
Cyclooxygenase is a heme�containing enzyme that

catalyzes the conversion of arachidonic acid to

prostaglandin H2 [1�7]. The enzyme contains two active

centers: (i) a cyclooxygenase site where arachidonic acid

is converted to prostaglandin G2; (ii) a heme having per�

oxidase activity and promoting the transformation of

prostaglandin G2 into prostaglandin H2 [1, 2, 4, 5].

There are two 60% homologous isoforms of

cyclooxygenase: cyclooxygenase�1 (COX�1) and cyclo�

oxygenase�2 (COX�2) [1, 2, 4, 5]. COX�1 is a constitutive

enzyme and therefore is present in tissues nearly every�

where [1, 2, 4, 5]. In platelets, it is responsible for the

conversion of arachidonic acid to thromboxane [1, 4, 5].

On treatment with nonselective nonsteroidal antiinflam�

matory preparations, inhibition of the catalytic activity of

COX�1 leads to damage of the stomach wall and develop�

ment of ulcers [1, 3�7]. Under usual conditions, COX�2 is

present in the brain and the cortex of kidneys [1, 2, 4, 5].

In other tissues, COX�2 is induced under conditions of

inflammation [2, 5]. COX�2 has been experimentally

shown to contribute to development of cancer of the

intestine and mammary glands in animals treated with

nonselective and selective inhibitors of COX�2 [2, 6, 7].

In particular, the COX�2 level is increased in more than

50% of patients with malignant tumors of mammary

gland, prostate, etc. [6, 7]. Therefore, the search for effi�

cient and selective inhibitors of COX�2 is an urgent task

of medical chemistry and pharmacology.

Many experimental data have accumulated about the

efficiency of inhibition of COX isoforms by various class�

es of biologically active compounds [1�7]. This allowed us

to use virtual screening approaches based on analysis of
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structure−activity relationships (Quantitative Structure−
Activity Relationships (QSAR)) for purposeful searching

for natural and synthetic heterocyclic compounds with

pronounced selectivity relative to COX�2. The QSAR

approaches allow quantitative prediction of the biological

activity of potential pharmaceutical drugs even at the

presynthetic stage of their creation [8�13]. Such studies

are urgent because the modern pharmacological arsenal

has thousands of different types of biological activity [12,

13]. Thus, experimental studies on pharmacological pro�

files of potential new pharmaceuticals in different model

systems in vitro and in vivo is a problem that would require

significant time and financial expenditures without

attracting approaches of computerized chemistry [12].

Targeted molecular design of potential new inhibitors of

COX�2 based on their structural analogs is another and

similarly urgent task. This task can be rationally solved

using structural analysis of biologically active compounds

for detecting within them structural fragments associated

with decrease or increase in biological activity. The cre�

ation of QSAR models describing and visualizing the

contribution of different parts of molecules under study

to changes in biological activity can become a basis for

optimization and rational construction of new biological�

ly active compounds, including inhibitors of COX�2.

Methods of molecular modeling and 3D�QSAR are tradi�

tionally used in such studies [12, 13].

The purpose of the present work was to design and

validate QSAR models of selective inhibitors of COX�2

for derivatives of tetrahydro�2H�isoindole, 2,3�dihydro�

1H�pyrrolysine, and benzothiophene based on two�

dimensional presentation of their structural formula and

also to analyze the influence of atoms and structural

groups on the efficiency of inhibition of the COX�2 cat�

alytic activity using the created QSAR models.

MATERIALS AND METHODS

Structure−activity relationships of COX�2 inhibitors

were quantitatively analyzed using the computer program

GUSAR (General Unrestricted Structure−Activity

Relationships) [13�18]. The approaches used in the

GUSAR program are rather new in QSAR modeling.

These approaches combine the ideas of both SAR and

traditional 2D�QSAR methods. Therefore, to promote

objective comprehension of results of the below�

described studies, it is necessary to describe in brief the

capabilities of this program and the concept of designing

in it of quantitative structure−activity relationships.

Brief description of the GUSAR program. For design�

ing (Q)SAR models in GUSAR, a self�consisted regres�

sion method is used [16]. The description of the structure

and calculation of regression coefficients for further

designing of QSAR models to predict quantitative values

are based on two types of substructural descriptors of

atomic neighborhoods: MNA (Multilevel Neighborhoods

of Atoms) and QNA (Quantitative Neighborhoods of

Atoms) [15, 16]. These descriptors are calculated auto�

matically by the GUSAR program from structural formu�

las of chemical compounds with consideration of valence

and partial charges of the atoms within them but without

indicating the specificity of bond types. MNA descriptors

are generated based on structural formulas of chemical

compounds without using any previous list of structural

fragments [11�13]. Based on the MNA descriptors and

using B�statistics calculated by an algorithm realized in

the PASS program (Prediction of Activity Spectra for

Substances) the spectrum of biological activity of a chem�

ical compound is predicted [11, 15, 16]. The prediction

results presented as a list of biological activity types with

the evaluation of probability of their manifestation are

variables for calculation of regression coefficients. The

regression equation based on MNA descriptors reflects

the action specificity of the compound but does not clear�

ly show physicochemical parameters of chemical com�

pounds [15, 16].

QNA descriptors are calculated using the ionization

potential and affinity for electrons of every atom of the

molecule and on taking into account the bonds between

all atoms of the structure. Thus, on one hand, QNA

descriptors describe each atom of the molecule and, from

the other hand, depend on the molecule structure as a

whole [16]. Values of QNA descriptors are basic informa�

tion for calculation of 2D Chebyshev polynomials, which

are further used as variables for designing a regression

equation that considers both the specificity and physico�

chemical properties of each atom in the training set [16].

It should be noted that the program can build QSAR

models based either on one type of these descriptors or on

their combination at the consensus approach [15, 16].

Based on the consensus approach ideology, models of the

quantitative prediction of the biological activity are cal�

culated independently for each type of descriptors. Ready

QSAR models in GUSAR for predicting toxic effects of

chemical compounds, which can be used, are exemplified

on the Internet in the website http://www.way2drug.com/

GUSAR.

In addition to the possibility of creating QSAR mod�

els, the GUSAR program allowed us to visualize the con�

tribution of each atom to the predicted value [13, 15�18].

This possibility has been realized in QSAR models

designed based on QNA descriptors and, respectively, in

the consensus combination of QSAR models designed by

different approaches. The program gives the possibility to

determine “strong” and “weak” positions in molecules of

biologically active compounds and, consequently, objec�

tively conclude what fragments should be replaced on the

molecular design for strengthening or weakening the tar�

geted feature. It should be noted that this problem can be

successfully solved also using other computerized pro�

grams and systems, e.g. with the computerized system



76 KHAYRULLINA et al.

BIOCHEMISTRY  (Moscow)   Vol.  80   No.  1   2015

SARD�21 [19�21]. However, as discriminated from the

possibility realized in the computerized system SARD�

21, in the GUSAR program the contribution of atoms to

the desired activity can be realized in a training set that

includes a small number of structures (from 20 struc�

tures). No counter class of compounds, i.e. an alternative

training set, all structures of which either lack the target

feature or possess it to an insignificant extent, is required.

By default, atoms not influencing the activity of the mol�

ecule are shown in green color. Atoms strengthening or

weakening the activity under study are shown in red or

blue color, respectively [13, 15�18].

Using the GUSAR program, QSAR models were

designed in some stages.

Formation of the training and test sets. Structures of

compounds of the training and test sets were created in

the program MarvinSketch 5.9.1 [22] and converted into

SDF format using the Discovery Studio Visualiser pro�

gram [23].

The training set TS1 was formed based on 26 com�

pounds studied as COX�2 inhibitors in work [24] (Table

1).

The training set (TS2) and test set (TeS) include,

respectively, 20 and 6 structures of COX�2 inhibitors.

These sets were obtained by separating TS1 that was pre�

viously sorted by increase in values of IC50 at ratio ~3 : 1,

i.e. each fourth compound was excluded from TS1. Table

1 shows that structures of compounds in TS1, TS2, and

TeS are characterized by a rather wide range of the 50%

inhibitory concentration (IC50). The inhibitory activity of

these compounds was measured as binding by degree of

decrease in the COX�2 catalytic activity of resident

macrophages in male white mice and presented as a

quantitative parameter IC50 expressed in nmol/liter. The

chosen compounds are derivatives of 4,5,6,7�tetrahydro�

2H�isoindole, 2,3�dihydro�1H�pyrrolysine, and ben�

zothiophene. They were characterized by the presence in

their structure of two benzene substituents bound with

heterocyclic aromatic fragments. The abilities of these

compounds to inhibit the catalytic activity of COX�2 were

in the range 0.6�700.0 nmol/liter. To design QSAR mod�

els, these IC50 values in nmol/liter were expressed as

mol/liter and then transformed into pIC50 values accord�

ing to the formula:

pIC50 = −log10(IC50).

The activity ranges of compounds within the training

sets TS1 and TS2 and in the test set TeS in pIC50 units

were from 9.22 to 6.15 for TS1, from 9.22 to 6.15 for TS2,

and from 8.96 to 6.30 for TeS.

QSAR modeling. QSAR models of quantitative pre�

diction of inhibitory activity of COX�2 inhibitors were

designed based on the MNA and QNA descriptors. The

final regression models were a consensus of QSAR mod�

els designed independently on each other based on each

descriptor type and characterized by a high predictive

ability.

Assessment of quality and predictive ability of QSAR
models. The predictive ability of the models M2, M4, and

M6 design based on training set TS2 was assessed using

the internal test set (TeS). The predictive ability of the

M1, M3, and M5 models was assessed only by prediction

results of numerical values of the training set TS1 activi�

ty. A sliding control with occasional twenty�fold excep�

tion of 20% of the training set was used as internal valida�

tion. Other parameters of GUSAR were used by default.

Altogether, 360 models were created (180 for each

descriptor type).

Assessment of atom contributions to target activity.
The contribution of atoms to the activity of COX�2

inhibitors was assessed by consensus model M5, which

contained 26 inhibitors of COX�2. As mentioned above,

in the GUSAR program this procedure is realized auto�

matically on designing QSAR models based on QNA

descriptors and consensus models. To simplify compre�

hension of the illustrating data, the results of analysis of

atom contributions to the target activity presented in the

QSAR models by different colors were expressed as

graphic symbols. Atoms not influencing the activity of

COX�2 inhibitors are shown by squares, atoms increasing

the activity of COX�2 inhibitors are shown by circles, and

atoms lowering such activity are indicated by asterisks.

The number of asterisks corresponds to value of the neg�

ative contribution of the atom under study to the target

feature.

RESULTS AND DISCUSSION

The quantitative relationships between the structure

and efficiency of inhibition of COX�2 catalytic activity by

derivatives of 4,5,6,7�tetrahydro�2H�isoindole, 2,3�dihy�

dro�1H�pyrrolysine, and benzothiophene included in the

training sets TS1 and TS2 were modeled using a consen�

sus approach (with averaging the prediction results by

several models) realized in the GUSAR program. Finally,

depending on the type of descriptors used in the calcula�

tions, three consensus models were obtained for each of

the training sets (Table 2). The predictive ability of the

final regression equations of consensus models M1�M6

was assessed on structures of training sets TS1 and TS2,

respectively, at the sliding control with exclusion of 20%

of the compounds. Additionally, the predictive abilities of

models M2, M4, and M6 were tested in it independently

of six isoindole derivatives from the test set TeS not

included into training set TS1. Statistical parameters of

the consensus models, as well as characteristics of the

accuracy of the predicted pIC50 values for the COX�2

inhibitors, are presented in Table 2.

As follows from results presented in Table 2, to

design QSAR models with acceptable statistical charac�
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TS2

5

+
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+

+

TS1

4

+
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+

+

Structural formulas of compounds with corresponding
contributions of atoms to activity

3

Compound
[24]

2

3

4

5

6

No.

1

1

2

3

4

IC50,
nM

[24]*

7

10.0

28.7

50.0

10.9

Table 1. Structures of COX�2 inhibitors included into the training and test sets TS1, TS2, and TeS with corresponding

IC50 values as well as assessment of contribution of atoms to inhibitory activity evaluated by the consensus model
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6

–
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teristics (R2 > 0.6, Q2 > 0.5) [15�18], consensus models

can be used that combine QSAR models designed based

on one or both types of descriptors (QNA or MNA).

Insignificant difference between the statistical character�

istics of the models predicting the pIC50 parameters for

TS1 and TS2 design based on different descriptors indi�

cates stability of these models (Table 2). Creation of

QSAR models based on MNA descriptors helps obtain

consensus models M1 and M2 with high values of R2 and

Q2. However, the predictive ability of model M2 on com�

pounds of the test set TeS, which are significantly similar

in structure with compounds of the training set TS2, has

low accuracy.

The consensus model M4 designed based on QNA

descriptors is characterized by lower quality of prediction

on compounds of training set TS1 (R2
TS and Q2 values)

than model M1. However, it shows a high predictive abil�

ity on structures of test set TeS (R2
TeS, Table 2).

Data presented in Table 2 show that using the con�

sensus approach based on the combination of MNA and

QNA descriptors for designing regression equations gave

models M5 and M6 with high statistical parameters. In

particular, model M6 is characterized by rather high pre�

dictive ability on compounds of both training set TS2 and

compounds with similar structure of test set TeS. This

conclusion is supported by results predicted by the con�

sensus model in comparison with experimental values,

which are presented in the figure.

The prediction results are in a good agreement with

the literature data. It is known that using a consensus

model, which averages results of prediction over separate

models, decreases the variability of prediction results by

separate models and thus obtains a more accurate result

[25]. Moreover, the consensus approach in the generation

of models provides a more accurate information on the

contribution of different atoms to the studied activity.

Therefore, models M5 and M6 based on the consensus

approach were used for further analysis.

Then the contributions to COX�2 inhibition of

atoms and functional groups including them in com�

pounds of the TS1 set were analyzed using the GUSAR

program. The analysis was performed on the M5 model,

which contained 26 COX�2 inhibitors. Table 1 shows the

contributions of atoms to the predicted activity of COX�2

inhibitors.

In particular, electron donating and electron accept�

ing substituents ambiguously influenced the binding effi�

ciency of isoindole derivatives with the active center of

5

+

+

4

+

+

32

37

38

1

25

26

7

0.6

35.6

Table 1 (Contd.)

6

–

–

Note: Squares in structural formulas indicate atoms lacking influence on the activity of COX�2 inhibitors; circles indicate atoms increasing activity

of COX�2 inhibitors; asterisks indicate atoms that lower the activity of COX�2 inhibitors, the number of asterisks corresponds to degree of

down�regulatory influence of the atom under consideration.

* Data were obtained by Portevin et al. [24] in binding experiments from assessment of decrease in catalytic activity of COX�2 resident macro�

phages in male white mice.
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COX�2. This could be due to different interaction mech�

anisms of the studied compounds with the COX�2 active

center. A similar conclusion was made by authors of work

[26] whose experimental data were used for the present

theoretical investigation. The influence of halogen atoms

on the efficiency of COX�2 inhibitors is also ambiguous.

Comparison of structures S11, S17, S22, S27, S28, S33,

and S34 shows that the fluorine atom bound with the 1,4�

bisubstituted benzene weakens the activity of compounds

that contain it. The compounds with codes S32 and S37

(Table 1) are exceptions: the substitution in them of the

hydrogen atom by fluorine in the para position of the

benzene fragment results in quite the opposite effect

(Table 1). Introduction into the para position of benzene

fragments of both fluorine atoms and sulfonic fragment

combined with a methyl group results in a significant

decrease in the activity of compound S34 that is obvious

on comparing the efficiencies of compounds S31 and

S34. These conclusions are also confirmed by visual

analysis.

The discrepancy in the interpretation of the experi�

mental data and the conclusions of the GUSAR program

in the case of compounds S32 and S37 can be explained by

another mechanism of their interaction with the COX�2

active center as compared to other known COX�2

inhibitors. It is known that sometimes even a slight struc�

tural modification of biologically active substances can

lead to significant changes in their activity up to changes

in the mechanism of their interaction with the active cen�

ter of a studied enzyme. Such phenomena cannot be taken

into account by any classical method of QSAR modeling,

including approaches realized in the GUSAR program.

The comparative analysis of structures S18, S20, and

S34 as well as of structures S14 and S15 revealed that a

methyl group in combination with a sulfo�group, oxygen

atom, or sulfur atom also negatively influenced the target

property (Table 1). The oxygen atom within the sulfonic

and methoxy groups decreases the activity of COX�2

inhibitors, while the sulfur atom within the same groups

as well as within the thiomethyl group in the structures of

COX�2 inhibitors promotes an increase in activity (Table

1). The sulfur atom within the heterocyclic aromatic frag�

ments in structure S18 (Table 1) had a similar effect.

Mono� and di�substituted benzene as well as fragments of

F

19.626

16.90

14.996

11.293

15.301

11.022

R 2
ТeS

–

0.421

–

0.824

–

0.706

Q2

0.818

0.833

0.731

0.654

0.837

0.802

R 2
TS

0.865

0.885

0.826

0.779

0.889

0.874

N

26

20

26

20

26

20

Model

М1

М2

М3

М4

М5

М6

Training set

TS1

TS2

TS1

TS2

TS1

TS2

V

5

4

5

4

5

4

Table 2. Statistical characteristics and assessment of prediction accuracy of pIC50 values for COX�2 inhibitors by con�

sensus models M1�M6. The TS1 and TS2 structures are in the pIC50 activity range from 9.22 to 6.15

S.D.

0.320

0.290

0.357

0.390

0.316

0.334

QSAR models based on MNA descriptors

QSAR models based on QNA descriptors

QSAR models based on QNA and MNA descriptors

Note: N, number of structures in training set; R2
TS, determination coefficient calculated for compounds from the training set; R2

TeS, determination

coefficient for compounds from the test set; Q2, correlation coefficient calculated on the training set on sliding control with exception one by

one; F, Fischer’s test; S.D., standard deviation; V, number of variables in final regression equation.

Comparison of experimental (pIC50exp) values of pIC50 with pre�

dicted values (pIC50pred) by models M5 and M6 for COX�2

inhibitors included in training sets TS1 and TS2 and test set TeS

TS2
ТeS

6
5 6 7 8 9 10

pIC50exp

pIC50pred

9

8

7

TS1
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3,5�dimethyl�4�azatricyclo[5.2.1.0]deca�2,5�diene and

3,5�dimethyl�4�azatricyclo[5.2.2.0]undeca�2,5�diene

display a weak negative influence on the studied activity

in all compounds. The secondary nitrogen atom involved

in heterocyclic fragments also decreases the inhibitory

activity of compounds that contain it, whereas a hydrogen

atom within this functional group acts on the activity of

the compounds just oppositely. The tertiary nitrogen

atom involved in the 2,3�dihydro�1H�pyrrolysine frag�

ment decreases the efficiency of COX�2 inhibition. The

primary amino group NH2 negatively influences the tar�

get property in structure S14 (Table 1).

No.

1

2

3

4

5

6

IC50, nM

1.5

5.0

1.7

16.7

500.0

21.3

Table 3. Influence of constants of Brown’s para substituents in the benzene ring of compounds S11 and S17�S21 on

efficiency of their inhibitory action toward COX�2

σ+
para

0.000

0.114

–0.073

–0.311

–0.604

–0.778

4�R

H

Cl

F

CH3

SCH3

OCH3

Compound code in Table 1

11

21

17

19

18

20

Type of descriptor

Electronic

Electronic

Structural

Thermodynamic

Spatial

Spatial

Table 4. List of descriptors used for Hansh’s approach in the work of Silakari et al. [26]

Depiction of descriptor

summary of polarizability of atoms

energy of the highest occupied molecular orbital, eV

number of donors of hydrogen bond

free energy of desolvation in water, kcal/mol

projection of the molecule surface onto the plane within a rectangular produced 
by OX and OY axes

projection of the molecule surface onto the plane within a rectangular produced 
by OX and OZ axes

Symbol

Apol

HOMO

HBD

FH2O

Sxyf

Sxzf

V

4

5

1

2 

2 

2 

2

2

S.D.

0.335

0.318

0.581

0.516

0.590

0.535

0.594

0.587

F

11.411

15.451

32.673

29.819

21.276

27.334

20.872

21.530

Q2

0.803

0.834

–

–

–

–

–

–

R2

0.873

0.887

0.757

0.817

0.761

0.804

0.758

0.764

N

20

26

25

25

25

25

25

25

Model No.

М5

М6

М (1)*

М (2)*

М (3)*

М (4)*

М (5)*

М (6)*

Table 5. Comparison of statistical parameters of our models M5 and M6 with QSAR models of Silakari et al. [26].

Structures of sets TS1 and TS2 are in pIC50 activity range from 9.22 to 6.15

Descriptor type

QNA and MNA

QNA and MNA

Apol

Apol, HBD

Apol, HOMO

Apol, FH2O

Apol, Sxyf

Apol, Sxzf

Note: N, number of structures in training set; R2, determination coefficient calculated for compounds from the training set; Q2, correlation coeffi�

cient calculated on the training set on sliding control with exception one by one; F, Fischer’s test; S.D., standard deviation; V, number of vari�

ables in final regression equation.

* Literature data [26].
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Electron�donating methyl and electron�accepting

methoxyl groups, and well as an imidazole cycle located

in para positions of benzene fragments, decrease by an

order of magnitude the activity of compounds S19 and

S20 as compared to compound S11 (Table 1). The intro�

duction of an electron�accepting thiomethyl group into

the para position of benzene fragments of compound S34

leads to a significant loss in inhibitory activity − virtually

by two orders of magnitude (Table 1). On comparing

structures of compounds S12 and S25, we can conclude

that the introduction of methyl substituents into positions

5 and 6 of the 4,7�dihydro�2H�isoindole fragment

decreases fourfold the activity of COX�2 inhibitors (Table

1). Thus, conclusions about the influence of structural

fragments on COX�2 activity based on visual analysis with

the GUSAR program do not contradict the experimental

results.

To explain the ambiguous influence of electron�

donating and electron�accepting groups on the activity of

COX�2 inhibitors, we studied the influence of numerical

values of constants of Brown’s para substituents [27] on

the activity of COX�2 inhibitors (Table 3).

Table 3 shows that functional groups with pro�

nounced nucleophilic features decrease the activity of

COX�2 inhibitors. Moreover, the substitution of hydrogen

atoms in the para positions of benzene groups by func�

tional groups incapable of generating hydrogen bonds

with the COX�2 active site also decrease the inhibitory

action on COX�2. Our conclusions about the influence of

nucleophilicity and of capability of functional groups for

formation of hydrogen bonds are in complete agreement

with the conclusions of Silakari et al. [26]. Based on

descriptors of four types (electronic, structural, thermo�

dynamic, spatial) presented in Table 4, the authors of that

work realized QSAR modeling of 25 compounds includ�

ed in training sets TS1 and TS2 formed by us.

It should be noted that our models for predicting

numerical values of IC50 for the COX�2 inhibitors are no

less accurate than six QSAR models presented in work

[26] when a genetic algorithm was used to form regression

equations, which is confirmed by results of investigations

presented in Table 5.

Thus, the influence of atom nature on the inhibitory

activity of isoindole derivatives on COX�2 was ambiguous

and often depended on the nature of the nearest structur�

al fragments of the compound. Moreover, on analyzing

the atom contributions to the activity it was necessary to

take into account the functional group that included the

studied atom. These results can be taken into considera�

tion on the molecular design of acting substances in

known nonsteroidal antiinflammatory drugs to increase

the efficiency of their inhibitory action on COX�2.

1. Using the computer program GUSAR, structure−
activity relationships have been analyzed for COX�2

inhibitors − derivatives of tetrahydro�2H�isoindole, 2,3�

dihydro�1H�pyrrolysine, and benzothiophene.

2. On the basis of MNA and QNA descriptors as well

as their consensus combination, six QSAR models were

designed for prediction of numerical values of pIC50.

These models are characterized by good predictive abili�

ties on structures of the training and test sets.

3. Functional groups responsible for modifying the

activity of COX�2 inhibitors have been identified. Para

substituents with pronounced nucleophilic features are

shown to decrease the activity of COX�2 inhibitors.

4. The influence of atom nature on the efficiency of

COX�2 inhibitors has been analyzed. During the structur�

al analysis of COX�2 inhibitors included into model M5,

atoms were detected that either decreased or increased

the efficiency of the inhibitory action on COX�2. These

data can be used for optimization of structures of biolog�

ically active substances to increase their inhibitory action

on COX�2.

5. In the majority of cases, the dependences between

atoms and structural fragments and the inhibitory activi�

ty of compounds identified based on QSAR models and

their visualization in the GUSAR program were in agree�

ment with the regularities found by expert assessment of

experimental values of the studied compounds. This con�

firms that the GUSAR program can be used for optimiza�

tion of structures of chemical compounds.
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