
0.35 ≤ A ≤ 0.65

–

Fig. 3. The lifetime, oscillation frequency, and full vibration energy per atom of two-dimensional DBs as functions of initial oscillation amplitude A calculated for fcc
metals (Al, Cu, and Ni). The numbers in the legend indicate the corresponding DNVMs illustrated in Fig. 1, based on which two-dimensional DBs are excited. The
results are presented only for stable two-dimensional DBs. The solid lines interpolating the data points are guides to the eye.
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results. Namely, the harder the bonds between atoms in crystal lattice,
the less the vibrational energy differentiation between the stable DBs.

The dependences of the steady-state amplitude (a) vs. the initial

amplitude (A) for Al, Cu, and Ni are demonstrated in Fig. 4. For DBs,
excited on the basis of DNVM 2, after a certain transient period oc-
curring at low amplitudes, the linear dependence a(A) is observed at
A ≥ 0.25 Å. Note that the data points for DNVM 2 are rather close to
the line a = A, but still below it, i.e. an inequality A > a is always
fulfilled. The steady-state amplitudes for DB excited using DNVM 5 are
also always less than the corresponding initial ones. This is a clear
demonstration of the fact that the energy initially given to the atoms of
DNVMs dissipates during several oscillation periods in the form of low-
amplitude oscillations onto neighboring atoms.

Similar ratio A > a is observed for asymmetrical DNVMs 3 and 7,
while DNVM 3 in Al is found to be unstable (see Fig. 4). As shown by
the preliminary calculations, which are not included in the present
paper, this ratio can be violated for asymmetrical DNVMs, i.e. A ≤ a,
and depends on the direction along which the atomic displacements are
initiated. This fact can be easily explained in the following way. In-
asmuch as the maximal positive and negative displacements of atoms
from their equilibrium lattice sites are not equal in absolute value for
asymmetrical DNVMs (for details see Ref. [32]), then there are always
“the long” and “the short” arms in atomic oscillations. Initial dis-
placement A along “the long” arm will lead to a displacement A / α
along “the short” arm, where the coefficient α > 1. In the case when
initial displacement A is assigned along “the short” arm, atomic dis-
placement along “the long” arm from the equilibrium site results in α-
times larger displacement, i.e. α × A. Thus, initiation of atomic dis-
placements along “the short” arm in the chosen amplitude range pro-
voked fast energy dissipation on neighboring lattice atoms and, as
consequence, instability of asymmetrical DNVMs. Therefore initial
atomic displacements for all asymmetrical DNVMs in this work were
performed along “the long” arm.

Molecular dynamics simulations of two-dimensional DBs excited on
the basis of the one-component DNVM 5 have been performed for three
fcc metals (Al, Cu, and Ni) in a larger computational cell [28], which
gives an opportunity to elucidate a dependence of the simulation results
on the cells size. Comparative analysis shows that an increase of com-
putational cell does not lead to noticeable altering of the all three de-
pendencies (steady-state amplitude, lifetime, and frequency as the
functions of initial displacement amplitude).

Due to the lack of the simulation data, the following comparison
with DBs of different dimensions is of preliminary character.
Nevertheless, let us compare the maximal lifetimes of one-dimensional
DBs [26] and two-dimensional DBs excited on the basis of the two-
component DNVM [29] with the present results. Comparison is made
only for Ni, due to the lack of the results for the other fcc metals in Ref.
[29]. The maximal lifetimes are 15 ps for one-dimensional DB [26],
9.5 ps for two-dimensional DBs excited using two-component DNVM
[29], and 38 ps for two-dimensional DBs excited on the basis of the one-
component DNVM 5 (see Fig. 3). Therefore, it can be concluded that the
two-dimensional DBs are the most long-lived ones among the studied
earlier, which opens up new perspectives of their experimental ob-
servation.

The decay of one-component DBs investigated here differs from that
previously found for two-component DBs [29]. Namely, no gradual
decrease of its spatial dimension via first formation of oscillating chains
(one-dimensional DBs) in the origin plane, and further dissipation of
their vibrational energy onto neighboring atoms are observed. On the
contrary, the decay of one-component DBs occurs at some moment of
time by the deviation of one (or several) oscillating atoms from the
given displacement vector, which is caused by the loss of vibrational
energy due to interaction with nearest neighbors, and results in a dis-
placement cascade that propagates very quickly in a given plane. After
several oscillation periods, most atoms return to their equilibrium lat-
tice sites, and only a few of them jump into the neighboring interstitial
lattice sites and remain there up to the end of the simulation. It is ob-
vious, that such jumps can occur only at large initial amplitudes, which,
for example, for DB excited on the basis of asymmetrical DNVM 7 are

Fig. 4. Steady-state amplitude of two-dimensional DBs as functions of initial
displacement amplitude calculated for Al, Cu, and Ni. The numbers in the le-
gend indicate the corresponding DNVMs illustrated in Fig. 1, based on which
two-dimensional DBs are excited. The results are presented only for stable two-
dimensional DBs. The dashed line, as a guide, demonstrates the dependence of
a = A. The gray area shows the region where a < A. The solid lines inter-
polating the data points are guides to the eye.
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A ≥ 0.65 Å (Al), A ≥ 0.6 Å (Cu), and A ≥ 0.65 Å (Ni). It is worth
noting that this discrepancy between the initial amplitude and the bond
stiffness of the fcc metals can be easily explained by the difference in
the lattice parameters. Namely, among the studied fcc metals Al has the
largest lattice parameter a0 (see Table 1), while Ni has the smallest one.
Therefore, the ratios A/a0 are 0.160 (Al), 0.166 (Cu), and 0.184 (Ni),
i.e. they increase as expected with increasing bond stiffness. Thus, the
energy released during the destruction of two-dimensional DBs can lead
to the knocking out of atoms from the crystal lattice sites and to an
appearance of interstitial atoms contributing to evolution of a defect
structure.

4. Conclusions

For the first time, the possibility of existence of two-dimensional
DBs localized along one direction and delocalized along the two other
spatial directions in three-dimensional single crystal of fcc metals (Al,
Cu, and Ni) was demonstrated via molecular dynamics simulations. The
eight one-component DNVMs determined earlier by Chechin and
Ryabov for two-dimensional triangular lattice by means of group-the-
oretical approach were used for excitation of two-dimensional DBs. It
was found that stable DBs can be excited on the basis of four out of the
eight DNVMs (2, 3, 5, 7). The lifetimes of these DBs are in the range of
24–47 ps. DBs can accumulate vibrational energy of the order of
0.6–1.5 eV per atom, which is more than sufficient to overcome po-
tential barriers and locally facilitate diffusion processes. The stable two-
dimensional DBs in fcc metals are characterized by a hard type of
nonlinearity, i.e. the frequency increases with the oscillation amplitude.
The other four DNVMs (1, 4, 6, 8) are found to be unstable in three-
dimensional lattice and quickly radiate their vibrational energy into the
crystal.

Obtained results broaden our understanding of variety of nonlinear
spatially localized vibrational modes in fcc metals and opens up new
class of two-dimensional DBs which are yet to be explored in the near
future in materials with different crystal lattice. A logical continuation
of the present work will be an investigation of possibility of excitation
of plane-radial DBs by imposing a localized radial function on the stable
DNVMs, similar to that studied recently in Ref. [28]. It is also tempting
to investigate two-dimensional DNVMs on the close-packed surfaces of
fcc and hcp metals [37]. The final goal of studying DBs in crystals is to
understand their possible contribution to macroscopic [38] and tribo-
logical [39,40] properties of materials.
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