УДК 547.841:541.63

СТРОЕНИЕ И КОНФОРМАЦИОННЫЙ АНАЛИЗ 5,5-БИС(БРОММЕТИЛ)-2-(4-МЕТОКСИФЕНИЛ)-1,3-ДИОКСАНА

© Ш.Ю.Хажиев,¹ М.А.Хусаинов,¹ Р.А.Халиков,² Т.В.Тюмкина,³ Е.С.Мещерякова,³ Л.М.Халилов,³ В.В.Кузнецов^{1,4@}

 ¹Уфимский государственный нефтяной технический университет
 ²Башкирский государственный медицинский университет, Уфа
 ³Институт нефтехимии и катализа РАН, Уфа
 ⁴Уфимский государственный авиационный технический университет 450008, Уфа, ул. К.Маркса, 12; e-mail: kuzmaggy@mail.ru Поступила 12 января 2018 г.

С помощью ЯМР¹H, ¹³C и данных рентгеноструктурного анализа исследовано строение 5,5-бис-(бромметил)-2-(4-метоксифенил)-1,3-диоксана. Молекулы рассматриваемого соединения пребывают в конформации кресла с экваториальной арильной группой. С помощью компьютерного моделирования в рамках DFT метода PBE/3 сустановлены маршрут интерконверсии кольца, а также свободная конформационная энергия и оптимальная конформация арильной группы. Результаты расчета соответствуют данным рентгеноструктурных измерений.

Известно, что 1,3-диоксаны используются в качестве реагентов тонкого органического синтеза, а также являются классическими объектами конформационного анализа [1-4]. Особое место среди шестичленных циклических ацеталей занимают 5,5-бис(галогенметил)-1,3-диоксаны. Это обусловлено наличием дополнительных реакционных центров – атомов галогенов, вступающих в реакции нуклеофильного замещения. В частности, бис(хлорметил)аналоги относительно легко превращаются в моно- и дииодпроизводные; при этом процесс протекает стереоселективно и идет преимущественно по экваториальному хлорметильному заместителю [5].

Конформационное поведение формалей 5,5-бис-

(галогенметил)-1,3-диоксанов при комнатной температуре характеризуется быстрой в шкале времени ЯМР интерконверсией цикла [6, 7], а для 2-замещенных аналогов – преимущественной формой *кресла* с экваториальным заместителем у атома C² кольца (*Ke*) [8– 10]. Настоящая работа посвящена изучению строения и конформационных превращений не описанного ранее 5,5-бис(бромметил)-2-(4-метоксифенил)-1,3диоксана 1 с помощью ЯМР ¹H, ¹³C, РСА и метода DFT, функционал PBE/3ξ (программное обеспечение ПРИРОДА [11]).

Образец диоксана 1 получен конденсацией 2,2-бис-(бромметил)пропан-1,3-диола с анисовым альдегидом.

Был проведен РСА кристаллов диоксана 1 (см. экспериментальную часть), соединение зарегистрировано в Кембриджской базе структурных данных, ССDС № 1813094.

Структура молекулы ацеталя **1** отвечает конформации *кресла* с экваториальной арильной группой (*Ke*, рис. 1). При этом плоскости ароматического кольца и фрагмента O¹⁴C¹⁷C⁵O¹² 1,3-диоксанового цикла располагаются под углом 91.8 град. Для гетероатомной части гетероциклического кольца характерны ожидаемые длины связей С–О (1.409–1.423 Å) и валентные углы, близкие к 110 град. Торсионные углы также близки к наблюдаемым в конформации *кресло* (табл. 1) [2, 12]. Бромметильные заместители находятся в *гош*-положении друг относительно друга (рис. 1); ранее с помощью квантово-химических расчетов [9] было показано, что такая форма отвечает минимуму энергии по сравнению с альтернативными конформациями связей углерод–галоген в замещающих группах у атома С⁵ 1,3-диоксанового цикла. Метоксигруппа практически копланарна плоскости ароматического кольца: соответствующий торсионный угол 6.4 град.

Рис. 1. Строение молекулы 5,5-бис(бромметил)-2-(4-метоксифенил)-1,3-диоксана 1 по данным РСА. Таблица 1

Избранные длины связей, валентные и торсионные углы в молекуле 5,5-бис(бромметил)-2-(4-метоксифенил)-1,3-диоксана 1									
Связь	Длина связи, Å		Валентный	ф, град		Торсионный	τ, град		
	расчет	эксперимент	угол	расчет	эксперимент	угол	расчет	эксперимент	
$\mathrm{Br}^{1}-\mathrm{C}^{19}$	1.989	1.951(5)	$O^{14}C^8O^{12}$	110.6	110.0(4)	C ⁶ C ¹⁰ C ⁸ O ¹²	80.5	62.7(7)	
$C^{5}-O^{12}$	1.429	1.423(6)	$C^{17}O^{14}C^8$	110.8	112.8(4)	$C^4 C^{10} C^8 O^{14}$	140.8	120.2(6)	
$C^{8}-O^{12}$	1.432	1.420(6)	$C^5O^{12}C^8$	110.8	110.9(4)	$C^{8}O^{14}C^{17}C^{13}$	-59.4	-59.1(3)	
$C^{8}-O^{14}$	1.425	1.409(7)	$C^{13}C^{17}O^{14}$	111.6	110.0(4)	$O^{14}C^{17}C^{13}C^{5}$	52.9	54.0(6)	
$C^{13} - C^{16}$	1.529	1.507(8)	C ¹³ C ⁵ O ¹²	111.8	111.5(4)	$C^{8}O^{12}C^{5}C^{13}$	58.6	59.7(6)	
C ⁸ –C ¹⁰	1.504	1.497(7)	C ⁵ C ¹³ C ¹⁷	105.8	106.0(5)	$C^{15}C^9O^4C^{11}$	-0.1	6.4(9)	

Данные ЯМР (табл. 2) свидетельствуют о высокой конформационной однородности молекул ацеталя 1 в растворе. Отнесения сигналов в спектрах ЯМР ¹Н и ¹³С выполнены по данным 1D и 2D спектроскопии с использованием режимов DEPT 135, NOESY, COSY НН и HSQC. Метиленовые протоны при магнитно эквивалентных атомах C⁴ и C⁶ гетероциклического кольца являются диастереотопными ($\Delta \delta$ 0.4 м.д.) и проявляются в спектре ЯМР ¹Н в виде двух дублетов с геминальной константой ²J –11.8 Гц. Метиленовые протоны брометильных заместителей при атоме C⁵ кольца магнитно неэквивалентны ($\Delta \delta$ 0.7 м.д.);

Таблица 2

Спектры ЯМР ¹Н и ¹³С 5,5-бис(бромметил)-2-(4-метоксифенил)-1,3-диоксана **1**

Протоны	ЯМР ¹ Н, м.д. (² <i>J</i> , Гц)	Атомы С	ЯМР ¹³ С, м.д.
H^{a}	5.4 c	C^2	102.3
H^{A}	3.9–3.8 д (11.8)	C^4 , C^6	71.9
H^{B}	4.3–4.2 д (11.8)	C^5	37.4
$CH_2Br(a)$	4.0 c	C^7	36.1
$CH_2Br(e)$	3.3 c	C^{δ}	34.6
CH ₃ O	3.8 c	C(OCH ₃)	55.4

при этом на основании NOESY эксперимента установлено, что сигнал протонов аксиальной группы CH₂Br проявляется в более слабом поле (табл. 2). Сигнал наиболее слабопольного углеродного атома гетероциклического кольца в спектре ЯМР ¹³С принадлежит атому C² (102.3 м.д.); в спектре HSQC он коррелирует с сигналом протона H^a при 5.4 м.д.

Полученные результаты подтверждаются данными конформационного анализа диоксана 1 в рамках расчетного приближения PBE/3 ξ . На поверхности потенциальной энергии этого соединения выявлены четыре минимума: конформеры *Ke* (**A**, **B**), *Ka* и 2,5-*T*, а также два переходных состояния ПС-1 и ПС-2. Расчетные значения длин связей, а также валентных и торсионных углов близки к данным рентгеноструктурного эксперимента (табл. 1).

Формы **A** и **B**, полученные при внутреннем вращении арильной группы, практически вырождены по энергии (рис. 2, табл. 3). Однако плоскости ароматического кольца и фрагмента $O^{I4}C^{I7}C^5O^{I2}$ в конформере **A** располагаются под углом 96 град, близким к данным PCA (91.8 град), а в форме **B** они практически копланарны. Потенциальный барьер внутреннего вращения экваториальной арильной группы ($\Delta G_{298}^{\ddagger}$, ПС 2-Ar) в форме *Ke*, по данным PBE/3 ξ , составляет 2.0 ккал/моль, а для метоксигруппы в конформере *Ke* (форма **A**, ПС ОСН₃) – 4.2 ккал/моль (табл. 3). Таким образом, для молекул диоксана **1** в газовой фазе при комнатной температуре осуществляется заторможенное вращение обоих заместителей.

Таблица 3

Энергетические параметры конформационных превращений молекул 5,5-бис(бромметил)-2-(4-метоксифенил)-1,3-диоксана 1 по данным расчета PBE/3ξ

Конформер	$-E_0$, Хартри ^а	$\Delta E_0^0,$ ккал/моль $(\Delta E_0^{ eq})$	$\Delta H^0_{298},$ ккал/моль $(\Delta H^{\sharp}_{298})$	$\Delta G^0_{298},$ ккал/моль (ΔG^{\neq}_{298})	ΔS ⁰ ₂₉₈ , кал/(моль·К) (ΔS [∉] ₂₉₈)
Ke, A	5877.436997	0.01	0	0	0
В	5877.436974	0	0.01	0.08	-0.3
Ка	5877.432858	2.6	2.5	3.4	-3.0
2,5- <i>T</i>	5877.431091	3.7	3.7	3.2	1.9
ПС-1	5877.421975	9.4	9.1	9.4	-1.0
ПС-2	5877.419970	10.7	10.4	11.1	-2.3
<i>Ке</i> , ПС 2-Аг	5877.436732	0.2	-0.4	2.0	-8.2
<i>Ке</i> , В , ПС ОСН ₃	5877.431052	3.7	3.4	4.2	-2.8

Примечание. ^аС учетом *ZPE*.

Рис. 2. Зависимость энергии конформера *Ке* от угла внутреннего вращения фенильной группы (H^aC²C_{аром},C'_{аром}) при 0 К.

Формы *Ка* и 2,5-*Т* достаточно близки по энергии (ΔG_{298}^0) . Переходные состояния – конформации *полу*кресла – различаются на 1.7 ккал/моль (ΔG_{298}^{\neq}) ; при этом максимальная высота потенциального барьера (11.0 ккал/моль) хорошо согласуется с данными эксперимента для 1,3-диоксанов [2]. Следует также отметить отсутствие на ППЭ промежуточного минимума 1,4-*твист*, характерного для равновесия молекул незамещенного, а также 2-, 4-, 5-, 2,5- и 4,4-замещенных 1,3-диоксанов [12].

Экспериментальная часть

Спектры ЯМР получены на спектрометре Bruker Avance 400 с рабочими частотами 400.13 (¹H) и 100.62 (¹³C) МГц (растворы в CDCl₃), стандарт – CDCl₃ и остаточные протоны растворителя.

Рентгеноструктурный анализ проведен на автоматическом четырехкружном дифрактометре XCalibur Eos (графитовый монохроматор, Мо K_{α} излучение, $\lambda 0.71073$ Å, ω -сканирование, $2\theta_{\text{макс.}}$ 62 град). Сбор и обработка данных произведены с помощью программы CrysAlis^{Pro} Oxford Diffraction Ltd., версия 1.171.36.20. Структуры расшифрованы прямым методом и уточнены полноматричным методом наименьших квадратов в анизотропном приближении для неводородных атомов. Атомы водорода локализованы в разностном синтезе Фурье и уточнены изотропно. Расчеты выполняли по программе SHELX97 [13]. Кристаллографические данные и детали рентгеноструктурного эксперимента: *T* 293(2) К, кристаллическая система моноклинная, пространственная группа P2₁/с; параметры ячейки *a* 14.7130(8), *b* 8.4871(5), *c* 11.3429(6) Å; β 91.844(5) град, *V* 1415.66(14) Å³, *Z* 4, $\rho_{\text{выч.}}$ 1.783 мг/мм³, μ 5.724 мм⁻¹, *F*(000) 752.0; область сканирования по θ 5.54–58.198 град; индексы отражений –19 $\leq h \leq 10$, –11 $\leq k \leq 6$, –14 $\leq l \leq 15$; независимых отражений 3258 (R_{int} 0.0260), *GOOF* 0.978; для отражений *R*₁ 0.1027, *wR*₂ 0.1757; $\Delta \rho_{\text{мин./макс.}}$ 1.16/–0.85 еÅ⁻³.

Первоначальную оптимизацию геометрии конформеров Ке и Ка ацеталя 1 проводили в рамках программного обеспечения HyperChem 8.0 (AM1) [14]. После этого полученные структуры исследовали методом РВЕ/3ξ (ПРИРОДА [11]). Моделирование конформационных превращений арильной группы в конформере Ке диоксана 1 осуществляли путем оптимизации геометрии в ходе изменения торсионного угла H^{*a*}C²C_{аром.}С'_{аром.} в пределах –90–90 град (рис. 2); моделирование интерконверсии цикла проводили путем сканирования внутрициклического торсионного угла СССО в пределах -60-60 град. Значения потенциальных барьеров установлены с помощью процедуры поиска переходных состояний в рамках программного обеспечения ПРИРОДА. Принадлежность стационарных точек поверхности потенциальной энергии к переходному состоянию подтверждалась наличием одной мнимой частоты в соответствующем гессиане, а к минимуму – отсутствием мнимых частот.

5,5-Бис(бромметил)-2-(4-метоксифенил)-1,3диоксан (1). Эквимолекулярную смесь (0.1 моль) 2,2-бис(бромметил)пропан-1,3-диола и анисового альдегида в 300 мл бензола в присутствии 0.1 г ТsOH кипятили с обратным холодильником до прекращения выделения воды в ловушке Дина–Старка, промывали 5%-ным раствором гидрокарбоната натрия (2×50 мл), растворитель отгоняли, остаток перекристаллизовывали из EtOH. Выход 73%, т.пл. 117–118°С.

Структурные исследования диоксана 1 проведены в Центре коллективного пользования «Агидель» при Институте нефтехимии и катализа РАН.

Работа выполнена при финансовой поддержке Минобрнауки России (проект № 16.1969.2017/4.6).

Список литературы

- Рахманкулов Д.Л., Караханов Р.А., Злотский С.С., Кантор Е.А., Имашев У.Б., Сыркин А.М. Итоги науки и техники. Технология органических веществ. М.: ВИНИТИ, **1979**, *5*, 6.
- Внутреннее вращение молекул. Ред. В.Дж.Орвилл-Томас. М.: Мир, 1975, 355.
- 3. Кузнецов В.В. XГС. 2006, 643. [Kuznetsov V.V. Chem. Heterocyclic Compd. 2006, 42, 559.]
- 4. Кузнецов В.В. Изв. АН. Сер. хим. 2005, 1499. [Kuznetsov V.V. Russ. Chem. Bull. 2005, 54, 1543.]
- 5. Курмаева Е.С., Чалова О.Б., Чистоедова Г.И., Лапука Л.Ф., Киладзе Т.К., Кантор Е.А., Рахманкулов Д.Л. *ЖОрХ*. **1985**, *21*, 131.
- 6. Бочкор С.А., Лапука Л.Ф., Курмаева Е.С., Чалова О.Б., Злотский С.С., Рахманкулов Д.Л. *ХГС*. **1987**, 607.
- Хажиев Ш.Ю., Хусаинов М.А., Кантор Е.А. *ЖОХ*. 2011, *81*, 155. [Khazhiev Sh.Yu., Khusainov M.A., Kantor E.A. *Russ. J. Gen. Chem.* 2011, *81*, 153.]
- 8. Хусаинов М.А., Старикова З.А., Мусавиров Р.С. ЖСХ. **1988**, 29, 149.
- Хажиев Ш.Ю., Хусаинов М.А., Кантор Е.А. ЖОрХ. 2011, 47, 454. [Khazhiev Sh.Yu., Khusainov M.A., Kantor E.A. Russ. J. Org. Chem. 2011, 47, 450.]
- Хажиев Ш.Ю., Хусаинов М.А. ЖОрХ. 2017, 3, 707. [Khazhiev Sh.Yu., Khusainov M.A. Russ. J. Org. Chem. 2017, 53, 717.]
- 11. Лайков Д.Н., Устынюк Ю.А. *Изв. АН. Сер. хим.* **2005**, 804. [Laikov D.N., Ustynyuk Yu.A. *Russ. Chem. Bull.* **2005**, *54*, 820.]
- 12. Кузнецов В.В. ЖОрХ. **2014**, *50*, 1247. [Kuznetsov V.V. *Russ. J. Org. Chem.* **2014**, *50*, 1227.]
- 13. Sheldrick G.M. Acta Cryst. 2008, A64, 112.
- 14. HyperChem 8.0. http://www.hyper.co.