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Abstract

In the past years, cardiac mortality has decreased,
but cardiac diseases are still responsible for millions
of deaths every year worldwide. Bone-marrow
mesenchymal stem cells (BMSCs) transplantation may
be a promising therapeutic strategy because of its
capacity to differentiate into cardiac cells. Current
research indicates that chemical substances,
microRNAs, and cytokines have biological functions
that regulate the cardiomyocytes differentiation of
BMSCs. In this review, we chiefly summarize the
regulatory factors that induce BMSCs to differentiate
into cardiomyocytes.
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Background
Cardiac diseases remain the leading cause of death
worldwide, both in developed and developing countries.
Cardiac diseases can progress rapidly, such as acute
myocardial infarction (AMI), or progress slowly, such as
cardiac remodeling, which is characterized by cardiac
hypertrophy and myocardial fibrosis that can eventually
lead to heart failure. Although, a variety of measures
have been put into clinical practice and achieved certain
curative effects, the poor prognosis and irreversible
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pathology of cardiac remodeling still limit their thera-
peutic effect for cardiac diseases.
Nowadays, significant advances have been made in the

field of cardiac diseases and stem cell transplantation-based
therapies have emerged as a promising therapeutic tool for
improving cardiac regeneration and function [1–3]. In
addition, pluripotent stem cells, including embryonic stem
(ES) cells, induced pluripotent stem (iPS) cells, and multi-
potent/unipotent stem cells like bone marrow-derived
mesenchymal stem cells (BMSCs) can be differentiated into
cardiomyocytes in vitro [4–7]. However, the ideal source of
stem cells remains elusive, with the drawbacks of limited
engraftments and differentiation potential, ethical issues,
and immunologic incompatibility. Of these stem cell types,
BMSCs have several advantages of easy availability,
powerful capacity of proliferation, immune modulatory
properties, and migration to damaged tissues [8]. BMSC
transplantation is considered a promising cardiac disease
strategy due to differentiation [9–11]. Many efforts have
been proved to facilitate differentiation of BMSCs into car-
diomyocytes, such as chemical substances, microRNAs,
and cytokines, or alter culture intermediaries [12–14].

Chemicals
5-Azacytidine (5-aza) is an important chemical inducer
that can induce BMSCs to differentiate into cardiomyo-
cytes in murine samples [15]. Antonitsis et al. also found
that 5-aza could stimulate BMSCs to differentiate into
cardiomyocytes via random demethylation of DNA in
the human body [16, 17]. Although 5-aza has been ex-
tensively used in stem cell differentiation, the carcino-
genicity of 5-aza still blocks therapeutic applications [18]
so other alternative options for BMSCs to differentiate
into cardiomyocytes are imperative.
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MicroRNAs
MicroRNAs (miRNAs) are a class of noncoding RNAs
about 22 nucleotides long that can act as negative regu-
lators of gene expression by binding to the 3′ UTR of
mRNAs [19]. Previous studies have confirmed that miR-
NAs can play a significant role in cell development, dif-
ferentiation, proliferation, and apoptosis [20]. Studies
have also demonstrated that miRNAs can regulate differ-
entiation of BMSCs [21, 22]. However, whether miRNAs
could regulate cardiomyocyte differentiation of BMSCs
is still little known.
Zhao et al.’s [23] study reveals that miR-1a could pro-

mote the differentiation of BMSCs into myocardial cells.
Their results show that BMSCs could differentiate into
myocardial cells in special conditioned medium, but will
be efficient when overexpressing miR-1a. As an in-depth
study, they demonstrate that Delta-like 1 (Dll-1) is the key
inhibitor of myocardium gene expression during myocar-
dium differentiation and that miR-1a can reduce the
expression of Dll-1 by targeting the 3′ UTR, leading to
the dramatic upregulation of myocardium gene protein.
Cai et al. [24] show that BMSCs are transformed into

cardiomyocytes by coculture with cardiomyocytes, and
cardiac-specific markers such as atrial natriuretic peptide
(ANP), cardiac troponin T (cTnT), and α-myosin heavy
chain (α-MHC) are detected. miRNA assay indicates that
the level of miR-124 is significantly downregulated dur-
ing cardiomyocte differentiation of BMSCs. The authors
then performed functional experiments on the acquisi-
tion or loss of miR-124 and find that overexpression of
miR-124 would inhibit cardiomyocyte differentiation of
BMSCs. By further study into the molecular mechanism
of this progress, the authors demonstrate that miR-124
exerts a negative effect on myogenic differentiation of
BMSCs via targeting signal transducers and activators of
transcription 3 (STAT3) [24].
Shen et al. [25] find the expression of miR1-2 is signifi-

cantly increased after 5-aza treatment. In order to clear
the role of miR1-2 in modulating cardiomyocyte differen-
tiation, miR1-2 mimics are transferred into BMSCs, and
these cells are induced to differentiate into cardiomyocytes
by the expression of cardiac-specific genes GATA binding
protein 4 (GATA4), cardiac troponin I (cTnI), and
Homeobox protein 2.5 (Nkx2.5). Further study shows that
miR1-2 could activate the Wnt/β-catenin signaling path-
way, whereas BMSCs pretreated with Wnt/β-catenin sig-
naling inhibitor LGK-974 can weaken the differentiation
of BMSCs into cardiomyocytes. To sum up, miR1-2 could
regulate the differentiation of BMSCs into cardiomyocytes
via the Wnt/β-catenin signaling pathway [25].
miRNAs could regulate gene expression and the

cardiomyocyte development and differentiation of stem
cells [26], including BMSCs. For instance, miR-23b in-
hibits the osteogenic differentiation of BMSCs via

targeting Runx2 during treatment with TNF-α [27]. The
miR-1/133 family has a high level in the heart, but they
have opposing effects: miR-1 promotes and miR-133
blocks differentiation into cardiac cells. A previous study
has shown that Jagged 1 protein could activate Notch sig-
nal and promote the differentiation of BMSCs into cardio-
myocytes in vitro and in vivo [28], and miR-1 could
promote myocardial differentiation in stem cells via tar-
geting Dll-1, a Notch ligand expressed in ES cells [29].
The Wnt signaling pathway has an essential role in cardio-
myocyte development and β-catenin could promote the
occurrence of the heart in Drosophila [30]. The Wnt sig-
naling pathway also regulates the proliferation and differ-
entiation of BMSCs [31]. miR-29c-3p is significantly
upregulated and could regulate the osteoblast differenti-
ation of rat BMSCs by targeting Dishevelled 2, a key
mediator of the Wnt/β-catenin signaling pathway, in a
hyperlipidemia environment [32]. Therefore, the increasing
in miR-124 level is considered to be an important trigger of
the transition from proliferation to neural differentiation
[33]. STAT3 has a significant role in self-renewal, differenti-
ation, and paracrine activation of BMSCs [7, 34]. Activation
of STAT3 has been reported that could enhance the differ-
entiation of transplanted BMSCs and produce better func-
tion of infarcted myocardium. miR-124 regulates the
activation of STAT3 and in turn affects myogenic differenti-
ation of BMSCs.
The miRNAs mimics group have a lower apopotic rate

than the 5-aza group, indicating miRNAs are less cyto-
toxic. BMSCs treated with miRNAs express cardiac-
specific genes but these cells are still short of the
morphology of cardiomyocytes, indicating that further
investigation needs to be done. Long noncoding RNAs
have been shown to play important roles in multiple
physiological processes. Nowadays, lncRNA H19 could
mediate osteogenesis differentiation of BMSCs by spon-
ging miR-138 [35]. This might be a new strategy to in-
duce cardiomyocyte differentiation of BMSCs through
miRNAs.

Cytokines
Growth factor
Growth factors such as epidermal growth factor, platelet-
derived growth factor, fibroblast growth factor, nerve
growth factor, and insulin-like growth factor are cytokines
that can affect cell growth and differentiation. Whether it
can regulate the differentiation of cardiomyocytes in
BMSCs needs to be further explored.

Insulin-like growth factor-1
Insulin-like growth factor-1 (IGF-1) plays an important
role in the regulation of cell proliferation, apoptosis,
and tumorigenicity [36–38]. Growing evidence indi-
cates that BMSCs have the potential to differentiate into
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cardiomyocyte-like cells (CLCs) which have the capacity
for contractility and can express the cardiac-specific gene
[39–41]. Whether IGF-1 could participate in cardiomyo-
cytes differentiation of BMSCS, more experiments need to
be done.
Transplanted BMSCs need a feasible microenviron-

ment to differentiate into cardiomyocytes in the ische-
mic area [42]. In-vitro experiments suggest that HGF
has a significant role in promoting myocardial differenti-
ation of BMSCs, but lacking the ability to proliferate and
inhibit apotpsis. However, IGF-1 could significantly sup-
ply the gap of HGF. Research has tried to investigate the
effect of combination of two factors in AMI therapy
[43], and the combination of IGF-1 and HGF could pro-
mote the cardioprotective effects of adipose-derived
stem cells [44]. Zhang et al. [45] find that a combination
of HGF and IGF-1 could inhibit BMSC apoptosis and in-
crease angiogenesis. To further investigate whether HGF
and IGF-1 could induce the cardiomyocyte differenti-
ation of BMSCs, immunofluorescence staining, qRT-
PCR, and western blot analysis are executed. After treat-
ment of BMSCs with HGF and IGF-1, the level of
cardiac-specific markers like cardiac troponin T (cTnT),
GATA4, NKx2.5, and Connexin 43 (CX43) are all in-
creased, suggesting that the combination of HGF and
IGF-1 could achieve the dual purpose of not only pro-
moting differentiation of BMSCs into cardiomyocytes
but also inhibiting apoptosis induced by hypoxia [45].
However, the mechanism is not clear.
IGF-1 can affect cell proliferation, apoptosis, angiogen-

esis, and cardiac protection, especially the differentiation
of stem cells, and a previous study shows that insulin-
like growth factor could promote differentiation after
transplanting ES cells for myocardial renovation [46].
IGF-1R is the significant individual component, and
IGF/IGF-1R can be activated to enhance proliferation
and survival of many cells [47]. Gong et al. [48] notice
the increased expression of myocardium markers cTnT,
cTnI, and phosphorylation IGF-1 receptor (pIGF-1R) after
exposing BMSCs to IGF-1. To confirm whether the differ-
entiation of BMSCs into CLCs is induced by IGF-1,
BMSCs are treated with IGF-1 and I-OMe AG538, an
IGF-1R kinase inhibitor that can block its autophosphoryl-
ation. The results show that the expression of cTnT and
cTnI is decreased through the MAPK and PI3K pathways,
which are the two major IGF-1R-related intracellular sig-
naling pathways. In conclusion, IGF-1 induces the BMSCs
to differentiate into CLCs via IGF-1R [48]. PI3K/Akt is the
downstream signaling pathway of IGF-1, and plays a role
in cell survival and migration [49], and the MAPK/ERK
pathway could modulate the expression of proteins in-
volved in differentiation. Whether the MAPK/ERK path-
way participates in the processes of differentiating BMSCs
into CLCs needs further research.

Insulin gene enhancer binding protein ISL-1
Insulin gene enhancer binding protein ISL-1 (Islet-1) is a
significant regulator of cardiac development and cardio-
myocyte differentiation [50, 51], and is also a marker of
undifferentiated cardiac progenitors [52]. A previous
study verifies that overexpressed Islet-1 in BMSCs could
play a critical role in cardiomyocyte differentiation [52].
This is discussed in the context of how Islet-1 carries
the differentiation function. Yi et al. [53] find that in-
creasing expression of Islet-1 by lentiviral vector could
promote the differentiation of MSCs into CLCs, and the
level of GATA4 is also elevated. Further studies demon-
strate that Islet-1 alters the histone acetylation levels of
GATA4 and the DNA methylation levels of GATA4 pro-
moter region through Gcn5 and DNMT-1 [53].
Epigenetic modifications, including histone acetylation

and DNA methylation, have been demonstrated to serve
an important role in cardiomyocyte differentiation of
MSCs [54]. Histone acetylation changes the transcriptional
activity of chromatin [55], while DNA methylation alters
the function of DNA by methylation modifications [56].
Gcn5, the first discovered histone acetyltransferase, mainly
modifies nucleosomal histones and free histones [57]. Dur-
ing the process of Islet-1-induced BMSC differentiation
into CLCs, the expression of Gcn5 and binding to GATA4
promoter regions are both increased, subsequently enhan-
cing the expression of GATA4 to promote the cardimoy-
cyte differentiation of BMSCs. The main role of DNMT1 is
to form DNA methylation, the expression of DNMT1 and
binding to GATA4 promoter regions are both decreased in
the process of Islet-1 induction. The function of two epi-
genetic modifications presents a crosscurrent and may
regulate the expression of GATA4 reciprocally.

Basic fibroblast growth factor
Basic fibroblast growth factor (bFGF), one of the heparin
binding growth factors, is thought to induce the differ-
entiation of BMSCs into cardiomyocytes during embryo-
genesis [58], but not cardiomyocyte development [59],
indicating that it is necessary for bFGF to combine with
other factors in inducing cardiomyocyte differentiation of
BMSCs. MSCs isolated from sternal marrow show poten-
tial to differentiate into mesodermal lineages, like osteo-
cytes, adipocytes, and chondrocytes, and whether the
MSCs have the potential to differentiate into cardiomyo-
cytes is an interest question. Hafez et al. [60] find that
bFGF synergizes with hydrocortisone, a steroid drug pro-
duced by the adrenal gland, to induce cardiomyocyte dif-
ferentiation of sternal marrow MSCs. Immunofluorescence
analysis and qRT-PCR show that cardiac markers like cTnI,
cardiac troponin C (cTnC), and cardiac intracellular gap
junction protein CX43 in bFGF and hydrocortisone-
treated BMSCs are upregulated compared with 5-aza-
treated BMSCs. These data suggest that the combination
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of bFGF and hydrocortisone can not only induce BMSCs
to differentiate into cardiomyocytes, but is more efficient
than treatment with 5-aza.
A previous study shows that bFGF could increase migra-

tory activity, engraftment, and therapeutic potency [61].
bFGF could promote new arteriolar formation and LV
functional improvements, and is essential in MSC angio-
genesis and improving the ischemic surroundings [62, 63].
It also enhances differentiation of BMSCs for cardiac re-
pair after myocardial infarction [64], suggesting that bFGF
is important in cardiac diseases. Hydrocortisone has an
important role in the regulation of cardiomyocyte prolifer-
ation and differentiation [60]. In the role of maintenance
and differentiation of mesodermal cells, bFGF and hydro-
cortisone may be a good selection to induce cardiomyo-
cyte differentiation. Experiments such as Hafe et al also
prove this character [60].

Interleukin
Cytokines could induce MSCs differentiating into cardiac
lineage in the microenvironment. These factors can be de-
rived by autocrine and paracrine signaling. Interleukin, a
cytokine, is also vital for regulating cardiac function, de-
velopment, and pathogenesis. The interleukin-1 family is a
member of proinflammatory cytokines and has been
divided into two types: IL-1α and IL-1β, which have bio-
logical function in a variety of cells, especially cardiomyo-
cytes [65]. Recent studies have shown that IL-1β plays a
critical role in pathogenesis, development, and function of
cardiomyocytes in impaired heart [66]. A previous study
demonstrates that IL-1β could mediate the neovasculari-
zation after myocardial ischemia [67] and cardiac develop-
ment processes.
Khajeniazi [68] finds that IL-1β has a positive effect on

cardiac differentiation as well as 5-aza in vitro. On pretreat-
ment of BMSCs with IL-1β, myocardial marker proteins
cTnI, cTnT, CX43, and α-cardiac actin are expressed in the
process of differentiation. Then, BMSCs are treated with
IL-1β and 5-aza, and the data show that the combination of
IL-1β and 5-aza is more effective than using IL-1β or 5-aza
respectively.
These results show that IL-1β has a potential role in pro-

moting cardiomyocyte differentiation of BMSCs. The ex-
pression of Notch ligand Jagged1 can be induced by IL-1β
on human dystrophic myogenic cells, which could promote
cardiomyocyte differentiation [69]. Based on its pleiotropic
features and these data, further studies are needed to delin-
eate whether IL-1β could affect the differentiation process
of MSCs into cardiomyocytes. Khajeniazi’s [68] result
shows that IL-1β could induce differentiation of BMSCs
into cardiomyocytes, similar to 5-aza, but when IL-1β is
applied in combination with 5-aza they exert a synergistic
impact on cardiomyocyte differentiation. However, the
mechanism of IL-1β-induced cardiomyocyte differentiation

is not clear. Wnt signaling pathway is essential in
cardiomyocyte development and it has also been noted
that IL-1β has the ability to induce osteogenic differenti-
ation of hMSCs via Wnt-5a/receptor tyrosine kinase-like
orphan receptor 2 pathways [70]. It can be suspected that
IL-1β might come into play via the Wnt signaling pathway.

TGF-β family
Transforming growth factor β1
TGF-β1 belongs to the TGF-β family, which can regulate
a load of biological processes, including proliferation,
survival, differentiation, and migration of various cells
[71, 72]. After treatment with TGF-β1, murine BMSCs
increase the expression of cardiac-specific markers, such
as cTnI, cTnT, α-MHC, and α-sarcomeric actin, suggest-
ing that TGF-β1 may promote differentiation of BMSCs
into cardiomocytes [73]. Further studies report that
BMSCs treated with autologous serum and TGF-β1 are
significantly more sensitive than BMSCs treated with
medium supplement containing 10% FBS and serum-
free medium by detecting the expression of cTnT and
GATA4, exhibiting a higher rate of proliferation and the
capacity to differentiate into cardiomyocytes [74]. Elec-
trical stimulation also affects the cardiomyocyte micro-
environment [75], and would regulate the cariogenic
differentiation of stem cells. Previous studies have found
that electrical stimulation promotes the mRNA expression
of GATA4 and Nkx2.5 in BMSCs [76], indicating that
electrical stimulation could induce cardiomyocyte differ-
entiation of BMSCs. The current study shows TGF-β1
may be involved in this process [77]. The expression of
TGF-β1 is increased during electrical stimulation. To in-
vestigate whether electrical stimulation induces the car-
diomyocyte differentiation of BMSCs through TGF-β1,
BMSCs are treated with PFD (a TGF-β1 inhibitor); protein
levels of the cardiac markers CX43 and α-actinin 2 are
higher in the electrical stimulation group than in the elec-
trical stimulation + PFD group, indicating that electrical
stimulation induces the cardiomyocyte differentiation of
BMSCs through TGF-β1.
TGF-β1 has known to be an important factor in em-

bryonic heart development [78] and could induce car-
diomyocyte differentiation of ES cells [79]. TGF-β1 also
could promote the cardiomyocyte differentiation of
skeletal muscle-derived adult primitive cells and the
cardiomyocyte-like differentiation of BMSCs [74]. This
result shows that TGF-β1 could induce BMSC cardio-
myocyte differentiation. As the expansion of MSCs per-
formed in cell culture medium with FBS has several
problems including viral, bacterial, and prion [80], au-
tologous serum has been considered. Autologous serum
could regulate the proliferation and differentiation of
MSCs [81] and enhance the cell viability. Chachques et
al. [82] had transplanted autologous myoblasts which
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were cultured in autologous serum medium into LV in-
farcted patients to repair the jeopardized myocardium.
The electrical microenvironment is a key regulating

factor of cardiomyocytes in vivo, and could trigger the
cardiac-specific marker expression of various types of
cells including fibroblasts [83], human mesenchymal
stem cells [84], and ES cells [85]. Because of cardiac de-
velopment of TGF-β1 during embryogenesis [86] and
various cardiac pathologies [87], a hypothesis that
whether electrical stimulation could increase the cardio-
myocytes differentiation of BMSCs with TGF-β1 supple-
ment is provided. The experiment demonstrates that
electrostimulation would induce the cardiomyocyte dif-
ferentiation of BMSCs via TGF-β1 with a higher effi-
ciency. However, the exact molecular mechanism and
the signaling pathway mediating this process remain un-
known, making it clear this could be useful in promoting
the therapeutic efficacy of BMSCs for clinical use.

Bone morphogenetic protein-2
Bone morphogenetic proteins (BMPs) belonging to the
TGF-β family play roles in bone formation and cardiac dis-
eases [88–90]. BMP-2 is a member of BMPs that has dem-
onstrated therapeutic potential in MI by improving the
contractility of cardiomyocytes and preventing cell death
[91]. Whether it could regulate the cardiac differentiation
of BMSCs requires further experiments. After treatment of
BMSCs with BMP-2, Lv et al. [92] find that the differenti-
ation of BMSCs into cardiomyocytes is enhanced by de-
tecting the ultrastructural characterization, cardiomyocyte-
specific protein expression, and mRNA expression of
transcription factors. Furthermore, BMP-2 combined with
Salvianolic acid B extracted from Salvia miltiorrhiza could
produce better efficiency. To data, BMP-2 plays a role in
inducing the cardiomyocyte differentiation of BMSCs and
can play a synergy role with Salvianolic acid B [92].
BMP-4 could induce cardiomyogenic differentiation of

human amniotic epithelial cells [93] and promote cardiac
differentiation of mouse ES cells with autologous serum
supplement [94]. BMP-10 comes to be critical in embryo-
genesis of the heart. As a member of the BMP family,
BMP-2 is known to induce various types of stem cells into
osteoblasts, chondrocytes, or adipocytes [95]. The BMP
signaling pathway also plays key roles in regulating prolif-
eration, differentiation, and survival of cardiac progenitor
cells [96]. The expression of BMP-2 is increased after
myocardial infarction, not only anti-apoptosis, but also
regulating the cardiomyocyte differentiation of cardiac
progenitors [97]. By controlling the expression of BMP-2,
ES cells could differentiate into cardiomyocytes [98]. A
previous study also shows that BMP-2 might differentiate
BMSCs into a myocardial cell line. Salvianolic acid B
could play a cardioprotective role in ES cell-derived cardi-
omyocytes in a hypoxia condition. Salvianolic acid B also

could regulate the differentiation of various types of cells.
For example, Salvianolic acid B promotes osteogenesis of
human mesenchymal stem cells [99] and enhances BMSC
differentiation into type I alveolar epithelial cells [100].
Salvianolie acid B could be used to induce myocardial dif-
ferentiation of BMSCs due to its function of cardioprotec-
tive and regulationg differentiation.

Microenvironment
Many research studies show that the cell-culture
microenvironment may influence cell proliferation
and differentiation. Recently, in-vitro studies have shown
that culturing cells with specific medium could alter the
cardiac-specific gene expression and differentiation of
stem cells.
Wu et al. [101] utilize a high-voltage electrostatic field

system to form nanosized collagen particles from collagen
I solution. To further investigate whether collagen I nano-
molecules could affect BMSC differentiation, BMSCs are
cultured in medium with or without collagen I nanoparti-
cles. After 24 h, 5-aza is added to induce the cardiomyo-
cyte differentiation of BMSCs. The expression of two
transcription factors (GATA4 and Nkx2.5) and four
cardiac-specific markers (cTnI, β-MHC, CX43, and cardiac
α-actin) are evaluated in BMSCs pretreatment with colla-
gen I nanomolecules compared with BMSCs which not ex-
posed to collagen I nanomolecules. These results
demonstrate that collagen I nanomolecules can synergize
with 5-aza to induce the cardiomyocyte differentiation of
BMSCs, but the mechanism remains to be further
explored.
Recently, in-vitro studies have shown that culturing

substrates could modulate MSC differentiation [102].
Due to its physical and chemical properties and its effect
on differentiation of MSCs [103], graphene has attracted
much attention as a new type of MSC culture dish. To
determine whether graphene could regulate the cardio-
myocyte differentiation of human bone marrow-derived
MSCs, Park et al. [104] conduct a series of studies. After
cell seeding, cardiac-specific markers, including GATA4,
cardiac actin, β-MHC, and cTnT, are all higher in MSCs
cultured on graphene than in MSCs cultured on
coverslips. Furthermore, the level of cardiomyogenic
differentiation-associated extracellular matrix proteins
(collagen I, collagen III, collagen IV, fibronectin, and
laminin) in MSCs cultured with graphene supplement is
increased. Taken together, these data suggest that gra-
phene could promote cardiomyocyte differentiation of
MSCs through differentiation-associated ECM proteins
and related signaling pathways.
Collagen scaffold has been used as a cell product in

clinical trials for cardiac repair [105]. A recent study
shows that MSCs could enhance the expression of
cardiomyocyte-specific proteins in collagen patches and
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secrete cardiotrophic factors [106]. Extracellular matrix is
an essential property of the microenvironment cells inter-
act with, and has a key role in influencing cell behavior
and determining cell fate. Furthermore, MSCs cultured in
collagen patches provide not only structural support to
damaged myocardium but also promote tissue repair and
enhance regenerative potential of MSCs [107–109].
Previous studies have shown that stem cell–extracellular
matrix (ECM) interactions may take part in the cardiomyo-
genic differentiation of stem cells [110–112], whereas
cardiomyogenic differentiation-associated ECM proteins
can induce cardiac differentiation of ES cells [113].
Graphene-based materials have emerged with various

functions in multiple biomedical applications, such as
gene and drug delivery, cancer therapy, and tissue regen-
eration [114–116], due to their electrical and chemical
properties. Moreover, they have been used to culture
and differentiate stem cells [117, 118]. Ahadian et al.
[119] find that graphene could induce spontaneous car-
diac differentiation in embryoid bodies. Phosphorylated
focal adhesion kinase (FAK) and ERK play an important
role in regulating cardiomyogenic differentiation of stem
cells [120]. Graphene could enhance stem cell adhesion,
as the expression of FAK is increased [35], and it also in-
creases the phosphorylation level of ERK. Park et al’s
[104] results are also consistent with this. Western blot
analysis results show that these differentiation-related
pathways, FAK and ERK, are both activated in graphene-
cultured MSCs.

Others
Caveolin-1
Caveolin-1 is an important part of caveolae, a specialized
membrane invagination. Previous reports indicate that
Caveolin-1 could play an important role in proliferation
and differentiation of BMSCs [121–123], but the role of
Caveolin-1 in cardiomyocyte differentiation of BMSCs
remains unknown. Chen et al. [124] find that both
mRNA and protein levels of Caveolin-1 are increased in
5-aza-treated BMSCs, suggesting that Caveolin-1 may be
involved in the differentiation of BMSCs into cardio-
myocytes. To further explore the role of Caveolin-1 in
BMSC differentiation, Caveolin-1 siRNA is used. In the
presence of siRNA, qRT-PCR and western blot analysis
are performed to detect cardiac markers both at mRNA
and protein levels, suggesting that knockdown of
Caveolin-1 could enhance the cardiomyocyte differenti-
ation of BMSCs [124].
The major finding of this study is that the downregula-

tion of Caveolin-1 can promote the cardiomyocyte dif-
ferentiation of BMSCs by regulating the activation of
STAT3 signaling. Previous studies show that the expres-
sion of Caveolin-1 is increased in terminally differenti-
ated mesenchymal lineage cells [125, 126], indicating

that Caveolin-1 might prevent continued growth and dif-
ferentiation. Guimaraes et al. [127] find that BMSCs iso-
lated from the Caveolin-1 null mouse have an
osteogenic differentiation potential, suggesting that
Caveolin-1 could inhibit osteogenesis. Caveolin-1 also
could block the neuronal differentiation and adipogenesis
[128, 129]. The cardiomyocyte differentiation of BMSCs is
a complex and multisignal process. As stated, STAT3
could enhance the differentiation of transplanted BMSCs,
and inhibition of its activation could suppress the differen-
tiation of mouse ES cells into cardiomyocytes induced by
the cooperation of leukemia inhibitory factor and BMP-2
[130]. But this may be contradictory. Natarajan et al.’s
[131] research shows that inhibition of STAT3 could pro-
mote neuron differentiation at the expense of astroglio-
genesis. In this study, the activation of STAT3 is
drastically decreased during inhibition of the expression of
Caveolin-1 in BMSCs with or without 5-aza induction. Al-
though the study demonstrates that Caveolin-1 plays an
important role in cardiomyocyte differentiation of BMSCs
through the STAT3 signaling pathway, the change of
STAT3 activation is not consistent with previous reports
and requires further investigation.

Vanilloid receptor 1
Vanilloid receptor 1 (VR-1) is a Ca2+-permeable cationic
channel belonging to the family of transient receptor po-
tential ion channels [132]. The transient receptor potential
ion channel family regulates neurons and osteocytes differ-
entiation [133, 134]. VR-1 could promote osteoclast and
osteoblast differentiation [135, 136]. Previous studies have
indicated that VR-1 is expressed in cardiomyocytes and
has roles in cardiac remodeling and differentiation from
mouse ES cells to cardiomyocytes [137, 138]. Whether VR-
1 could function in differentiation from BMSCs into cardi-
omyocytes is still not clear cut. After treatment with 5-aza,
Ren et al. [139] find that the levels of VR-1 are evaluated in
BMSCs, suggesting that VR-1 may play a role in the differ-
entiation of BMSCs into cardiomyocytes. In order to fur-
ther explore the potential role of VR-1 in cardiomyocyte
differentiation of BMSCs, VR-1 is knocked down using
siRNA. The mRNA and protein expressions of α-MHC, α-
actin, and Nkx2.5 in the 5-aza group are significantly lower
than those in the negative control group. These data show
that VR-1 knockdown would inhibit the cardiomyocyte dif-
ferentiation of BMSCs induced by 5-aza.
As previous evidence suggests that the Wnt/β-catenin

signaling pathway is involved in myocardial development
[140, 141], the authors postulate that the Wnt/β-catenin
signaling pathway may be involved in the role of VR-1 in
cardiomyocyte differentiation of BMSCs. However, subse-
quent experiments demonstrate that the expression of
both β-catenin and ANIN2 positively correlated with the
Wnt/β-catenin signaling pathway is reduced when VR-1 is
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knocked down in BMSCs. These results suggest that VR-1
could participate in the cardiomyocyte differentiation of
BMSCs via the Wnt/β-catenin signaling pathway [139].

Histone deacetylase 1
Currently, epigenetic modifications play an important
role in cardiomyocyte differentiation processes of stem
cells, especially histone acetylation [142, 143]. Previous
studies have reported that HDAC1 knockdown could in-
duce myocardial differentiation in P19CL6 cells and ES
cells [144, 145]. In a preliminary experiment, the de-
crease of HDAC1 expression in BMSCs is identified dur-
ing cardiomyocytes differentiation [146]. But whether
HDAC1 is involved in the process is unclear. To further
investigate this hypothesis, Lu et al. construct the opti-
mal HDAC1-RNAi lentiviral vector to reduce the ex-
pression of HDAC1 in BMSCs. After treatment of
BMSCs with the HDAC1-RNAi lentiviral vector, mRNA
levels of cardiac-specific genes such as Nkx2.5, GATA-4,
MHC, CX43, and cTnT are detected by qRT-PCR. The
results show that the lentivirus-infected BMSC expres-
sion of these five genes is significantly higher than the
vector or NC vector, indicating that inhibition of
HDAC1 expression could promote the directional differ-
entiation of BMSCs into cardiomyocytes [146].
Epigenetic modification of histone acetylation has been

demonstrated to play significant roles in differentiation
process of stem cells. Histone deacetylase (HDAC) has
many subtypes that participate in this process, such as
CUDC-907 regulating adipocytic differentiation of bone

marrow stromal cells via HDAC [147], lncRNA H19
inhibiting adipocyte differentiation of BMSCs through
HDAC4–6 [148], and HDAC8 suppressing osteogenic
differentiation of bone marrow stromal cells [149]. On
treatment of BMSCs with nonspecific inhibitors of HDAC
such as suberoylanilide hydroxamic acid and trichostatin
A which could suppress multiple HDAC subtypes except
HDAC1, the expression of cardiomyocyte-specific genes is
increased [142, 150]. In this study, cardiomyocytes differ-
entiation is enhanced upon treatment of BMSCs with
HDAC1-RNAi lentiviral vector, suggesting that HDAC1
also plays a role in cardiomyocytes differentiation of
BMSCs.

Prospects
In recent years, a series of research studies have provided
different approaches to induce the cardiomyocytes differ-
entiation of BMSCs, including chemical inducers, cyto-
kines, microRNAs, culture intermediaries, and so on.
Recent studies have also shown that hMSCs cocultured
with primary cardiomyocytes could promote nuclear
modification of hMSCs for cardiomyogenic-like cell differ-
entiation [151]. But there are also series of problems, such
as the carcinogenicity of 5-aza and the low differentiation
efficiency of many inducers, all of which hinder the clin-
ical application of BMSC transplantation. However, these
research studies supply a train of thought for inducing
BMSCs to differentiate into cardiomyocytes as well.
Transplantation of BMSCs will become a new promising

Fig. 1 The regulators which can differentiate BMSCs into cardiomyocytes. BMSC bone marrow-derived mesenchymal stem cell, HDAC histone
deacetylase, TGF-β transforming growth factor beta, VR-1 vanilloid receptor 1, 5-aza 5-azacytidine
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therapeutic strategy for clinical application in cardiac dis-
eases in the future.

Conclusions
Many researches have been done to explore the efficient
therapy of cardiac diseases, and stem cells transplanting
has been a promising therapeutic strategy. Stem cells
could be induced into cardiomyocytes, and then mi-
grated to damaged location to play the therapeutic ef-
fect. BMSCs would be the ideal source of stem cells due
to easy availability, powerful capacity of proliferation and
immune modulatory properties. In this article, some
regulatory factors which could induce the cardiomyoctes
differentiation have been summarized, including 5-aza,
miRNAs, cytokines, microenvironment, Caveolin-1, VR-
1 and HDAC1 (Fig. 1). More exploration are needed to
elucidate the mechanism of BMSCs differentiate into
cardiomyocytes and accelerate the clinical application.
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