= SHORT COMMUNICATIONS

Reaction of Thietane-Containing 2-(6-Methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)acetohydrazides with *N*-Phenylmaleimide

S. A. Meshcheryakova

Bashkir State Medical University, ul. Lenina 3, Ufa, 450000 Bashkortostan, Russia e-mail: SvetlanaMA@mail.ru

Received May 30, 2014

DOI: 10.1134/S1070428015010285

Heterocyclic carboxylic acid hydrazides are promising building blocks in fine organic synthesis. We previously studied reactions of 2-[6-methyl-2,4-dioxo-1-(thietan-3-yl)-1,2,3,4-tetrahydropyrimidin-3-yl]acetohydrazide (1) with β -dicarbonyl compounds [1] and its condensations with aromatic aldehydes and ketones [2]. Some newly synthesized derivatives of hydrazide 1 were found to exhibit hypotensive [2] and antioxidant activity [3]. In continuation of studies of the reactivity of acetohydrazides containing thietanyl-, 1-oxothietanyl-, and 1,1-dioxothietanylpyrimidine fragments, the present communication reports on their reaction with *N*-phenylmaleimide.

Reactions of hydrazides with maleimides were studied only for aromatic carboxylic acid hydrazides [4]. Despite reduced basicity (p K_a 2.5–3.7), aromatic carboxylic acid hydrazides readily add to the double bond of maleimides on heating in boiling propan-2-ol for 1 h, which is related to the α -effect in hydrazine derivatives. Heating of acetohydrazides 1–3 with an equimolar amount of *N*-phenylmaleimide in boiling ethanol for 5 h also led to the formation of the corresponding addition products, hydrazinylsuccinimides **4–6**. The ¹H NMR spectra of **4–6** in DMSO- d_6 confirmed the formation of succinimide ring. Diastereotopic methylene protons resonated as a doublet of doublets at δ 2.68–2.71 ppm and a multiplet at δ 2.96– 3.03 ppm (1H each), and the 3-H proton on the asymmetric carbon atom gave a multiplet signal at δ 4.12– 4.21 ppm [4].

The NH protons of the hydrazide fragment were represented by a multiplet at δ 5.81–5.89 ppm and two doublets at δ 9.13–9.15 and 9.84–9.85 ppm. The presence of two sets of signals in the ¹H NMR spectra of **4–6** indicated that these compounds exist as mixtures of conformational *E* and *Z* isomers due to restricted rotation about the C–N hydrazide bond. The 6-CH₃ and 5-H signals of the pyrimidine fragment and the CONH signal of the *Z* conformer were displaced downfield relative to the corresponding signals of the *E* conformer [1]. The CH₂CO proton signal was also doubled, but the signal from the *Z* isomer was a singlet located upfield from the two asymmetric doublets (²*J* = 17.8 Hz, *AB*) belonging to the *E* isomer

1, **4**, n = 0; **2**, **5**, n = 1; **3**, **6**, n = 2.

of **4** and **5**. The corresponding signal of the *E* isomer of **6** was overlapped by the pseudotriplet of the $(CH_2)_2SO_2$ protons in the 1,1-dioxothietane ring. It should be noted that compound **5** displayed in the ¹H NMR spectrum only one set of signals from protons in the thietane ring; their position suggests *cis* configuration of the 1-oxothietan-3-yl fragment [5].

Hydrazide 1 was synthesized according to the procedures reported in [1, 6], and hydrazides 2 and 3 were prepared as described in [1, 5].

N'-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2-[6-methyl-2,4-dioxo-1-(thietan-3-yl)-1,2,3,4-tetrahydropyrimidin-3-yllacetohydrazide (4). N-Phenylmaleimide, 0.35 g (2 mmol), was added to a solution of 0.54 g (2 mmol) of hydrazide 1 in 20 mL of ethanol, and the mixture was heated for 5 h under reflux. The mixture was cooled, and the precipitate was filtered off, washed with ethanol, and dried. Yield 0.59 g (67%), white crystals, mp 201–203°C (from *i*-BuOH), $R_{\rm f}$ 0.56 (EtOH). ¹H NMR spectrum, δ , ppm: 2.04 s (3H, 6-CH₃, E), 2.15 s (3H, 6-CH₃, Z), 2.70 d.d (1H, 4'-H, J = 18.0, 3.8 Hz), 2.97–3.02 m (1H, 4'-H), 3.05– 3.11 m (2H, CH₂S), 4.15–4.21 m (3H, 3'-H, CH₂S), 4.47 s (2H, 3-CH₂, Z), 4.76 d and 4.88 d (1H each, $3-CH_2$, J = 17.8 Hz), 5.63 s (1H, 5-H, E), 5.66 s (1H, 5-H, Z), 5.82–5.87 m (1H, NH), 6.02–6.08 m (1H, NCH), 7.27-7.32 m (2H, H_{arom}), 7.41-7.50 m (3H, H_{arom}), 9.13 d (1H, NH, J = 5.1 Hz, E), 9.85 d (1H, NH, J = 5.1 Hz, Z). Z/E ratio 75:25. Found, %: C 54.06; H 4.63; N 16.00. C₂₀H₂₁N₅O₅S. Calculated, %: C 54.17; H 4.77; N 15.79.

Compounds 5 and 6 were synthesized in a similar way.

N'-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2-[6methyl-2,4-dioxo-1-(1-oxo- λ^4 -thietan-3-yl)-1,2,3,4tetrahydropyrimidin-3-yl]acetohydrazide (5). Yield 0.58 g (63%), light yellow crystals, mp 170°C (decomp., from *i*-PrOH), *R*_f 0.25 (EtOH). ¹H NMR spectrum, δ, ppm: 2.07 s (3H, 6-CH₃, *E*), 2.18 s (3H, 6-CH₃, *Z*), 2.71 d.d (1H, 4'-H, *J* = 18.0, 3.8 Hz), 2.96– 3.03 m (1H, 4'-H), 3.35–3.41 m and 3.89–3.97 m (2H each, CH₂S), 4.12–4.19 m (1H, 3'-H), 4.48 s (2H, 3-CH₂, *Z*), 4.75 d and 4.87 d (1H each, 3-CH₂, *J* = 17.8 Hz, *Z*), 5.68 s (1H, 5-H, *E*), 5.72 s (1H, 5-H, *Z*), 5.81–5.86 m (1H, NH), 6.21–6.27 m (1H, NCH), 7.25–7.28 m (2H, H_{arom}), 7.42–7.50 m (3H, H_{arom}), 9.14 d (1H, NH, J = 5.2 Hz, E), 9.84 d (1H, NH, J = 5.2 Hz, Z). Z/E ratio 67:33. Found, %: C 52.37; H 4.78; N 15.13. C₂₀H₂₁N₅O₆S. Calculated, %: C 52.28; H 4.61; N 15.24.

N'-(2,5-Dioxo-1-phenylpyrrolidin-3-yl)-2- $[1-(1,1-dioxo-\lambda^6-thietan-3-yl)-6-methyl-2,4-dioxo-$ 1,2,3,4-tetrahydropyrimidin-3-yl]acetohydrazide (6). Yield 0.48 g (51%), white crystals, mp 197–198°C (from H₂O), R_f 0.29 (acetone-acetonitrile). ¹H NMR spectrum, δ , ppm: 2.07 s (3H, 6-CH₃, *E*), 2.19 s (3H, 6-CH₃, Z), 2.68 d.d (1H, 4'-H, J = 17.9, 4.5 Hz), 2.97-3.03 m (1H, 4'-H), 4.15-4.19 m (1H, 3'-H), 4.27-4.36 m (2H, CH₂S), 4.50 s (1.5H, 3-CH₂, Z), 4.83-4.91 m (2.5H, CH₂S, 3-CH₂, E), 5.63-5.69 m (1H, NCH), 5.72 s (1H, 5-H, E), 5.75 s (1H, 5-H, Z), 5.82-5.89 m (1H, NH), 7.25-7.30 m (2H, H_{arom}), 7.41-7.49 m (3H, H_{arom}), 9.15 d (1H, NH, J = 5.1 Hz, E), 9.84 d (1H, NH, J = 5.1 Hz, Z). Z/E ratio 76:24. Found, %: C 50.36; H 4.61; N 14.81. C₂₀H₂₁N₅O₇S. Calculated, %: C 50.52; H 4.45; N 14.73.

The ¹H NMR spectra were recorded on a Bruker AMX-300 spectrometer at 300 MHz using DMSO- d_6 as solvent and reference. Analytical TLC was performed on Sorbfil plates; elution with ethanol or acetone–acetonitrile (1:1); development under UV light or by treatment with iodine vapor.

REFERENCES

- 1. Meshcheryakova, S.A. and Kataev, V.A., *Russ J. Org. Chem.* 2014, vol. 50, p. 711.
- Meshcheryakova, S.A., Kataev, V.A., Nikolaeva, K.V., Perfilova, V.N., Borodin, D.D., and Tyurenkov, I.N., *Russ J. Bioorg. Chem.*, 2014, vol. 40, p. 300.
- Petrova, I.V., Kataev, V.A., Meshcheryakova, S.A., Nikolaeva, K.V., Munasipova, D.A., and Farkhutdinov, R.R., *Med. Vestn. Bashkort.*, 2013, vol. 8, no. 4, p. 64.
- 4. Orlov, M.A. and Korotkikh, N.I., *Zh. Org. Farm. Khim.*, 2009, vol. 7, p. 64.
- Meshcheryakova, S.A., Kataev, V.A., Munasipova, D.A., and Fattakhova, I.Ya., *Russ J. Gen. Chem.*, 2014, vol. 84, p. 865.
- Kataev, V.A., Meshcheryakova, S.A., Lazarev, V.V., and Kuznetsov, V.V., *Russ J. Org. Chem.*, 2013, vol. 49, p. 743.