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Abstract: Named entity recognition is a critical task in the electronic medical record management
system for rehabilitation robots. Handwritten documents often contain spelling errors and illegible
handwriting, and healthcare professionals frequently use different terminologies. These issues ad-
versely affect the robot’s judgment and precise operations. Additionally, the same entity can have
different meanings in various contexts, leading to category inconsistencies, which further increase
the system’s complexity. To address these challenges, a novel medical entity recognition algorithm
for Chinese electronic medical records is developed to enhance the processing and understanding
capabilities of rehabilitation robots for patient data. This algorithm is based on a fusion classification
strategy. Specifically, a preprocessing strategy is proposed according to clinical medical knowledge,
which includes redefining entities, removing outliers, and eliminating invalid characters. Subse-
quently, a medical entity recognition model is developed to identify Chinese electronic medical
records, thereby enhancing the data analysis capabilities of rehabilitation robots. To extract semantic
information, the ALBERT network is utilized, and BILSTM and MHA networks are combined to
capture the dependency relationships between words, overcoming the problem of different meanings
for the same entity in different contexts. The CRF network is employed to determine the boundaries
of different entities. The research results indicate that the proposed model significantly enhances the
recognition accuracy of electronic medical texts by rehabilitation robots, particularly in accurately
identifying entities and handling terminology diversity and contextual differences. This model effec-
tively addresses the key challenges faced by rehabilitation robots in processing Chinese electronic
medical texts, and holds important theoretical and practical value.

Keywords: rehabilitation robots; named entity recognition; electronic medical records; deep learning;
information fusion

1. Introduction

Rehabilitation robots play a crucial role in modern medicine, including assisting with
physical rehabilitation and providing remote medical support [1–5]. During rehabilitation,
robots analyze patients’ electronic medical records to offer corresponding auxiliary medical
plans, supporting doctors in decision-making and enhancing treatment effectiveness [6,7].
However, current named entity recognition technology faces challenges in handling Chinese
electronic medical records. The complexity and diversity of Chinese medical terminol-
ogy limits recognition accuracy and generalization capability, while variations in record
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structures and language styles further complicate algorithms [8–11]. Therefore, enhancing
the application efficiency of rehabilitation robots in medical practice through advanced
natural language processing and deep learning methods is crucial for the advancement
of medicine.

Electronic medical records represent digital repositories of earlier versions of paper-
based routine medical documentation, containing various types of semi-structured and
unstructured text data. Accurate identification of classified medical entities from electronic
medical records is crucial for subsequent research and applications. Particularly for rehabil-
itation robots, precise entity recognition can significantly enhance their decision-making
and operational capabilities. In the past two decades, a series of research results have been
achieved by applying natural language processing techniques for information recognition
extraction from electronic medical records [12,13]. Most of these findings are based on
the English electronic medical record annotated corpus dataset published by the Message
Understanding Conference (MUC) and the United States Informatics for Integrating Bi-
ology and the Bedside(I2B2). However, there exist obvious differences between Chinese
and English languages in methods of word formation, grammatical structures and sen-
tence logic [14]. Making Chinese electronic medical records requires the development
of linguistic characteristics by using neural networks; the aim of this study is to achieve
this goal [15–19]. Current mainstream methods for named entity recognition research in
Chinese electronic medical records fall into two categories: machine learning and deep
learning. On the one hand, machine learning methods are mostly combined with rules to
build named entity recognition models [20]. For instance, the patterns, rules and features
of medical text corpora have been summarized and been integrated them with the CRF
model to establish a statistical and rule-based Chinese medical institution name recognition
model [21]. In order to adapt to the Chinese language characteristics, a multi-feature fusion
approach has been introduced for Chinese electronic medical record entity recognition
in [22]. Machine learning methods have significantly expanded the scope and accuracy
of entity recognition, but they heavily rely on feature engineering, which can complicate
feature selection, while ignoring cross-fertilization of medical domain knowledge [23,24].

On the other hand, deep learning methods mainly address the problem of named
entity recognition in massive electronic medical records from the perspectives of reducing
feature engineering dependency and improving the efficiency of using large amounts of
data. For example, the attention mechanisms have been introduced into the LSTM model
to recognize the electronic medical record entities [25–27]. The BERT-BiGRU-CRF model
has been designed in [28], which incorporates the bidirectional Transformer structure
from BERT to recognize contextual semantic relationships, addressing the limitation of
traditional methods in representing polysemy. A multi-layer Transformer model has been
established in [29], which employs multi-head and self-attention mechanisms to extract
features from multiple semantic spaces of network security threat intelligence. However, it
also brings challenges, such as the model being complex, the training time being long, the
nested entities being difficult to extract, and the boundary of intersecting entities not being
well recognized.

Based on the above analysis, Chinese electronic medical records are characterized
by large volumes of data, high knowledge density, and complex vocabulary composition,
which present significant challenges for rehabilitation robots in analyzing and understand-
ing medical conditions. Current research in the field of named entity recognition has made
significant progress, particularly in achieving high accuracy in handling simple entity
recognition tasks. However, when dealing with complex and highly specialized texts, such
as Chinese electronic medical records, certain limitations still exist: (1) Chinese electronic
medical records primarily consist of declarative phrases, and although the forms of entities
are relatively simple, their semantic structures are complex, which can easily lead to the
loss of important information during recognition; (2) the models perform poorly when
faced with the polysemy of the same entity in different contexts, thereby limiting the depth
of understanding of medical records by rehabilitation robots; and (3) the cross-expression
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of different entities in medical records leads to unclear recognition of entity boundaries by
rehabilitation robots. To address these issues and improve model accuracy, a novel named
entity recognition method is proposed in this paper. The main contributions include: (1) al-
though existing research performs well in recognizing simple entities, it still falls short in
capturing complex semantic structures. Therefore, a more refined entity definition strategy
and data preprocessing scheme are designed to optimize the practicality of data specific
to Chinese electronic medical records, reducing the loss of information. (2) To address
the poor performance of existing research in handling the polysemy of the same entity in
different contexts, a lightweight named entity recognition model for electronic medical
records is proposed, which uses knowledge fusion and multi-task joint training. This
approach not only reduces computational burden, but also enhances the understanding of
entity expansion and categorization, significantly improving the depth of medical record
understanding by rehabilitation robots. And (3) although progress has been made in clearly
defining the boundaries of single entities, the existing research still shows limitations when
dealing with the cross-expression of different entities and fuzzy boundaries in electronic
medical records. This study combines MHA and CRF to establish a new entity boundary
recognition model, effectively improving the ability of rehabilitation robots to recognize
complex entity boundaries and enhancing overall recognition accuracy.

The structure of the paper is as follows. Detailed description of the problem and
data processing scheme are presented in Section 2. In Section 3, a common framework
of development of knowledge fusion is shown in Section 2. A case study in Section 4
demonstrates ablation and comparative experiments, and shows the effectiveness and
feasibility of the proposed model. Our conclusions are presented in Section 5.

2. Description of the Problem and Data Processing Scheme
2.1. Data Acquisition and Analysis

When reading electronic medical records, rehabilitation robots need to use NLP tech-
nology to transform unstructured text data into structured information. This requirement
arises due to the frequent presence of incomplete sentence structures, numerous special
symbols and abbreviations, and unclear entity categories and boundaries in Chinese elec-
tronic medical records. The process involves data preprocessing, word segmentation, entity
recognition, and relationship extraction. Subsequently, the robots provide corresponding
treatment recommendations based on the actual medical records of the patients. To en-
sure the practicality and accuracy of the experiment, the public dataset Yidu-S4K is used
in this study. This dataset contains real medical data manually annotated by a profes-
sional medical team, and is used for the “Named Entity Recognition for Chinese Electronic
Medical Records” task in the CCKS 2019 competition. The dataset embodies the typical
characteristics of Chinese electronic medical records, including 1000 training samples and
379 test samples. Six types of entities are manually annotated in this dataset: disease and
diagnosis, imaging examination, laboratory test, surgery, medication, and anatomical site.
The number of each type of entity in the training and test sets is shown in Table 1.

Table 1. Number of entities per class in the original dataset.

Entity Type Disease
Diagnosis Inspection Check Surgery Medicine Anatomical

Site

train 4208 963 1179 1029 1822 8417
test 1322 348 585 162 485 3093

Electronic medical records have distinct language structures and linguistic characteris-
tics that set them apart from general text. Unlike identifying three major classes and seven
sub-classes of the entities in general text, electronic medical records mainly involve the
recognition of medical entities, e.g., symptoms, laboratory tests, and procedures. Represen-
tation of electronic medical record texts is unique, as symbols carry specific meanings that
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contribute to the increased complexity of entity recognition. For instance, in the context of
“White blood cells level 3+”, the symbol “+” does not function as a typical mathematical
addition sign found in general texts; instead, it signifies a significant increase in the quantity
of white blood cells. Entities in electronic medical records often contain modifiers and
everyday vocabulary, making it challenging to identify their left boundaries. For example,
entities like “portal vein”, “inferior vena cava”, and “loose stool” contain everyday words
that complicate recognition.

Meanwhile, there are typical phenomena in Chinese electronic medical records, which
include: (1) Polysemy: Identifying multiple meanings of words. For instance, “severe
regurgitation of mitral and tricuspid valves with increased regurgitant pressure” has
a different meaning than “poor appetite” or “poor mental state”, where “poor” serves
different purposes. And (2) ambiguous entity classification: In some cases, it is difficult to
determine the exact entity type, leading to overlapping entity classes. Common symptom
entities may also be disease or diagnostic entities. For example, “upper respiratory infection”
can be both a symptom and a disease name.

2.2. Redefinition of Entity Types and Processing Strategy

The publicly available Yidu-S4K dataset was manually adjusted, with the focus on the
accuracy of the recognition model. Some of the entity types have insufficient association
with tumor prognosis. Therefore, it becomes relevant to redefine the entity types and
reannotate the dataset.

Defining the entity type strategy: analyzing the existing electronic medical records of
the same type of electronic medical records and clinical medical knowledge, furthermore,
combining with the tumor prognosis analysis and prediction scenario, the information
contained can be classified into the following five aspects:

(1) Specific cancer types of patients;
(2) Various examinations conducted during the treatment period;
(3) Various symptoms exhibited by patients during the treatment period;
(4) Various treatment methods received by patients during medical care;
(5) The physical condition of patients after medical intervention.

Therefore, the textual information in electronic medical records could be classified into
the following five types of entities: disease diagnosis, auxiliary examinations, symptom
manifestations, treatment measures, and physical condition. The entity classification is
shown in Table 2. According to the defined entity types, 1000 training samples from the
original dataset can be reannotated. The data processing workflow is shown in the Figure 1.

Table 2. Electronic medical record entity classification.

Entity Type Type Definition Examples

Disease Specific cancer types of patients Gastric cancer, Colon
Diagnosis cancer, Liver cancer

Auxiliary Cancer-related examinations conducted Cancer metastasis,
Examinations during the treatment period Cancer embolism

Symptom Discomfort and manifestations exhibited Fever, Nausea,
Manifestations by patients during treatment Vomiting

Treatment Intervention measures taken for Acid suppression,
Measures patient’s disease Antiemetics

Physical Patient’s physical condition after Mental state, Dietary
Condition medical intervention status, Sleep quality
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Figure 1. Flowchart of data preprocessing.

A preprocessing strategy is designed for Chinese electronic medical texts, which
encompasses the redefinition of entity types, the removal of outliers and invalid characters,
and the supplementation of incomplete sentences. By analyzing the relevant medical
proprietary terms involved in the patient’s treatment process, five entity types are redefined
as: disease diagnose, auxiliary examination, symptom manifestation, treatment measure,
and physical condition. Subsequently, invalid characters, such as spaces, newline characters,
or garbled text from the dataset are eliminated, as they could potentially affect the model’s
recognition accuracy. Following that, data desensitization is performed to exclude any
sensitive information, such as patient names or medical identification numbers. Finally,
we augmented sentences that were either incoherent or incomplete. For example, in cases
where there is a lack of descriptive modifiers for a patient’s mental, dietary, or sleep
conditions, it is modified to ’normal’ if the patient’s postoperative condition is favorable,
or modified to ’average’ if the postoperative recovery is less favorable. Adhering to these
strategies, we annotated the entity types in the data, performed validation checks, and
finally generated an output text dataset.

After reannotating the entire training dataset, the resulting data are exported as BIO
data files for subsequent entity recognition algorithms. An example of the data file is shown
in Figure 2.

The data example in Figure 3 adopts the BIO annotation scheme, where “B” represents
the first character of an entity, “I” represents the remaining characters of an entity, and
“O” indicates that a character does not belong to any entity type. If a character in the text
belongs to an entity, its label is appended with the corresponding entity type after “B”
or “I”. After complete annotation, the count of each entity in the training set is shown in
Table 3. In the training set, there are a total of 14,457 entities, including 2239 entities of
the Disease Diagnosis type, 1531 entities of the Auxiliary Examinations type, 4650 entities
of the Symptom Manifestations type, 1961 entities of the Treatment Measures type, and
1822 entities of the Physical Condition type.
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Figure 2. Result of data processing.

Figure 3. Result of data processing.

Table 3. Number of entities of each type.

Entity Type Quantity

Disease Diagnosis 2239
Auxiliary Examinations 1531

Symptom Manifestations 4650
Treatment Measures 1961
Physical Condition 4076

3. Methodology

Inspired by the BERT and LSTM models, we propose a novel network model, which
we call ALBERT-BiLSTM-MHA-CRF. The architecture of the proposed model is illustrated
in Figure 4.
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Figure 4. ALBERT-BiLSTM-MHA-CRF framework diagram.

As can be seen from Figure 4, the proposed network mainly consists of four parts. The
first part is ALBERT. In comparison with the BERT model, the ALBERT model consists
of 12 layers of transformers, but it increases the hidden size, which refers to the number
of features in the embeddings of each layer. The ALBERT pre-trained model is used to
obtain the word vector sequence X = (X1, X2, . . . , Xn) and vectorize the input sentences.
The second part consists of two layers of the BiLSTM model, which takes the word vectors
and learns contextual information to generate feature weights, resulting in a sequence of
vectors with positional information. The third part is MHA. The sequence generated by the
second part is input into the MHA. There are three different mapping operations involved
in this process, namely transforming the input sequence into query, key, and value matrices.
Subsequently, parallel self-attention operations are conducted on the sequence, resulting in
representations, and the semantic information from all heads is continuously integrated to
define it as the multi-head information. The multi-head information is ultimately mapped
into an output matrix. The last part is CRF, which takes into account the order of output
labels and optimizes the sequence by predicting labels based on their dependencies. This
process aims to obtain the globally optimal sequence and generate the final output.

3.1. Enhanced Representation with Knowledge Fusion

In order to enhance the entity recognition task for electronic medical texts, an enhanced
representation approach is introduced, which incorporates domain knowledge. A primary
goal of this approach is to leverage domain-specific medical knowledge and integrate with
text representation [30]. In this paper, the ALBERT pre-trained model is utilized to encode
both the Chinese electronic medical text sentences X and the entity type descriptions Q,
obtaining their respective token representations hXϵRn×d and hQϵR|C|×m×d, where n and
m represent the length of the electronic medical text and entity type description sentence, d
is the vector dimension of the encoder, and |C| is the number of entity types. The encoder’s
computation formula is Equation (1):

hX = f1(X) hQ = f1(Q) (1)

After obtaining the token hQ for type interpretation, the attention scores are calculated
for each text representation hxi and each type description statement hqi; then, we use
the attention scores as weighting information to integrate the semantic meaning of type
explanations into the tokens of the electronic medical text sentences. The attention score
can be defined as follows:

axi ,qc
j
=

exp
(

hxi · hqc
j

)
∑j exp

(
hxi · hqc

j

) (2)
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hc
xi
= hxi + ∑

j
axi ,qc

j
· hqc

j
(3)

h̃c
xi
= tanh

(
Vhc

xi
+ b

)
(4)

where xi in Equation (2) is the i-th token of the text sentence X, 1 ⩽ i ⩽ n; hxi is the hidden
vector generated for the i-th token; qc

j is the j-th token of the type description statement Q,
where 1 ⩽ j ⩽ m and cϵC; and hqc

j
is the hidden vector generated for the j-th token. A dot

product operation between hxi and hqc
j
, followed by calculation of the correlation between

xi and c by using Equation (3), results in hc
xi

. Then, Equation (4) gives the hidden vectors h̃c
xi

,
where VϵRd×d and bϵRd are learnable parameters of the network. These calculations are
repeated for token xi and all type description statements, where vector ĥxi =

(
ĥ1

xi
, . . . , ĥ|C|xi

)
is obtained.

3.2. Multi-Head Attention Module for Polysemy Feature Extraction

The traditional BiLSTM model outputs hidden vectors with equal weights, which
cannot fully capture the global information of the text sequence and the importance of
each character within the sentence. For example, different words or characters in the same
sentence often play different roles, and the same word or character may have significant
variations in different sentences. Therefore, to assist rehabilitation robots in improving
their understanding of words with different meanings in different contexts, the multi-head
self-attention mechanism is introduced as a supplement. The MHA has several unique
advantages [31,32]. Firstly, MHA captures the associative relationships between characters
at any position in the sentence, enabling the model to learn long-range dependencies
easily. Secondly, MHA produces output vectors using weighted sums, making the gradient
propagation in the network model easier and reducing the likelihood of gradient exploding
or vanishing. Moreover, MHA has strong parallel execution capabilities, leading to faster
training speeds. By incorporating the MHA module, the proposed model can capture
multiple semantic features at the character, word, and sentence levels.

For the vector matrix output from the BiLSTM model, the self-attention mechanism
performs three different mapping operations to transform the vector matrix into three input
matrices, each with the dimension of dk: query Q, key K and value V. These matrices
are then passed into the attention function, which calculates the weights on V based on
the correlation between Q and K, resulting in corresponding vector representations. The
calculation formula is defined as Equation (5):

A(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

where QϵRm×dk , KϵRm×dk , VϵRm×dk , dk is the dimension of the hidden layer in the network,
and

√
dk is the penalty factor for the inner product balance between Q and K.

In the multi-head self-attention mechanism, the query Q, key K and value V are
linearly mapped independently t times using different parameter matrices. These mapped
queries, keys and values are then fed into the respective h parallel heads to perform
the attention function operation. This approach allows each parallel head to capture
information about different representations of each character in the text sequence. Finally,
the results from h parallel heads are combined, and undergo a linear transformation to
obtain the final output. Equations (6) and (7) describe the computation process.

headi = attention
(

QWQ
i , KWK

i , VWV
i

)
(6)

MH(Q, K, V) = concat(h1, h1, . . . , hh)Wo (7)
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where WQ
i ϵRdk×dk/h, WK

i ϵRdk×dk/h, WV
i ϵRdk×dk/h and WoϵRdk×dk represent the parameter

matrices used for linear mapping, the headi denotes the i-th head in the multi-head self-
attention mechanism, and the symbol concat represents the concatenation operation. MHA
algorithm is elaborated in Algorithm 1.

Algorithm 1 MHA algorithm

Require: x-Input sequence (batch-size, seq-len, input-dim); mask (Mask for handling
padding); num-heads (Number of attention heads).

Ensure: best-path (Best path sequences).
1: Initialize an empty list multihead-outputs for multi-head weights.
2: For each attention head head in range(num-heads).
3: Generate query, key, and value matrices using linear transformations:
4: query = Linear(x) ; key = Linear(x) ; value = Linear(x);
5: Compute attention scores. scores = Dot-Product-Attention(query, key);
6: Calculate attention weights. attention-weights = Softmax(scores) (5);
7: Compute the output for each head:
8: head-output = Dot-Product-Attention(attention-weights, value) (6);
9: Add head-output to the multihead-outputs list;

10: Concatenate and linearly transform the outputs from different heads in the multihead-
outputs list (7)

11: final-output = Linear(Concatenate(multihead-outputs))
12: End

3.3. Conditional Random Field for Ambiguous Entity Classification

Although the LSTM model and MHA mechanisms learn contextual labels and output
the most probable labels, they do not consider the dependencies between labels, which may
result in the rehabilitation robots being unable to accurately recognize entity boundaries.
The CRF model can take into account the order of labels. Therefore, the CRF model is
chosen as the final output layer to handle ambiguous entity classification [33,34]. See
Algorithm 2.

Algorithm 2 CRF algorithm

Require: H-Hidden states from BiLSTM (batch-size, seq-len, hidden-dim).
Ensure: Best path sequences.

1: Initialize the score matrix and best path matrix;
2: For each sentence: batch in range(batch-size);
3: Calculate the effective length of the sentence:
4: seq-len = length of the current sentence;
5: Initialize the path probability matrix;
6: Initialize the best path matrix;
7: Compute the scores for the start labels:
8: viterbi[batch, 0] = scores[batch, 0] + transitions[START-TAG, :];
9: Perform forward pass;

10: Compute scores for the stop labels:
11: terminal-scores=viterbi[batch, seq-len-1, :] + transitions[:, STOP-TAG];
12: Find the best path’s stop label: best-tag = argmax(terminal-scores) (8);
13: Backtrack to retrieve the best path:
14: best-path[batch] = backtrace(backpointer[batch], best-tag);
15: End

The linear chain CRF is defined as follows: a sequence of random variables
X = (X1, X2, . . . , Xn) and a corresponding sequence of random variables Y = (Y1, Y2, . . . , Yn)
represent by linear chains, if the conditional probability distribution P(Y|X) of the random
variable sequence Y, given the sequence of random variables X, conforms to the formula-
tion shown in Equation (8), then P(Y|X) is referred to as a linear chain CRF. Therefore, NER
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tasks can be formulated as tagging problems, where X represents an input observation
sequence, and Y represents a sequence of tags or states to be predicted. CRF algorithm is
elaborated as Equation (8):

P(Yi|X, Y1, . . . , Yi−1, Yi+1, . . . , Yn) = P(Yi|X, Yi−1, Yi+1) (8)

3.4. Loss Function

During the training process of the neural network model, it is essential to define
the loss function to measure the error between predicted and true values, enabling the
backward update of node weights. For the NER task, the model’s output can be regarded as
a multi-classification task. Therefore, the cross-entropy loss function which is more suitable
for measuring multi-classification tasks is chosen in this paper. Its calculation formula is
shown as Equation (9), where N is the number of samples; M is the number of classes; yic
is the symbol function; if the true class of sample i is equal to c, the target value is set to 1,
otherwise it is set to 0; and pic represents the predicted probability of sample i belonging
to class c.

L = − 1
N

N

∑
i=1

M

∑
c=1

yic log(pic) (9)

The optimizer used in the model also has an impact on the training speed and accuracy
to a certain extent. The Adam optimizer is selected as the model’s optimizer. The Adam
optimizer combines the momentum-based gradient descent algorithm and the RMSProp
algorithm, determining the next move direction based on the moving average of gradients
and setting the step size based on a global upper bound. It has advantages such as simplicity,
high computational efficiency, and low memory consumption.

3.5. Model Training and Analysis

Our model was trained and tested in Python 3.6 and Tensorflow 1.14 framework. The
simulations were performed by using 3080Ti GPU hardware. The experiment employed
Albert-based part with 12 multi-head attention mechanisms. The first hidden layer state
of the BiLSTM part is set as 128 dimensions, and the second hidden layer state is set as
64 dimensions. The maximum sequence length is set as 512. The learning rate of the model
is set as 2 × 10−4, and a dropout of 0.5 is applied to prevent overfitting. The batch size for
training data are set as 16, and the proposed ALBERT-BiLSTM-MHA-CRF model is trained
for a maximum of 50 iterations.

According to Algorithm 3, after defining the neural network structure and initializing
the neural connections’ weights based on the input network parameters, training of the
ALBERT-BiLSTM-MHA-CRF model starts. During each iteration, the cross-entropy loss
between the neural network’s output and the true values is calculated. The gradients
are then computed based on the learning rate, and the weights of individual neurons are
updated accordingly. During the experiment, the changes in the loss function and accuracy
were recorded for each training epoch. The resulting curves are shown in Figure 5. From
the figure, it can be seen that during the early iterations, the model’s loss function value
rapidly decreases, and the accuracy increases quickly. After approximately 20 iterations, the
model reaches a relatively stable state, with subsequent fluctuations remaining steady. The
low value of the loss function and the high accuracy indicate that the model performs well.
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Algorithm 3 Training of the ALBERT-BiLSTM-MHA-CRF

Require: The maximum text length, dropout rate, the number of nodes in the first BiLSTM
layer, the number of nodes in the second BiLSTM layer, the number of attention heads
in the multi-head self-attention mechanism, batch size, learning rate and the number of
iterations.

Ensure: The optimal precision, recall, and F1-Score of the model under the specified
number of experimental runs.

1: Initialize the connection weights of neurons within (0, 1);
2: for i = 1 . . . epochs do:
3: Calculate the output of the ALBERT-BiLSTM-MHA-CRF model based on the current

sample data;
4: Calculate the cross-entropy loss between the output of the neural network and the

ground truth;
5: Compute the gradient of each weight for descent;
6: Update the weights based on the descent gradient;
7: Calculate the loss function value (9), accuracy, precision, recall and F1-Score after

each iteration;
8: End

Figure 5. ALBERT-BiLSTM-MHA-CRF model loss and accuracy variation curve.

4. Experimental Analysis and Discussion
4.1. Evaluation Metrics

The averages are employed as the evaluation metrics for the named entity recognition
model. Evaluation of the named entity recognition model is based on the following criteria:

(1) Whether the entity type is labeled correctly;
(2) Whether the boundary of the entity is identified correctly.

The output is considered correct only if both the resulting entity type and entity
boundary are correct. If only the entity type is correct but the entity boundary is not, or if
the entity boundary is correct but the entity class is not recognized, it is considered incorrect.
The calculated values and implications of the formula for calculating accuracy, recall, and
F1-Score are presented in Table 4.

Table 4. Indicator types.

Recognition Is Recognition Is
Positive Negative

Reality is positive TP FN
Reality is negative FP TN

Precision represents the proportion of true positive instances among the instances
predicted as positive by the model, and it is defined as follows:
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Precision =
TP

TP + FP
(10)

In terms of the named entity recognition the sensitivity of the algorithm is represented
as the fraction of correctly recognized entities among all the retrieved instances, i.e.,

Recall =
TP

TP + FN
(11)

Precision and recall may not be compatible in certain situations, leading to cases where
precision is high but recall is low, or vice versa. To comprehensively reflect the results of
precision and recall, the F1-Score is commonly used. It is the harmonic mean of precision
and recall, defined as follows:

F1 =
2 · Precision · Recall
Precision + Recall

(12)

In addition to calculating precision, recall and F1-Score for each individual class, it
is also necessary to use weighted averaging to obtain the average performance across
multiple classes. The calculation of weighted averaging is shown as follows:

Weighted(Z) =
N

∑
i=1

xiZi (13)

where Zi represents an evaluation metric for individual class, N denotes the total number
of classes, and xi indicates the class weight.

4.2. Ablation Experiments and Analysis

To verify the effectiveness of each module of the model, ablation experiments were
designed to compare the model with the ALBERT-BiLSTM, ALBERT-BiLSTM-MHA, and
ALBERT-BiLSTM-CRF separately, aiming to validate the performance of the MHA and the
CRF module.

During the experimental process, the change curves of the four models’ loss functions
and accuracies at each training epoch are recorded, as shown in Figure 6.

Figure 6. Loss and accuracy of ablation experiments variation curve.

As a result of the variation graphs, it may be inferred that the proposed ALBERT-
BiLSTM-MHA-CRF network has advantages over the other three models in terms of loss
function and accuracy. Note that all four models show a rapid decrease in the loss function
and significant increase in the accuracy for relatively low values of epoch numbers. As
the epoch number increases, the ALBERT-BiLSTM-MHA-CRF model exhibits lower loss
function values and higher accuracy in comparison with other models. This indicates that
the number of iterations in BiLSTM and MHA modules play a crucial role in performance
of the model.
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In order to calculate the precision, recall, and F1-Score of five entity types that output
from the four models, 10 experiments are conducted, and the average results are shown in
Table 5 and Figure 7.

Table 5. Comparison of model ablation experiment results.

Evaluation Disease Auxiliary Symptom Treatment Physical
Metrics Diagnosis Examinations Manifestations Measures Condition

ALBERT-BiLSTM
P 0.73 0.74 0.66 0.68 0.72

Recall 0.74 0.74 0.70 0.69 0.76
F1 0.74 0.73 0.70 0.72 0.75

ALBERT-BiLSTM-MHA
P 0.85 0.87 0.84 0.82 0.88

Recall 0.83 0.86 0.80 0.79 0.87
F1 0.83 0.85 0.79 0.81 0.86

ALBERT-BiLSTM-CRF
P 0.88 0.93 0.87 0.86 0.91

Recall 0.87 0.91 0.89 0.82 0.90
F1 0.87 0.92 0.87 0.84 0.90

Ours
P 0.90 0.92 0.87 0.85 0.92

Recall 0.88 0.90 0.91 0.82 0.93
F1 0.89 0.91 0.89 0.83 0.92

Figure 7. Ablation experiment results.

The following conclusions can be drawn from Table 5 and Figure 7:

(1) Comparing ALBERT-BiLSTM-MHA-CRF with ALBERT-BiLSTM-CRF, the former
demonstrates superior performance in recognizing entities related to disease diag-
nosis, symptom manifestations, and physical condition. MHA captures contextual
information, thereby enhancing entity recognition accuracy.

(2) ALBERT-BiLSTM-MHA-CRF outperforms ALBERT-BiLSTM-MHA across all five
entity types. This suggests that the CRF model can better achieve precise boundary
delineation, improving the model’s accuracy in entity recognition.

(3) The model exhibits relatively poorer recognition performance for the “treatment
measures” entity type. The diversity and complexity of treatment measures, coupled
with the non-standardized descriptions of these measures in medical texts, make their
recognition more challenging.

The weights for the five entity types are as shown in Table 6. To analyze the overall
effects of the ablation experiments on the models, the weighted average of the four models
is summarized and presented in Figure 8. From the figure, it can be observed that the
proposed ALBERT-BiLSTM-MHA-CRF model outperforms the ALBERT-BiLSTM-CRF
model with a precision improvement of 0.01, a recall improvement of 0.02, and an F1-Score
improvement of 0.01. This indicates that the inclusion of the MHA module allows the model
to capture contextual semantic features from multiple dimensions, thereby enhancing the
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recognition accuracy. Similarly, the proposed ALBERT-BiLSTM-MHA-CRF model performs
better than the ALBERT-BiLSTM-MHA model, with a precision improvement of 0.06, a
recall improvement of 0.07, and an F1-Score improvement of 0.04. This indicates that
the addition of the CRF module effectively utilizes the contextual information in the text,
leading to improved model performance.

Table 6. Five types of entity weights.

Entity Type Quantity Weights

Disease Diagnosis 2239 0.155
Auxiliary Examinations 1531 0.105

Symptom Manifestations 4650 0.322
Treatment Measures 1961 0.136
Physical Condition 4076 0.282

Figure 8. Weighted average results of ablation experiments.

4.3. Comparison Experiment and Analysis

To further validate the effectiveness of the model, a comparative experiment is de-
signed to compare the model with BERT-BiLSTM-CRF [35], BERT-Softmax [36], BiLSTM-
CRF [37], and BiLSTM-softmax [38]. The loss and accuracy variation curves for the five
models at each training epoch are shown in Figure 9.

Figure 9. Loss and accuracy of comparative experiments variation curve.

From Figure 9, it can be observed that the ALBERT-BiLSTM-MHA-CRF model demon-
strates a significant advantage in both the loss function and accuracy. In the early stages of
training, all five models exhibit a rapid decrease in the loss function and a quick increase in
accuracy. Among the models, BiLSTM-CRF and BiLSTM-Softmax, which do not incorpo-
rate pre-trained models, show the fastest variations. The models that utilize ALBERT come
next, followed by BERT which has the most parameters. Consequently, BERT-BiLSTM-CRF
and BERT-Softmax exhibit slower variations. However, as the training progresses, the
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proposed ALBERT-BiLSTM-MHA-CRF model achieves the lowest loss function value and
the highest accuracy, confirming its superiority over the other models.

The precision, recall and F1-Score of five entity types that output from the five compar-
ison models are calculated separately. The average results obtained from 10 experiments
and the weighted average values of the five models in the comparative experiments are
presented in Table 7.

Table 7. The results of the comparative experimental models.

Evaluation Disease Auxiliary Symptom Treatment Physical Overall
Metrics Diagnosis Examinations Manifestations Measures Condition Performance

BiLSTM-Softmax
P 0.78 0.85 0.76 0.75 0.83 0.79

Recall 0.80 0.83 0.76 0.74 0.84 0.79
F1 0.79 0.84 0.76 0.74 0.83 0.79

BiLSTM-CRF
P 0.79 0.85 0.77 0.76 0.85 0.80

Recall 0.81 0.83 0.78 0.74 0.84 0.81
F1 0.80 0.84 0.77 0.75 0.84 0.80

BERT-Softmax
P 0.84 0.86 0.81 0.81 0.86 0.83

Recall 0.85 0.88 0.83 0.78 0.86 0.84
F1 0.84 0.87 0.82 0.79 0.86 0.84

BERT-BiLSTM-CRF
P 0.86 0.89 0.84 0.82 0.88 0.86

Recall 0.88 0.90 0.86 0.82 0.91 0.88
F1 0.87 0.89 0.85 0.82 0.89 0.87

Ours
P 0.90 0.92 0.87 0.85 0.92 0.89

Recall 0.88 0.90 0.91 0.82 0.93 0.90
F1 0.89 0.91 0.89 0.83 0.92 0.89

Based on the comparative experimental results from Table 7 and Figure 10, the ALBERT
+ BILSTM + MHA + CRF model demonstrates significant advantages in named entity
recognition tasks. Compared to other models, such as the BiLSTM + Softmax model, this
model shows notable improvements in P, Recall, and F1-Score. Specifically, for the key entity
types “Disease Diagnosis”, “Symptom Manifestation”, and “Treatment Measures”, the
F1-Score of this model are increased by over 0.10. These improvements are attributed to the
strong representation capabilities of the ALBERT pre-trained model, the context modeling
ability of MHA, and the precise boundary prediction provided by CRF, which effectively
addresses issues related to varying meanings of the same entity in different contexts and
fuzzy entity boundaries. However, it is noteworthy that, despite the overall superior
performance of the model, the recognition performance for the “Treatment Measures”
category remains suboptimal, with an F1-Score of only 0.83. This indicates that challenges
persist in processing entities of this category, and further research is needed to enhance the
accuracy of recognition for this type of entity, thereby improving the model’s performance
across all entity categories.

Although the BERT-BiLSTM-CRF model excels in named entity recognition, it faces
significant computational challenges when dealing with Chinese electronic medical records.
While BERT provides deep semantic representation and rich contextual information, its
large number of parameters (BERT 110M, BiLSTM 6M, CRF 25) results in substantial com-
putational overhead. In contrast, ALBERT significantly reduces the number of parameters
to approximately 60M through parameter sharing and introduces an additional 6M param-
eters for the MHA. This results in the total number of parameters for BERT-BiLSTM-CRF
being about 1.61 times that of the ALBERT-BiLSTM-MHA-CRF model. This optimization
markedly improves the training efficiency of the model. For each training epoch, the BERT-
BiLSTM-CRF model requires approximately 5 min, while the ALBERT-BiLSTM-MHA-CRF
model requires only about 3.5 min, demonstrating a clear advantage in training time. Con-
sequently, the ALBERT-BiLSTM-MHA-CRF model not only enhances accuracy, but also
optimizes computational efficiency and resource utilization, showing superior practicality
and performance for complex named entity recognition tasks.
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Figure 10. P, R, and F1 of five types in comparative experiments.

During the modeling process, the results of each model run may vary due to random-
ness. To compare the stability of different models, the precision, recall, and F1-Score of the
five models are calculated for each fold in a 10-fold cross-validation. Box plots were then
generated, as shown in Figure 11, to visualize the distribution of these metrics across the
folds. The upper and lower whiskers represent the range of the data, the height of the box
reflects the dispersion of the data, with a shorter box indicating that the data is concentrated
and has low variance, and the median line indicates the median of the metric. According
to the graph, it can be observed that the precision, recall, and F1-Score of the proposed
ALBERT-BiLSTM-MHA-CRF model in the 10 test sets are all within the upper and lower
limit ranges, with no outliers, and the data distribution is relatively concentrated. This
indicates that there is not much variation in the results during the 10-fold cross-validation,
and the proposed ALBERT-BiLSTM-MHA-CRF model is relatively stable, making it suitable
for predictive analysis in Chinese electronic medical records.

Figure 11. Cross validation of box plot by comparison experiment.

Based on the experimental results, the algorithm developed in this study demonstrates
significant advantages in accuracy and practical application. The model substantially
improves entity recognition accuracy, reducing common issues of misidentification and
missed identifications present in traditional methods. This is particularly crucial for han-
dling complex medical records, as it ensures that the robot can accurately extract key
information and avoid potential errors in medical decision-making. Additionally, the
improved algorithm enhances the robot’s ability to understand complex medical language,
effectively addressing issues of terminology diversity and contextual differences, thus opti-
mizing the overall performance of the system. This method offers significant advantages
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for rehabilitation robots. Firstly, the precise entity recognition capability allows robots to
understand and process medical records more effectively, thereby enhancing the accuracy
and efficiency of medical decision-making. Secondly, the improved recognition ability
enables robots to handle more complex medical information, reducing the risk of medical
errors due to misidentification. Additionally, the advancement of this technology promotes
the application of rehabilitation robots in medical environments, allowing them to provide
more reliable decision support, which improves treatment outcomes and the quality of
medical services. These advancements not only enhance the functionality of rehabilitation
robots, but also drive further development in the medical field.

5. Conclusions

To enable medical rehabilitation robots to effectively recognize named entities in Chi-
nese electronic medical texts and improve the quality and efficiency of medical services,
the effectiveness of the Albert-BILSTM-MHA-CRF model is evaluated in this study. An
innovative medical entity recognition method is proposed in the experiment. By integrating
data preprocessing strategies with a knowledge-fusion medical entity recognition model,
challenges posed by dense domain knowledge in knowledge fusion representation are
successfully addressed, along with the issue of diverse categorizations of the same entity in
different contexts. This integration also effectively handles the blurred entity boundaries
caused by the cross-expression of different entities. Experimental results fully demonstrate
the significant effectiveness and superiority of the model in the task, providing a viable
solution for named entity recognition in Chinese electronic medical records used by med-
ical rehabilitation robots. Future research is expected to focus on the following aspects:
Firstly, further optimization of the model structure will be prioritized, with an emphasis
on incorporating more complex attention mechanisms or updated pre-trained language
models. This is aimed at improving the accuracy and efficiency of named entity recognition,
thereby providing more precise and efficient solutions in the field of medical rehabilitation.
Secondly, the applicability of this model to other domains, such as legal texts and financial
reports, which are highly specialized and complex, will be explored to assess the model’s
generalization capabilities across different fields.
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Abbreviations
The following abbreviations are used in this manuscript:

NER Named Entity Recognition
BiGRU Bidirectional Gated Recurrent Unit
MHA Multi-Head Attention
CRF Conditional Random Field
BiLSTM Bidirectional Long Short-Term Memory
LSTM Long Short-Term Memory
BERT Bidirectional Encoder Representations from Transformers
ALBERT A Lite Bidirectional Encoder Representations from Transformers

References
1. Zeng, D.X.; Liu, Y.; Qu, C.R.; Cong, J.H.; Hou, Y.L.; Lu, W.J. Design and Human-Robot Coupling Performance Analysis of Flexible

Ankle Rehabilitation Robot. IEEE Robot. Autom. Lett. 2024, 9, 579–586. [CrossRef]
2. Khan, A.T.; Li, S. Smart Surgical Control Under RCM Constraint Using Bio-inspired Network. Neurocomputing 2022, 470, 121–129.

[CrossRef]
3. Huang, Q.H.; Zhou, J.K.; Li, Z.J. Review of Robot-assisted Medical Ultrasound Imaging Systems: Technology and Clinical

Applications. Neurocomputing 2023, 559, 126790. [CrossRef]
4. Alberto, G.; Luis, G.; Pau, M.B.; Vicent, G.J.; Josep, T. Bimanual Robot Control for Surface Treatment Tasks. Int. J. Syst. Sci. 2021,

53, 74–107. [CrossRef]
5. Sun, Y.H.; Peng, Z.N.; Hu, J.P.; Ghosh, B.K. Event-triggered critic learning impedance control of lower limb exoskeleton robots in

interactive environments. Neurocomputing 2024, 564, 126963. [CrossRef]
6. Wong, M.C.S.; Huang, J.J.; Chan, P.S.F. Global Incidence and Mortality of Gastric Cancer, 1980-2018. JAMA Netw Open 2021, 4,

e2118457. [CrossRef] [PubMed]
7. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA-A Cancer J. Clin. 2020, 68, 394–424. [CrossRef]
8. Du, H.Z.; Xu, J.H.; Du, Z.Y.; Chen, L.H.; Ma, S.H.; Wei, D.Q.; Wang, X.F. MF-MNER: Multi-models Fusion for MNER in Chinese

Clinical Electronic Medical Records. Interdiscip. Sci. Comput. Life Sci. 2024, 16, 489–502. [CrossRef]
9. Sun, V.; Reb, A.; Debay, M.; Fakih, M.; Ferrell, B. Correction to: Rationale and Design of a Telehealth Self-Management, Shared

Care Intervention for Post-treatment Survivors of Lung and Colorectal Cancer. J. Cancer Educ. 2021, 36, 421. [CrossRef] [PubMed]
10. Zhang, P.F.; Zheng, X.H.; Li, X.Z.; Sun, L.; Jia, W.H. Informatics Management of Tumor Specimens in the Era of Big Data:

Challenges and Solutions. Biopreservation Biobanking 2021, 19, 531–542. [CrossRef]
11. Yan, J.H.; Zong, C.Q.; Xu, J.A. Combination of Loss-based Active Learning and Semi-supervised Learning for Recognizing Entities

in Chinese Electronic Medical Records. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2023, 22, 1–19. [CrossRef]
12. Zhai, Y.Y.; Liu, X.K.; Huang, Z.H.; Zhang, J.Y. Data Mining Combines Bioinformatics Discover Immunoinfiltration-related Gene

SERPINE1 as a Biomarker for Diagnosis and Prognosis of Stomach Adenocarcinoma. Sci. Rep. 2023, 13, 1373. [CrossRef]
13. Wang, L.; Qiu, M.M.; Wu, L.L.; Li, Z.X.; Meng, X.Y.; He, L.; Yang, B. Construction and Validation of Prognostic Signature for

Hepatocellular Carcinoma Basing on Hepatitis B Virus Related Specific Genes. Infect. Agents Cancer 2022, 17, 60. [CrossRef]
14. Li, Z.P.; Cao, S.; Zhai, M.Y.; Ding, N.N.; Zhang, Z.W.; Hu, B. Multi-level Semantic Enhancement Based on Self-distillation BERT

for Chinese Named Entity Recognition. Neurocomputing 2024, 586, 127637. [CrossRef]
15. Peng, J.K.; Ni, P.; Zhu, J.Y.; Dai, Z.J.; Li, Y.M.; Li, G.M.; Bai, X.M. Automatic Generation of Electronic Medical Record Based on

GPT2 Model. In Proceedings of the 2019 IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019;
pp. 6180–6182. [CrossRef]

16. Zhang, L.; Yang, X.R.; Li, S.J.; Liao, T.Y.; Pan, G. Answering Medical Questions in Chinese Using Automatically Mined Knowledge
and Deep Neural Networks: An End-to-end Solution. BMC Bioinform. 2022, 23, 136. [CrossRef]

17. Chen, H.Y.; Wu, Z.Y.; Chen, T.L.; Huang, Y.M.; Liu, C.H. Security Privacy and Policy for Cryptographic Based Electronic Medical
Information System. Sensors 2021, 21, 713. [CrossRef]

18. Ben-Hamo, R.; Jacob Berger, A.; Gavert, N. Predicting and Affecting Response to Cancer Therapy Based on Pathway-level
Biomarkers. Nat. Commun. 2020, 11, 3296. [CrossRef]

19. Cheng, J.R.; Liu, J.X.; Xu, X.B.; Xia, D.W.; Liu, L.; Sheng, V.S. A review of Chinese named entity recognition. KSII Trans. Internet
Inf. Syst. 2021, 15, 2012–2030. [CrossRef]

20. Xiao, Y.L.; Zhao, Q.; Li, J.Q.; Chen, J.Q.; Cheng, Z.N. MLNER: Exploiting Multi-source Lexicon Information Fusion for Named
Entity Recognition in Chinese Medical Text. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications
Conference, Madrid, Spain, 12–16 July 2021; pp. 1079–1084.

21. Zhang, Q.H.; Wu, M.; Zhang, M.Y.; Yang, H.W. Research on Named Entity Recognition of Chinese Electronic Medical Records
Based on Multi-head Attention Mechanism and Character-word Information Fusion. J. Intell. Fuzzy Syst. 2022, 42, 4105–4116.
[CrossRef]

http://doi.org/10.1109/LRA.2023.3330052
http://dx.doi.org/10.1016/j.neucom.2021.10.116
http://dx.doi.org/10.1016/j.neucom.2023.126790
http://dx.doi.org/10.1080/00207721.2021.1938279
http://dx.doi.org/10.1016/j.neucom.2023.126963
http://dx.doi.org/10.1001/jamanetworkopen.2021.18457
http://www.ncbi.nlm.nih.gov/pubmed/34309666
http://dx.doi.org/10.3322/caac.21609
http://dx.doi.org/10.1007/s12539-024-00624-z
http://dx.doi.org/10.1007/s13187-021-01958-8
http://www.ncbi.nlm.nih.gov/pubmed/33619687
http://dx.doi.org/10.1089/bio.2020.0084
http://dx.doi.org/10.1145/3588314
http://dx.doi.org/10.1038/s41598-023-28234-7
http://dx.doi.org/10.1186/s13027-022-00470-y
http://dx.doi.org/10.1016/j.neucom.2024.127637
http://dx.doi.org/10.1109/BigData47090.2019.9006414
http://dx.doi.org/10.1186/s12859-022-04658-2
http://dx.doi.org/10.3390/s21030713
http://dx.doi.org/10.1038/s41467-020-17090-y
http://dx.doi.org/10.3837/tiis.2021.06.004
http://dx.doi.org/10.3233/JIFS-212495


Sensors 2024, 24, 5624 19 of 19

22. Bi, M.W.; Zhang, Q.C.; Zuo, M.; Xu, Z.L.; Jin, Q.Y. Bi-directional LSTM Model with Symptoms-Frequency Position Attention for
Question Answering System in Medical Domain. Neural Process. Lett. 2020, 51, 1185–1199. [CrossRef]

23. Tuo, J.Y.; Liu, Z.Z.; Chen, Q.; Ma, X.; Wang, Y.Q. Chinese Electronic Medical Record Named Entity Recognition based on
FastBERT method. In Proceedings of the 2021 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021;
pp. 2405–2410.

24. Wang, J.N.; Li, J.Q.; Zhu, Z.C.; Zhao, Q.; Yang, Y.; Yang, L.Y.; Xu, C. Joint Extraction of Events in Chinese Electronic Medical
Records. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference, Madrid, Spain, 12–16
July 2021; pp. 1924–1929. [CrossRef]

25. Guo, W.M.; Lu, J.D.; Han, F. Named Entity Recognition for Chinese Electronic Medical Records Based on Multitask and Transfer
Learning. IEEE Access 2022, 10, 77375–77382. [CrossRef]

26. Guan, J.Q.; Li, R.Z.; Yu, S.; Zhang, X.G. A Method for Generating Synthetic Electronic Medical Record Text. IEEE/ACM Trans.
Comput. Biol. Bioinform. 2021, 18, 173–182. [CrossRef]

27. Qiao, Z.; Zhang, F.H.; Lu, H.; Xu, y.; Zhang, G.B. Research on the Medical Knowledge Deduction Based on the Semantic Relevance
of Electronic Medical Record. Int. J. Comput. Intell. Syst. 2023, 16, 38. [CrossRef]

28. Lv, J.H.; Du, J.P.; Zhou, N.; Xue, Z. BERT-BIGRU-CRF: A Novel Entity Relationship Extraction Model. In Proceedings of the 2020
IEEE International Conference on Knowledge Graph (ICKG), Nanjing, China, 9–11 August 2020; pp. 157–164.

29. Lin, J.T.; Liu, E.D. Research on Named Entity Recognition Method of Metro On-Board Equipment Based on Multiheaded Self-Attention
Mechanism and CNN-BiLSTM-CRF. Comput. Intell. Neurosci. 2022, 2022, 6374988. [CrossRef]

30. Liu, C.F.; Zhang, Y.; Yu, M.; Li, X.W.; Zhao, M.K.; Xu, T.Y.; Yu, J.; Yu, R.G. Text-Enhanced Knowledge Representation Learning
Based on Gated Convolutional Networks. In Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), Portland, OR, USA, 4–6 November 2019; pp. 308–315.

31. Han, P.; Zhang, M.T.; Shi, J.; Yang, J.M.; Li, X.Y. Chinese Q and A Community Medical Entity Recognition with Character-level
Features and Self-attention Mechanism. Intell. Autom. Soft Comput. 2021, 29, 55–72. [CrossRef]

32. Lee, L.H.; Lu, Y. Multiple Embeddings Enhanced Multi-Graph Neural Networks for Chinese Healthcare Named Entity Recogni-
tion. IEEE J. Biomed. Health Inform. 2021, 25, 2801–2810. [CrossRef] [PubMed]

33. Chen, Y.B.; Wu, C.H.; Qi, T.; Yuan, Z.G.; Zhang, Y.S.; Yang, S.; Guan, J.; Sun, D.H.; Huang, Y.F. Semi-supervised Named Entity
Recognition in Multi-level Contexts. Neurocomputing 2023, 520, 194–204. [CrossRef]

34. Jin, Y.Y.; Tao, S.Y.; Liu, Q.; Liu, X.D. A BiLSTM-CRF Based Approach to Word Segmentation in Chinese. In Proceedings of the
2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress, Falerna, Italy, 12–15 September
2022; pp. 1–4. . Cy55231.2022.9927991. [CrossRef]

35. Cui, L.Y.; Li, Y.F.; Zhang, Y. Label Attention Network for Structured Prediction. IEEE/ACM Trans. Audio Speech Lang. Process. 2022,
30, 1235–1248. [CrossRef]

36. Ji, B.; Liu, R.; Li, S.S.; Yu, J.; Wu, Q.B.; Tan, Y.S.; Wu, J.J. A Hybrid Approach for Named Entity Recognition in Chinese Electronic
Medical Record. BMC Med. Inform. Decis. Mak. 2019, 19, 64. [CrossRef]

37. Ding, L.P.; Zhang, Z.X.; Zhao, Y. Bert-Based Chinese Medical Keyphrase Extraction Model Enhanced with External Features.
Towards Open Trust. Digit. Soc. 2021, 13133, 167–176. [CrossRef]

38. Liang, H.L.; Zhou, Y.; Wang, Y.W.; Xu, X.Q.; Wei, Y.; Chen, Y. Named Entity Recognition of Diseases and Pests with Small Samples
Based on Space Mapping. In Proceedings of the 2022 Euro-Asia Conference on Frontiers of Computer Science and Information
Technology (FCSIT), Beijing, China, 16–18 December 2022; pp. 64–72.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11063-019-10136-3
http://dx.doi.org/10.1109/COMPSAC51774.2021.00292
http://dx.doi.org/10.1109/ACCESS.2022.3192866
http://dx.doi.org/10.1109/TCBB.2019.2948985
http://dx.doi.org/10.1007/s44196-023-00219-4
http://dx.doi.org/10.1155/2022/6374988
http://dx.doi.org/10.32604/iasc.2021.017021
http://dx.doi.org/10.1109/JBHI.2020.3048700
http://www.ncbi.nlm.nih.gov/pubmed/33385314
http://dx.doi.org/10.1016/j.neucom.2022.11.064
http://dx.doi.org/10.1109/DASC/PiCom/CBDCom/ Cy55231.2022.9927991
http://dx.doi.org/10.1109/TASLP.2022.3145311
http://dx.doi.org/10.1186/s12911-019-0767-2
http://dx.doi.org/10.1007/978-3-030-91669-5-14

	Introduction
	Description of the Problem and Data Processing Scheme
	Data Acquisition and Analysis
	Redefinition of Entity Types and Processing Strategy

	Methodology
	Enhanced Representation with Knowledge Fusion
	Multi-Head Attention Module for Polysemy Feature Extraction
	Conditional Random Field for Ambiguous Entity Classification
	Loss Function
	Model Training and Analysis

	Experimental Analysis and Discussion
	Evaluation Metrics
	Ablation Experiments and Analysis
	Comparison Experiment and Analysis

	Conclusions
	References

