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Natural selection acts ubiquitously on complex human traits, predominantly constraining the occurrence of extreme phe-

notypes (stabilizing selection). These constraints propagate to DNA sequence variants associated with traits under selection.

The genetic signatures of such evolutionary events can thus be detected via combining effect size estimates from genetic

association studies and the corresponding allele frequencies. Although this approach has been successfully applied to

high-level traits, the prevalence and mode of selection acting on molecular traits remain poorly understood. Here, we es-

timate the action of natural selection on genetic variants associated with metabolite levels, an important layer of molecular

traits. By leveraging summary statistics of published genome-wide association studies with large sample sizes, we find strong

evidence of stabilizing selection for 15 out of 97 plasma metabolites, with nonessential amino acids displaying especially

strong selection signatures. Mendelian randomization analysis reveals that metabolites under stronger stabilizing selection

display larger effects on a range of clinically relevant complex traits, suggesting that maintaining a disease-free profile may

be an important source of selective constraints on the metabolome. Metabolites under strong stabilizing selection in humans

are also more conserved in their concentrations among diverse mammalian species, suggesting shared selective forces across

micro- and macroevolutionary timescales. Overall, this study demonstrates that variation in metabolite levels among hu-

mans is frequently shaped by natural selection and this may act through their causal impact on disease susceptibility.

[Supplemental material is available for this article.]

Humanmetabolites provide a unique insight into metabolic path-
ways underlying health and disease and can serve as a useful tool
for precision medicine with multiple applications, including the
discovery of new therapeutic targets and the development of novel
protocols for diagnostics or monitoring the progression of the dis-
ease and the efficacy of treatment (Zhang et al. 2015). Recent ad-
vances in metabolomic research have identified a number of
biochemical processes involved in the pathogenesis of complex
diseases, such as cancer, atherosclerosis, and diabetes (Jin and
Ma 2021).

Intermediate metabolites can also help to elucidate the influ-
ence of natural selection owing to the evolutionary advantages
and disadvantages resulting from the ability of living organisms
to produce compounds with functions beneficial or detrimental
for fitness. Although dysregulation of several specific metabolites
has been linked to human diseases, potentially indicating strong
stabilizing selection to preserve their levels, the direction and
strength of natural selection shapingmetabolite levels are general-
ly unknown. Several lines of observations suggest that stabilizing
selection onmetabolite levels might be prevalent. First, evolution-

arily distant species show substantial similarities inmetabolite lev-
els, indicating widespread evolutionary conservation of the
metabolome (Ma et al. 2015; Park et al. 2016). Second, the levels
of central metabolites obey simple optimality principles,
indicating that metabolite levels might represent optimal values
(Tepper et al. 2013). However, not all metabolites are expected to
be under equally strong stabilizing selection, and there might be
larger room for selectively neutral alterations for somemetabolites
than for others. Indeed, a recentmultispecies comparison revealed
wide differences in the extent of conservation of individualmetab-
olite concentrations during evolution, likely driven by differing
amounts of functional constraints across metabolites (Liska et al.
2023). Furthermore, a remarkable acceleration ofmetabolome evo-
lutionhas been reported in the human lineage comparedwith oth-
er primates, potentially indicating the action of directional
selection on specific metabolites (Bozek et al. 2014). However,
the general patterns of selection shaping human metabolite con-
centrations remain essentially unknown.

Evidence for stabilizing selection acting on a particular trait
can be inferred from the relationship between themultivariable ef-
fect size (b) and minor allele frequency (MAF) of genetic variants
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responsible for its regulation (Zeng et al. 2018). The observed
omnigenic architecture of complex traits suggests that a large
number of trait-associated genetic variants have a very small effect,
whereas only a few of themhave larger effects. Individuals carrying
alleles associated with larger (detrimental) effects on a trait under
strong (stabilizing) selection will have a higher chance to have de-
creased fitness and hence will tend to be purged from the gene
pool. This results in a decreased allele frequency. It is generally
viewed thatmost traits under stabilizing selection have an optimal
value for fitness, and individualswith larger deviations in either di-
rection tend to be selected out with increasing probability. Hence,
it is reasonable to assume that in such a case there is an inverse re-
lationship between the squared effect size and MAF (or the vari-
ability of the genotype, i.e., 2 ×MAF× (1−MAF)). Stronger
selection leads to the sharper decline in MAF upon increase in ef-
fect size. Therefore, it has been proposed to estimate selection
strength acting on a phenotype, denoted by α, as the value that
best fits the b2∼ [2 ×MAF× (1−MAF)]α relationship for the given
phenotype (Schoech et al. 2019).

More importantly, simulation studies demonstrated that neg-
ative α values point to stabilizing, whereas positive α values point
to either directional or disruptive selection (Zeng et al. 2018). For
typical complex traits, a reasonable α was estimated to be around
−0.25 (Speed and Balding 2019). It was shown that stratifying her-
itability models for functional annotations, LD scores, and MAF
can improve heritability estimation and trait prediction (Speed
et al. 2020). Hence, identifying the signatures of stabilizing selec-
tion is important both for understanding the genetic underpin-
nings of phenotypic variation and for understanding evolution.

Such methodology has not yet been applied to molecular
traits, such as metabolite concentrations, owing to the lack of sta-
tistical power because of the unavailability of a sufficiently large
sample size. The recent emergence of genome-wide association
summary statistics for metabolites (Lotta et al. 2021) provided
the first such opportunity. To leverage the newly available data,
we reliably estimated selection strength for 97 out of 135 metabo-
lites from a wide range of biochemical classes. First, we compared
the performances of weighted and unweighted LDAK-Alpha and
BLD-LDAK+Alpha models using summary statistics data for 59
complex traits available from the UK Biobank. We then applied
the weighted model to obtain the selection strength signatures
for 135 metabolites using the summary statistics data generated
in a cross-platform meta-analysis of genetic effects on levels of
blood metabolites measured in large-scale population-based stud-
ies (Lotta et al. 2021). We also investigated the causal relationship
between metabolites and 51 clinically important complex traits
using Mendelian randomization (MR) in order to explore the rela-
tionship between the selection strength estimates for the studied
metabolites and their impact on clinically relevant complex traits.
Finally, we used an orthogonal measure of evolutionary con-
straints by comparing cross-species metabolite concentrations
among mammals, and compared it with the strength for stabiliz-
ing selection obtained from human GWAS data.

Results

Confirmation of the heritability model using UK Biobank

data for complex traits

We first applied the BLD-LDAK+Alpha model implemented in
the SumHer functionality of the LDAK software to 59 complex
traits available in the UK Biobank (Supplemental Table S1;

Supplemental Fig. S1). After testing different heritability models,
we established that fitting the 65-parameter BLD-LDAK+Alpha
model for the majority of the 59 studied traits led to α estimates
within the range of −0.9 to −0.15. Out of the 59 traits, 25 were
also tested in a previous study using raw genotype data (Zeng
et al. 2018). For these 25 overlapping traits, we observed reasonable
similarity (Supplemental Fig. S2) between selection strength esti-
mates by the 65-parameter BLD-LDAK+Alpha model versus ap-
proaches based on raw genetic data: r=0.31 (Zeng et al. 2018)
and r=0.39 (Schoech et al. 2019). These observed concordance val-
ues (r=0.31 and r=0.39) tend to be higher than the agreement be-
tween the selection estimates from Zeng et al. versus Schoech et al.
(r=−0.26) (Supplemental Fig. S2), although not significantly so.

Metabolome-wide signatures of natural selection

Having tested the BLD-LDAK+Alpha model on complex traits, we
performed the analysis to explore, for the first time, the evidence
of selection for 135 metabolites for which summary statistics are
available from GWAS with large sample sizes (Lotta et al. 2021).
Notably, 38 metabolites did not produce stable maximum likeli-
hood estimates for the selection parameter (decided based on visu-
al inspection of the profile likelihoods), most likely owing to low
heritability, incompatible genetic architecture, or small sample
size. Out of the remaining 97 metabolites (with α estimates rang-
ing from −1.82 to 3.43), 66 led to selection estimates not sig-
nificantly different from zero. Twenty-eight metabolites with
nominally significant (P<0.05) selection estimates showed stabi-
lizing selection (â < 0), and three are estimated to be under direc-
tional or disruptive selection (â >0). Figure 1 illustrates the
estimated selection strength values for these metabolites.

We have found strong evidence (P<0.05/97) of stabilizing se-
lection for 15 metabolites (tyrosine, butyrylcarnitine, acetylorni-
thine, methionine, glutamine, PC ae C38:0, glutamate, proline,
PC ae C34:1, lysoPC a C16:1, PC aa C32:1, asparagine, PC aa
C34:1, lysoPC a C20:3, PC ae C40:4). These estimates were robust
with a smooth profile likelihood function (Supplemental Fig. S3).
Evidence for the three nominally significant metabolites under
disruptive/directional selection (citrulline, lysoPC a C20:4, PC ae
C40:5) did not reach the adjusted statistical significance level (P
<0.05/97) (Fig. 1).

Metabolites showing strong evidence for stabilizing selection
span several major compound classes, such as amino acids and
derivatives, phosphatidylcholines (PCs), and lysophosphatidyl-
cholines (lysoPCs). This is despite the highly variable detection
power favoring amino acids, which have the highest GWAS sam-
ple size. To investigate whether selection differs across major me-
tabolite classes, we focused on estimated a values, which are
unaffected by detection power. We found significant heterogene-
ity in a estimates across metabolite groups (modified Cochran’s
Q =31.95, P= 9.52×10−5) (Fig. 2). In particular, nutritionally non-
essential proteinogenic amino acids (NEAAs) display significantly
lower â values than the rest of the metabolites, whereas no such
trend was observed for nutritionally essential amino acids (EAAs;
modified t-test P=0.0038 and P=0.496, respectively). This pattern
indicates that amino acids that are both needed for protein synthe-
sis and synthesized by the human body are under especially strong
stabilizing selection. Conversely, acylcarnitines tend to have posi-
tive selection coefficients (average â value =0.85) significantly
higher than those of the rest of the metabolites (P= 0.044). This
suggests that they might be under less stringent evolutionary con-
straint (either no or disruptive/directional selection).
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Selection strength correlates with cross-species evolutionary

conservation of metabolite levels

The selective forces shaping human metabolism are likely to be
shared, at least partly, among mammalian species. If so, metabo-
lites that are under stronger stabilizing selection in human popu-
lations are expected to be more evolutionarily conserved in their
concentrations overmacroevolutionary timescales. To test this hy-
pothesis, we used a recent approach to infer a score that captures

the extent of evolutionary conservation of metabolite concentra-
tions for individual metabolites based on cross-species compari-
sons (Liska et al. 2023). In brief, this metabolite conservation
score is based on the Brownian motion model of trait evolution.
The rate parameter of the Brownianmotionmodel provides a sim-
ple and robust measure of the effective rate of evolution for quan-
titative traits, even if the actual evolutionary process departs from
Brownian motion (Ackerly 2009). The conservation score is de-
fined as the inverse of this rate parameter (Methods). Note that

Figure 1. Metabolites with selection estimates showing stabilizing selection (â <0) and disruptive selection (â >0). Circle symbols represent nonsignif-
icant selection estimates; triangles refer to metabolites with a selection strength P-value surviving multiple testing correction (P<0.05/97). Error bars rep-
resent SEs. Metabolites showing exceptionally large SEs are indicated by an asterisk, such as PC ae C32:1 (SE = 98.5) and PC ae C44:5 (SE = 86.1).
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the conservation score has been shown to capture variation in
functional constraints across metabolites (Liska et al. 2023).

We focused on a metabolomic data set containing the relative
concentrations of 262 metabolites in four major organs of 26mam-
malian species, spanning an evolutionary period of ∼200 million
years (Ma et al. 2015), and calculated an aggregated score of metab-
olite conservation across the four organs (see Methods). Out of the
97 metabolites with â value, 46 were present in the cross-species
data set, including several amino acids, phosphatidylcholines, and
acylcarnitines (Supplemental Table S2). In line with our expecta-
tions,metaboliteswith lower â values (i.e., stronger stabilizing selec-
tion) tend to have higher cross-species conservation scores (R=
−0.37, P=0.042) (Fig. 3). This effect is largely because of the higher
conservation of metabolites with negative â values than those with
positive â values. This trend indicates that metabolites under stabi-
lizing selection in humans, as detected from GWAS, tend to evolve
especially slowly on macroevolutionary timescales. For example,
amino acids frequently show strong negative â values and also
tend to be highly conserved among mammalian species, whereas
acylcarnitines often display positive â values and are among the
least conserved metabolites (Fig. 3). The presence of this trend is
all the more remarkable as cross-species evolution also involves
adaptive shifts in metabolite levels outside the human lineage
(Ma et al. 2015) that likely diminish the above correlation.
Furthermore, the correlation might be also diminished by the fact

that we calculated conservation scores
from tissue metabolome data owing to
the lack of appropriate cross-species data
on plasma metabolite levels. A leave-one-
out analysis shows that the correlation is
not driven by conservation scores of a par-
ticular organ (Supplemental Table S4).

Linking selection strength with the

causal effect on clinically relevant traits

Natural selection to maintain the opti-
mum values of clinically important com-
plex traits might underlie the strong
signatures of stabilizing selection on spe-
cific metabolites. To test this hypothesis,
we first used aMR approach to unveil the
causal links between metabolites and
health-related traits. Applying an in-
verse-variance-weighted MR method
(Burgess et al. 2013), we estimated the
causal effects of the 97 metabolites on
51 complex traits with clinical relevance
(Supplemental Table S2), including lip-
ids/proteins, blood cell type composi-
tion, and adiposity, anthropometric,
cardiovascular, metabolic, hormonal,
cognitive, and psychiatric traits. Note
that to minimize the overlap between
the metabolites and the complex traits,
we removed all causal effects that were
larger than 0.5 in absolute value (e.g.,
the causal effect of creatinine [asmetabo-
lite] on creatinine [as complex trait] was
estimated to be 0.989).

We then interrogated the relation-
ship between the selection strength esti-

mates for the 97 metabolites and their absolute MR effect sizes
on these 51 traits. This analysis yielded negative correlations
for 48 out of the 51 tested traits (Supplemental Fig. S4;
Supplemental Table S3), meaning that metabolites under stronger
stabilizing selection show larger effect sizes on complex, clinically
relevant traits. In total, 23 of the 51 traits survive multiple testing
correction, controlling the false-discovery rate at 5% (using the
Benjamini–Hochberg step-up procedure). For example, we ob-
served a rather strong relationship (r<−0.4, P< 3.3 ×10−4) for glu-
cose, glycated hemoglobin, clinically measured serum urate, IGF1,
testosterone, and SHBG. Milder correlations were observed with
various high-level traits, such as basal metabolic rate (r=−0.28, P
=0.01), pulse rate (r = −0.31, P=0.0066), and triglycerides (r=
−0.28, P=0.01). Naturally, individualmetabolites are not expected
to be constrained through selection on individual medical traits;
hence, we do not expect to observe very strong correlations.
Therefore, to quantify the overall importance of each metabolite,
we calculated the total absolute effect of each metabolite on the
51 studied traits combined. These importance scores were then
compared with the previously derived selection strength esti-
mates (see Fig. 4) and revealed a very robust negative trend (r=
−0.395, P=1.02×10−3), confirming the observation that metabo-
lites with a more prominent impact on a range of complex clin-
ical phenotypes are bound to be under stronger stabilizing
selection.

Figure 2. Selection estimates vary significantly across metabolite classes. Plot compares the estimated
a values across different metabolite compound classes. Note that the groups essential amino acids and
nonessential amino acids include proteinogenic amino acids, and other amino acids and derivatives in-
clude nonproteinogenic amino acids and compounds derived from them. The â values show significant
heterogeneity across metabolite classes (adjusted Cochran’s heterogeneity test, Q=31.95, P=9.52×
10−5). Comparisons of metabolites within a particular class against the rest of metabolites reveal two
classes that differ significantly (denoted by asterisks): acylcarnitines and nonessential amino acids (adjust-
ed t-test P=0.044 and P=0.0038, respectively). Boxes depict the interquartile range (IQR); the solid
black line shows the median; and the whiskers extend to 1.5 IQR. The dashed line indicates average â
value across all investigatedmetabolites. Colors represent the significance level of the selection estimates.
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Discussion

We performed the first study, to our knowledge, to assess the
stabilizing/disruptive selection strength of metabolites using
summary statistics from metabolomic GWAS. Leveraging this
approach, we were able to estimate stabilizing selection strength
for 97 metabolites, via investigating the allele frequency-depen-
dent genetic architecture of metabolomic traits. Information on
the strength of selection can be useful in assessing the role of
the metabolites as diagnostic, prognostic, or treatment-response
biomarkers.

To tackle these questions, we first established that the 65-pa-
rameter LD score–weighted BLD-LDAK+Alpha model produces
the most robust estimates of selection strength for complex traits,
and hence, applied it to 135 metabolites with available GWAS
summary statistics. Our findings indicate that the majority of
the studied amino acids, PCs, lysoPCs, acetylcarnitines, and relat-
ed compounds with evidence for selection display negative â val-
ues indicative of stabilizing selection, with only three metabolites
showing nominally significant positive â . Our results align with
the view that the majority of complex traits are under stabilizing
selection that eliminates metabolite-associated genetic variants
from the population to avoid deleterious fitness effects (Koch
and Sunyaev 2021). Although it is unsurprising that high-level
complex phenotypes, such as reproductive or cardiovascular traits,
generally show negative α estimates (Zeng et al. 2018; Schoech
et al. 2019; Speed et al. 2020; Zeng et al. 2021) owing to their close
links to fitness, our work expands this notion to molecular traits.
Alterations in molecular traits might not necessarily influence
higher-level phenotypes and fitness, and therefore, it has been
proposed that such traits are more likely to evolve neutrally
(Zhang 2018). Our work demonstrates that metabolites, an impor-
tant layer of molecular traits, also show strong signatures of stabi-
lizing selection in their genetic architectures, albeit less frequently
than high-level complex traits (Zeng et al. 2018).

Compared with the selection strength profiles of high-level
phenotypes identified in our study, the α values for the metabo-
lites tend to vary wider, and because of the relatively smaller
GWAS size available, the estimates are noisier (cf. Fig. 1 and
Supplemental Fig. S1). Recent technological advancements al-
lowed the detection of hundreds of metabolic compounds that
can potentially be used as biomarkers for diseases or drug targets.
However, different operating standards and the lack of reference
values obtained from healthy subjects lead to large discrepancies
in detectedmetabolite levels across different platforms and labora-
tories, impeding metabolic profiling (Saigusa et al. 2021) and
downstream analyses, like ours. The MR analysis results demon-
strate that many metabolites have causal effects on clinically rele-
vant, complex traits, although, in line with transcriptome-wide
MR analyses (Porcu et al. 2019), these effects are minor. Still, we
hypothesized that clinically more important metabolites would
have a larger impact on common disease traits. At the same time,
if small changes inmetabolites lead to disease consequences, their
levels are expected to be under stronger stabilizing selection. This
prompted us to check whether larger (absolute) causal disease ef-
fects couple with stronger (negative) selection values, and we
found that selection strength estimates negatively correlated
with the absolute causal effect of these metabolites for almost
95% of the 51 tested traits. These observed trends, even if not al-
ways strictly statistically significant, in combination provide clear
evidence thatmetabolites with a larger impact on clinically impor-
tant outcomes tend to be under stronger selection. Our results also
imply that maintaining various clinically relevant traits close to
their optimal values is an important source of evolutionary con-
straints on certain metabolites.

We found significant variation in the estimated strength of
selection across major metabolite classes. Notably, nutritionally
NEAAs showed especially strong stabilizing selection, whereas nu-
tritionally EAAs displayed no such pattern. Both classes of amino
acids serve as building blocks for protein biosynthesis and play cru-
cial roles in various other cellular processes (Wu et al. 2014).
However, although EAAs must be supplied by the diet to sustain

Figure 3. Metabolites under stronger stabilizing selection show stronger
evolutionary conservation across mammals. Pearson correlation coeffi-
cient is indicated on the plot. The indicated P-value is determined by ad-
justing for nonindependence between the metabolites (see Methods).
Evolutionary conservation of metabolite concentrations is estimated by a
single “metabolite conservation score” calculated from cross-species
metabolomic data in four organs: brain, heart, liver, and kidney (see
Methods). Line depicts the fitted linear regression. Colors represent two
metabolite classes, amino acids (including essential, nonessential, and oth-
er amino acids) and their derivatives (red) and acylcarnitines (blue). Error
bars represent the SE of the â (x-axis) and SD of themetabolite ranks across
the four organs.

Figure 4. The relationship between metabolite importance (measured
as total absolute causal effect size on 51 complex traits) and selection
strength for 97 metabolites with genetic instruments.
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life, NEAAs can also be synthesized by the human body. We spec-
ulate that as the availability of food sources can change rapidly, hu-
man cells have evolved a greater tolerance for fluctuations in EAA
levels compared with NEAA. This tolerance likely ensures a sus-
tained capacity for protein synthesis and proper cellular function
even with fluctuating dietary sources and, as a consequence, al-
lows more neutral changes in the levels of EAAs during evolution.
Maintaining stable NEAA levels may be important for another rea-
son, beyond their role in protein synthesis. Natural selection may
act to prevent excessive NEAA synthesis, which would be energet-
ically wasteful and divert resources fromother important metabol-
ic processes. Clearly, furtherwork is needed to decipher the cellular
mechanisms explaining the strong stabilizing selection on NEAA
levels.

In addition to NEAAs, we also detected signatures of stabiliz-
ing selection among PCs, lysoPCs, and acylcarnitines. LysoPC a
C16:1 (â =−1.37) was associated with type 2 diabetes; lysoPC a
C20:3 (â =−1.79), with blood pressure level (Ha et al. 2012;
Huang et al. 2022). PC aa C32:1 (â =−1.41) and methionine
were identified as one of the key links between homocysteine
pathway and telomere length (van der Spek et al. 2019).
Butyrylcarnitine, a short-chain acylcarnitine (C4) and the only
member of the acylcarnitine family with a stabilizing selection
strength estimate (â =−0.84), was identified as an informative
prognostic marker for neonatal hypoxic-ischemic encephalopa-
thy: a condition characterized by hypoxia triggering a complex re-
sponse that leads to energy failure, disruption of cellular
homeostasis, morphologic changes in microglial cells, and mito-
chondrial failure (López-Suárez et al. 2019). Note, however, that
as metabolite heritability increases, not only do we obtain lower
SEs (i.e., improved estimator precision) but also stabilizing selec-
tion estimates become slightly stronger (Supplemental Fig. S5).
This might mean that metabolites whose level is under stronger
constraint are less impacted by the environment and under stron-
ger genetic control.

Our analyses indicate that certain metabolites might have
been shaped by adaptive evolution in the recent evolutionary
past of humans. First, we found three metabolites (citrulline,
lysoPC a C20:4, PC ae C40:5) with nominally significant positive
â . Second, we examined whether some large-effect genetic vari-
ants may have violated the LDAKmodel assumptions to yield pos-
itive selection coefficient, but did not find any evidence for these
metabolites having particularly large-effect mQTLs. In such cases,
the variants associated with the metabolite are under positive se-
lection, potentially indicating disruptive or directional selection
on the metabolite concentration (Zeng et al. 2018). Directional se-
lectionmay simply reflect ongoing selection, whereby the popula-
tion mean has not yet reached the trait optimum. Disruptive
selection could emerge owing to underdominance (Hartl and
Clark 1989) or could be driven by the pervasive pleiotropy we ob-
serve for commonvariants (Jordan et al. 2019). The latter would re-
flect antagonistic pleiotropywhen the same allele (or two alleles in
strong linkage disequilibrium) may be beneficial for one trait but
detrimental for another. The strongest positive â was detected
for citrulline, the key intermediate of the urea cycle, involved
also in nitric oxide production (Aguayo et al. 2021). Clearly, future
studies on larger sample sizes should provide further evidence that
these metabolites are under directional/disruptive selection and
are not simply under relaxed selection.

We found a remarkable agreement between our estimates of
selection based on GWAS data and patterns of metabolite concen-
tration divergence over longer evolutionary timescales. Specifi-

cally, we found that metabolites with lower â values tend to be
more conserved in the concentrations across diverse mammalian
species. The observed association remains significant (P=0.0238)
even if we replace the genetic correlation matrix with the pheno-
typic correlation of the metabolite levels from the Ma et al.
(2015) study. This finding has at least two general implications.
First, it is broadly consistent with the neutral theory of
molecular evolution positing that most within-species polymor-
phisms and between-species divergences at the molecular level
are effectively neutral, that is, permitted rather than favored by
natural selection (Kimura 1983). Although the theorywas original-
ly proposed to explain DNA and protein sequence evolution, it
could in principle apply to complexmolecular traits as well (Zhang
2018). Second, the agreement between â and between-species
conservation score suggests that the selective constraints preserv-
ing metabolite levels are at least partly shared between human
and other mammalian species, including distantly related taxo-
nomic groups. A recent study suggests that variation in evolution-
ary conservation across metabolites can be explained by a simple
model in which natural selection preserves flux through key met-
abolic reactions while permitting the accumulation of selectively
neutral changes in enzyme activities (Liska et al. 2023). Future
works should test the extent to which this general model explains
stabilizing selection on human metabolite levels.

Last, our results have implications for the understanding of
the genetic architecture of molecular traits. Although for nonmo-
lecular traits no â parameter was observed to go below −1, we here
report somemetabolites showingmore extreme selection strength.
This threshold has a specialmeaning, because â <−1 indicates that
low-frequency markers have more per-SNP-heritability than com-
mon ones, whereas α>−1 points to an architecture in which the
average contribution of a common SNP to the trait heritability is
more than that of the rare counterparts. This implicates that as op-
posed to complex traits, for metabolites, the rare variant contribu-
tion may be far more important. Note that the â values smaller
than −1 need to be interpreted with care: Theory and forward sim-
ulations show that the αmodel is a good fit to the relationship of β2

and 2p(1− p) expected if data were generated based on the Eyre-
Walker model for a wide range of parameter values. However, as
the selection parameter, S, of the Eyre-Walker model tends to in-
finity (strongest selection), the corresponding α value approaches
−1. Therefore, â value lower than −1 cannot be produced by data
generated by the Eyre-Walker model. Hence, such observed values
mean either that the Eyre-Walkermodel is not compatiblewith the
observed data or that the simple α-model is not a good fit for too
high S values.

Our study has several methodological limitations that can in-
fluence results interpretation. Variable sample size and heritability
of the studied trait are key factors determining the power of the
study to detect the selection strength acting on a trait. Therefore,
our analyses cannot be used to establish a priority ranking but rath-
er to identify somemetabolites with significant evidence for selec-
tion. The interpretation of the α parameter requires care because
values below −1 are difficult to translate to classical evolutionary
models. More broadly, the α parameter may reflect direct selection
on the metabolite itself as well as indirect selection acting on ge-
netically correlated traits. Consequently, the observed stabilizing
selection on metabolites might represent “apparent stabilizing
selection” rather than necessarily reflecting a direct impact on
organismal fitness (McGuigan et al. 2011). Additionally, our esti-
mates for α and metabolite-to-trait causal effects assume that the
input GWAS summary statistics have been controlled for
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population stratification, assortative mating, parental/dynastic ef-
fects, etc. Furthermore, comparisons between different noisy esti-
mates (such as selection strength, evolutionary conservation
score, causal effect of metabolites on complex traits) lend them-
selves to regression dilution bias and, hence, underestimated cor-
relations and low statistical power. Finally, we used the largest
available metabolomic GWAS data set, but the results obtained
in our study require further validation using independent study
samples and different quantification methods.

Methods

Weanalyzed genome-wide summary statistics for 135metabolites,
including amino acids, biogenic amines, acylcarnitines, lysoPCs,
PCs, sphingomyelins, and hexoses, made available recently from
a large (up to 86,507 individuals) genome-wide meta-analysis
study (Lotta et al. 2021).

Stabilizing selection

Weused the SumHer approach implemented in the LDAK software
(Zhang et al. 2021), having compared the performance of different
heritabilitymodels to identify the optimal version for assessing the
selection strength. The tested models were based on the LDAK
model in which the expected per-SNP-heritability of a SNP de-
pends on both the LD and MAF:

E[b2j | fj, vj] = h2

M
vj[2 fj(1− fj)]

a,

where b2j is the multivariable squared effect size of SNP j, fj is the
observedMAF, h2 is the trait heritability,M is the number of causal
markers, and ωj represents the SNP weights, which are inversely
proportional to the LD score (computed based on the local LD
structure). Note that bjs are the theoretical multivariable SNP ef-
fects that are the starting point of the model. Through mathemat-
ical derivations (similar to those in the LD-score regression) the
marginal GWAS effect sizes can be expressed (including the LD
score as a multiplier owing to LD dilution). Parameter α represents
the strength of stabilizing selection. This parameter is estimated
from the data via profile likelihood maximization. In brief, we
fixed the selection strength parameter (α) andmaximized the like-
lihood function for h2. This procedurewas repeated for 31 values of
α, ranging from −1 to 0.5 with a step size of 0.05. Finally, we plot-
ted the maximum likelihood values against the value of α and fit-
ted a quadratic polynomial to these points. Once the estimates for
the coefficients of the polynomial were established, themaximum
and the negativeHessian (of its second derivativewith respect to α)
were computed, yielding the maximum likelihood estimator for α
and its variance. For some traits, we observed that the optimal α
values fall outside of the [−1, 0.5] range, and in such situations,
we extended the range to either [−2.0, 1.0] or [−1.0, 4.0] as
necessary.

We adjusted this procedure to use more complex, stratified
heritability estimation with 65 genomic annotations (resulting
in stratum-specific heritability estimates). This BLD-LDAK+Alpha
model extends the LDAK+Alpha model by adding 65 annotations
provided by Hujoel et al. (2019).We tried simplermodels (without
annotation, or equal weights [ωj=1]) and compared the perfor-
mance of these models using the summary statistics data for 59
well-studied complex traits (including height, BMI, SBP, etc.)
from the UK Biobank (N=361,194). The estimates for α from the
BLD-LDAK+Alpha model came closest to the ones reported in pre-
vious studies (Zeng et al. 2018; Speed et al. 2020); therefore, this
latter model was applied to investigate the selection signatures

for 135 metabolites (with the sample size varying between 9363
and 86,507) (Lotta et al. 2021).

MR analysis

We applied an inverse-variance-weighted MR approach (Burgess
et al. 2013) to explore the causal relationship between metabolites
and 51 complex traits with clinical relevance (Supplemental Table
S2), including lipids and adiposity, cardio, metabolic, and cogni-
tive traits, using genetic variants associated with the metabolites
as instrumental variables. Themagnitude of the obtained causal ef-
fects was contrasted to the selection strength estimates for the
studied metabolites to test whether stabilizing selection is acting
stronger on metabolites with more important effects on clinically
relevant phenotypes.

Estimated evolutionary conservation scores of metabolites

in mammals

To assess the evolutionary conservation of metabolite levels in
mammals, we used a previous cross-species metabolomic study
that quantified the relative concentrations of more than 250
metabolites in four organs (brain, heart, kidney, and liver) of 26
mammalian species (Ma et al. 2015). To calculate metabolite con-
servation scores (i.e., the extent to which the concentration of any
given metabolite is permitted to change over the course of evolu-
tion), we fit a Brownian motion model of trait evolution on each
metabolite in each organ across the phylogeny of 26 species. We
defined the conservation score of each metabolite as the inverse
of the rate of concentration change thatwas inferred from the phy-
logeny. To get a unified conservation score for each metabolite
across the four organs, we first imputed all missing values (i.e., me-
tabolites that were not measured in all four organs) by calculating
the median conservation score of the given metabolite across the
measured organs. Then, we calculated the ranks ofmetabolite con-
servation scores across themetabolome in each organ and used the
median rank value across the four organs as an aggregate measure
of metabolite conservation. Only metabolites measured in more
than one organ were included in this analysis, providing us with
aggregate conservation scores for a total of 249 metabolites, out
of which 46 were among the 97 metabolites for which selection
strength could be estimated.

Correlations between metabolites

In all our analyses, we accounted for the pairwise correlations be-
tween the level of these metabolites in the human population.
We chose to use genetic correlations over phenotypic correlations
for two reasons. First, estimating stabilizing selection strength
based on human GWAS data is solely based on the genetic part
of each metabolite. Two metabolites with the exact same genetic
basis but with different environmental components would have
identical stabilizing selection estimates according to the applied
genetic approach (even if the true selection parameters might be
different). The same holds for the MR analyses: MR estimates are
purely based on the genetic components of the exposure and the
outcome; hence, they do not change if we modify the exposure
with a nongenetic factor. Second, phenotypic correlations are
available only for a fraction (up to 46 out of 97) of themetabolites,
whichwouldmassively reduce our power. Therefore,we computed
pairwise genetic covariances between every pair of these 97metab-
olites using cross-trait LD-score regression (Bulik-Sullivan et al.
2015). This software also returns the corresponding estimator var-
iances. First, off-diagonal elements of this correlation matrix that
were not even nominally significantly different from zero (P>
0.05) were set to zero. Next, because of estimation errors, this
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matrix is not positively semidefinite; hence, we applied weighted
“bending,” a technique tomakeminor adjustments (average abso-
lute change in the covariance values being 0.007) to the covariance
matrix to achieve this property (Jorjani et al. 2003). The bending
weights were set to be inversely proportional to the variances of
the covariance estimates. The bent covariance matrix was then
transformed to a correlation matrix.

Association tests allowing for the correlation between metabolites

To compute the linear association between certain quantities
(cross-species vs. human selection or human selection vs. causal ef-
fects) while accounting for this cross-metabolite correlation (Σ), we
used random effect linear regression applied to the scaled
(zeromean and unit variance) quantities: selection α, conservation
scores, MR causal effect estimates. The model y � r · x+ e with
e � N(0, s2 · S) was used to estimate r. Although the
r̂ = (y′ · x)/(x′ · x) estimator remains unbiased, its variance changes

to Var(r̂) = s2 · x
′ · S · x
(x′ · x)2 . This is a muchmore robust solution than

the likelihood maximization owing to numerical instability
caused by several very small eigenvalues of the Σ matrix.

Detecting heterogeneity between selection strength estimates

across eight metabolite classes

To quantify heterogeneity, we started off with the distribution of
the estimated selection strength values

â � N(0, V)

with V := SE(â) · S · SE(â). Let âi denote the mean selection value
inmetabolite class i = 1…K and �a represent the overall mean across

all classes. If we define v(i)j = 1
ni

when metabolite j is in class i

and zero otherwise with ni as the number of metabolites in class
i, we then have âi = v(i)

′ · â. The joint distribution of class-specific
means is

â1

..

.

âK

⎛

⎜

⎝

⎞

⎟

⎠ � N(�a, W),

where

Wi,j := v(i)
′ ·V · v( j).

Therefore, we define our modified Cochran’s heterogeneity Q-sta-
tistic as

Q :=
â1 − �a

..

.

âK − �a

⎛

⎜

⎝

⎞

⎟

⎠

′

·W ·
â1 − �a

..

.

âK − �a

⎛

⎜

⎝

⎞

⎟

⎠ � x2K−1.

Similarly, to detect significant differences betweenmean selection
value of a class against all other metabolites, we can use the same
trick by defining wi

j = 1/ni when metabolite j is in class i and

wi
j = −1/n−i, where n−i is the number of metabolites not in class

i. This way under the null,

t := wi ′ · â � N(0, wi ′ ·V · wi),

which allows us to assign a P-value to the test of themean selection
in class i being the same as outside class i.
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