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Mutualistic and dynamic communication between tumour cells and the surrounding microenvironment accelerates the

initiation, progression, chemoresistance and immune evasion of glioblastoma (GBM). However, the immunosuppressive

mechanisms of GBM has not been thoroughly elucidated to date. We enrolled six microenvironmental signatures to identify

glioma microenvironmental genes. The functional enrichment analysis such as ssGSEA, ESTIMATE algorithm, Gene Ontology,

Pathway analysis is conducted to discover the potential function of microenvironmental genes. In vivo and in vitro experiments

are used to verify the immunologic function of LGALS1 in GBM. We screen eight glioma microenvironmental genes from glioma

databases, and discover a key immunosuppressive gene (LGALS1 encoding Galectin-1) exhibiting obviously prognostic

significance among glioma microenvironmental genes. Gliomas with different LGALS1 expression have specific genomic

variation spectrums. Immunosuppression is a predominate characteristic in GBMs with high expression of LGALS1. Knockdown

of LGALS1 remodels the GBM immunosuppressive microenvironment by down regulating M2 macrophages and myeloid-derived

suppressor cells (MDSCs), and inhibiting immunosuppressive cytokines. Our results thus implied an important role of

microenvironmental regulation in glioma malignancy and provided evidences of LGALS1 contributing to immunosuppressive

environment in glioma and that targeting LGALS1 could remodel immunosuppressive microenvironment of glioma.

Introduction
Gliomas are the most common primary tumours in the central
nervous system (CNS). Patients suffering from GBM survive on

average no more than 15 months though maximal resection.1

The tumour microenvironment (TME) forms an integral part
of these tumours, and it is necessary to establish a dynamic
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interaction with tumour cells. This interaction, in turn, influ-
ences tumour growth, chemoresistance and immune evasion.

Immune evasion and suppression is an important factor in
preventing current immunotherapies from effectively fighting
against GBM. Immunosuppressive microenvironment within
the tumours facilitates the growth and malignant properties of
the lesion while evading the body’s immune system.2 There-
fore, there is significant value in discovering potential immu-
nosuppressive features in GBM.

The finding of the lymphatic system3 in the CNS has
inspired researchers to explore the therapeutic methods based
on tumour immunity. The uniquely immune-privileged
microenvironment due to inherent expression of immunosup-
pressive cytokines, such as Galectin-1,4 PD-1, TGF-β and
IL10, and lack of antigen-presenting cells (APCs) in the CNS
poses an obstacle for the efficacy of immunotherapy in GBM.5

Therefore, the development of new therapies with improved
activity at the tumour site will require a deeper understanding
of the tumour immunosuppressive microenvironment in
GBM. Galectin-1 encoded by LGALS1 is a member of beta-
galactoside-binding protein family, involved in the homeosta-
sis of the immune system, tumour cell growth and the interac-
tion between cell–cell and cell–matrix.6 Galectin-1 is highly
secreted in a variety of tumours7 and plays an important role
in the negative regulation of immune responses.8 T cell activ-
ity is heightened after the inhibition of Galectin-1 in tumours,
which indicates that Galectin-1 is a determining factor in
tumour-immune privilege.9

However, the immunomics alternation of LGALS1 is
poorly understood in GBM microenvironment. Deeply analys-
ing the population-based samples, investigating the character-
istic of immunosuppressive biological process of LGALS1
based on current transcriptome databases may help to resolve
the immune complexity of GBM and guide potential anti-
LGALS1 therapy.

In the present study, we employed 2,360 glioma samples to
investigate the microenvironmental biological processes,
explore the immunomics alternation, clinicopathologic char-
acterization of LGALS1 expression in glioma, and clarify the
contribution of LGALS1 to immunosuppressive microenviron-
ment of glioma in vivo.

Materials and Methods
Glioma patient databases
Five types of mRNA databases from patients were used from
Chinese Glioma Genome Atlas (CGGA) database (microarray,

n = 310) (http://www.cgga.org.cn), The Cancer Genome Atlas
(TCGA) database (microarray, n = 539, RNAseq, n = 702)
(http://cancergenome.nih.gov/), the Rembrandt database
(microarray, n = 475) (https://caintegrator.nci.nih.gov/rembrandt/),
the GSE16011 database (microarray, n = 284) and the
GSE43378 database (microarray, n = 50). DNA copy number
and mutation profiles were obtained from the TCGA website
(http://cancergenome.nih.gov/).

Cell culture and xenograft mouse tumours
GL261 and BV2 cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% Foetal
Bovine Serum (FBS), 2 mM l-glutamine, and 1% penicillin–
streptomycin (Solarbio, China). Six- to seven-week-old female
wild-type C57BL/6 mice were purchased from the Chinese
Academy of Medical Science (Beijing, China) Animal Centre
and housed in conventional pathogen-free conditions. Thirty
mice were used in our study and each group was ten mice.
Briefly, 5 × 105 GL261 cells were infected with lenti-siLGALS1
(GeneChem, Shanghai, China) and stereotactically injected
into mouse brains using cranial guide screws. Sequences:
siRNA1 50-ACCUGUGCCUACACUUCAA-30, siRNA2 50-
ACUUGAAUUCGUAUCCAUCUG-30 and scrambled siRNA
50-GGAAAUCCCCCAACAGUGA-30 were purchased from
GeneChem (Shanghai, China).

Immunohistochemistry
We obtained paraffin-embedded glioma tissues from patients
who provided informed consent under an Institutional Ethics
Committee-approved study from the Second Affiliated Hospi-
tal of Harbin Medical University. The immunohistochemistry
(IHC) assay was carried out according to our previous
research.10 The slices were incubated with primary antibodies
Galectin-1 (CST, 1:250), VEGFA (BOTSER, 1:200), CCL2
(Proteintech, 1:100), TGF-β (abcam, 1:100), CD68 (BOTSER,
1:50), CD163 (Proteintech, 1:50) and CD11b (CST, 1:200).
For quantitative evaluation was performed by examining each
slice using at least three different high-power fields with the
most abundant areas as our previous research described.11

The staining scores of cytokines were classified into six cate-
gories (0–5) based on the staining intensity.12 For the stained
cells, staining was scored using a 4-point scale from 0 to
3, with “0” if there was no staining or very little staining, “1”
if less than 10% of cells stained positively, “2” if 10%–30% of
cells stained positively, and “3” if more than 30% of cells
stained positively.13

What’s new?
When a glioblastoma (GBM) develops in the CNS, immunosuppressive cytokines allow the tumor to evade and suppress the

immune system. They also prevent current immunotherapies from effectively attacking the tumor. In this study, the authors

found that variations in the gene coding for the cytokine Galectin-1 may provide a prognostic biomarker in GBM. They also

found that blocking this gene reduces immunosuppression in the GBM microenvironment. These results help to explain why

immunosuppression is a hallmark of GBMs, and may also lead to improved immunotherapies for this aggressive tumor.

518 The immunosuppressive role of LGALS1 in glioma

Int. J. Cancer: 145, 517–530 (2019) © 2019 UICC

T
um

or
Im

m
un

ol
og

y
an

d
M
ic
ro
en
vi
ro
n
m
en
t

http://www.cgga.org.cn
http://cancergenome.nih.gov/
https://caintegrator.nci.nih.gov/rembrandt/
http://cancergenome.nih.gov/


Flow cytometry
Flow cytometry was conducted according to standard protocols.
In brief, brain tumours were stripped and perfused with PBS.
Single cell suspensions were obtained after mincing with scalpels
and 30 min incubation with DNase (Invitrogen) and Collage-
nase D (Roche). M2 macrophage and MDSC cells from tumour
tissues were stained with fluorochrome conjugated mAbs for
30 min on ice in the presence CD163/CD68, CD11b/Gr-1. Flow
cytometric analysis was performed with FlowJo software.

Enzyme-linked immunosorbent assay
Enzyme-linked immunosorbent assay (ELISA) quantification of
Galectin-1, CCL2, VEGFA and TGF-β in the culture medium
of GL261 cells were performed using the human Galectin-1,
CCL2, VEGFA and TGF-β ELISA Kit (Sigma-Aldrich) follow-
ing manufacturer’s instructions. Culture medium was diluted
up to 50 times as appropriate for each cytokine, and concentra-
tions were normalized per mL/1 × 106 cells.

Immunoblotting
Western blot (WB) and immunofluorescence (IF) assays were
performed as previously described.14 Primary antibodies
mouse Galectin-1 (CST, 1:1000), mouse anti-GAPDH (1:1000,
ABclonal) were used along with horseradish peroxidase-
labeled secondary antibody (1:10000, sigma) in WB. CD68
(1:50, Santa Cruz), CD163 (1:100, Santa Cruz), CD204 (1:50,
Santa Cruz) and CD206 (1:50, Santa Cruz) were used for IF.

Invasion, soft agar colony formation, and colony formation
assays
For the soft agar assay, 24-well plates were pre-coated with
0.5 mL 1 × concentration complete 1,640 medium (Gibco, Gai-
thersburg, MD, USA) containing 0.6% agarose (Yeason) with
10% FBS. Cells were suspended in 1 mL complete 1,640 medium
with 0.35% agarose. Fully-suspend cells were placed into the
upper layer and incubated at 37 �C with 5% CO2 for 3 weeks.
Cell colonies were stained with 0.1% crystal violet for 5 min and
observed using a Bio-Rad ChemiDoc™ imaging system
(Berkeley, CA, USA). For colony formation assay, 6-well plates
were seeded with 300 cells as indicated. The assay was stopped
when the colonies could be observed with the naked eye. Then,
cells were fixed with methanol 4% and stained with 0.1% crystal
violet for recording colony numbers. The invasion assay was per-
formed in 24-well cell culture chambers with transwell inserts
(Corning) precoated with Matrigel. In brief, 1 × 104 GBM cells
were seeded per chamber. After 36 h, the lower surfaces of cham-
bers were fixed with 4% methanol for 5 min and stained with
0.1% crystal violet. All experiments were performed in triplicate.

Statistical analysis
Student’s t-test and one-way analysis of variance (one-way
ANOVA) were used to assess differences in the variable groups.
Survival analysis was conducted by using the Kaplan–Meier
curves and the log-rank test through the GraphPad Prism

7 software. Gene ontology (GO) was carried out when gene sets
(Pearson r > 0.4) were uploaded to the DAVID website (http://
david.abcc.ncifcrf.gov/home.jsp). ClueGO, a Cytoscape version
3.3.0 with the extension app ClueGO15 was used to process the
pathway analysis. Gene Set Enrichment Analysis (GSEA) was
performed to identify groups of genes enriched in either high
or low LGALS1 groups.16 “Estimation of STromal and Immune
cells in Malignant Tumours using Expression data”
(ESTIMATE) was used to calculated levels of infiltrating stro-
mal, immune cells and tumour purity in tumour samples.17

Single-sample GSEA (ssGSEA) analysis, which calculates sepa-
rate enrichment scores for each pairing of a sample and gene
set18 was used to assess the gene score of every gene set for
every sample. R version 3.3.2 with the extension package “cir-
clize”19 and “ComplexHeatmap”, and “circus”20 were used to
produce figures. Heatmaps were generated using the Gene Tree
View software. The principal components analysis (PCA) and
ROC were performed by using the SPSS 22.0. Statistical values
of p < 0.05 were considered to be significant.

Results
Identification of eight glioma microenvironmental genes
through the functional enrichment analysis for glioma
databases
To investigate the underlying molecules involved in glioma
microenvironment, we built six glioma microenvironment sig-
natures containing mature vascular signature (Mature vascu-
lar), microvascular signature (Microvascular), hypoxia
activation signature (Hypoxia activation),21 tumour purity,
stromal and immune scores.17

We performed the single-sample ssGSEA18 or ESTIMATE
algorithm17 for the selected six glioma microenvironment sig-
natures to generate corresponding scores that reflect the pres-
ence of each gene signature in the glioma samples.

Next, we used the Pearson correlation analysis to excavate
the genes correlated with the Mature vascular score, Microvas-
cular score, Hypoxia activation score, stromal score, immune
categories score (r > 0.65) and tumour purity score
(r < −0.65) in the TCGA, CGGA, Rembrandt and GSE16011
databases (Fig. 1a-d). We overlapped the above 4 positively
correlated genelists and obtained eight glioma microenviron-
mental genes: CCDC109B, EMP3, ANXA2, CLIC1, TIMP1,
VIM, LGALS1 and RBMS1.

Glioma microenvironmental gene scores have specific
genomic and transcriptomic spectrums in glioma samples
Based on expression data, another ssGSEA score for the eight
gene group was calculated, called the glioma microenviron-
mental gene score, for comparison with CNV and mutation
data. We defined the median of glioma microenvironmental
genes score as the cutoff point to separate the samples into
those with high or low glioma microenvironmental genes
score. We observed amplification events of chromosome
7 and deletion events of chromosome 10 were enriched in
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samples with high glioma microenvironmental gene score.
However, 1p/19q deletion events were observed in samples
with low glioma microenvironmental gene score (Fig. 2a-b).
Pearson correlation analysis was used to explore the relation-
ship between the copy number of chromosomal regions and
the glioma microenvironmental gene score. The genomic sites
of chr1p, chr7, chr10 and chr19q were most highly correlated
with the glioma microenvironmental gene score (|r| > 0.3,
Fig. 2c, Supporting Information Fig. S1A-D).

In detail, we found that high EGFR amplification (33%) and
PTEN (6%) deletion rates occurred in samples with high glioma

microenvironmental gene score (Fig. 2d). High mutation rates
of in IDH (92%), ATRX (38%), CIC (23%), FUBP1 (13%) and
NOTCH1 (8%) were observed in samples with low glioma
microenvironmental gene score. In contrast, high rates of EGFR
(19%) and PETN (18%) mutations occurred in samples with
high glioma microenvironmental gene score (Fig. 2e). We did
PCA after considering the Mature vascular score, Microvascular
score, Hypoxia activation score, tumour purity score, stromal
score and immune score. PCA1 and PCA2 represented the top
two dimensions showing a good separation between the groups
with low and high glioma microenvironmental gene score in

Figure 1. The transcriptomic alternation of glioma microenvironment signatures in glioma databases. (a-d) Heatmaps of genes correlated with
glioma microenvironment signatures of glioma purity, stromal score, immune score, hypoxia activation, microvascular and mature vascular
signatures in the TCGA, CGGA, Rembrandt and GSE16011 databases. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2. Low and high glioma microenvironmental gene scores have different specific genomic and transcriptomic spectrums in glioma samples.
(a) CNV spectrum with increasing glioma microenvironmental gene score. (b) The circos plot presented the incidence of deletion (blue),
amplification (red) and mutation (orange) rates in chromosomes. (c) The plot of Pearson correlation results (r and p values) with arrows
highlighting the regions with peak correlations between the copy number of chromosomal regions and the glioma microenvironmental gene scores.
(d) CNV were visualized by comparing gliomas with low and high glioma microenvironmental gene score. (e) Somatic mutation spectrums were
visualized by comparing gliomas with low and high glioma microenvironmental gene score. [Color figure can be viewed at wileyonlinelibrary.com]
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the TCGA (63.46%, 17.21%), CGGA (62.74%, 15.29%), Rem-
brandt (51.97%, 21.49%) and GSE16011 (60.85%, 17.12%) data-
bases (Supporting Information Fig. S2A-D).

Next, we investigated microenvironmental gene score
according to the WHO classification grade system, histopathol-
ogy and IDH mutation status. We found that the score level of
glioma microenvironmental genes was the highest in WHO IV
glioma (TCGA p = 7.646E-120, CGGA p = 2.923E-38, and
Rembrandt p = 6.391E-40), GBM (TCGA p = 2.726E-122,
CGGA p = 1.338E-41, and Rembrandt p = 6.391E-40) and IDH
wild-type GBM (TCGA p = 5.805E-11, and CGGA p = 3.986E-
13, Supporting Information Fig. S3A-C). Next, we inspected
the score level of glioma microenvironmental genes among the
different molecular subtypes defined by the TCGA network.22

The highest score level was observed in mesenchymal subtype
in the TCGA (p = 1.235E-18), CGGA (p = 6.219E-18) and
Rembrandt (p = 5.393E-39) databases (Supporting Information
Fig. S3D-F). ROC curves for the score level of glioma microen-
vironmental genes and mesenchymal subtype of all GBM sub-
types were analysed. The area under the curve (AUC) values
were 81.13%, 82.95% and 83.56% (Supporting Information
Fig. S3G) in the TCGA, CGGA and Rembrandt databases,
respectively (Supporting Information Fig. S3H-I).

LGALS1 reveals obviously prognostic significance among
glioma microenvironmental genes and shows its malignant
biological phenotype in glioma
To further evaluate the prognostic value among the eight gli-
oma microenvironmental genes, we found that CLIC1,
LGALS1, TIMP1, CCDC109B, ANXA2, EMP3 and RBMS1 in
the TCGA database had statistical significance (p < 0.05) using
Cox regression analysis. We also validated these findings in
the CGGA, Rembrandt, GSE16011 and GSE43378
(Supporting Information Tables S1-S5). We overlapped signif-
icantly prognostic genes among five databases (Supporting
Information Fig. S4A), and found that CCDC109B, EMP3,
LGALS1 revealed prognostic significance. However, according
to the hazard ratio score as a ratio of death probabilities,23 we
found that LGALS1 revealed the highest level in TCGA, Rem-
brandt and GSE43378 databases (Supporting Information
Fig. S4B). We used dichotomization to separate cases for
depicting the survival curves according to the best cutoff
point. Low expression of LGALS1 resulted in a significantly
longer overall survival time (TCGA median survival time:
395 days; CGGA median survival time: 561 days) than high
expression of LGALS1 (TCGA median survival time: 313 days;
CGGA median survival time: 403 days) (Fig. 3a). In a multi-
variate Cox proportional hazards model, the IDH1 status,
TCGA subtype, level of LGALS1, age at diagnosis and chemo-
therapy category were all associated with overall survival in
the TCGA and CGGA databases (Fig. 3b). Knockdown of
LGALS1 (Fig. 3c) supressed soft cell invasion, proliferation,
colony formation and soft agar colony formation (Fig. 3d-g).

LGALS1 is preferentially expressed in the mesenchymal
subtype of GBM
LGALS1 expression differed significantly in WHO grade, his-
tology and IDH status (Fig. 4a-c). The highest expression was
observed in GBM (WHO IV). IDH1 wild-type glioma pre-
sented with higher LGALS1 expression than IDH1 mutant gli-
oma. In glioma tissues, we found that the protein level of
Galectin-1 was highest in GBM (Fig. 4d). LGALS1 expression
also differed significantly among molecular GBM subtypes.
The highest expression was observed in the mesenchymal sub-
type of the TCGA (p = 1.454E-35), CGGA (p = 4.582E-12)
and Rembrandt (p = 6.219E-41) databases (Fig. 4e-g). ROC
curves for LGALS1 expression and the mesenchymal subtypes
were analysed in GBM. The AUC values were 74.00%, 82.95%
and 83.56% in the TCGA, CGGA and Rembrandt databases,
respectively (Fig. 4h). Similarly, the GSEA between the differ-
ent groups demonstrated that mesenchymal gene set was
enriched in patients with high levels of LGALS1 in the TCGA,
CGGA and Rembrandt databases (Fig. 4i-k).

Gliomas with different LGALS1 expression have specific
genomic variation spectrums
Next, we used the TCGA CNV and somatic mutation databases
to investigate the relationship among the level of LGASL1, the
copy number and the mutation levels. High levels of LGALS1
were accompanied with amplification events of chromosome
7 and deletion events of chromosome 10 (Supporting Informa-
tion Fig. S5A-B). Pearson correlation analysis was used to
explore the relationship between the copy number of chromo-
somal regions and the level of LGALS1 expression. The geno-
mic sites of chr1p, chr7, chr10 and chr19q were most highly
correlated with the level of LGALS1 expression (|r| > 0.3, Sup-
porting Information Fig. S5C-G). EGFR amplifications (32%)
and PTEN (6%) deletions were more likely to observed at high
levels in the high LGALS1 group (Supporting Information
Fig. S6A). Overall, mutations in EGFR (19%) and PETN (19%)
occurred at the high LGALS1 group. The most common muta-
tions were in IDH1 (91%), TP53 (55%), ATRX (45%), CIC
(18%) and FUBP1 (10%), all of which were correlated with the
low LGALS1 group (Supporting Information Fig. S6B).

LGALS1 is involved in immunologic biological processes,
associated with immunosuppressive signalling pathway
To further delineate the common principles of the biological
processes associated with LGALS1, we selected the genes that
correlated with LGALS1 expression (Pearson r > 0.4). Next, we
performed the GO analysis of the genes that were positively cor-
related with LGALS1 in the TCGA, CGGA and Rembrandt
databases. Most prominent in the results of GO analysis were
terms (p < 0.05) describing leukocyte migration, chemotaxis,
innate immune response and interferon-gamma-mediated sig-
nalling pathway in the TCGA database (Supporting Information
Fig. S7A). In the CGGA database, GO terms, such as antigen
processing, chemotaxis, inflammatory response, leukocyte
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migration and innate immune response, were enriched in the
high LGALS1 group (Supporting Information Fig. S7B). Besides
the immune response and TRIF-dependent toll-like receptor sig-
nalling pathway, similar patterns could be observed in the Rem-
brandt database (Supporting Information Fig. S7C). GSEA
further confirmed that high level of LGALS1 was related to the
innate immune response, immune response, immune system
process and negative regulation of the immune system process
in the TCGA, CGGA and Rembrandt databases (Supporting
Information Fig. S8A-C). We overlapped the genes positively
related to LGALS1 among the TCGA, CGGA and Rembrandt
databases and obtained 376 genes (Supporting Information
Table S6). Pathways analysis was performed by using these
genes, and the results were visually graphed by Cytoscape. Net-
work representation of the LGALS1-associated pathways
revealed that neutrophil degranulation, interleukin-6 signalling,
interleukin-10 (IL-10) signalling and immunoregulatory

interactions between a lymphoid and a non-lymphoid were
involved (Supporting Information Fig. S8D). We also assessed
the immune metagenes.24 As shown in Supporting Informa-
tion Figure S9A-C, after the metagenes were calculated
through ssGSEA, we found that LGALS1 was positively related
to HCK (hemopoietic cell kinase), LCK (lymphocyte-specific
kinase), MHC_I (major histocompatibility complex I),
MHC_II (major histocompatibility complex II), STAT1 (sig-
nal transducer and activator of transcription 1), and Inter-
feron (Supporting Information Tables S7-S9). However,
LGALS1 was negatively related to IgG (Supporting Informa-
tion Tables S7-S9). In the meantime, we parsed the gene sets
of immune cells (Supporting Information Fig. S10A-C and
Tables S10-S12) and found that helper T-cells, cytotoxic T-
cell, monocytes, CD19 B cells, myeloid cells, natural killer
cells, dendritic cells, T-cell lineages and myeloid lineages were
all positively correlated with the level of LGASL1.

Figure 3. LGALS1 reveals its obviously prognostic significance in GBM and its malignant biological phenotypes in vitro. (a) Patients with a low level of
LGALS1 lived significantly longer than patients with a high level of LGALS1 in the TCGA and CGGA. (b) The multivariate Cox proportional hazards
model was conducted using backward stepwise selection of variables based on IDH1 status, TCGA subtypes, the level of LGALS1, the age at diagnosis
and whether chemotherapy was received in the TCGA and CGGA databases. (c) Western blot analysis validated the knockdown of LGALS1 in GL261
cells. (d) Transwell invasion assay was performed to evaluate the invasion ability after knockdown of LGALS1. (e) CCK8 assay was performed to
evaluate the proliferative ability after knockdown of LGALS1. (f, g) Colon and soft agar formation assays were performed to evaluate the proliferative
ability after knockdown of LGALS1. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 4. LGALS1 is preferentially expressed in the mesenchymal subtype of GBM. (a–c) The distribution patterns of LGALS1 according to
WHO, histopathology and molecular pathology classifications in the TCGA, CGGA and Rembrandt databases. (d) The immunohistochemical
analysis showed that LGALS1 was increased in GBM. Scale bar 100 μm. (e–g) The distribution patterns of LGASL1 in different subtypes in the
TCGA, CGGA and Rembrandt databases. (h-k) ROC curve and GSEA analysis indicated that LGALS1 could predict the mesenchymal subtype in
TCGA, CGGA and Rembrandt databases. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. [Color figure can be viewed at
wileyonlinelibrary.com]
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Immunosuppression is a predominate characteristic in
GBMs with high expression of LGALS1
As revealed above, LGALS1 plays a role in immunosuppres-
sion in GBM. Next, we parsed the TCGA, CGGA and Rem-
brandt databases to show that the proportion of patients with
high LGALS1 levels also had a significantly higher correlation
with glioma-mediated immunosuppressive metagenes4,11

(Fig. 5a-c and Supporting Information Tables S13-S15), such
as Markers of Tregs, Immunosuppressive signalling pathways,
tumour-supportive macrophage chemotactic and skewing
molecules, Immunosuppressive cytokines and checkpoints,
and immunosuppressors. These results implied that LGALS1
played a role in immunosuppression of GBMs. Next, we over-
lapped LGALS1-positive related genes from the TCGA, CGGA
and Rembrandt databases with immunosuppressive metagenes
and obtained 13 effectors. LGALS1 was observed to be signifi-
cantly positively correlated with LGALS3, SWAP70, CHI3L1,
CCL2, SERPING1, ANXA1, SHC1, TIMP1, ICAM1, LTBP1,
CD163, MR1 and TNFRSF1A (Fig. 5d-f ).

Knockdown of LGALS1 inhibits the GBM immunosuppressive
microenvironment by down regulating M2 macrophages and
MDSC cells, and inhibiting immunosuppressive cytokines
Using the TCGA and CGGA gene expression profiles, we
observed that the M2 macrophage (CD68, CD163, CD204 and
CD206)25,26 and MDSCs (neutrophilic and monocytic)
markers (CD14, CD15 and CD33)27 had a positive relation-
ship with LGALS1 in GBM (Supporting Information
Fig. S11A-H). The ELISA results revealed that knockdown of
LGALS1 decreased immunosuppressive cytokines such as
CCL2, VEGFA and TGF-β (Fig. 6a). In vitro experiments,
BV2 cells cultured with the glioma-conditioned medium
(GCM) from cultured with GCM from GL261-NC cells had
higher expression of Cd68, Cd163, Cd204 and Cd206 than
those cultured with GCM from the GL261-LGALS1-si cells
(Fig. 6b). The fraction of M2 macrophage (CD68+CD163+)
and MDSC (CD11b+Gr-1+) cells in the tumour of tumour-
bearing mice was reduced after knocking down LGALS1
(Fig. 7a-b). Immunofluorescence results further revealed that
M2 macrophage cells decreased after knocking down LGALS1
(Fig. 7c). Finally, the immunohistochemistry-based quantifica-
tions of tumour sections also revealed a decreased presence of
cytokines VEGFA, CCL2 and TGF-β and immunosuppressive
cells, such as M2 macrophage (CD68 and CD163) and MDSC
(CD11b) (Fig. 7d). These results suggested that LGALS1 con-
tributed to the GBM immunosuppressive microenvironment.

Discussion
GBM, the majority of malignant primary adult brain tumours,
is a heterogeneous population comprising tumour cells,
immune cells, and extracellular matrix, interactions among
which expedite tumour development, progression and immune
evasion.28,29 The poor prognosis is a product of the trans-
formed cells communicating with vascular cells, stromal cells

and infiltrating inflammatory cells in tumour microenviron-
ment.30 In the present study, through the TCGA, CGGA, Rem-
brandt and GSE16011 databases, eight microenvironmental
genes were identified by statistical analysis of data: CCDC109B,
EMP3, ANXA2, CLIC1, TIMP1, VIM, LGALS1 and RBMS1,
which accounted for GBM microenvironment. The above eight
genes were calculated so called the microenvironmental gene
score. We found that chromosome 7 (EGFR) amplification
accompanied with chromosome 10 loss (PTEN) occurred more
frequent with the group with high glioma microenvironmental
gene score. Most mutations of IDH1 and 1p/19q codeletion
occurred in the group with low glioma microenvironmental
gene score. All these findings implicated that glioma microenvi-
ronment was associated with specific genomic and transcrip-
tomic spectrums indicating that they were biomarkers and
potential therapeutic targets for glioma. Furthermore, we found
that LGALS1 revealed critical roles in remodelling the microen-
vironment and important clinical value in GBM. It revealed
that LGALS1 had a higher expression level in IDH wild-type
GBM compared to that in IDH mutant GBM. It has been
reported that IDH wild-type GBMs display a more prominent
tumour infiltrating lymphocyte (TIL) infiltration and a higher
PD-L1 expression than IDH mutant cases. IDH1 wild-type
GBM tissues include a statistically significant increased ten-
dency of CD163 (M2 macrophage marker), PD1 and Foxp3
(Treg marker).31 These results further implied that LGALS1
might be involved in establishing an immunosuppressive
microenvironment in GBM. Previous study showed that extra-
cellular Galectin-1 encoded by LGALS1 could modulate the sur-
vival time of tumour-infiltrating T cells by enhancing Fas
ligand-induced apoptosis.32 Galectin-1 deficiency increased
CD3+ lymphocytes, CD4+ lymphocytes, CD8+ lymphocytes
and decreased CD4+ Foxp3+ Tregs in GBM.33 In pancreatic
cancer, inhibition of Galectin-1 increased CD3+, CD4+, CD8+
lymphocytes but repressed CD11b + and Gr-1+ lymphocytes.34

Galectin-1–deficient glioma cells could be eradicated by the
infiltration of NK cells before the activation of the adaptive
immune system.35 The gene expression profiles from TCGA,
CGGA, Rembrandt and GSE16011 databases contain expres-
sion spectrum of unselected cellular population including gli-
oma cells and glioma-infiltrating immune cells. Heretofore,
there have been few reports comprehensively illustrating the
immunosuppressive status and genomic alterations in glioma
with different LGALS1 expression. Thus, deeply investigating
the immune biological process of LGALS1 based on current
genomic databases may help to get a good idea of tumour
immune complexity and guide potential anticancer immuno-
therapy. To investigate in detail how LGALS1 was involved in
the GBM immunosuppressive microenvironment, we under-
took big data analysis and evaluated the immunosuppressive
cytokines known to be tightly associated with immunosuppres-
sive microenvironment. LGASL1 was positively associated with
immunosuppressive genes: LGALS3, impairing function of
human CD4 and CD8 tumour-infiltrating lymphocytes,36,37
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Figure 5. Immunosuppression is a predominate feature in GBMs with high LGALS1 expression. (a-c) LGALS1 was positively related to glioma-
associated immunosuppressive metagenes, such as immunosuppressive cytokines and checkpoints, tumour-supportive macrophage
chemotactic and skewing molecules, immunosuppressive signalling pathways, immunosuppressors, and markers of tregs. (d, e) Correlation
of LGALS1 and common immunosuppressive genes in GBM. [Color figure can be viewed at wileyonlinelibrary.com]
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SWAP70 restricting spontaneous maturation of dendritic cells
(DCs),38,39 CHI3L1 secreted by M2 macrophages promoting
gastric and breast cancer metastasis,40 CCL2, SERPING1 inhi-
biting activation of the complement system,41 ANXA1 regulat-
ing TGF-β signalling and promoting metastasis formation of
basal-like breast cancer cells,42 SHC1 promoting breast cancer
immune suppression through STAT1 and STAT3,43 TIMP1
having a liner relationship with CD11b + Gr1+ myeloid cells
and CD4 + CD25 + FOXP3+ Tregs,37 ICAM1 critical for mes-
enchymal stem cell (MSC)-mediated immunosuppression,44

LTBP1 required for an adequate TGF-β function,45 CD163,
MR1 resulting in a relative increase in Tregs4,46 and TNFRSF1A
required for STAT3 phosphorylation and MDSC accumula-
tion.47 We also found that the expression of VEGFA, CCL2
and TGF-β were restrained in the LGALS1 knockdown group.
VEGFA promotes local and systemic immunosuppression and
contributes to prevent the development of efficient antitumour
immune responses. VEGFA/VEGFR-targeting therapies could
revert such an immunosuppressive state.48,49 Evidence
shows that GBM expresses high levels of CCL2 and could con-
tain high numbers of CD14+ cells. Furthermore, the GBM

supernatants could transform CD14+HLA-DR+ cells into
CD14+HLA-DRlo/neg immune suppressors.50 TGF-β drives
immune evasion and attenuates tumour response to PD-L1
blockade by contributing to exclusion of T cells.51 TGF-β facili-
tates the immune suppressor capacity of high-grade glioma-
derived CD4+CD25+Foxp3+ T cells.52

Galectin-1 knockdown supresses glioma progression and
improves the outcome of tumour-bearing mice.53 Our bioinfor-
matics results showed that there was a strong correlation among
LGALS1, monocytes and myeloid lineage cells. We also
observed the strong positive correlation between LGALS1 and
GBM-associated immunosuppressive cell markers of MDSC
and M2 macrophages. M2 phenotype transformation occurs
after IL-10, IL-4 and IL-13 exposure.54 In GBM, M2 could be
recruited by periostin secreted by glioblastoma stem cells (GSC)
to participate in malignant growth.55 M2 macrophages produce
TGF-β,56 contributing to a tumour-supporting and immunosup-
pressive environment in tumours.57,58 Secretion of IL-10 and
TGF-β were supressed after inhibition of LGALS1. The infiltra-
tion of M2 macrophages in the tumour site decreased after the
knockdown of LGALS1. The same tendency was observed in

Figure 6. Knockdown of LGALS1 inhibits the GBM immunosuppressive microenvironment in vitro. (a) ELISA assay was used to detect
immunosuppressive cytokines, such as Galectin-1, CCL2, VEGFA and TGF-β in cell suspension. (b) Cd68, Cd163, Cd204 and Cd206 were stained
after BV-2 cells were treated with GCM from the GL261-LGALS1-NC or GL261-LGALS1-si cells. [Color figure can be viewed at wileyonlinelibrary.com]
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MDSC cells, which are a heterogeneous set of cells of myeloid
origin that can suppress T cell activity through the depletion of
specific amino acids, which is essential for T-cell function.59 In
GBM, granulocytic MDSCs, a subset of MDSCs at the tumour
site, play a major role in GBM-induced T-cell suppression.60

Conclusions
Our results thus implied an important role of microenviron-
mental regulation in glioma malignancy and provided evidences
of LGALS1 contributing to immunosuppressive environment in

glioma by up regulating M2 macrophages and MDSC cells, and
generating immunosuppressive cytokines. LGALS1 could be a
promising and potential therapeutic target, extending our
understanding of anticancer immunotherapy in glioma.

Availability of data and materials
The databases supporting the conclusions of this article are
included within the public databases TCGA, CGGA, Rem-
brandt, GSE16011 and GSE43378.

Figure 7. Knockdown of LGALS1 inhibits the GBM immunosuppressive microenvironment in vivo. (a) The amount of M2macrophages was measured by
staining the cells isolated from the brains of tumour-bearing mice with anti-CD68 and anti-CD163. (b) The amount of MDSCs was measured by staining the
cells isolated from the brains of tumour-bearing mice with anti-CD11b and anti-Gr-1. (c) In paraffin sections, the M2macrophages were detected by
costaining with M2 markers.(d) In paraffin sections, IHC was used to detect the immunosuppressive cytokines, such as Galectin-1, CCL2, VEGFA and TGF-β,
and markers of M2 macrophage and MDSC. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. [Color figure can be viewed at wileyonlinelibrary.com]
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Ethics approval and consent to participate
The study involving human participants and animals was
approved by the ethics committees of the Second Affiliated

Hospital of Harbin Medical University, and all patients pro-
vided written informed consent.
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