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Abstract: Treatment efficacy for age-related macular degeneration relies on early diagnosis
and precise determination of the disease stage. This involves analyzing biomarkers in
retinal images, which can be challenging when handling a large flow of patients and
can compromise the quality of healthcare services. Clinical decision support systems
offer a solution to this issue by employing intelligent algorithms to recognize biomarkers
and specify the age-related macular degeneration stage through the analysis of retinal
images. However, different stages of age-related macular degeneration may exhibit similar
biomarkers, complicating the application of intelligent algorithms. This article presents a
hybrid and hierarchical classification method for solving these problems. By leveraging the
hybrid structure of the classifier, we can effectively manage issues commonly encountered
with medical datasets, such as class imbalance and strong correlations between variables.
The modifications to the intelligent algorithm proposed in this work for staging age-related
macular degeneration resulted in an increase in average accuracy, sensitivity, and specificity
of 20% compared to initial values. The Cohen’s Kappa coefficient, used for consistency
estimation between the regression model and expert assessments of the intermediate class
severity, was 0.708, indicating a high level of agreement.

Keywords: age-related macular degeneration; optical coherence tomography; staging;
computer vision; deep learning; hierarchical classification; semi-supervised learning

1. Introduction
Age-related macular degeneration (AMD) is a socially significant disease associated

with the risk of central vision loss. According to 2020 data, the prevalence of AMD
worldwide is about 200 million cases [1]. It is important to note that AMD is a chronic
disease that tends to progress gradually [2,3]. Timely detection and treatment of AMD
can help slow its progression and improve patients’ quality of life [4,5]. Monitoring the
development of AMD is essential for addressing this issue [6].

AMD has three stages: early, intermediate, and late [7], each with distinct clinical
presentations and biomarkers. The early stage is identified by druses up to 125 µm in size
and is often asymptomatic, making it challenging to diagnose [8]. Signs of the intermediate
stage include druses with a diameter of more than 125 µm, drusenoid detachment of the
pigment epithelium, and atrophy of the pigment epithelium outside the center. Complaints
may also be absent at this stage [9]. The late stage is marked by deterioration of central
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vision, visual distortions, and changes in color perception. At this stage, geographic atrophy
(GA) or macular neovascularization (MNV) may develop [10–12]. GA is the outcome of the
early stage of AMD. MNV, if untreated, can lead to subretinal fibrosis (SF) [12,13].

The tactics of managing patients with different stages of AMD differ significantly [14].
There is no specific treatment for the early stage of AMD; preventive measures are used
to eliminate risk factors for the development and progression of AMD [15,16]. Currently,
drugs are being introduced to treat GA, but this therapy has yet to see widespread use [17].
In turn, treatment of the late form utilizes intravitreal injections to inhibit the vascular
endothelial growth factor (anti-VEGF). These injections are widely utilized and have proven
their effectiveness.

It is crucial to identify an intermediate stage that separates the early and late stages
to make timely adjustments to patients’ diagnostic and treatment plans. This can help
reduce or neutralize the negative factors in the development of the disease [18,19]. A key
aspect of analyzing the progression of AMD is tracking the moment when intravitreal
injections of anti-VEGF drugs are needed to help slow down the progression of the late
form of AMD [20].

However, distinguishing the intermediate stage of AMD from the early and late stages
(geographic atrophy and macular neovascularization) can be difficult due to the similarity
of biomarkers. The diagnostician needs to invest extra time and effort in visually identifying
each biomarker and measuring its dimension, before comparing it with the evaluation scale.
A large flow of patients can reduce efficiency due to human factors [21,22].

The most informative and standard diagnostic method for AMD is optical coherence
tomography [23]. Currently, computer vision (CV) and machine learning (ML) methods are
widely used to automate optical coherence tomography (OCT) visual analysis [24]. Many
studies use ML to identify the intermediate stage [25]. In this case, two main approaches to
the implementation of staging algorithms can be distinguished:

1. Direct classification of stages without identifying disease biomarkers [26–29].
2. Classification of AMD biomarkers identified in a retinal image using an additional

CV algorithm. The biomarker extraction algorithm can be implemented using retinal
segmentation based on unsupervised learning [30–32] or using supervised learning
algorithms by comparing medical images and a segmented set [33–35].

Biomarker-based AMD classification offers several advantages. It provides a better
understanding of the algorithm and expands its scope of application. Biomarker segmenta-
tion can also be used separately in the image classification pipeline to extract the position
and shape of detected biomarkers. This information can be valuable for a quantitative and
statistical analysis of pathologies [36,37].

However, obtaining a labeled dataset can be a complex task requiring significant time
investment for high-quality labeling [38]. Open-labeled datasets are only sometimes suit-
able for training ML models since the available OCT image datasets may not correspond to
the imaging specifics of different tomographs [39,40]. Unsupervised learning segmentation
methods also require expert participation to verify the results, which can be difficult [41].

In cases where obtaining a labeled dataset for segmentation is difficult or economically
unfeasible, biomarker-based classification can be achieved by directly applying classifiers
to images using additional predictor analysis algorithms. This approach does not involve
identifying biomarker boundaries to assess their progression, but instead focuses the
diagnostician’s attention on the presence of a group of biomarkers. It allows the expert to
concentrate on specific areas of the image to confirm or refute the hypotheses proposed
by the algorithm. This approach aligns with the concept of decision support systems. An
algorithm error is less likely to result in an incorrect decision by an expert than the allocation
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of pathology segments, which can confuse an expert and complicate the determination of
the actual boundaries of pathologies [42,43].

Addressing several associated challenges is essential to creating clinical decision sup-
port systems (CDSSs) for adjusting the treatment approach for retinal diseases using the
AMD stage classifier. Identifying the intermediate stage of AMD is particularly challenging
because the OCT images at this stage can resemble those from both the early and late
stages of AMD. One effective approach to tackling this issue is to utilize the relationship
between the identified classes of disease stages when implementing a hybrid classifica-
tion [44]. Hybrid classification involves combining multiple ML models or methods to
improve classification efficiency. This approach takes advantage of different algorithms to
address specific shortcomings or limitations that one model may have [45]. Hierarchical
classification can help address issues like class imbalance and overfitting when analyz-
ing the structure of medical data. This method organizes the class space as a hierarchy,
often represented as a tree or a directed acyclic graph [46]. Once the hierarchical tree is
constructed, the ML model’s work can be divided into tasks for each tree branch. This
approach allows for breaking down a complex problem into more manageable subtasks.

Thus, ref. [47] demonstrated that organizing classes into a hierarchy can significantly
enhance the scalability of the classification process. This breakthrough paves the way
for decision-making at different levels and simplifies the complexity of distinguishing
many classes simultaneously. Moreover, ref. [48] showed that hybrid and hierarchical
classification can effectively organize the feature space, mainly when dealing with many
classes. In addition, the authors of [49] demonstrated that hierarchical classification allows
for identifying complex relationships between classes, which are often present, including
in biological data. This leads to more meaningful and accurate classification results. The
results of the studies show promise in addressing the various challenges that arise dur-
ing the development process due to the unique nature of medical datasets and clinical
decision support systems. This work aims to develop an OCT-based AMD classification
algorithm, which will become part of the CDSS, monitor changes in AMD, and adjust
patient management plans accordingly.

The main focus of the work was on the intermediate stage of AMD and the ability to
assess its progression compared to the early and late stages of the disease. Implementing
such algorithms involves preprocessing images and organizing data for training and
testing a machine learning model [50]. However, data collection in clinical practice presents
several challenges. These include visual similarities and overlaps among visual predictors
in medical images [51] and the uneven frequency of disease stage detection in patients.
These factors contribute to class imbalances in the generated dataset [52]. Such issues
can significantly increase the resources and time required to develop computer vision
applications for medical diagnostics.

Within the framework of this article, a solution was proposed that aims to overcome
the difficulties associated with the differentiation between the stages of the disease for the
CV model, as well as the imbalance of classes. At the same time, a significant increase in
labor and time resources is not required when developing an algorithm for disease staging.
The results of the effectiveness of the proposed solution were demonstrated by working
with a set of OCT data obtained during clinical practice in an ophthalmological clinic.

The main issues are the need for a labeled OCT dataset and the need to address
the class imbalance problem when identifying GA and SF. Additionally, an algorithm
for detecting the intermediate stage without biomarker analysis is necessary, considering
the high correlation of visual features in medical images of the intermediate, early, and
late stages.
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The steps outlined in this paper for addressing the specific problem of AMD staging
can be generalized into a method for developing a hybrid classifier. This approach min-
imizes the time diagnosticians spend during its creation, as it eliminates the need for a
detailed markup of OCT data and the long-term accumulation of a sufficient number of
examples for less common stages of AMD.

The paper is organized as follows. Section 2 provides information about the OCT
dataset collected during clinical practice and outlines the development of the classifier’s
basic structure. It also presents the results of the initial training and testing for AMD staging,
enabling the identification of key challenges encountered in training the machine learning
model due to the dataset’s characteristics. Additionally, the chapter analyzes the identified
shortcomings in determining disease stages and proposes a new structure incorporating
hybrid and hierarchical classification elements to address these issues. Section 3 details the
results of training the new classifier structure at all stages. It showcases the improvements
achieved by integrating hierarchical classification and regression elements into the original
classifier’s design. Furthermore, the chapter discusses how these modifications enhanced
the efficiency of AMD staging, confirming the resolution of the shortcomings highlighted
in the second chapter. Section 4 discusses the proposed methods and challenges integrating
them into clinical practice, while Section 5 provides the conclusions.

2. Development of the Algorithm
This study created an approach to diagnose different stages of AMD by analyzing

macular images. It identified four main stages: no disease, early, intermediate, and late.
Additionally, two late-stage development scenarios were identified: GA and SF. A series
of OCT images was then generated and pre-processed. A basic classifier model was then
trained and tested on these images to identify various challenges that affect the accurate
classification of AMD stages and development options.

2.1. Dataset Structure

To develop the algorithm, we utilized a diverse set of 1928 OCT images of the macular
region of patients with AMD. These images covered a wide range of AMD stages and
were obtained using OCT on the Avanti XR (Optovue; Fremont, CA, USA) and REVO NX
(Optopol; Zawiercie, Poland) devices at the Optimed Laser Vision Restoration Center in Ufa,
Russia. Optical coherence tomography imaging of the macular region was performed in all
patients using the Radial line mode. The study included OCT images from patients without
concomitant pathology of the macular region and with sufficient optical transparency. The
analysis was conducted with optimal signal strength and without any artifacts.

The original image files obtained from the Avanti X-ray tomograph were screenshots
of the main screen of the Optovue application, displaying an OCT B-scan out of fifteen
included in Radial Liens, saved in JPEG format. The diagnosticians selected the visualized B-
scan measuring 958 by 404 pixels by the criterion of the greatest severity of the characteristic
visual signs defining the stage of AMD by their expert experience. Similarly, the REVO
NX tomograph produced B-scans of OCT measuring 860 by 580 pixels in JPEG format.
The diagnosticians also selected these images based on the presence of radiation lesions,
following the same process used for the Avanti X-ray tomograph.

The list of classes under consideration included the following cases with the corre-
sponding code designations:

1. No disease (N) (23%);
2. Early AMD (S) (18%);
3. Intermediate stage (P) (18%);
4. Late AMD:
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• Geographic atrophy (SI) (5%);
• Macular neovascularization (V) (26%) and subretinal fibrosis (VI) (10%).

The OCT dataset was divided into three sections: training, validation, and testing,
with a distribution of 80%, 10%, and 10%, respectively. We ensured that the validation and
testing samples also included examples from all categories considered, with a minimum of
30 examples for each category. The class imbalance caused by the unequal sizes of the SI
and VI classes in direct classification required additional solutions, as outlined below.

To enhance the accuracy of our proposed classification model for Class P, we imple-
mented a new process for analyzing input OCT images. These images can be categorized
as Class P, and the nearest classes, S and V. This analysis aims to evaluate how closely the
OCT image, initially classified as Class P, relates to Classes S or V.

To obtain training data consisting of examples of images belonging to Class P, with
varying degrees of proximity to Classes S and V, we conducted additional labeling of
images provided by diagnosticians. However, this labeling was not performed for the
entire class of P; instead, we focused on a carefully selected group of examples that most
effectively represent the proximity of P to stages S and V. This approach was implemented to
analyze the minimal amount of time clinicians spend in the design stage of the classification
model. One of the key objectives of our approach is to optimize the development process
of ML-based medical applications by reducing the involvement of medical personnel.

We also decided to enhance the algorithm by enabling it to identify the progression
of stage P based on its proximity to stages S and V. By labeling only a portion of the class,
users can utilize their expert judgment to personalize the analysis of the intermediate class,
reducing potential disagreements among experts. To determine the minimum threshold
for the number of examples of class P, we considered several options for the proportion of
labeled and unlabeled data: 1/6, 1/4, and 1/3. In the section on algorithm implementation,
the choice of the minimum proportion of labeled data was analyzed in terms of its accuracy
in identifying the progression of intermediate-class AMD on test samples.

The analysis of OCT B-scans obtained from two different tomographs revealed signifi-
cant differences in the images. These differences were evident in size, brightness histograms,
and the positioning of retinal layers within the B-scans. To streamline the process of identi-
fying key predictors for the stages of AMD while filtering out irrelevant data, the following
stages of image preprocessing were implemented:

• Normalizing pixel brightness levels to remove any color distortions;
• Generating new image samples by randomly flipping them horizontally, ensuring that

all possible C-scan image positions were accounted for;
• Standardizing and reducing image size to ensure uniformity in visualizing images

obtained from various tomographs, considering the retina’s distinct horizontal orienta-
tion. The optimal image size for input data into the developed hybrid neural network
was determined iteratively during the first stage of encoder training, as detailed in
Section 2.2. Throughout this process, the width of the images was systematically
reduced from 600 pixels to 404 pixels, considering the most diminutive dimensions of
each image variant and the aspect ratio for the REVO NX. Ultimately, an image size of
64 by 128 pixels was selected, demonstrating the best accuracy for the trained model
with minimal signs of low generalization ability. This was assessed by measuring
deviations in the learning error graph for training and validation samples.

2.2. Developing a Classifier Structure and Identifying the Problem of Direct Classification of
Medical Data

The modern approach to image analysis relies on processing images at the level of
individual pixels. To analyze an image, the brightness of each pixel is determined, as
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well as its location in the entire image and other clusters of pixels [53]. These features,
obtained through analysis, form a vector representation of the image in a feature space.
The more distinct the vectors representing one class are from those of others, the greater
the classification effectiveness will be [54].

Convolutional neural networks (CNNs) are effective for extracting features from
images. These networks can separate image vectors in feature space when there are
enough representative examples for each class in classification problems [55,56]. However,
additional steps are required when the number of images is limited or there is a class
imbalance to ensure the stability of deep computer vision algorithms [57,58]. To address
these challenges, we selected a base classification model and then modernized it step by
step, evaluating the effectiveness of each change.

We selected a four-layer CNN-based encoder model as our classifier structure to im-
plement the direct classification of AMD stages. This model has demonstrated effectiveness
in tackling classification problems in computer vision, mainly when dealing with a limited
number of classes [59]. We conducted an ablative analysis to evaluate whether the numbers
of layers and parameters were sufficient to address the problem. The results of this analysis
enabled us to draw the following conclusions:

1. When layer 4 was removed from the model, the precision for class N increased by
25%, while the average precision for the other classes remained unchanged.

2. When layers 3 and 4 were removed, the average precision level dropped below 0.5 for
all classes except for class N, which maintained an average precision level of 0.65.

3. When layers 2, 3, and 4 were removed, the average precision level for all classes
dropped below 0.25.

4. Incorporating a fifth layer into the encoder structure led to a slight improvement in
the accuracy of classifying class N. In contrast, the accuracy for the remaining classes
either remained at the same level as the model with four layers or decreased. This
decline is attributed to model retraining, as indicated by the divergence in the error
rates between the training and validation samples throughout the training process.

Consequently, we decided to concentrate on the encoder’s architecture, which consists
of four layers. The results of testing this basic model are presented below in Table 1.

Table 1. Performance indicators of the primary encoder model with confidence interval.

Metrics N P S SI V VI

Precision 0.9725
(0.96, 0.98)

0.5741
(0.54, 0.6)

0.618
(0.58, 0.64)

0.4565
(0.42, 0.48)

0.5606
(0.52, 0.59)

0.7358
(0.7, 0.76)

Sensitivity 0.6698
(0.64, 0.69)

0.6526
(0.62, 0.68)

0.6471
(0.61, 0.67)

0.6774
(0.64, 0.7)

0.6379
(0.61, 0.66)

0.65
(0.62, 0.67)

Specificity 0.9939
(0.98, 0.99)

0.8647
(0.84, 0.88)

0.9029
(0.88, 0.92)

0.9381
(0.92, 0.95)

0.9231
(0.90, 0.93)

0.9627
(0.95, 0.97)

F1-score 0.7933
(0.76, 0.81)

0.6108
(0.58, 0.64)

0.6322
(0.6, 0.66)

0.5455
(0.51, 0.57)

0.5968,
(0.56, 0.62)

0.6903
(0.66, 0.72)

To ensure consistent training conditions for all ML models throughout the study, the
following training parameters were established:

• Number of model training epochs: 80 (the average time spent on training models was
25 min);

• Optimizer: Adam algorithm;
• Error function: cross entropy.
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During the first training stage, as described in Section 2.2, we conducted an iterative
process to determine the optimal hyperparameter values to maximize the encoder’s accu-
racy. After fixing these values for the primary encoder model, they were applied to train
subsequent model versions. The specific hyperparameter values are detailed below:

1. The Adam optimizer has a learning rate of 3 × 104.
2. The size of the latent space in the encoder was 512.
3. The batch size was 128.

The technical specifications of the apparatus employed for training the models were
as follows:

• Processor: AMD (Santa Clara, CA, USA) Ryzen 5700C;

- Cores/Threads: 8 cores/16 threads;
- Clock Speed: 3.8–4.6 GHz;
- Cache: 4 MB L2, 16 MB L3;

• System Memory: 32 GB DDR4 (2 × 16 GB modules).

We trained and tested the primary encoder model using the transformed dataset to
classify six classes, which include the main stages and two late-stage scenarios. To assess
the performance of our classifiers, we utilized the following set of metrics:

• Precision measures the proportion of correct positive predictions among all positive
predictions made by the model, including false positives. High precision indicates a
significant probability that the answer is correct in the case of positive predictions for
a given class [60];

• Sensitivity is the ratio of correctly identified positive cases to the total number of
positive cases, including false negative cases. A high sensitivity value indicates that
the model is more efficient at correctly identifying positive cases [60];

• Specificity measures the ratio of correctly identified negative cases to the total number
of negative cases. A high specificity indicates that the model accurately identifies
negative cases [60];

• F1-Score is the harmonic mean of precision and recall. It measures the model’s overall
performance, considering both false positives and false negatives, especially when
dealing with class imbalance [60].

Figure 1 and Table 1, with confidence intervals for a 95% confidence level, present the
encoder testing results in an error matrix.

The analysis of the confusion matrix and evaluation metrics for the binary classifier
indicated that the model’s performance was suboptimal. This was primarily due to its
difficulty distinguishing the intermediate state and the imbalance between the SI and VI
categories, which exhibit similar characteristics to AMD’s early and advanced stages. The
model demonstrated a conservative approach characterized by high precision but low
recall. This indicated that while it was unlikely to make errors in classifying categories N
and VI, there was a significant chance of missing many actual instances of these categories.
In clinical practice, misclassifications between the absence of disease (N), early-stage AMD
(S), and intermediate-stage AMD (P) could result in a risk of overlooking the onset of AMD.
This situation may require adjustments in patient management strategies. Additionally,
misclassifying geographic atrophy cases as earlier stages, with eight cases incorrectly
categorized as stage S, could delay essential interventions.

To improve the efficiency of CNN, the parameters of convolutional layers and their
impact on classification accuracy were studied. Since biomarkers in different stages of AMD
vary in size, the impact of convolution kernel size was investigated in terms of accuracy
in separating S and V classes. A neural network with convolutional and fully connected
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layers was used for the study. The results, showing the relationship between the model’s
sensitivity (true positive rate, TPR) and convolution kernel size, are presented in Figure 2
after cross-validation. The data indicate that the sensitivity of CNNs with an average kernel
size increased by at least 8% compared to the previously used 5 × 5 kernel size.

Figure 1. Error matrix of the primary encoder model.

Figure 2. Sensitivity of the model for classes S and V when using different sizes of convolution kernels.

The results of the cross-validation process showed a connection between the levels
of biomarkers linked to different stages of AMD and the model’s sensitivity when using
different convolution parameters. These findings were used to create a framework that
simultaneously processes information through multiple convolution layers, each with its
unique convolution kernels.

We explored how the encoder’s performance varies when employing parallel convolu-
tion layers at each stage. The results of this study are presented in a confusion matrix, as
shown in Figure 3 and summarized in Table 2.

We used statistical significance tests and effect size calculations to compare the perfor-
mance of two models: a primary encoder and an encoder with parallel convolutional layers.
To evaluate the effectiveness of parallel convolutional layers, we employed a nonparametric
McNemar test to compare the two models on the same dataset [61]. We used a Cohen effect
size measure, h, to estimate the extent of changes in the models’ results for each class [62].
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The results of the statistical significance tests, including the effect size, are presented in
Table 3.

Figure 3. Encoder error matrix with the inclusion of parallel convolutional layers in the architecture.

Table 2. Performance indicators of the primary encoder model with the inclusion of parallel convolu-
tional layers in the architecture with confidence interval.

Metrics N P S SI V VI

Precision 0.974
(0.96, 0.98)

0.6915
(0.66, 0.72)

0.6465
(0.61, 0.67)

0.5349
(0.51, 0.56)

0.6406
(0.61, 0.67)

0.6897
(0.66, 0.71)

Sensitivity 0.7075
(0.67, 0.73)

0.6842
(0.65, 0.71)

0.7529
(0.72, 0.78)

0.7419
(0.71, 0.76)

0.7069
(0.67, 0.73)

0.6667
(0.63, 0.69)

Specificity 0.9939
(0.98, 1.0)

0.9147
(0.89, 0.93)

0.900
(0.88, 0.91)

0.9505
(0.93, 0.96)

0.939
(0.92, 0.95)

0.952
(0.93, 0.96)

F1-score 0.8197
(0.79, 0.84)

0.6878
(0.65, 0.71)

0.6957
(0.66, 0.72)

0.6216
(0.59, 0.65)

0.6721
(0.64, 0.7)

0.678
(0.64, 0.72)

Table 3. Statistical significance tests comparing the primary encoder and a primary encoder model,
with the inclusion of parallel convolutional layers in the architecture.

Test N P S SI V VI

McNemar’s test
(p-value)

0.3184
(0.573)

4.9130
(0.027)

0.2785
(0.598)

2.0313
(0.154)

2.4309
(0.119)

0.6163
(0.432)

Cohen’s h 0.087 0.237 0.064 0.156 0.170 0.091

The analysis of the test results from the statistical evaluation of the two models shows that
integrating parallel convolutional layers into the encoder structure resulted in a statistically
significant improvement for class P. This is supported by the findings of the McNemar test
(p < 0.05) and an average Cohen coefficient of h = 0.237. However, further modifications to the
classifier were necessary to ensure a consistent improvement in model performance for the
other classes. These adjustments also aimed to address the issue of significant class imbalance
and improve the accuracy of class P differentiation from classes S and V.
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Analyzing the data presented in Figure 3, we can conclude that the complexity of
the trained model in separating classes S and SI requires additional measures to eliminate
this disadvantage. The error matrix indicators indicate that class SI, from the point of view
of the trained model, is closer to class S than to classes V and VI, which would be more
logical from a clinical standpoint. Furthermore, the error matrix indicates that the model
struggles to distinguish between classes V and VI, highlighting the need for a solution.
An error analysis of the current version of the encoder model prompted us to take the
following steps:

1. We applied a hierarchical classification approach, in which we identified the base
classes of the senior hierarchy, and then defined the classes subordinate to them.

2. We consciously changed the clinical hierarchy of AMD stages given in Section 2.1,
adapting it to solve the problems of class overlap for the trained encoder model.

In clinical practice, the development of a model to recognize essential hierarchies or
create a global classifier should focus on four main categories: absence of disease, early
stage of AMD, intermediate stage, and late stage of AMD. However, an analysis of results
from different encoder versions has shown difficulty distinguishing between the GA stage
(SI class) and the early stage of AMD (S class). This challenge is mainly due to the presence
of overlapping features in OCT images, a phenomenon that has also been noted in other
studies [63]. A similar issue arises when differentiating between the SF stage (VI class) and
the late stage of AMD (V class) because of overlapping specific features, which have also
been reported in other research [64].

Due to the overlap between classes S and SI and V and VI, we adjusted the hierarchical
structure to simplify the classification task for the trained model. In the new hierarchical
structure, the initial stage of AMD, referred to as class S, has been replaced with class
S’, which now encompasses both S and SI. Similarly, the later stage of AMD is classified
as V’, which includes only V and VI. To ensure users receive accurate information about
the stages of AMD according to true classification, a deterministic set of rules has been
developed that transforms AMD output data.

The allocation of a new base class, S’, which includes the SI class and has a lower
tendency to overlap with the P class, can help the model better distinguish the class within
the whole of S’. Incorporating regression models into the structure of the hybrid classifier
will further enhance this distinction. In cases where the definitions of the class between P
and S are unclear, the regression models will still provide valuable insights.

In order to carry out a hierarchical classification in accordance with the above prin-
ciples, we divided the difficult task of classifying six non-equilibrium classes into more
manageable subtasks. As a result, the following components of the developed hierarchical
classifier were identified:

1. Global classifier for the classification of primary classes of AMD stages: N, P, S’ and V’;
2. Binary classifiers working within the S’ and V’ classes to separate S and SI and V and

VI, respectively;
3. Regression model for estimating the degree of proximity of class P to classes S and V.

It is important to note that the image features extracted by the global model using
different convolutional layers can act as input to binary classifiers. This significantly reduces
the computational complexity required for high accuracy, sensitivity, and specificity. This is
achieved by passing information directly from the global model to these classifiers from
intermediate layers. This approach was also utilized to create input data for the regression
algorithm, which determines the degree of development of stage P.

Thus, a hybrid classifier integrates several models, including a global classifier, two bi-
nary classifiers for processing S’ and V’ subclasses, and a regressor for processing the
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intermediate stage P. The general scheme of its structure is shown in Appendix A.1. Com-
mon information data were allocated for the S’ subclass and the regression of class P,
effectively identifying small and large predictors. Only large predictors were allocated for
the V’ subclass, which proved to be the most effective approach.

The hybrid classifier’s training process involved several stages. First, only the global
classifier was trained. Then, the binary classifiers and the regressor were trained, and the
global classifier processed the input data. To train the global classifier, classes S’ and V’
included examples from both their samples and from classes SI and VI, respectively. At the
next stage, the binary classifiers S’ and V’ separated the classes S and SI, as well as V and VI.

The algorithm for determining the severity of intermediate AMD included a regressor
operating in tandem with the Label Propagation (LPA) algorithm [65]. The training was
conducted in three iterations using three different versions of the labeled dataset (1/6, 1/4,
and 1/3). Accuracy was evaluated using a predetermined test dataset, which accounted for
10% of the total labeled data volume.

Thus, a method was developed to create a hybrid classifier to address the issues
related to the flat classification of AMD stages, particularly in situations involving class
imbalance and the presence of overlapping visual predictors for different classes, such as
those observed in classes P and S. For example, the results obtained from the four-layer
encoder we used in flat classification were unsatisfactory. The flowchart depicting the
developed method is shown in Figure 4, where the main steps of the process are presented
in plain text. At the same time, specific examples related to our classification of AMD stages
are highlighted in italics.

Figure 4. A flowchart illustrating a method for creating a hybrid classifier to address flat classifica-
tion problems.
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3. Results
The hybrid classifier’s initial stage of training involved training the global classifier

using four selected base classes: N, P, S’, and V’. The results from testing the global classifier
are presented in the error matrix displayed in the accompanying Figure 5 and Table 4.

Figure 5. Error matrix of the global classifier.

Table 4. Performance indicators of the global classifier with confidence intervals.

Metrics N P S’ V’

Precision 0.9182 0.7961 0.8350 0.9244
(0.901, 0.935) (0.771, 0.821) (0.812, 0.858) (0.908, 0.941)

Sensitivity 0.9528 0.8632 0.7414 0.9322
(0.940, 0.966) (0.842, 0.884) (0.714, 0.769) (0.917, 0.948)

Specificity 0.9726 0.9382 0.9467 0.9716
(0.962, 0.983) (0.923, 0.953) (0.933, 0.961) (0.961, 0.982)

F1-score 0.9352 0.8283 0.7854 0.9283
(0.920, 0.9531) (0.805, 0.8541) (0.761, 0.818) (0.912, 0.944)

Testing of the global classifier revealed a significant reduction in class imbalance. It
increased accuracy in P stage detection, suggesting that integrating the global classifier and
regressor responses further improves the P detection process.

The values of the regressor were divided into three regions:

• P-free region (0–0.3);
• Region of initial P progression (0.3–0.67);
• Region of late P progression (0.67–1).

If the regressor’s response falls outside the first interval and the global classifier
indicates that the class S’ closest to P is the correct one, then the final response is determined
to be P.

In the next stage of developing a hybrid classifier, we trained binary classifiers to
separated the classes S and SI, as well as V and VI. The results of testing these classifiers
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are illustrated as error matrices in Figures 6 and 7, and their performance indicators are
provided in Table 5.

Figure 6. Error matrices for binary classifier S and SI.

Figure 7. Error matrices for binary classifier V and VI.

The obtained data indicate that binary classifiers are effectively separate classes, S and
SI and V and VI, as the metrics show consistently high values, even for adjacent classes.

The regressor was trained using a partially labeled dataset, with 80% of the data used
for training. The dataset included three states: 0—no P, 0.5—the initial stage of P, and 1—the
extreme P stage. The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
were used as metrics to evaluate the regression model. MAE calculates the average error
in a set of forecasts and is less affected by outliers. On the other hand, RMSE calculates
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the square root of the average of the squared differences between the predicted and actual
values. It is more sensitive to large deviations in the predicted value, allowing it to clearly
emphasize significant discrepancies between the predicted and actual values [66].

Table 5. Performance indicators of the joint work of the global classifier and binary classifiers.

Metrics S SI V VI

Precision 0.9882
(0.98, 0.99)

0.9677
(0.95, 0.97)

0.9492
(0.93, 0.96)

0.9661
(0.95, 0.97)

Sensitivity 0.9871
(0.97, 0.99)

0.9423
(0.92, 0.96)

0.9655
(0.95, 0.97)

0.95
(0.93, 0.96)

Specificity 0.9531
(0.94, 0.96)

0.9769
(0.96, 0.98)

0.954
(0.94, 0.96)

0.9652
(0.95, 0.97)

F1-score 0.9895
(0.98, 0.99)

0.9638
(0.9522, 0.9754)

0.9573
(0.94, 0.96)

0.958
(0.94, 0.97)

First, the regressor was trained on these examples, and then the LPA model. The
results of testing the regressor are presented in Table 6.

Table 6. Performance indicators of the regressor for assessing the degree of affinity between class P
and classes S and V with confidence intervals.

Metrics 1/6 1/4 1/3

Mean Absolute Error 0.2297
(0.14, 0.31)

0.0882
(0.05, 0.12)

0.0484
(0.03, 0.06)

Root Mean Squared Error 0.2827
(0.17, 0.38)

0.1243
(0.07, 0.17)

0.0551
(0.03, 0.0757)

Concerning the boundaries we set for intermediate AMD progression, the outcome
achieved using a 1/4 dataset can be minimally acceptable. For subsequent work, we
utilized a model trained on a dataset with a 1/3 labeled data ratio.

The final stage of our study involved a comprehensive testing of the entire hybrid
classifier. This testing was crucial in evaluating the performance of our system, and the
results are presented in the error matrix in Figure 8 and Table 7.

Table 7. Performance of the hybrid classifier with confidence intervals.

Metrics N P S SI V VI

Precision
0.9902

(0.98, 0.99)
0.9381

(0.92, 0.95)
0.9059

(0.88, 0.92)
0.8611

(0.83, 0.88)
0.9825

(0.97, 0.99)
1.0000

(1.0, 1.0)

Sensitivity 0.9528
(0.93, 0.96)

0.9579
(0.94, 0.97)

0.9059
(0.88, 0.92)

1.0000
(1.0, 1.0)

0.9655
(0.95, 0.97)

0.9667
(0.95, 0.97)

Specificity 0.997
(0.99, 1.00)

0.9824
(0.97, 0.99)

0.9771
(0.96, 0.98)

0.9876
(0.98, 0.99)

0.9973
(0.99, 1.00)

1.0000
(1.0, 1.0)

F1-score 0.9712
(0.96, 0.98)

0.9479
(0.93, 0.96)

0.9059
(0.88, 0.92)

0.9254
(0.9, 0.94)

0.9739,
(0.96, 0.98)

0.9831
(0.97, 0.99)

To assess progress in improving the classification of the entire set of AMD stage classes,
the McNemar test was conducted, and the Cohen effect size measure h was applied to
compare the outcomes of the source encoder and the hybrid classifier, as presented in
Table 8.
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Figure 8. Error matrix of hybrid classifier.

Table 8. Statistical significance tests comparing primary encoder and hybrid classifier.

Test N P S SI V VI

McNemar’s test
(p-value)

0.7741
(0.379)

59.9799
(<0.001)

34.4237
(<0.001)

56.8556
(<0.001)

87.4809
(<0.001)

57.8067
(<0.001)

Cohen’s h 0.121 0.855 0.631 0.806 1.097 1.092

Statistical significance tests comparing the original and hybrid encoder models showed
that the hybrid model was superior to the original model for classes P, S, SI, V, and VI. This
was evident from the results of the McNemar test, which had a high degree of confidence
(p < 0.001) and medium to huge Cohen’s h values (h > 0.6). Because the N classification
results were initially high, there were no significant improvements in its detection.

A remarkable improvement in classification accuracy across all stages of AMD was
noted. The most advanced stages, including stages IV (SI), V, and VI, now show an accuracy
exceeding 96%. The classification of geographic atrophy (GA) at stage I has been accom-
plished with perfect accuracy, reaching a remarkable 100%. There has been a significant
reduction in misclassifications between adjacent stages, such as N → S → P. The latter
stages of AMD, SI, V, and VI have been more accurately differentiated, with a minimum
number of cross-classification errors. The model exhibits a consistent performance across all
stages of AMD, addressing the previously identified imbalance where the late-stage classes
performed poorly, ensuring a more equitable assessment. Despite the improvements, some
bugs persist, which require attention for further stages of CDSS development:

1. A total of 5% of early-stage AMD cases were mistakenly classified as healthy retina,
which is important to pay attention to for the possibility of early intervention. Mean-
while, 6% of early-stage AMD was misdiagnosed as geographical atrophy.

2. A total of 4% of intermediate-stage AMD cases were mistakenly attributed to the early
stage, and 2% of early stage AMD cases were mistakenly attributed to the middle
stage. These errors, although less critical, can lead to minor delays.
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Using Cohen’s Kappa coefficient, we assessed the agreement between the hybrid
classifier and expert opinion for a statistical measure of their agreement [67]. The testing
focused on diagnosing the most challenging cases of AMD, involving thorough analysis
and comparison with an assessment scale. A set of 305 examples was given to an expert
ophthalmologist, along with the developed algorithm, for evaluation. They were tasked
with deciding whether to change the patient’s treatment plan after diagnosing the early
stage of the disease during a prior examination. Cohen’s Kappa coefficient is calculated
using the following formula:

k =
po − pe

1 − pe
, (1)

po =
N − (c + d)

N
, (2)

pe =
(a + b)(a + c) + (c + d)(b + d)

N2 . (3)

where a is the number of times both test participants answered affirmatively; b is the
number of times test participant 1 answered affirmatively and participant 2 answered
negatively; c is the number of times test participant 1 answered negatively and participant 2
answered affirmatively; d is the number of times both test participants answered negatively;
and N is the total number of test examples.

During the testing of the algorithm and the expert, the following results were obtained:

po =
305 − (20 + 20)

305
= 0.86885, (4)

pe =
(181 + 20)(181 + 20) + (20 + 84)(20 + 84)

3052 = 0.55057, (5)

k =
0.86885 − 0.55057

1 − 0.55057
= 0.708191 (6)

An analysis of Equation (5) demonstrates that the degree of concordance between
the solutions provided by clinicians and the hybrid classifier reached 87% of the total test
cases, which is considered a very high indicator. Additionally, the number of instances in
which the hybrid classifier adjusted the AMD stage was comparable to its precautionary
conclusions based on expert opinions, accounting for 13% of the total test set. According
to clinicians, it would be advisable for the algorithm to show increased sensitivity to the
stages of AMD that pose the greatest threat to the patient’s visual function. This would
enable the diagnostician working with the CDSS to assess potential risks or dismiss them
in cases of apparent false alarms. We will focus on these aspects in the future to enhance
the proposed method for developing a hybrid classifier.

Cohen’s Kappa coefficient analysis shows a high agreement between expert assess-
ments and the algorithm’s responses, demonstrating its effectiveness as a clinical decision-
support tool.

The results indicate that the issues of class imbalance and complexity in identifying the
intermediate stage of AMD have been effectively resolved. Additionally, the conservative
classification for classes N and V has been minimized. This framework can be seamlessly
integrated into the CDSS to help determine when to adjust a patient’s treatment plan. The
hybrid classifier offers an accurate and interpretable assessment of the intermediate stage
and early and late AMD outcomes.

4. Discussion
The developed hybrid classifier has demonstrated high efficiency and aligns well

with expert assessments. The method’s potential clinical applicability goes beyond the
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initial testing environment, opening up prospects for use in various ophthalmological
conditions and diseases. This method is desirable for diseases with stages with different
manifestation frequencies in patients, leading to a significant class imbalance during the
training phase of classifier development. Integrating these classifiers into the CDSS element
will help diagnosticians enhance diagnostic accuracy and optimize workflow management.
This approach eliminates the need for a detailed marking of medical image sets while
also emphasizing the importance of gathering sufficient examples of rare disease stages.
Furthermore, the classifier’s ability to accurately differentiate between sub-stages of or
variations in ophthalmic conditions can facilitate earlier interventions, potentially prevent-
ing the progression to more severe forms of the disease and ultimately improving patient
treatment outcomes.

However, expanding clinical applicability requires solving several problems related to
integration into clinical practice. One major challenge is ensuring an equal or comparable
amount of data from various tomograph models, as OCT images have different visual-
ization features. Machine learning models included in the hybrid classifier must operate
with a sufficient set of visual features that differ from each other to generalize them into
one class. This presents a significant limitation for developing the hybrid classifier, as it
cannot analyze OCT images obtained from tomographs that were not part of the training
sample. The same applies to the visual quality of OCT images, which can decrease the
performance of the hybrid classifier due to the suboptimal image quality often encountered
in real clinical settings. Reducing the criticality of this factor can be achieved by introducing
reliable preprocessing methods and including mechanisms for evaluating and managing
image quality. This can increase the classifier’s stability, something to which future re-
search efforts will be devoted in further improving the presented method of developing
hybrid classifiers.

One of the challenges in integrating the proposed method for developing a hybrid
classifier is the “black box" nature of the deep learning models it utilizes. This lack of
transparency can reduce trust among clinicians. Although the classifier demonstrates high
efficiency, its interpretability issues may make clinicians hesitant to rely on automated
recommendations entirely. To address this concern, future work will focus on iterating the
algorithms to enhance the proposed method, incorporating techniques from explainable
artificial intelligence. This approach will help clinicians better understand the classifier’s
decision-making process.

When comparing the effectiveness and methodological approaches of the presented hy-
brid classifier for identifying AMD stages with previous studies, several notable differences
and similarities emerge. The proposed hybrid classifier exhibits impressive performance
metrics, achieving an accuracy of over 96%, along with sensitivity and specificity levels
surpassing those reported in prior research [29]. Additionally, the hybrid classifier demon-
strates advanced recognition capabilities, as evidenced by its high F1-score and AUC values.
While the authors of [29] achieved commendable accuracy with CNN-based screening,
they encountered limitations when working with unbalanced classes, often resulting in
biased predictions favoring the majority classes. Unlike reference [29], where traditional
deep convolutional neural networks were used and designed mainly for processing fundus
images, the method described in this article combines hybrid and hierarchical classification
approaches, effectively addressing the class imbalance characteristic of AMD datasets. This
issue was also noted in [57], where the class imbalance was addressed by accumulating
additional data and creating repeated samples. This process required extra time from diag-
nosticians to develop the classification model presented. Notably, the overall performance
indicators of our hybrid classifier surpassed those reported in [57].
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In conclusion, this study demonstrates the possibility and potential of using the CDSS
based on the hybrid classifier for monitoring changes in the management plan for patients
with AMD. With further development and clinical validation, this system may simplify
the treatment of AMD and enable earlier intervention, thereby improving the quality of
healthcare services.

5. Conclusions
In this paper, we propose a hybrid approach for developing a CDSS aimed at deter-

mining the appropriate timing for changing the treatment plan for patients with AMD
based on the analysis of OCT images. The architecture of our hybrid classifier includes a
global classifier, several local binary classifiers, and a regressor. This developed architec-
ture effectively addresses challenges commonly faced by machine learning models that
utilize medical datasets collected during clinical practice. Specifically, it deals with visual
similarities and overlaps among predictors in medical images, particularly the difficulty in
detecting the intermediate stage of AMD amid early and late stages. It also addresses class
imbalance, which presents challenges in identifying the stages of GA and SF. As a result
of our hybrid approach to CDSS development, we achieved significant improvements in
accuracy, sensitivity, and specificity, and an F1-score exceeding 0.90 across all AMD stages.
This performance enhancement surpassed the average results of the original CNN-based
four-layer encoder architecture by more than 20%. Additionally, we calculated Cohen’s
Kappa coefficient to evaluate the level of agreement between the algorithm’s outcomes and
expert assessments regarding the severity of the intermediate stage of AMD. The calculated
value of 0.708 indicates a high level of agreement between the algorithm’s results and the
experts’ evaluations.
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