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Abstract. Delocalized nonlinear vibrational modes (DNVMs) in crystals are precise solutions to the equa-
tions governing atomic motion that are determined solely by the symmetry of the lattice. This study
investigates the influence of two-dimensional discrete breathers (DBs) excited using four one-component
DNVMs on the macroscopic properties of three-dimensional fcc single crystals of Al, Cu, and Ni. All
results were obtained using molecular dynamics simulations. Key findings include the observation that the
lifetime of two-dimensional DBs is significantly influenced by both the symmetry of the DNVM and the
initial oscillation amplitude. The two-dimensional DBs exhibit hard-type nonlinearity, characterized by an
increase in oscillation frequency with increasing initial amplitude. The excitation of the DBs leads to a
reduction in the crystal’s heat capacity, which becomes more pronounced with increasing amplitude. The
presence of two-dimensional DBs induces thermal expansion within the crystal, suggesting an impact on
the mechanical properties of the material. This research provides new insights into the role of DBs, in
influencing the macroscopic properties of fcc metals.

1 Introduction

Chechin and Sakhnenko have developed a general
theory of delocalized nonlinear vibrational modes
(DNVM), which they originally called bushes of nonlin-
ear normal modes, in dynamical systems with discrete
symmetry using a group-theoretical approach [1–3].
DNVM is an exact solution of the nonlinear dynamical
equations governing atomic motion. These vibrational
modes are delocalized in space and periodic for systems
with translational symmetry. Since only the symmetry
of the lattice is taken into account, the solution of the
dynamical equations for a given lattice is independent
of the nature of the interaction between particles and
the amplitude of their oscillations. This approach has
recently been employed in the analysis of all possible
DNVMs in both triangular and square lattices [4, 5].

The vibrational modes in crystalline lattices can be
classified according to their spatial dimensionality and
the number of components. A DNVM that is gov-
erned by n coupled equations of motion is charac-
terized by n degrees of freedom and is referred to
as an n-dimensional mode. One-dimensional DNVMs
are constrained to a single spatial dimension within
the lattice. In defect-free crystals, such modes often
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take the form of linear chains where the vibrational
energy propagates primarily along the chain. Two-
dimensional DNVMs are delocalized along two spa-
tial dimensions while exhibiting localization along the
third. Three-dimensional DNVMs extend across all spa-
tial dimensions within the crystal. The number of com-
ponents corresponds to the number of independent
parameters that characterize a given vibrational mode,
namely the amplitude of atomic displacements from
the equilibrium lattice sites. Presently, the majority of
research in this field is focused on the investigation
of one-component DNVMs in materials with different
crystalline structures [6–15]. Due to the considerable
diversity and complexity of two- and three-component
DNVMs, their investigation has been relatively limited
[16–18].

One of the interesting and promising practical appli-
cations of DNVM, as recently elucidated in Ref. [19], is
the possibility of assessing the precision of the inter-
atomic potential via analysis of the trajectories of
atomic motion, as an alternative to the conventional
approach of analyzing the configuration of atoms.

Discrete breathers (DBs), also known as time-
periodic and spatially localized vibrational modes, rep-
resent a unique type of nonlinear oscillation in defect-
free, nonlinear lattices. DBs can be excited through

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjb/s10051-025-00875-9&domain=pdf
http://orcid.org/0000-0002-3702-2532
mailto:obachurina@yahoo.com


27 Page 2 of 10 Eur. Phys. J. B (2025) 98 :27

(1) spontaneous generation through thermal fluctua-
tions [20–23], (2) the effect of an external periodic force
at frequencies beyond the phonon spectrum of a crys-
tal [24–26], and (3) modulation instability resulting in
energy localization [27, 28]. Furthermore, DBs can be
excited by imposing a localizing function on DNVMs
[29–34].

Over the past decade, DBs have attracted consider-
able attention from researchers and have been analyzed
in various crystals [8, 35–47]. The consequence of the
modulation instability of the DNVM is the formation of
chaotic DBs that oscillate with a frequency lying out-
side the phonon spectrum of the crystal. Such DBs are
formed as a result of the decay of the DNVM and the
concentration of vibrational energy on specific parti-
cles. The formation of chaotic DBs and the effect of
the relative stiffness of the first- and second-neighbor
interactions have recently been the subject of inten-
sive investigation in a number of different crystal lat-
tices using the Fermi-Pasta-Ulam-Tsingou interatomic
potential [48–51].

The main properties of DNVMs and DBs excited on
their basis in various crystals have been well investi-
gated, but their influence on the macroscopic proper-
ties of crystals remains very limited [10, 48, 52]. The
aim of the present work is molecular dynamics study
of the influence of two-dimensional DBs on the macro-
scopic properties of fcc metals, namely Al, Cu and
Ni, with particular emphasis on the effects on heat
capacity and thermal expansion. The two-dimensional
DBs were excited in a three-dimensional crystal lat-
tice based on the previously studied four stable one-
component DNVMs [13], which are characterized by a
single parameter (vibrational amplitude). By exploring
these vibrational modes and their impact on material
properties, this work contributes to a broader under-
standing of nonlinear dynamics in crystal lattices and
their potential applications.

2 Stable delocalized nonlinear vibrational
modes in an fcc lattice

Using a group-theoretical approach, Chechin and
Ryabov [53, 54] have derived eight one-component
DNVMs for a two-dimensional triangular lattice.
Notably, the (111) plane of an fcc crystal corresponds
to a two-dimensional triangular lattice, meaning that
these DNVMs can be used as initial configurations
to excite two-dimensional DBs within an fcc lattice.
DNVMs are exact solutions to the nonlinear equations
of motion for a two-dimensional triangular lattice. How-
ever, when a (111) plane of the fcc lattice is excited,
they are no longer the exact solutions due to the pres-
ence of the neighboring atomic planes in the crystal
structure. The excited plane shares part of its energy
with the other planes, and in some cases, a significant
part of the energy transferred to the plane remains
localized in the plane for a long time. This phenomenon

is referred to as long-lived two-dimensional DBs, char-
acterized by their localization in the direction normal
to the excited plane while remaining delocalized in the
other two spatial dimensions.

As stated in Ref. [54], these DNVMs exhibit differ-
ent symmetries. DNVMs 1, 2, 4, and 5 are symmetrical,
meaning the maximal positive and negative atomic dis-
placements from equilibrium lattice sites are equal in
magnitude. In contrast, DNVMs 3, 6, 7, and 8 are asym-
metrical, as the positive and negative displacements dif-
fer in magnitude. This distinction in symmetry affects
how these DNVMs behave under certain conditions.

The results of recent molecular dynamics studies [13]
indicate that only four of the eight one-component
DNVMs are stable. The stability of the mode means
that it can maintain periodic oscillations for a time
longer than 5 ps. These are DNVMs 2, 5, and 7 for
Al and DNVMs 2, 3, 5, and 7 for Cu and Ni. This
implies that they are capable of maintaining periodic
oscillations for a time of the order of several picosec-
onds, as well as accumulating and storing their vibra-
tional energy. Figure 1 illustrates these four stable one-
component DNVMs, namely 2, 3, 5, and 7, which were
selected for study in this work. For the sake of clarity,
the previously used DNVMs numbering [13] has been
retained in the present paper. The black arrows in Fig. 1
indicate the displacement of atoms from their equilib-
rium lattice sites. The length of all displacement vectors
at the initial moment of time is identical for all DNVM
atoms and is equal to A.

3 Computational details

Molecular dynamics simulations were carried out using
the LAMMPS software package [55], a widely recog-
nized tool for simulating the behavior of atomic sys-
tems. The interatomic forces in the selected fcc met-
als Al, Cu, and Ni were modeled using the embed-
ded atom method (EAM) potentials. These potentials,
sourced from the LAMMPS library [56, 57], are well-
established for accurately describing the interactions in
metallic systems. In our simulations, the equilibrium
lattice constants at absolute zero temperature (T =
0 K), as reproduced by the selected EAM potentials,
were found to be 4.05 Å for Al, 3.62 Å for Cu, and
3.54 Å for Ni.

The computational supercells, comprising 22 × 12 ×
11 translational cells (46,464 atoms) were used for the
simulation of symmetrical DNVMs 2 and 5, while 21 × 9
× 11 translational cells (33,264 atoms) were employed
for the simulation of asymmetrical DNVMs 3 and 7.
The axes of the Cartesian coordinate system x , y , and
z is aligned with the crystallographic directions [101],
[121], and [111] within the computational cell.

One of the primary challenges in conducting molecu-
lar dynamics simulations is identifying the initial con-
ditions under which the desired excitation of DB can be
observed. In light of these circumstances, a systematic
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Fig. 1 Four stable one-component DNVMs derived for triangular lattice in Refs. [53, 54]. DNVMs 2 and 5 are symmetrical,
while DNVMs 3 and 7 are asymmetrical. The black arrows indicate initial atomic displacements from the equilibrium lattice
sites. The red dashed line outlines the unit cell of the vibrational state within the atomic plane. The length of all displacement
vectors at the initial moment of time is the same for across all atoms in the DNVMs and is denoted as A

variation in the initial amplitudes of atomic displace-
ments from their equilibrium lattice sites was conducted
across a broad range from 0.05 to 0.70 Å. Only a subset
of atoms belonging to DNVM and lying in the same
atomic plane within the computational cell was dis-
placed, while the remaining atoms were left undisturbed
at their equilibrium positions. Furthermore, all atoms
were assigned zero initial velocities in order to eliminate
any pre-existing kinetic energy that could interfere with
the excitation of the vibrational mode.

The simulations were conducted with a timestep of
1 fs, which is sufficiently small to ensure the accurate
integration of the equations of motion for the atoms.
This is crucial for capturing the rapid atomic oscilla-
tions occurring during the excitation of DNVMs. In
order to ensure that the simulated behavior of the sys-
tem accurately reflects the bulk material properties,
periodic boundary conditions were applied along all
three orthogonal directions. This approach mimics an
infinite crystal lattice and prevents the potential issues
associated with edge effects.

All molecular dynamics simulations were performed
at an initial temperature of T = 0 K using the NVE
ensemble (constant number of atoms, volume, and
energy). The selection of zero temperature is of sig-
nificant importance for this type of simulation, as it
eliminates the influence of thermal noise. At finite tem-
peratures, thermal fluctuations from neighboring atoms
would interfere with the coherent oscillations of the
DNVM atoms, making it difficult to isolate and analyze
the vibrational modes under investigation. The dura-
tion of each simulation was limited to 40,000 timesteps,
which is equivalent to 40 ps. This timescale was selected
to achieve an optimal balance between computational

efficiency and the necessity of capturing sufficient vibra-
tional dynamics for comprehensive analysis.

4 Computational results and discussion

DNVMs 2, 5, and 7 excited in Al and DNVMs 2, 3,
5, and 7 excited in Cu and Ni support stable periodic
oscillations. The excitation of a time-stable vibrational
mode based on DNVM 3 in Al was not possible over
the full range of amplitudes, which is related to the soft-
ness of the interatomic bonds. Atomic oscillations of the
selected four two-dimensional DNVMs remain localized
to a single atomic plane within the three-dimensional
crystal structure, from which they were initially initi-
ated. The amplitude of atomic oscillations exhibits an
exponential decay with increasing distance from this
plane. The four stable DNVMs can thus be classified as
spatially localized modes. According to the established
definition, DBs are localized vibrational modes charac-
terized by atomic oscillations confined to a small region
of the lattice, with the surrounding atoms remain-
ing relatively stationary. Consequently, the vibrational
energy of DBs is highly localized to a few atoms or
a small cluster of atoms. DNVMs are extended modes
where atomic oscillations occur across the entire lattice,
involving many atoms oscillating according to a given
pattern. In contrast to DBs, the vibrational energy of
DNVMs is evenly distributed throughout the lattice,
rather than being concentrated in a specific region.
Since stable DNVMs meet the broader definition of a
DB, the concept of a DB can be expanded to include
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DNVM. In this context, a DB can be considered two-
dimensional, with its dimensionality corresponding to
that of the DNVM used to excite it. Throughout the
paper, the terms stable DNVM and two-dimensional
DB will be used as synonyms. When a two-dimensional
DB is excited in a densely packed atomic plane of an
fcc crystal, the atoms vibrate strictly in-plane, with-
out any displacement components perpendicular to it.
Such perpendicular components only appear when the
DB becomes unstable and is subsequently destroyed.

For the sake of completeness, it should be noted that
the remaining DNVMs 1, 3, 4, 6, and 8 for Al and
DNVMs 1, 4, 6, and 8 for Cu and Ni were found to be
unstable upon excitation (for further details see [13]).
The latter means that after several periods of oscilla-
tion, they dissipated their vibrational energy on neigh-
boring atoms in the form of low-amplitude waves, which
led to the rapid destruction of the structure of these
modes.

The oscillation frequency as function of the initial
amplitude A for the four stable DNVMs 2, 3, 5, and
7 is depicted in Fig. 2. A hard-type of nonlinearity
is observed for all two-dimensional DBs, whereby the
oscillation frequency increases as the amplitude rises. In
all metals, the slope of the curves differs at low ampli-
tudes compared to higher ones. This is due to the fact
that at larger atomic displacements from equilibrium
lattice sites, the core of the interatomic potential con-
tributes more significantly to the system’s dynamics,
whereas at smaller displacements, the softer part of the
potential is more influential. The oscillation frequencies
of the DNVMs are consistently higher than the upper
edge of the phonon spectrum for each fcc metal. This
ensures that the DBs remain dynamically isolated from
the lattice phonons, preventing energy transfer to the
surrounding atoms and allowing the DBs to maintain
their localized vibrational state for extended periods.
This separation from phonon modes plays a critical role
in sustaining the stability of the DBs. Consequently,
these characteristics of hard nonlinearity and frequency
isolation make the DBs resilient to decay, enhancing
their potential influence on the material’s properties at
the nanoscale.

Figure 3 illustrates the relationship between lifetime
and initial amplitude A for the four stable DNVMs 2,
3, 5, and 7. At small initial amplitudes, specifically A
= 0.05–0.15 Å for Al, A = 0.05–0.10 Å for Cu, and
A < 0.05 Å for Ni, the DNVMs exhibit short lifetimes
that do not exceed 5 ps. The latter suggests that the
vibrational energy dissipates rapidly at low amplitudes.
Therefore, such DBs excited based on the four selected
DNVMs are unstable according to our specific criterion
introduced in the previous section. The maximum life-
times are achieved for DBs excited based on DNVM 2,
with lifetimes of 23 ps for Al, 47 ps for Cu, and 37 ps for
Ni at initial amplitudes of 0.25, 0.20, and 0.20 Å, respec-
tively. DBs excited using DNVM 5 exhibit the second
longest lifetimes, namely 18 ps for Al, 25 ps for Cu, and
17 ps for Ni, with the similar initial amplitudes as those
for DNVM 2. DNVM 3 can maintain periodic oscilla-
tions in time for the order of several picoseconds only

at large initial amplitudes exceeding 0.35 Å. Therefore,
DNVM 3 can be classified as a quasi-stable vibrational
mode, and, consequently, two-dimensional DB excited
on its basis in Cu and Ni can be considered as a quasi-
stable DB. It should be noted that the classification of
DBs is somewhat arbitrary and is based solely on the
lifetime of the vibrational mode. This may vary depend-
ing on the interatomic potential used and, to a lesser
extent, on the size of the computational cell. The afore-
mentioned observations can be also applied to DNVM 7,
which exhibits slightly enhanced lifetime in comparison
to DNVM 3, as illustrated in Fig. 2. It is noteworthy
that the longest lived DBs are observed at relatively
low initial amplitudes, while at high amplitudes, the
lifetime is significantly reduced. This indicates that the
atoms, due to significant deviations from the equilib-
rium lattice sites, begin to rapidly dissipate their vibra-
tional energy on neighboring atoms that were not ini-
tially excited. Thus, the investigated two-dimensional
DBs are only stable within a specific amplitude range.
Outside this range, the lifetimes are markedly reduced.

Another point to note is that the initiation of DB
excitation in Ni occurs at smaller initial amplitudes
than in Al and Cu. This behavior can be attributed
to the stronger interatomic bonds in the Ni crystal lat-
tice, which require less displacement to generate the
necessary conditions for DB excitation. The difference
in bond strength affects the dynamic properties of DBs
in various metals, thereby underscoring the importance
of atomic interactions in determining DB stability and
lifetime across different materials.

One of the most straightforward methods to evalu-
ate the nonlinearity of a crystal due to the excitation of
a vibrational mode is to calculate the ratio of the sys-
tem’s total energy to its period-averaged kinetic energy,
represented as C = Etotal/Ek. This ratio serves as an
indicator of changes in the crystal’s heat capacity. In
harmonic systems, the averaged kinetic energy over a
period is equal to the averaged potential energy, or Ek

=Ep, which yields C = 2. In contrast, in nonlinear sys-
tems, Ek �= Ep, resulting in C �= 2. Therefore, the
degree of deviation from C = 2 reflect the degree of the
nonlinearity of the system.

The dependence of the ratio C on the initial ampli-
tude for the four two-dimensional DBs, excited the basis
of DNVMs 2, 3, 5, and 7, is shown in Fig. 4. As can be
seen, the degree of the nonlinearity of DNVMs 2 and
5 remains relatively small within the initial amplitudes
not exceeding 0.20 Å, with the ratio C varying by less
than 1%. A similar phenomenon is observed for DNVMs
3 and 7, albeit at higher initial amplitudes. The primary
distinction between DNVMs 2 and 5 and the afore-
mentioned vibrational modes is that their excitation
begins at markedly higher initial amplitudes, specifi-
cally 0.20 Å for DNVM 7 and 0.40 Å for DNVM 3.
This is due to the fact that the frequency of the atomic
vibrations in this amplitude range is below the upper
edge of the phonon spectrum. For all four DNVMs, an
increase in the initial amplitude results in a roughly
analogous decrease in the ratio C , which corresponds to
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Fig. 2 The oscillation frequency of the four stable DNVMs as functions of initial oscillation amplitude A calculated for Al,
Cu, and Ni. The solid lines connecting the data points are provided as visual guides

Fig. 3 The lifetime of the four stable DNVMs as functions of initial oscillation amplitude A calculated for Al, Cu, and Ni.
The solid lines connecting the data points are provided as visual guides

an increase in the deviation of the system from its equi-
librium state. It can thus be concluded that the pres-
ence of a vibrational mode in a system exhibiting a hard
type of nonlinearity invariably results in a reduction in
the ratio C with an increase in the initial amplitude
of atomic oscillations. In contrast, in materials with a
soft type of nonlinearity, the ratio C tends to increase
with increasing of initial amplitude [58]. It should also
be noted that at this stage of the research, it is not pos-
sible to conclude which mode, based on its symmetry,

has the most pronounced effect on the ratio C , i.e., on
the specific heat of the system.

Another interesting question is how the presence of
an excited vibrational mode in the lattice affects the
thermal expansion of the crystal. To investigate this,
the dependence of the stress components σxx , σyy , and
σzz within the computational cell resulting from the
excitation of two-dimensional DBs with respect to vari-
ations in the initial amplitude was analyzed. As a con-
sequence of the inherent symmetry of the system (see
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Fig. 4 The ratio C (degree of the nonlinearity of the system) for the four stable DNVMs as functions of initial oscillation
amplitude A calculated for Al, Cu, and Ni. The horizontal dashed line illustrates the value of C = 2, which is characteristic
of harmonic systems, where the kinetic energy is equal to the potential energy. The solid lines connecting the data points
are provided as visual guides

Fig. 1), two stress components exhibit approximate
equality depending on the specific DNVM excited as
demonstrated in Fig. 5. Namely, the relationship σxx

≈ σyy is applicable to DNVMs 5 and 7, whereas the
relevant relationship for DNVMs 2 and 3 is σyy ≈ σzz .
Additionally, the magnitude of the stress component
σxx for the symmetrical DNVM 2 and 5 are compara-
ble, while it differ significantly from those for the asym-
metrical DNVM 3 and 7.

The results presented in Fig. 5 reveal that increas-
ing the initial amplitude of atomic oscillations
enhances compressive stresses within the crystal lat-
tice. This behavior indicates that the excitation of
two-dimensional DBs indeed induces thermal expansion
within the crystal structure. This phenomenon occurs
as a result of the increased atomic displacements from
equilibrium sites, which amplify lattice strains and,
consequently, generate internal stresses. Moreover, the
stresses induced by symmetric and asymmetric DNVMs
are of an approximately equal magnitude across the all
the studied fcc metals.

The observed decay of one-component DBs dif-
fers significantly from the previously reported behav-
ior of two-component DBs [59]. In contrast to the
gradual reduction in spatial dimension observed for
two-component DBs, where oscillating chains (one-
dimensional DBs) form first in the initial plane, followed
by the dissipation of vibrational energy onto neighbor-
ing atoms, no such process is observed here. The decay
of the one-component DBs occurs abruptly at a specific
point in time when one or more of the oscillating atoms
deviates from its initial displacement vector. This devi-
ation is caused by the loss of vibrational energy as the
atoms interact with their nearest neighbors, which then

initiates a rapid displacement cascade that propagates
through the plane.

Following a few oscillation periods, the majority of
the atoms return to their equilibrium lattice positions.
Nevertheless, a minor proportion of the atoms undergo
transitions to neighboring interstitial sites, where they
remain until the end of the simulation. These jumps,
which are critical to the evolution of the defect struc-
ture, only occur at larger initial amplitudes. For exam-
ple, for the asymmetric DNVM 7, the initial amplitudes
necessary for such jumps are A ≥ 0.65 Å for Al, A ≥
0.6 Å for Cu, and A ≥ 0.65 Å for Ni. The discrepancy
in these threshold amplitudes can be attributed to dif-
ferences in the bond stiffness of the fcc metals, which
are directly correlated with the differences in their lat-
tice parameters. Among the metals studied, Al exhibits
the largest lattice parameter a0, while Ni has the small-
est. As a result, the ratios A/a0 are 0.160 for Al, 0.166
for Cu, and 0.184 for Ni, with the ratio increasing in
accordance with the bond stiffness of the material.

The energy released during the decay of two-
dimensional DBs has the potential to displace atoms
from their equilibrium lattice sites, thereby creating
interstitial atoms that are critical in the evolution of the
defect structure. These atomic displacements, driven
by the excitation and subsequent decay of vibrational
modes, can have a substantial influence on the mate-
rial’s macroscopic properties, particularly affecting its
mechanical strength, thermal stability, and response to
extreme environments like high temperatures or irradi-
ation. This study highlights the significance of under-
standing these dynamic processes, as they shed light on
the atomic-scale mechanisms that contribute to mate-
rial performance and reliability.
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Fig. 5 The stress components σxx , σyy , and σzz arising in the computational cell as a result of excitation of the four stable
DNVMs as functions of initial oscillation amplitude A calculated for Al, Cu, and Ni. The horizontal dashed line shows
the zero stress level characteristic of the system at the initial time instant. The solid lines connecting the data points are
provided as visual guides

The effect on macroscopic properties depends on the
statistical mechanics of DBs, specifically on their con-
centration. The probability of DB generation from ther-
mal fluctuations can be estimated using the Arrhenius
formula, with DB energy values obtained from molec-
ular dynamics simulations. DBs localized in three spa-
tial dimensions can accumulate energy up to several
electronvolts [37, 38]. These estimations suggest that
the equilibrium concentration of DBs is generally low,
especially for high-energy DBs [60, 61]. However, as

highlighted in the literature, the significance of DBs in
crystals increases substantially in non-equilibrium pro-
cesses [38, 62], such as their excitation by lasers operat-
ing at frequencies above the phonon spectrum. In such
cases, phonons are not directly excited. Instead, DBs
with frequencies above the phonon spectrum are gen-
erated, and their energy is subsequently dissipated as
thermal energy. Specifically, the two-dimensional DBs
studied in this work can be excited by lasers due to the
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relatively large laser spot size. High-power lasers oper-
ating at terahertz frequencies are now available [63].

5 Conclusions

The influence of two-dimensional DBs excited on the
basis of stable one-component DNVMs, which are local-
ized along one spatial direction and delocalized along
two others, on the macroscopic properties of three-
dimensional single crystals of Al, Cu, and Ni was
investigated using molecular dynamics simulations. The
main findings are summarized as follows.

The lifetime of a two-dimensional DB is highly depen-
dent on both the symmetry of DNVM used for its exci-
tation and the initial oscillation amplitude. It is note-
worthy that the maximum lifetimes were observed to
reach up to 24–47 ps for the symmetrical DNVM 2,
which demonstrates greater stability under specific con-
ditions. Two-dimensional DBs demonstrate hard-type
nonlinearity, characterized by an increase in oscillation
frequency with rising initial amplitude. The excitation
of two-dimensional DBs results in a reduction in the
heat capacity of the crystal. This decrease becomes
more pronounced as the initial amplitude of the atomic
oscillations increases, which reflects the impact of the
DB on the crystal’s energy storage and transfer mecha-
nisms. The excitation of a two-dimensional DB induces
thermal expansion within the crystal, thereby indicat-
ing that DBs have the potential to affect the mechanical
properties of the crystal.

In summary, the present study provides novel insights
into how localized vibrational modes, such as two-
dimensional DBs, can influence both the thermal and
mechanical properties of fcc metals. This work paves
the way for further research into the impact of DBs of
different dimensions on the macroscopic properties of
other crystalline structures.
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