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Abstract The primary objective of the current study was to
assess the influence of early high-fat feeding on tissue trace
element content in young male Wistar rats. Twenty weanling
male Wistar rats were divided into two groups fed standard
(STD) or high-fat diet (HFD) containing 10 and 31.6 % of total
calories from fat, respectively, for 1 month. Serum lipid spec-
trum, apolipoproteins, glucose, insulin, adiponectin, and leptin
levels were assessed. The level of trace elements was estimated
using inductively coupled plasma mass spectrometry. High-fat
feeding significantly increased epidydimal (EDAT) and retro-
peritoneal adipose tissue (RPAT), as well as total adipose tissue

mass by 34, 103, and 59 %, respectively. Serum leptin levels in
HFD animals were twofold higher than those in the control rats.
No significant difference in serum lipid spectrum, apolipopro-
teins, glucose, adiponectin, and insulin was detected between
the groups. HFD significantly altered tissue trace element
content. In particular, HFD-fed animals were characterized by
significantly lower levels of Cu, I, Mn, Se, and Zn in the liver;
Cr, V, Co, Cu, Fe, and I content of EDAT; Co, Cu, I, Cr, V, Fe,
and Zn concentration in RPAT samples. At the same time, only
serum Cu was significantly depressed in HFD-fed animals as
compared to the control ones. Hair Co, Mn, Si, and V levels
were significantly increased in comparison to the control values,
whereas Se and I content was decreased. HFD feeding induced
excessive adiposity and altered tissue trace element content in
rats without insulin resistance, adiponectin deficiency, and
proatherogenic state. Hypothetically, trace element disbalance
may precede obesity-associated metabolic disturbances.
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Introduction

Obesity is expanding worldwide and has more than doubled
since 1980 [1]. In particular, in 2014 1.6 billion of adults were
overweight whereas 600 million of themwere obese [1]. Current
projections indicate that the incidence of overweight and obesity
will increase in 2030 to 2.2 and 1.1 billion, respectively [2]. At
the same time, certain studies demonstrate that the prevalence of
obesity is stabilizing [3]. Moreover, some authors predict the end
of obesity epidemic [4]. Independently of the possible future
trends, obesity remains a serious public health concern.

Special attention is also given to childhood obesity that has
been significantly increased over the past three decades [5].
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According to WHO report, the number of overweight children
under the age of five was 42 million in 2013 [1]. Childhood
obesity has a significant impact on adult health [6]. Particularly,
childhood obesity significantly increases the risk of metabolic
syndrome in adults [7]. Recent studies demonstrated multiple
causes of childhood obesity, including genetic, prenatal, early
life, family factors, physical activity, and diet [8].

Trace elements play a significant role in human biology due
to their signaling, cofactor, and structural functions [9].
Impairment of trace element status may have a high impact
on the development of certain diseases [9]. In particular, trace
elements like Cr, Zn, V, and Se are considered to be the key
elements in glucometabolic disorders due to their insulin-
mimetic and antioxidant effect [10]. Moreover, numerous stud-
ies also demonstrated alteration of iron homeostasis in obesity
[11, 12] Multiple clinical [13–17] and experimental [18–22]
studies demonstrated a tight interplay between trace element
balance and obesity-related disorders. At the same time, the
majority of experimental data are based on dietary intervention
in adult animals, whereas data on the influence of dietary reg-
imen on trace element status in early age are insufficient.

Therefore, the objective of the study is assessment of the
influence of early high-fat feeding on trace element content in
various tissues in young male Wistar rats.

Materials and Methods

Diet

A standard granulated chow (BOrenburg food mixture factory ,̂
Orenburg, Russia) containing 270 kcal/100 g (20 % protein,
70 % carbohydrate, 10 % fat) was used as a standard diet
(STD). Lard-supplemented high-fat diet (HFD) contained
31.6 % calories from fat, 15.2 % from protein, and 53.2 % from
carbohydrates. Mineral content of the diets is presented in
Table 1.

Animals

The protocol of investigation was approved by the Local
Ethics Committee. All animal studies have been performed
in accordance with the ethical standards laid down in the
1964Declaration of Helsinki and its later amendments. A total
of 10 female 3-months-oldWistar rats were used in the current
experiment. After 2-week acclimatization, the female rats
were mated with 10 male 3-months-old Wistar rats. The pres-
ence of spermatozoa in vaginal smear was used as criteria of
the pregnancy in rats. After mating, the dams were separated
into the individual cages. All dams were fed STD during preg-
nancy and lactation (21 day postpartum). At weaning, all lit-
termates were weighted and divided by sex. Male littermates
were used in the study. Male rats were divided into two equal
groups maintained at STD and HFD for 1 month in order to
model early stages of obesity. All animals had free access to
the respective diets and drinking water. The temperature in the
animal room was 22 ± 2 °C. The light and dark cycles in the
animal room were 12 each (8.00–20.00).

At the end of experiment the animals were weighted. The
visceral adipose tissue (AT) and liver were collected through a
median laparotomic incision. In particular, epidydimal
(EDAT) and retroperitoneal adipose tissue (RTAP) depots
were collected bilaterally after separation from the underlying
tissues. Large blood vessels were removed from the fat pads.
The obtained samples were used for trace element analysis. In
turn, EDATwas used for histological staining and subsequent
morphometry. Blood was collected from jugular vein whereas
hair was collected from the cranial part of the spine.

Histological Study

The obtained adipose tissue samples were fixed in neutral
buffered formalin and embedded in paraffin blocks. The
blocks were sliced using microtome to obtain 5-μm-thick
slices. The obtained slices were stained with hematoxylin
and eosin using standard techniques. The obtained sections
were assessed and photographed using LOMO Micmed-6
(Lomo, Russia) microscope equipped with digital camera.
Analysis of adipocyte area was performed using ImageJ
(NIH, Bethesda, MD, USA).

Biochemical Studies

The obtained blood serum was used for biochemical analysis.
Serum was analyzed for total cholesterol (TC), triglycerides
(TG), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), and glucose spectro-
photometrically using the respective Roche kits. Serum levels
of apolipoprotein A1 (ApoA1) and B (ApoB) were assessed
using immunoturbidimetric method with specific antisera. All
the above mentioned analyses were performed at an

Table 1 Trace element
content in diets (μg/g) Element STD HFD

Co 1.0 ± 0.1 0.95 ± 0.1

Cr 0.65 ± 0.05 0.55 ± 0.05

Cu 16 ± 2 15 ± 1

Fe 210 ± 20 195 ± 20

I 1 ± 0.1 0.95 ± 0.1

Mn 80 ± 10 75 ± 10

Se 0.20 ± 0.03 0.17 ± 0.02

V 0.40 ± 0.03 0.35 ± 0.03

Zn 30 ± 3 27 ± 3

Data expressed as mean values and the re-
spective standard deviations
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automated biochemical analyzer BCOBAS Integra 400 plus^
(Roche Diagnostics Ltd., Switzerland).

Serum levels of insulin (AccuBind, Monobind, Inc., USA),
leptin (Biovendor, Czech Republic), and adiponectin (USCN
Life Science Inc., China) were assessed using enzyme-linked
immunosorbent assay at Multiscan MS spectrophotometer
(LabsystemMultisсan MS, Labsystem, Helsinki, Finland) ac-
cording to the manufacturer’s instructions. The obtained data
on serum glucose and insulin levels were used for calculation
of insulin resistance index by the homeostasis model assess-
m e n t ( HOMA - I R ) a s f o l l ow s [ 2 3 ] : HOMA -
IR = (glucose × insulin)/22.5.

Chemical Analysis

The obtained hair samples were washed with acetone and
rinsed three times with distilled deionized water with subse-
quent drying at 60 °C on air. Blood serum was diluted with an
acidified diluent (1:15 v/v) containing 1 % 1-butanol (Merck
KGaA, Darmstadt, Germany), 0.1 % Triton X-100 (Sigma-
Aldrich, Co., St. Louis, USA), and 0.07 % HNO3 (Sigma-
Aldrich, Co., St. Louis, USA) in distilled deionized water.
Fifty milligram of all studied samples were introduced into
Teflon tubes containing concentrated HNO3 for microwave
digestion in Berghof speedwave four (Berghof, Eningen,
Germany) system for 20 min at 180 °C.

Hair, serum, liver, and adipose tissue trace element content
was assessed using NexION 300D (PerkinElmer Inc.,
Shelton, CT 06484, USA) equipped with ESI SC-2 DX4
(Elemental Scientific Inc., Omaha, NE 68122, USA)
autosampler. System’s calibration was performed using 0.5,
5, 10, and 50 μg/l solutions of the studied trace elements
prepared from Universal Data Acquisition Standards Kit
(PerkinElmer Inc., Shelton, USA) by addition of distilled de-
ionized water acidified with 1 % HNO3. Internal online stan-
dardization was performed using yttrium (89Y) isotope
Yttrium Pure Single-Element Standard (PerkinElmer Inc.,
Shelton, USA). Laboratory quality control was performed
using certified reference materials of hair (GBW09101;
Shanghai Institute of Nuclear Research, Shanghai, China)
and serum (ClinCheck Plasma Control, lot 129, levels 1 and
2; RECIPE Chemicals + Instruments GmbH, Germany). The
recovery rates for all studied elements exceeded 80 %.

Statistical Analysis

The obtained data were processed using Statistica 10.0
(Statsoft, Tulsa, OK, US). Data normality was assessed using
Shapiro-Wilk test. Normally distributed data were expressed
using mean and the respective standard deviations. Group
comparisons were performed using one-way ANOVA.
Medians and the respective 25 and 75 percentile boundaries
were used for expression of values not characterized by a

normal distribution. Mann-Whitney U test was used for com-
parative analysis. All differences were considered significant
at p < 0.05.

Results

The obtained data demonstrate that early HFD did not signif-
icantly alter body weight in juvenile rats (Table 2). At the
same time, HFD-fed rats were characterized by higher adipos-
ity. In particular, EDAT, RPAT, and total AT mass in early
HFD-fed animals exceeded the respective control values by
34, 103, and 59 %. Histological examination of adipose tissue
also demonstrated a significant 82 % increase in adipocyte
area in HFD-fed animals as compared to the control ones
(Table 2).

Data on adipokine spectrum were generally in agreement
with the morphometric parameters (Table 3). In particular,
circulating leptin levels and leptin-to-adiponectin ratio in
HFD-fed animals significantly exceeded the control values
by a factor of more than two. However, no significant changes
in serum adiponectin were revealed. Early HFD feeding for
1 month also did not result in insulin resistance. Particularly,
no significant changes were detected in serum glucose, insu-
lin, and HOMA-IR.

Despite a 24 and 20 % increase in serum TG and HDL-C
levels, these changes were not significant (Table 4).
Oppositely, early HFD feeding resulted in a significant 32 %
decrease in serum LDL-C concentrations as compared to the
control values. Similarly, no significant difference in serum
ApoA1 and ApoB levels as well as apoA-to-apoB ratio was
revealed.

Despite the absence of significant changes in biochemical
parameters, early HFD feeding significantly decreased liver
trace element content. In particular, the liver Cu, I, Mn, Se,
and Zn levels were decreased by 14, 26, 21, 15, and 10 % in

Table 2 Body weight, adipose tissue mass, and adipocyte area in
control and high-fat-fed rats

STD HFD p value

Initial weight, g 70.7 ± 9.8 75.0 ± 11.3 0.461

Final weight, g 287 ± 32 289 ± 19 0.785

EDAT, g 2.62 ± 0.40 3.49 ± 0.78 0.018*

RPAT, g 1.52 ± 0.40 3.08 ± 0.68 <0.001*

Total AT, g 4.14 ± 0.76 6.57 ± 1.27 0.001*

AA, μm2 1298 ± 561 2339 ± 978 <0.001*

Data presented as mean ± SD

EDAT epidydimal adipose tissue, RPAT retroperitoneal adipose tissue, AT
adipose tissue, AA adipocyte area

*The group difference is significant at p < 0.05 according to one-way
ANOVA
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comparison to the control values, respectively (Table 5). No
significant group difference in hepatic levels of other trace
elements was detected.

The level of trace elements in EDATwas also significantly
altered by HFD at weaning (Table 5). The most prominent
decrease was detected in EDAT Cr and V content, being two-
fold lower than that in the control animals. Epidydimal fat pad
Co, Cu, Fe, and I levels were characterized by a 30, 27, 48,
and 40 % decrease in comparison to the control values.
Despite a 31 % decline in EDAT Zn content in HFD-fed an-
imals, these changes were not significant.

Early HFD feeding also resulted in a significant decrease in
RPAT Cr, Co, and I content, being lower than that in the
control animals by a factor of 3, 2.5, and 2, respectively
(Table 5). RPAT Cu and V levels were also 37 and 38% lower
than the respective control values. Retroperitoneal fat pad Fe
and Zn content was also decreased by 22 and 37 % as com-
pared to the control values, respectively. However, these
changes were not significantly different.

In contrast to tissue trace element distribution, early HFD
feeding significantly altered only serum Cu levels, being 21%
lower than that in the control animals (Table 6).

Hair trace element content was also significantly altered by
early HFD feeding (Table 6). However, the observed changes
were rather distinct from those in the studied tissues. In par-
ticular, HFD at weaning resulted in a significant increase in
hair Co, Mn, Si, and V levels, being 50, 73, 36, and 50 %
higher than the respective control values. At the same time,
hair levels of I and Se in the high-fat-fed animals were 48 and
10 % lower than those in the control group.

Table 3 Serum adipokines, insulin, glucose, and HOMA-insulin resis-
tance index in experimental animals

Parameter STD HFD p value

Adiponectin, ng/ml 12.3 ± 1.8 13.2 ± 3.4 0.495

Leptin, ng/ml 88.1 ± 9.9 213.4 ± 54.7 <0.001*

Leptin/adiponectin ratio 7.2 ± 0.96 17.9 ± 8.3 <0.001*

Glucose, mmol/l 10.9 ± 1.2 11.6 ± 1.2 0.273

Insulin, mIU/l 3.6 ± 0.99 3.2 ± 0.88 0.247

HOMA-IR 1.73 ± 0.41 1.7 ± 0.50 0.793

Data presented as mean ± SD

*The group difference is significant at p < 0.05 according to one-way
ANOVA

Table 4 Serum apolipoprotein profile in control and high-fat-fed
animals

Parameter STD HFD p value

TG, mmol/l 0.97 ± 0.23 1.1 ± 0.39 0.520

TC, mmol/l 1.9 ± 0.37 2.1 ± 0.32 0.226

HDL-C, mmol/l 1.5 ± 0.29 1.7 ± 0.25 0.082

LDL-C, mmol/l 0.48 ± 0.13 0.31 ± 0.08 0.004*

ApoB, g/l 0.03 (0.02–0.03) 0.02 (0.01–0.03) 0.304

ApoA1, g/l 0.01 (0.01–0.02) 0.01 (0.01–0.01) 0.492

ApoA/ApoB ratio 0.5 (0.3–1.0) 0.5 (0.3–1.0) 0.968

Data presented as mean ± SD (normally distributed) and as median and
25–75 percentile boundaries (abnormally distributed)

TG triglycerides, TC total cholesterol, HDL-C high-density lipoprotein
cholesterol, LDL-C low-density lipoprotein cholesterol, ApoB apolipo-
protein B, ApoA1 apolipoprotein A1

*The group difference is significant at p < 0.05 according to one-way
ANOVA

Table 5 Trace element content (μg/g) in rats’ liver, epidydimal, and
retroperitoneal adipose tissue

Element STD HFD p value

Liver

Co 0.040 (0.030–0.040) 0.040 (0.030–0.040) 0.714

Cr 0.020 (0.010–0.020) 0.020 (0.020–0.030) 0.392

Cu 4.070 (3.860–4.300) 3.495 (3.100–3.780) 0.002*

Fe 64.960 (52.700–67.450) 63.250 (56.450–70.000) 0.791

I 0.095 (0.070–0.110) 0.070 (0.060–0.080) 0.029*

Mn 2.725 (2.670–2.780) 2.145 (2.060–2.320) <0.001*

Se 0.890 (0.870–0.920) 0.755 (0.740–0.780) <0.001*

V 0.0008 (0.0007–0.0009) 0.001 (0.0008–0.001) 0.375

Zn 30.960 (28.930–33.410) 27.805 (24.480–28.840) 0.017*

EDAT

Co 0.001 (0.001–0.002) 0.0007 (0.0006–0.0010) 0.013*

Cr 0.040 (0.020–0.080) 0.020 (0.010–0.020) 0.014*

Cu 0.260 (0.240–0.340) 0.190 (0.170–0.220) 0.008*

Fe 6.460 (5.400–7.670) 3.305 (2.900–4.140) 0.007*

I 0.050 (0.030–0.060) 0.030 (0.020–0.040) 0.047*

Mn 0.050 (0.040–0.060) 0.040 (0.040–0.040) 0.177

Se 0.0100 (0.0039–0.0400) 0.0065 (0.0039–0.0300) 0.631

V 0.0008 (0.0005–0.0010) 0.0004 (0.0002–0.0005) 0.001*

Zn 2.850 (2.030–3.130) 1.980 (1.580–3.020) 0.170

RPAT

Co 0.0010 (0.0007–0.0010) 0.0004 (0.0004–0.0009) 0.018*

Cr 0.030 (0.010–0.030) 0.010 (0.007–0.010) 0.032*

Cu 0.340 (0.270–0.380) 0.215 (0.200–0.240) 0.003*

Fe 4.050(3.480–5.900) 3.165 (2.710–3.810) 0.113

I 0.040 (0.030–0.050) 0.020 (0.009–0.040) 0.049*

Mn 0.050 (0.040–0.060) 0.040 (0.030–0.050) 0.159

Se 0.130 (0.004–0.230) 0.130 (0.004–0.140) 0.549

V 0.0008 (0.0006–0.0010) 0.0005 (0.0004–0.0007) 0.006*

Zn 2.890 (2.020–3.180) 1.830 (1.570–2.660) 0.170

Data presented as Median and 25–75 percentile boundaries

EDAT epidydimal adipose tissue, RPAT retroperitoneal adipose tissue

*The group difference is significant at p < 0.05 according to Mann-
Whitney U test

Tinkov et al.



Discussion

The obtained data demonstrate that early high-fat feeding did
not result in significant weight gain, although excessive adi-
posity was observed. Increased circulating leptin levels also
correspond to expanded adipose tissue mass [24].
Surprisingly, HFD feeding did not result in significant weight
gain. At the same time, certain studies revealed even a de-
creased body weight in weanling animals fed a high-fat diet
[25]. The absence of significant changes in serum adiponectin
levels also indicates that the experimental animals were not
characterized by adipocyte dysfunction [26] that is character-
istic for severe obesity [27]. Taking into account an anti-
inflammatory and insulin-sensitizing role of adiponectin
[28], the similarity of concentrations between the HFD-fed
and control animals demonstrates the absence of insulin resis-
tance. This supposition is also confirmed by unaltered values
of serum glucose, insulin, and HOMA-IR, that is widely used
for assessment of insulin resistance [29].

The observed situation may occur due to short period of
dietary intervention. In particular, it has been demonstrated
that feeding C57BL/6 J mice with a diet consisting of 20 %
fat and 1 % cholesterol induces significant changes in serum
glucose, insulin, and HOMA-IR values only after 16 weeks
[30]. At the same time, significant diet-induced alteration of

serum TC and LDL-C was detected after 6 weeks of dietary
intervention [30]. Moreover, feeding of weanling male
Sprague-Dawley with a high-fat diet containing 45 % of kilo-
calorie from fat did not result in a significant change in blood
glucose levels after 4, 8, or 12 weeks [31]. In addition, early
age of animals may also significantly affect the efficiency of
HFD feeding [32]. Moreover, it has been demonstrated that
even 6 months feeding of weanling Sprague-Dawley with a
diet containing 32 % of calories from fat did not significantly
affect glucose and carbohydrate metabolism [33].

Therefore, early HFD feeding in weanling male Wistar rats
resulted in excessive adiposity without insulin resistance and
atherogenic changes. Hypothetically, the observed situation is
characteristic for early stages in obesity development. Despite
the absence of significant changes in serum markers of insulin
resistance, HFD feeding in juvenile rats significantly altered
trace element status. In particular, the most prominent changes
were detected in the case of Cu, Cr, I, V, and Se.

HFD feeding in juvenile rats significantly decreased Cu
content in the liver, adipose tissue, and serum. These findings
are in agreement with the existing data. In particular, it has
been shown that high fructose feeding significantly decreases
plasma and liver Cu content in animals maintained on both
Cu-adequate and Cu-deficient diet [34]. Earlier studies also
demonstrated significantly decreased liver Cu levels in obese

Table 6 Trace element levels in
serum (μg/ml) and hair (μg/g) of
experimental animals

Element STD HFD p value

Serum

Co 0.002 (0.001–0.002) 0.002 (0.001–0.002) 0.597

Cr 0.005 (0.004–0.006) 0.0045 (0.004–0.007) 0.678

Cu 1.310 (1.110–1.510) 1.040 (0.950–1.090) 0.026*

Fe 2.450 (1.810–3.740) 2.340 (1.340–3.510) 0.705

I 0.080 (0.070–0.090) 0.090 (0.080–0.100) 0.496

Mn 0.006 (0.005–0.007) 0.006 (0.005–0.008) 0.791

Se 0.595 (0.500–0.680) 0.535 (0.410–0.590) 0.199

V 0.00025 (0.0002–0.0003) 0.0002 (0.0002–0.0003) 0.791

Zn 1.330 (1.130–1.780) 1.330 (1.200–1.430) 0.970

Hair

Co 0.020 (0.020–0.030) 0.030 (0.030–0.040) 0.007*

Cr 0.100 (0.080–0.180) 0.145 (0.130–0.180) 0.307

Cu 11.300 (10.160–12.530) 12.345 (11.100–14.130) 0.091

Fe 15.600 (13.020–21.130) 17.700 (14.940–25.530) 0.275

I 5.730 (4.410–6.740) 2.935 (2.440–3.300) <0.001*

Mn 4.520 (2.880–5.740) 7.820 (5.650–11.750) 0.002*

Se 0.460 (0.430–0.500) 0.410 (0.400–0.450) 0.029*

V 0.010 (0.007–0.010) 0.020 (0.010–0.020) 0.012*

Zn 174.000 (160.000–199.000) 172.000 (161.000–179.000) 0.460

Data presented as median and 25–75 percentile boundaries

EDAT epidydimal adipose tissue, RPAT retroperitoneal adipose tissue

*The group difference is significant at p < 0.05 according to Mann-Whitney U test
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mice [35] and rats [36] as compared to the control animals.
Song and the coauthors (2012) hypothesized that diet-induced
Cu deficiency due to alteration of duodenal Ctr1 expression
may be a possible mechanism of fatty liver development [34].
It is also supposed that alteration of Cu homeostasis may be
involved in pathogenesis of non-alcoholic fatty liver disease
due to its influence on Fe status [37]. Data on adipose tissue
Cu content in response to HFD feeding are insufficient. In
particular, in our previous study, we failed to detect a signifi-
cant decrease in adipose tissue Cu content in adult female rats
fed a high-fat diet for 3 months [38]. Clinical data are more
contradictory indicating an increase [39], decrease [40], or the
absence of changes [41] in blood Cu levels in obese
individuals.

Decreased adipose tissue Cr and V content are in
agreement with our previous observation also indicating
a significant association between high-fat induced de-
crease in adipose tissue Cr and V content and metabolic
parameters in rats with excessive adiposity [21]. Taking
into account the role of chromium [42] and vanadium
[43] in insulin signaling, we have also supposed that a
decrease in Cr and V levels in adipocytes may at least
partially mediate obesity-related insulin resistance [44].
In the present animal model, we observed adipose tissue
mineral dyshomeostasis without any other obesity-
related metabolic disturbances like insulin resistance
and atherogenic lipid profile. It is also notable that liver
Cr and V content were not altered significantly by high-
fat feeding. These data may be indicative of not a total
Cr and V deficiency but rather the redistribution of
these elements and its local deficiency in adipose tissue.
The obtained data allow to propose that altered trace
element status may precede more common metabolic
disturbances. However, additional studies are required
to highlight the causal relationships between low adi-
pose tissue Cr and V and obesity.

We observed a significant decrease in hepatic and hair Se,
being indicative of selenium deficiency. Since obesity is asso-
ciated with oxidative stress [45], one can suppose that the
obese organism faces increased requirements in selenium that
is characteristic for prooxidant state [46]. Despite the presence
of multiple indications on selenium deficiency in blood [47],
data on selenium content in the liver are contradictory.
Previous study demonstrated the absence of the influence of
high fat [48] and cholesterol [49] feeding on liver Se content.
Despite the absence of insulin resistance in the present model
of excessive adiposity, it should be noted that fructose-
induced metabolic syndrome, being associated with insulin
resistance, was accompanied by a significant decrease in liver
selenium [50].

A significant decrease in iodine status was also observed in
high-fat-fed animals. These data are generally in agreement
with the earlier studies indicating a significant association

between obesity and thyroid dysfunction [51]. At the same
time, the intimate mechanisms linking obesity and iodine sta-
tus are unknown. For example, no indications on the influence
of high-fat diet on iodine absorption exist to date [52].

Significant diet-induced alteration of Zn levels was
observed only in the liver and adipose tissue to a lesser
extent. These data are in agreement with the existing
data on lower hepatic zinc content in genetically obese
nice [53]. High-fat feeding also decreased zinc concen-
tration in the liver [54, 55] and adipose tissue [22, 54].
Our data do not correspond to the earlier indications of
decreased blood zinc levels [56, 57]. At the same time,
certain studies also failed to reveal a significant alter-
ation of circulating zinc levels in obesity [58].

At the same time, we failed to detect a significant
alteration of iron status in HFD-fed rats. These data
are contradictory to the results of the earlier studies
demonstrating that obesity is accompanied by iron defi-
ciency in general and hypoferremia in particular [59].
However, we also failed to detect an increase in adipose
tissue iron resulting from its sequestration [12]. At the
same time, earlier data obtained by Suliburska demon-
strated that 6-week diet high in fat, fructose, and salt
did not significantly alter liver metal content [60].
Taking into account the absence of obesity-associated
metabolic disturbances in the present animal model, we
suppose that iron dyshomeostasis has not developed.

Therefore, the obtained data indicate a significant diet-
induced decrease in trace element content in the liver, adipose
tissue, serum, and hair with the most prominent changes ob-
served for Cu, Cr, I, V, and Se. It is notable that alteration of
trace element homeostasis was detected even without diet-
induced metabolic disturbances like inflammation, atherogen-
ic dyslipidemia, and insulin resistance. Further studies involv-
ing different dietary manipulations like high-fat high-carbohy-
drate diet are required to assess the rate of trace element
dyshomeostasis in obesity and the related diseases associated
with inflammation and insulin resistance.

Current findings support our earlier hypothesis that altered
adipose tissue trace element levels may be used as early
markers of obesity-associated metabolic risk [44]. To our
knowledge, this is the first report of early high-fat diet-induced
alteration of trace element content in tissues in an animal
model of excessive adiposity without metabolic disturbances.
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