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Abstract
Pathogenic variants in theGJB2 gene, encoding connexin 26, are known to be a major

cause of hearing impairment (HI). More than 300 allelic variants have been identified in the

GJB2 gene. Spectrum and allelic frequencies of theGJB2 gene vary significantly among dif-

ferent ethnic groups worldwide. Until now, the spectrum and frequency of the pathogenic

variants in exon 1, exon 2 and the flanking intronic regions of theGJB2 gene have not been

described thoroughly in the Sakha Republic (Yakutia), which is located in a subarctic region
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in Russia. The complete sequencing of the non-coding and coding regions of the GJB2
gene was performed in 393 patients with HI (Yakuts—296, Russians—51, mixed and other

ethnicities—46) and in 187 normal hearing individuals of Yakut (n = 107) and Russian (n =

80) populations. In the total sample (n = 580), we revealed 12 allelic variants of the GJB2
gene, 8 of which were recessive pathogenic variants. Ten genotypes with biallelic recessive

pathogenic variants in theGJB2 gene (in a homozygous or a compound heterozygous

state) were found in 192 out of 393 patients (48.85%). We found that the most frequent

GJB2 pathogenic variant in the Yakut patients was c.-23+1G>A (51.82%) and that the sec-

ond most frequent was c.109G>A (2.37%), followed by c.35delG (1.64%). Pathogenic vari-

ants с.35delG (22.34%), c.-23+1G>A (5.31%), and c.313_326del14 (2.12%) were found to

be the most frequent among the Russian patients. The carrier frequencies of the c.-23

+1G>A and с.109G>A pathogenic variants in the Yakut control group were 10.20% and

2.80%, respectively. The carrier frequencies of с.35delG and c.101T>C were identical

(2.5%) in the Russian control group. We found that the contribution of the GJB2 gene patho-

genic variants in HI in the population of the Sakha Republic (48.85%) was the highest

among all of the previously studied regions of Asia. We suggest that extensive accumula-

tion of the c.-23+1G>A pathogenic variant in the indigenous Yakut population (92.20% of all

mutant chromosomes in patients) and an extremely high (10.20%) carrier frequency in the

control group may indicate a possible selective advantage for the c.-23+1G>A carriers living

in subarctic climate.

Introduction
Pathogenic variants in the GJB2 gene (gap junction protein beta 2, 13q12.11) encoding con-
nexin 26 (Cx26) are known to be a major cause of congenital hearing impairment (HI) in
many countries [1]. To date, more than 300 different allelic variants (The Human Gene Muta-
tion Database) have been described in the GJB2 gene [2]. Spectrum and allelic frequencies of
the GJB2 gene vary significantly among different ethnic groups worldwide [3, 4]. Currently, the
regions of Europe [5–32], Asia [33–48], the Middle East [49–56], Central and North America
[57–61], South America [62–69], Greenland [70], Australia [71], and some parts of Africa [72–
81] have been characterized according to the pathogenic variant spectrum and frequency of the
GJB2 gene. However, data regarding the molecular basis of HI in populations of Russia are
scarce [7, 16, 82].

Preliminary mutational analysis of the coding region (exon 2) of the GJB2 gene in patients
with HI from the Sakha Republic (Yakutia) located in subarctic region of Russia (Northeast
Asia) revealed the presence of the GJB2 pathogenic variants in 50.1% of patients of Caucasian
origin (Russians, Ukrainians, and Ingushes) and only in 7.2% of the Yakut patients (indigenous
population of the Sakha Republic) [83]. Subsequent mutational analysis of the non-coding
region of the GJB2 gene revealed a large cohort of Yakut patients with HI who were homozy-
gous for the splice site pathogenic variant c.-23+1G>A (70 unrelated patients in total) [84].
Nevertheless, until now, the spectrum and frequency of all pathogenic variants in exon 1, exon
2 and the flanking intronic regions of the GJB2 gene in the Sakha Republic have not been
described thoroughly.

In this study, we present updated data on the spectrum and frequency of the GJB2 gene
sequence variants (exon 1, exon 2 and flanking intronic regions) in the extended cohort of
patients with HI (n = 393) of different ethnicities and in normal hearing individuals (n = 187)
living in the Sakha Republic.
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Materials and Methods

Patients
Data on individuals with HI were obtained from the Republican Hospital # 1 of the National
Medical Centre (Yakutsk, Russian Federation) and the Republican special residential schools
for the deaf and hard-of-hearing children (Yakutsk, Russian Federation). The genomic DNA
samples of 393 patients with HI from 360 unrelated families were collected from 2005 to 2010.
The majority of patients were Yakuts (75.3%; n = 296), Russian patients (12.9%; n = 51), and
patients of mixed and other ethnicities (11.7%; n = 46) (Table 1). Audiograms of patients dem-
onstrated variability in bilateral sensorineural HI (from mild to profound). In most cases, the
hearing thresholds were determined by pure-tone audiometry, using a clinical tonal audiome-
ter GSI 60 (Grason-Stadler, Madison, WI, USA) in a soundproof room according to the current
clinical standards. Air-conduction thresholds were obtained at 0.125, 0.25, 0.5, 1, 2, 4, and 8
kHz. Severity of hearing loss was defined as mild (25–40 dB), moderate (41–70 dB), severe
(71–90 dB) or profound (above 90 dB).

Control group
The control group was represented by 187 unrelated normal hearing individuals of Yakut
(n = 107) and Russian (n = 80) ethnicities living in different districts of the Sakha Republic
(Table 1). Blood samples were collected after written informed consent. The carrier frequency of
the major GJB2 pathogenic variants c.-23+1G>A and c.35delG in Yakuts was calculated by a com-
pilation of corresponding data from previous studies [85, 86]. Differences in the c.-23+1G>A
pathogenic variant frequencies between the study groups (95% credible interval) were computed
with the ‘Sampling’ software kindly provided by V. Macaulay and adapted by M. Metspalu (Esto-
nian Biocentre, Tartu, Estonia).

Sequence analysis of theGJB2 gene
DNA was extracted from the blood leukocyte fraction using the phenol-chloroform method.
Amplification of non-coding (exon 1), coding (exon 2) and flanking intronic regions of the
GJB2 gene was conducted with PCR on a MJ Mini (Bio-Rad) thermocycler using primers 5'-
CCGGGAAGCTCTGAGGAC-3' and 5'-GCAACCGCTCTGGGTCTC-3' for amplification of
exon 1 [55] and 5'-TCGGCCCCAGTGGTACAG-3' and 5'-CTGGGCAATGCGTTAAACTGG
-3' for amplification of exon 2 [32, 58, 59]. The PCR products were subjected to direct sequenc-
ing using the same primers on ABI PRISM 3130XL (Applied Biosystems, USA) Genomics Core
Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian
Academy of Sciences, Novosibirsk, Russia). DNA sequences variations were identified through
comparison with the GJB2 gene reference sequencesМ86849.2 and U43932.1 (GenBank).

Table 1. Characteristics of the patients and control groups.

Ethnicity Patients groups Control groups

Total n = 393 Male Female Mean age n = 187 Male Female Mean age

Yakuts n = 296
(75.3%)

50.3% 49.7% 17.2±1.0
years

n = 107
(57.2%)

31.8% 68.2% 23.7±2.3 years

Russians n = 51
(12.9%)

58.8% 41.2% 19.0±2.6
years

n = 80
(42.8%)

Data not
available

Data not
available

Data not
available

Individuals of mixed and other
ethnicities

n = 46
(11.7%)

56.5% 43.5% 17.6±2.5
years

- - - -

doi:10.1371/journal.pone.0156300.t001
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Epidemiological data
The Sakha Republic (Yakutia), which includes 34 districts and two cities, is the largest (by terri-
tory) administrative region of the Russian Federation located in Eastern Siberia with the area
of 3103.2 km2. The data on population and ethnic composition of each district and city were
obtained from the Department of the Federal Service of National Statistics in the Sakha Repub-
lic (Yakutia). The total population of the Sakha Republic is 958,528 people (64.1%—urban pop-
ulation), with a density of 0.31 people per km2. The major ethnic groups are the Yakuts
(48.6%) and the Russians (36.9%). The minor ethnic groups are the Ukrainians (2.1%), the
Evenks (2.1%), and the Evens (1.5%). Other ethnic groups are<1%. DNA samples were col-
lected from the patients with HI living in 30 different districts of the Sakha Republic. The prev-
alence of HI caused by biallelic recessive GJB2 pathogenic variants was counted per 10,000
people in the Sakha Republic.

Ethical approval
All written informed consent forms signed by the participants or the guardians of the underage
participants involved in our study were obtained before the testing procedures. This study was
approved by the local Biomedical Ethics Committee of Federal State Budgetary Scientific Insti-
tution “Yakut Science Centre of Complex Medical Problems”, Yakutsk, Russia (Protocol No.
16, April 16, 2009).

Results

Spectrum of theGJB2 gene sequence variants
Sequencing of the coding (exon 2), non-coding (exon 1) and flanking intronic regions of the
GJB2 gene in 393 patients and 187 controls revealed 12 allelic variants (c.-23+1G>A, c.35delG,
c.79G>A, c.101T>C, c.109G>A, c.167delT, c.269T>C, c.313_326del14, c.333_334delAA,
c.341A>G, c.368C>A, and c.457G>A) (Fig 1). Among them, eight recessive pathogenic vari-
ants associated with HI (c.-23+1G>A, c.35delG, c.101T>C, c.109G>A, с.167delT, c.269T>C,
с.313_326del14, and c.333_334delAA), three benign variants (c.79G>A, с.341A>G, and
с.457G>A), and one unclassified variant (с.368С>A) were detected (Fig 1).

GJB2 genotypes in patients
Twenty one different GJB2 genotypes were identified in all patients with HI (n = 393). Among
them, ten pathogenic (biallelic recessive pathogenic variants in a homozygous or compound
heterozygous state) GJB2 genotypes were found in 192 patients (48.85%). Four common patho-
genic GJB2 genotypes were presented with a frequency>1%: с.[-23+1G>A];[-23+1G>A]
(37.91%), c.[-23+1G>A];[35delG] (4.58%), c.[35delG];[35delG] (3.56%), and c.[109G>A];
[109G>A] (1.01%) (Table 2).

Seven different GJB2 genotypes with single recessive pathogenic variants and wild type allele
or benign variants were found in 38 (9.66%) patients. Four different GJB2 genotypes with
benign and unclassified variants were detected in 40 (10.17%) patients. No changes in the GJB2
gene sequence were found in 125 (31.80%) patients (Table 2).

Spectrum and contribution of theGJB2 gene pathogenic variants in HI in
two different ethnic groups of patients
We found different contributions of the GJB2 gene pathogenic variants in HI among two
major different ethnic groups of patients (Yakuts and Russians). The presence of biallelic
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recessive GJB2 pathogenic variants were detected in 157 out of 296 Yakut patients with HI
(53.04%) (Table 2). Pathogenic variant c.-23+1G>A was the most frequent (93.63% of all mutant
chromosomes) among the three recessive GJB2 pathogenic variants detected in Yakut patients (Fig
2). The HI in 17 out of 51 Russian patients (33.33%) was caused by the presence of biallelic reces-
siveGJB2 pathogenic variants. Particularly, c.35delG was the most frequent (61.76% of all mutant
chromosomes) among the five pathogenic variants found in the Russian patients (c.-23+1G>A,
c.35delG, с.313_326del14, c.333_334delAA, and с.167delT) (Fig 2). Three pathogenic GJB2 geno-
types accounted for HI in 39.13% of patients of the other ethnicities (Fig 2).

GJB2 allelic frequencies in patients and control groups
We found that three pathogenic variants, c.-23+1G>A (42.28%), с.35delG (5.92%), and
c.109G>A (1.92%), were common (with an allelic frequency>1%) (Table 3).

Pathogenic variant c.-23+1G>A was the most frequent (51.82%) among the Yakut patients,
followed by c.109G>A (2.37%) and c.35delG (1.64%). In the Yakut control group with high
allelic frequency, we found pathogenic variants c.-23+1G>A (5.60%) and c.109G>A (1.40%)
and benign variants c.79G>A with c.341A>G (2.33%) and without c.341A>G (3.27%)
(Table 2). The c.79G>A in a homozygous state with с.368С>A was found in one individual
from the Yakut control group. This finding confirms the cis-configuration of two pairs of
benign variants (c.79G>A with c.341A>G and c.79G>A with 368С>A) reported earlier in
studies in Asian populations [33–48, 61]. In Russian patients, the pathogenic variants с.35delG
(22.34%), c.-23+1G>A (5.31%) and c.313_326del14 (2.12%) were found to be the most fre-
quent. In the Russian control group, we found two pathogenic variants, c.35delG and

Fig 1. Detected pathogenic and benign variants in theGJB2 gene in patients (A) and control groups (B). Note: Pathogenic variants are shown in
red, benign variants are shown in blue; *—unclassified variant, b.p.—base pair.

doi:10.1371/journal.pone.0156300.g001
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Table 2. GJB2 genotypes in patients with HI.

GJB2 genotypes Yakut patients Russian patients Patients of mixed
and other
ethnicities

Total

Nucleotide level
(NM_004004.5)

Amino acid level
(NP_003995.2)

n = 296 Frequency
(%)

n = 51 Frequency
(%)

n = 46 Frequency
(%)

n = 393 Frequency
(%)

c.[-23+1G>A];[-23+1G>A] [Splice site, m.RNA];
[Splice site, m.RNA]

142 47.97 2 3.92 5 10.86 149 37.91

c.[-23+1G>A];[35delG] [Splice site, m.RNA];
p.[Gly12ValfsX2]

8 2.70 2 3.92 8 17.39 18 4.58

c.[-23+1G>A];[109G>A] [Splice site, m.RNA];
р.[Val37Ile]

2 0.67 - - - - 2 0.50

c.[-23+1G>A];[167delТ] [Splice site, m.RNA];
р.[Leu56ArgfsX26]

- - 1 1.96 - - 1 0.25

c.[-23+1G>A];
[313_326del14]

[Splice site, m.RNA];
p.[Lys105GlyfsX5]

- - 1 1.96 - - 1 0.25

c.[-23+1G>A];
[333_334delAA]

[Splice site, m.RNA];
р.[Ile111IlefsХ2]

- - 1 1.96 - - 1 0.25

c.[35delG];[35delG] p.[Gly12ValfsX2];
[Gly12ValfsX2]

- - 9 17.64 5 10.86 14 3.56

c.[35delG];[109G>A] p.[Gly12ValfsX2];
[Val37Ile]

1 0.33 - - - - 1 0.25

c.[35delG];
[313_326del14]

p.[Gly12ValfsX2];
[Lys105GlyfsX5]

- - 1 1.96 - - 1 0.25

c.[109G>A];[109G>A] p.[Val37Ile];[Val37Ile] 4 1.35 - - - - 4 1.01

GJB2 genotypes with
biallelic recessive

pathogenic variants in
total

157 53.04 17 33.33 18 39.13 192 48.85

c.[-23+1G>A];[wt] [Splice site, m.RNA];
[wt]

17 5.74 - - 1 2.17 18 4.58

c.[-23+1G>A];[79G>A] [Splice site, m.RNA];
р.[Val27Ile]

5 1.68 - - 1 2.17 6 1.52

c.[-23+1G>A];[79G>A(;)
341A>G]

[Splice site, m.RNA];
р.[Val27Ile(;)
Glu114Gly]

4 1.35 - - - - 4 1.01

c.[35delG];[wt] p.[Gly12ValfsX2];[wt] - - 2 2.92 1 2.17 3 0.76

c.[101Т>С];[wt] p.[Met34Thr];[wt] 1 0.33 2 2.92 - - 3 0.76

c.[109G>A];[wt] p.[Val37Ile];[wt] 2 0.67 1 1.96 - - 3 0.76

c.[79G>A];[269Т>С] p.[Val27Ile];[Ile90Pro] 1 0.33 - - - - 1 0.25

GJB2 genotypes with
single recessive

pathogenic variants in
total

30 10.13 5 9.80 3 6.52 38 9.66

c.[79G>A];[wt] p.[Val27Ile];[wt] 21 7.09 1 1.96 5 10.86 27 6.87

c.[79G>A];[79G>A] p.[Val27Ile];[Val27Ile] 4 1.35 - - 1 2.17 5 1.27

c.[79G>A];[79G>A(;)
341A>G]

p.[Val27Ile];[Val27Ile
(;)Glu114Gly]

1 0.33 - - - - 1 0.25

c.[79G>A(;)341A>G];[wt] p.[Val27Ile(;)
Glu114Gly];[wt]

4 1.35 1 1.96 - - 5 1.27

GJB2 genotypes with
benign variants in total

30 10.13 2 2.92 6 13.04 40 10.17

GJB2 genotype [wt];[wt] 79 26.68 27 52.94 19 41.30 125 31.80

doi:10.1371/journal.pone.0156300.t002
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c.101T>C, with an identical allelic frequency of 1.25%. Benign variant c.457G>A was found in
one individual from the Russian control group (0.62%) (Table 3). Only two pathogenic vari-
ants, c.-23+1G>A (21.42%) and с.35delG (15.47%), were found in patients from other ethnic
groups (Table 3).

Fig 2. Contribution to HI (A) and spectrum (B) of the pathogenicGJB2 gene variants among the ethnic groups of patients with HI in the Sakha Republic.
Note: Х—no changes were found in theGJB2 gene sequence.

doi:10.1371/journal.pone.0156300.g002
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Carrier frequency of theGJB2 pathogenic variants in the Yakut and
Russian control groups
We estimated the carrier frequency of GJB2 recessive pathogenic variants in the studied control
groups. In the Yakut controls, carrier frequencies of c.-23+1G>A, c.35delG, c.101T>C, and
с.109G>A were 10.2%, 0.4%, 0.9% and 2.8%, respectively (Table 4). The carrier frequency of
с.35delG and c.101T>C detected in the Russian controls was found to be identical (2.5%)
(Table 4).

Distribution of HI caused by the presence of biallelicGJB2 recessive
pathogenic variants in the Sakha Republic
We analyzed the distribution of the GJB2 genotypes with biallelic recessive pathogenic variants
in the Sakha Republic (S1 Table and Fig 3). The average rate of HI caused by the biallelic GJB2

Table 3. Allele frequency of pathogenic and benignGJB2 variants in patients and control groups.

Allelic variants of the GJB2 gene Yakut patients n = 274 Control group
(Yakuts) n = 107

Russian patients
n = 47

Control group
(Russians) n = 80

Patients of mixed and
other ethnicities n = 42

Nucleotide level
(NM_004004.5)

Amino acid level
(NP_003995.2)

548
chromosomes

АF
(%)

214
chromosomes

АF
(%)

94
chromosomes

АF
(%)

160
chromosomes

АF
(%)

84
chromosomes

АF
(%)

c.-23+1G>A Splice site, m.
RNA

284 51.82 12 5.60 5 5.31 - - 18 21.42

c.35delG p.Gly12ValfsX2 9 1.64 - - 21 22.34 2 1.25 13 15.47

c.101Т>С p.Met34Thr 1 0.18 1 0.46 1 1.06 2 1.25 - -

c.109G>A p.Val37Ile 13 2.37 3 1.40 1 1.06 - - - -

c.167delТ p.Leu56ArgfsX26 - - - - 1 1.06 - - - -

c.269Т>С p.Ile90Pro 1 0.18 - - - - - - - -

с.313_326del14 p.Lys105GlyfsX5 - - - - 2 2.12 - - - -

c.333_334delAА p.Ile111IlefХ2 - - - - 1 1.06 - - - -

c.79G>A p.Val27Ile 34 6.20 7 3.27 1 1.06 - - 8 9.52

c.[79G>A(;)
341A>G]*

p.[Val27Ile(;)
Glu114Gly]*

9 1.64 5 2.33 1 1.06 - - - -

c.[79G>A(;)
368С>A]*

p.[Val27Ile(;)
Thr123Asn]*

- - 3 1.40 - - - - - -

c.457G>A p.Val153Ile - - - - - - 1 0.62 - -

Note: allelic frequencies of the GJB2 pathogenic variants were calculated for unrelated patients; n—number of individuals; АF—allelic frequency; wt—wild

type

*—likely in cis configuration.

doi:10.1371/journal.pone.0156300.t003

Table 4. Carrier frequency of the major pathogenic variants of theGJB2 gene in the Yakut and Russian control samples.

Pathogenic variants of GJB2 gene Yakuts Russians

Nucleotide level (NM_004004.5) Amino acid level (NP_003995.2) n = 107 CF CR n = 80 CF CR

c.-23+1G>A Splice site, m.RNA 36/350* 0.102 0.075–0.139 0/80 - -

c.35delG p.Gly12ValfsX2 1/247* 0.004 0.001–0.022 2/80 0.025 0.008–0.086

c.101Т>С p.Met34Thr 1/107 0.009 0.002–0.051 2/80 0.025 0.008–0.086

c.109G>A p.Val37Ile 3/107 0.028 0.01–0.079 0/80 - -

Note: n—number of individuals; CF—carrier frequency; CR—95% credible region.

*—Data on the carrier frequency of pathogenic variants c.-23+1G>A and c.35delG in the Yakut population were compiled from previous studies [85, 86].

doi:10.1371/journal.pone.0156300.t004
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pathogenic variants was 2.00±0.14 per 10,000, with the highest prevalence in the Nyurbinskiy
(9.50±1.94) and Churapchinskiy (7.84±1.96) districts of the Sakha Republic.

Discussion
In this study, we present updated data on the spectrum and frequency of the GJB2 gene allelic
variants (exon 1, exon 2 and flanking intronic region) in a large cohort of patients with HI
(n = 393) and in normal hearing individuals (n = 187) living in the Sakha Republic (in total,
n = 580). The majority of patients with HI were Yakuts (indigenous population of the Sakha
Republic) and Russians, with the minority being from other ethnic groups (Ukrainians,
Evenks, Evens, and Tatars) and individuals of mixed ethnicity.

In total, in the studied samples (n = 580), we revealed 12 allelic variants of the GJB2 gene,
eight of which were recessive pathogenic variants. All identified sequence variants were found
in the coding region (exon 2) of GJB2, except for the splice site pathogenic variant c.-23
+1G>А, which is located in the non-coding region (intron 1) of GJB2 (Fig 1). The c.-23
+1G>A (42.28%), с.35delG (5.92%), and c.109G>A (1.92%) pathogenic variants were found
to be common (>1%) in the total patient samples.

Nevertheless, the frequencies of the GJB2 pathogenic variants in the Yakut and Russian eth-
nic groups of patients differed significantly. We found that the c.-23+1G>A pathogenic variant
was predominant (51.82%) in the Yakut patients with the second most frequent pathogenic
variant c.109G>A (2.37%), followed by c.35delG (1.64%). These findings confirm our earlier
reported data on the high prevalence of the c.-23+1G>A pathogenic variant among the Yakut
population in Eastern Siberia [84]. Interestingly, in the Yakut patients, the second most com-
mon pathogenic variant was c.109G>A (p.Val37Ile), which was found with high frequency in
Southeast Asia (Thailand, Indonesia, Malaysia) [41, 47, 48], East Asia (China, Korea, Japan)
[33, 35–38, 40, 42, 44, 46], and Australia [71], as well as among patients with HI of Asian origin
in the US [87]. Pathogenic variants с.35delG (22.34%), c.-23+1G>A (5.31%), and
c.313_326del14 (2.12%) were the most frequent in the group of Russian patients. These find-
ings are comparable with earlier reported data on the prevalence of c.35delG, c.-23+1G>A,
and c.313_326del14 pathogenic variants among some countries of Eastern Europe: the Euro-
pean region of Russia (30.0%, 1.91%, 2.12%), Czech Republic (35.6%, 2.88%, 1.60%), Slovakia
(22.30%, 0.54%, 0.91%) and Croatia (35.30%, 0.90%, 1.70%) [7, 20, 25–27]. Thus, among deaf
patients in the Sakha Republic, we found not only a major c.-23+1G>A pathogenic variant but
also Asian-specific (c.109G>A) [33–48, 84] and Caucasian-specific (c.35delG) pathogenic var-
iants [5–32, 49–60]. These findings are in accordance with the ethnic composition of the Sakha
Republic population (Yakuts—48.6%, Russians—36.9% and other ethnic groups—14.5%).

Data on the territorial distribution of HI caused by genetic factors are of great importance
for the clinical evaluation of deaf people and for estimating recurrence risks for their families.
In this study, we estimated the distribution of the GJB2 genotypes with biallelic recessive patho-
genic variants in the Sakha Republic (average rate was found to be 2.00±0.14 per 10,000) (S1
Table). The highest prevalence of HI, caused by biallelic GJB2 recessive pathogenic variants,
was registered in the Nyurbinskiy (9.50±1.94) and Churapchinskiy (7.84±1.96) districts of the
Sakha Republic (Fig 3). These findings are comparable with our recent data on the extensive
accumulation of the c.-23+1G>A splice site pathogenic variant in the GJB2 gene as a result of
the founder effect [84]. Reconstruction of 140 haplotypes with c.-23+1G>A demonstrated that
the most recombined haplotypes (more ancient) were found in the same districts (Nyurbinskiy
and Churapchinskiy) of the Sakha Republic [84]. The age of c.-23+1G>A in the Yakut popula-
tion was estimated at approximately 800 years [84]. A more ancient age of the common GJB2
pathogenic variants was shown for c.35delG in the Caucasian populations (approximately
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Fig 3. Prevalence of congenital HI caused by biallelicGJB2 pathogenic variants in the Sakha Republic.Note: The
territory of the Sakha Republic is shown in blue (bottommap). HI rates were calculated per 10,000 people, and
appropriate data are presented only for the districts and cities of the Sakha Republic with population more than 10,000.
Detailed data are presented in S1 Table.

doi:10.1371/journal.pone.0156300.g003
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10000 years) [88], c.235delC in East Asian populations (approximately 11500 years) [89], and
p.Trp24� in India (approximately 8800 years) [43].

In total, from all of the samples, we identified 10 pathogenic genotypes (with biallelic reces-
sive GJB2 pathogenic variants) in 192 out of 393 studied patients (48.85%). Thus, 48.85% of HI
in patients in the Sakha Republic could be caused by the GJB2 pathogenic variants. Previous
reports suggested that the contribution of the GJB2 pathogenic variants in HI in Asian popula-
tions was lower than in Europe and the US. The low contribution of the GJB2 pathogenic vari-
ants in HI was demonstrated in Mongolia (4.5%) [45], Japan (7.52%) [46], Thailand (8.4%)
[47] and Korea (8.2%) [42]. A higher contribution of the GJB2 pathogenic variants in HI was
found in China (14.9%) [35], Iran (16.1%) [50] and India (21.1%) [39]. Therefore, our results
indicate that the contribution of the GJB2 pathogenic variants to HI (48.85%) in the Sakha
Republic located in subarctic part of Russia was the highest among all studied Asian regions.

We estimated that the total carrier frequency of the GJB2 pathogenic variants in the Yakuts
was 0.143 (Table 4). Based on this data, the expected rate of patients with HI (homozygous or
compound heterozygous for the GJB2 gene pathogenic variants) should be approximately
0.005 in the Yakut population (466,492 in total) or approximately 50 per 10,000 people, which
is substantially higher than what we found (Fig 3). This bias could be explained by two reasons:
first, such theoretical calculations cannot be applied to a relatively small isolated and subdi-
vided Yakut population, and second, there is a possible underestimation of hearing-impaired
people due to the known phenotypic variability of HI (from profound to mild) caused by path-
ogenic variants in GJB2 gene. In total, 85% of patients demonstrated severe to profound HI,
while 14% displayed moderate HI, and 1% displayed mild HI [84].

In contrast, an extremely high prevalence of the c.-23+1G>A pathogenic variant in the
indigenous people living in the subarctic region of Russia (up to 13.3% in some sub-popula-
tions of the Yakuts) is comparable with the carrier frequency of the HbS allele associated with
sickle cell anemia in Africa (a frequency of 10% and higher of the HbS allele was registered
only in certain areas of sub-Saharan Africa) [86, 90]. The worldwide carriers’ frequency for dif-
ferent GJB2 pathogenic variants is very high [3, 85], suggesting a common selective advantage
for heterozygous GJB2 variants on a global scale. The GJB2 heterozygote advantage might con-
sist of increased resistance to gastrointestinal infections due to the epithelial barrier thickening,
as suggested in previous studies [91–96]. We suggest a similar mechanism of heterozygous
advantage for the c.-23+1G>A carriers, although further comprehensive studies are needed to
elucidate the special features related to the subarctic climate of the Sakha Republic.

Conclusions
We found that the contribution of the GJB2 gene pathogenic variants to HI in the population
of the Sakha Republic (48.85%) was the highest among all of the regions of Asia studied previ-
ously. We suggest that extensive accumulation of the c.-23+1G>A pathogenic variant in the
indigenous Yakut population (92.20% of all mutant chromosomes in patients and an extremely
high (10.20%) carrier frequency in the control group) may indicate the possible selective
advantage of the c.-23+1G>A carriers living in the subarctic climate.
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