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Thymidylate synthase (ThS) is a target for antimetabolite antitumor drugs. Such drugs have been used in the

clinic although they cause several severe side effects and accumulate in tissues. Therefore, new less toxic ThS

inhibitors must be sought and created. The GUSAR 2013 program was used to study the quantitative structure –

activity relationship (QSAR) of a series of antifolate ThS inhibitors in the IC
50
range 0.52 – 24,800.00 nM.

Statistically significant QSAR models were constructed using MNA- and QNA-descriptors and self-consis-

tent regression. They typically predicted highly accurately the structures of the training and test sets (R
train

2
:

0.855 – 0.922; R
train

3
: 0.810 – 0.895; R

test1

2
: 0.734 – 0.790; R

test2

2
: 0.800 – 0.835).

Keywords: antifolate thymidylate synthase inhibitors, QSAR, GUSAR 2013, QNA- and MNA-descriptors,

structure—activity relationship analysis.

Thymidylate synthase (ThS, EC 2.1.1.45) is a bisubstrate

enzyme in which deoxythymidine monophosphate, a nucleo-

tide required for DNA synthesis, is synthesized [1 – 4]. ThS

activity was elevated in tumor cells because of their high

growth and development rates [3, 4]. Therefore, this enzyme

is a target for antimetabolite antitumor drugs. However, anti-

tumor drugs that are currently used in medical practice re-

duce ThS activity directly or indirectly, e.g., methotrexate

and raltitrexed, cause several severe side effects. Further-

more, these drugs and their analogs accumulate in tissues,

which further enhances their toxic properties [5 – 7]. There-

fore, the search for biologically active compounds that can

inhibit ThS activity and; therefore, slow DNAbiosynthesis in

tumor cells, is an important practical problem for medicinal

chemistry aimed at the development of efficacious drugs.

Solving the problem using exclusively empirical analysis of

biological data without invoking computational chemistry

methods is a difficult task that requires significant time and

material expenses [8]. Also, virtual screening methods based

on analysis of (quantitative) structure—activity relationships

[(Q)SARs] [9 – 12] can be employed in preclinical tests to

select lead compounds with a given activity profile from li-

braries and databases for in vivo biological tests [11, 12].

This approach could shorten considerably the time and mate-

rial expenses for seeking and developing potential antifo-

late-type ThS inhibitors.

Thus, the goal of the present work was to construct and

validate QSAR models for selective ThS inhibitors among

quinazoline derivatives with general structural formulas

I – VI (Fig. 1) based on two-dimensional representations of

their structural formulas. These compounds have structures

that are highly similar to ThS coenzyme, 5,10-methylenetet-

rahydrofolate, so that they are promising for development of

ThS inhibitors based on them.

EXPERIMENTAL PART

The QSAR analysis for the ThS inhibitors used the Gen-

eral Unrestricted Structure Activity Relationships (GUSAR

2013) computer program [9 – 11]. QSAR models were con-

structed in several steps using the method given below and

described in detail before [13, 14].
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Training (TrS1-TrS3) and test sets (TeS1-TeS2) for con-

structing the QSAR models (M1-M9) and validating them

were formulated based on literature data [15 – 20] presented

in sets S1-S3 according to the diagram shown in Fig. 2.

Training set TrS1 was intended for constructing QSAR

models M1-M3, was formulated based on set S1, and in-

cluded 196 antifolate-type ThS inhibitor structures. The in-

hibitory activities IC
50

of these compounds were evaluated

experimentally before [15 – 20]. Sets S2 and S3 were pro-

duced by breaking down set S1 in a 2:1 ratio after prelimi-

nary ranking by increasing IC
50

values. Then, training set

TrS2 and test set TeS1 were formulated based on sets S2 and

S3. Set S3 contained 66 compounds covering a broad activity

range. This enabled it to be used as training set TrS3 for for-

mulating models M7 – M9. In this instance, structures of set

S2 were selected as test set TeS2 for validating models

M7 – M9. Also, the predictive abilities of models M1 – M3

were evaluated using structures of the external test set TeS3,

which contained 16 quinazoline derivatives with structures

similar to those of sets S1 – S3. The inhibitory activity of

compounds in TeS3 were previously studied experimentally

under the same conditions as for compounds in TrS1 – TrS3

[21]. QSAR models M1-M9 were constructed by transform-

ing IC
50
data in sets S1 – S3 (in mol/L) into pIC

50
values us-

ing the formula:

pIC
50
= – log10(IC

50
).

The GUSAR 2013 program was used to create the QSAR

models so that they could be used further for quantitative

predictions of the inhibitory activity of the quinazoline deriv-

atives for ThS. The ideology for constructing QSAR models

using this program was discussed before in detail [11 – 14].

Two types of atom-centered descriptors, i.e., substructural

multilevel neighborhoods of atoms (MNA) and electro-topo-

logical quantitative neighborhoods of atoms (QNA) were

used to describe the compound structures and construct the

QSAR models [9 – 14]. These types of descriptors were

computed automatically from chemical structural formulas

represented in 2D-format considering the valence and partial

charges on their atoms. Specifics of the bond types with re-

spect to stereochemistry were not taken into account. Three
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IV V VI

Fig. 1. General structural formulas of modeled antifolate ThS inhibitors.

TABLE 1. Statistical Characteristics and Evaluation of Accuracy

of Predicted pIC
50

Values for ThS Inhibitors by Consensus Models

M1-M9

Trai-

ning set
Model N R

TrS

2
Q
TrS

2
F S. D. V R

iTeS

2

QSAR models based on QNA descriptors

TrS1 M1 196 0.895 0.869 65.386 0.363 21 -

TrS2 M4 130 0.857 0.821 42.917 0.420 14 0.800
a

TrS3 M7 66 0.867 0.818 30.872 0.420 10 0.734
b

QSAR models based on MNA descriptors

TrS1 M2 196 0.896 0.872 54.243 0.364 24 -

TrS2 M5 130 0.867 0.832 37.718 0.408 16 0.812
a

TrS3 M8 66 0.855 0.810 26.404 0.449 9 0.755
b

QSAR models based on QNA and MNA descriptors

TrS1 M3 196 0.917 0.895 65.352 0.325 25 -

TrS2 M6 130 0.895 0.868 47.100 0.364 17 0.835
a

TrS3 M9 66 0.922 0.891 47.501 0.329 11 0.790
b

Note. N, number of structures in training set; R
TrS

2
, determination co-

efficient calculated for training set compounds; R
TeS

2
, determination

coefficient calculated for test set compounds;Q
TrS

2
, correlation coef-

ficient calculated for the training set with leave-one-out cross vali-

dation; F, Fisher criterion; S. D., standard deviation; V, number of

variables in the final regression equation; hyphen (-), no data;
a
pre-

dicted pIC
50

values for ThS inhibitors in TeS1;
b
predicted pIC

50

values for ThS inhibitors in TeS2.



versions for constructing QSAR consensus models were

used in the present investigation, i.e., 1) a combination of the

whole set of regression equations constructed from QNA

descriptors; 2) a combination of the whole set of regression

equations constructed from MNA descriptors; and 3) a com-

bination of all regression equations constructed from both

QNA and NMA descriptors. Self-consistent regression was

used as the mathematical method for determining the opti-

mum set of descriptors and constructing the QSAR models

[9-11]. The program allowed QSAR models to be created au-

tomatically from single regression equations and sets of re-

gression equations combined into a single consensus model.

All 360 partial regression equations (180 each for each

descriptor type) were considered for constructing the consen-

sus models. The accuracy of the constructed QSAR models

was evaluated from predicted IC
50

values for structures of

TrS1-TrS3 and TeS1-TeS3. Leave-20%-out cross validation

of the training set was used for internal validation. The final

predicted activity for an actual compound was found by av-

eraging the predicted IC
50

values of separate QSAR models

in the consensus model. This reduced the variability of the

results. Also, consensus model M3 with 196 structures of

quinazoline derivatives was used to evaluate the contribu-

tions of atoms to the activity of the antifolate-type ThS inhib-

itors. This procedure was performed automatically in the

GUSAR 2013 program during construction of the QSAR

models from QNA descriptors [13, 14].

RESULTS AND DISCUSSION

The QSAR of quinazoline derivatives with general struc-

tural formulas I – VI as inhibitors of male white-mouse ThS

was modeled using the consensus approach embedded in the

GUSAR 2013 program (Fig. 1). Three consensus models

were obtained for each training set depending on the type of

descriptors (MNA and QNA) used in the calculations. Ta-

ble 1 lists the statistical parameters of these models and the

accuracy of the predicted pIC
50
values for the ThS inhibitors

included in the training and test sets.

The results in Table 1 led to the conclusion that all con-

structed QSAR consensus models had acceptable predictive

ability for structures of training sets TrS1-TrS3 (R
2
> 0.8,

Q
2
> 0.7) and internal test sets TeS1 and TeS2 (R

TeS

2
> 0.7)

in the range "pIC
50
= 4.67 units. QSAR models M6 and M9

had the greatest predictive ability of QSAR models M4-M9

constructed from training sets TrS2-TrS3. This was ex-

plained by the fact that the ideology of combining consensus

models constructed using either QNA or MNA descriptors

into a single QSAR model in several instances, e.g., for mod-

els M3, M6, and M9, reduced the variability of the predic-

tions of the separate models. Our previous research and that

of others were consistent with this conclusion [9, 11, 22].

Furthermore, the reliable prediction of the target property for

compounds of test set TeS2 with 130 compounds using mod-

els M7-M9 constructed from training set TeS3 with 66 ThS

inhibitor structures provided obvious proof that the GUSAR

2013 program could be used correctly to model the QSAR

for the ThS inhibitory activity of the quinazoline derivatives.

Next, QSAR models M1 – M3 constructed from the

maximum set of ThS inhibitors were used to predict the

pIC
50
values for structures of the external test set TeS3 with

structural analogs of quinazoline derivatives with general

structural formulas I – VI (Fig. 1). Table 2 shows that QSAR

consensus models M1 – M3 showed rather high predictive

ability for structures of external test set TeS3. Discrepancies

between the experimental IC
50
values and those predicted by

these models were less than an order of magnitude

(RMSE < 0.55). These models could be used for virtual

screening of virtual libraries and databases to search for new

antifolate-type ThS inhibitors based on quinazoline deriva-

tives.
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S1

TrS1 for models M1– M3

N = 196, pIC = 4,60 – 9,28

50

Breakdown of S1 in a 2:1 ratio

S2

(N = 130, pIC = 4,60 – 9,22

50

TrS2 for models M4 – M6

TeS2 for models M7– M9

S3

(N = 66, pIC = 4,60 – 9,28

50

TrS3 for models M7 – M9

TeS1 for models M4 – M6

Fig. 2. Diagram of training and test sets for constructing QSAR models M1 – M9, where TrS is a training set; TeS, test set; N, number of com-

pounds in sets S1 – S3, training sets TrS1 – TrS3, and test sets TeS1 – TeS2.



Structural analysis of quinazoline derivatives with gen-

eral structural formulas I – VI was also performed (Fig. 1).

The effects of including various structural fragments on the

ThS inhibitory activity were analyzed by comparing research

results and data obtained using the GUSAR 2013 program. It

was found that the results obtained using the GUSAR 2013

program for the SAR of compounds with general structural

formulas I – VI agreed satisfactorily with the experimental

data described in detail before [15 – 20]. The exceptions

were N-, F-, and Cl-containing compounds and ThS inhibi-

tors with bulky heterocyclic fragments. We supposed that the

discrepancy between the structural analyses performed using

GUSAR 2013 for halogen- and N-containing ThS inhibitors

and the experimental results was due to several factors. For

example, structural and steric factors had significant effects

on the ThS inhibitor activity in addition to physicochemical

factors used in the program to calculate the QNA descriptors

and evaluate their contributions to the target property. In par-

ticular, the orientation of the aromatic fragments at the en-

zyme active center and the nature of the acyclic linker, aro-

matic fragments Ar, and terminal substituents R
1
, including

those bound to the asymmetric C atom, affected considerably

the ThS inhibitor activity (Fig. 1) [15 – 20]. The ability of

substituents in the aromatic fragment and other terminal

groups to interact at the enzyme active center with nearest

amino-acid residues was just as important for the ThS inhibi-
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TABLE 2. Predicted pIC
50

Values for External Test Set TeS3 by QSAR Consensus Models M1 – M3

Structural formula pIC50exp pIC50pred Structural formula pIC50exp pIC50pred

7.00 6.84
a
6.91

b

7.08
c

6.85 7.29
a
7.29

b

7.17
c

6.80 6.90
a
6.84

b

6.72
c

6.65 6.48
a
6.67

b

6.63
c

6.65 7.01
a
6.82

b

6.78
c

6.59 6.51
a
6.57

b

6.52
c

6.47 6.28
a
6.55

b

6.62
c

6.43 6.42
a
6.69

b

6.57
c

6.32 7.00
a
7.16

b

7.07
c

6.24 7.24
a
6.83

b

7.07
c

6.21 7.25
a
7.09

b

7.00
c

6.19 6.38
a
6.29

b

6.25
c

6.11 6.32
a
6.35

b

6.29
c

6.04 6.37
a
6.36

b

6.28
c

5.89 6.69
a
6.32

b

6.60
c

5.75 6.51
a
6.29

b

6.52
c

a
Predicted pIC

50
values by QSAR consensus model M1;

b
predicted pIC

50
values by QSAR consensus model M2;

c
predicted pIC

50
values by QSAR consensus model M3.
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tor activity. Distortion of the planarity of the aromatic frag-

ment by adding bulky functional groups to it was shown to

contribute to a reduction of the target property [15 – 20]. All

these factors and the optical activity of the modeled mole-

cules were not completely considered in the GUSAR 2013

program. We supposed that these factors had a considerable

influence on the activity of the quinazoline ThS inhibitors.

However, an important advantage of the GUSAR 2013 pro-

gram was its ability to consider the influence of the nature of

the structural constituents and their bonding mode to each

other. Thus, QSAR consensus models constructed from

MNA structural descriptors were characterized by rather

high accuracy. In turn, this was obvious proof that the nature

of the structural fragments contributed significantly to the

activity.

The employed approach modeled with high reliability

the activity of ThS inhibitors based on quinazoline deriva-

tives in order to develop new antifolate-type inhibitors of this

enzyme. Model M3 was preferred for virtual screening be-

cause it was constructed from the greatest number of

quinazoline derivatives (196) with pronounced inhibitory ac-

tivity for ThS. However, the rather accurate prediction of

IC
50

values for sets S2 and S3 using models M4-M9 indi-

cated that the target property was modeled well using the ap-

proach embedded in the GUSAR 2013 program.
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