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Abstract: Hypertension (HTN) is a leading risk factor for cardiovascular diseases (CVDs) and a

major contributor to global morbidity and mortality. Conventional pharmacological treatments

have been effective but are often accompanied by side effects and do not address all pathological

aspects of the disease. Recent advances in molecular biology have identified non-coding RNAs (n-

cRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as key regula-

tors in the pathogenesis of hypertension. These ncRNAs influence various cellular processes, such

as gene expression, vascular tone, and inflammation, making them promising targets for therapeu-

tic intervention. This review explores the potential of polyphenols, a diverse group of phytochemi-

cals with potent antioxidant and anti-inflammatory properties, in modulating ncRNA expression

and function. We discuss how polyphenols, such as epigallocatechin-3-gallate (EGCG), resvera-

trol, curcumin, and quercetin impact the regulation of ncRNAs, particularly focusing on their roles

in reducing oxidative stress, improving endothelial function, and ameliorating vascular remodel-

ing associated with hypertension. The review synthesizes current evidence from both in vitro and

in vivo studies, highlighting significant findings and the mechanisms by which polyphenols exert

their effects on ncRNA-mediated pathways.

Moreover, we address the challenges of translating these findings into clinical applications, includ-

ing issues related to bioavailability,  dosing,  and the complex interactions of  polyphenols  with

other cellular components. Future directions for research are suggested, with an emphasis on the

need for comprehensive clinical trials to establish the efficacy of polyphenol-based therapies tar-

geting ncRNAs in hypertension management. By targeting ncRNAs, polyphenols offer a novel

therapeutic strategy that could enhance the treatment landscape for hypertension and potentially

other cardiovascular conditions.
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1. INTRODUCTION
Hypertension (HTN) is a widespread non-communicable

cardiovascular disease (CVD), affecting nearly a billion indi-
viduals worldwide and standing as a leading cause of signifi-
cant health complications and death [1]. This complex condi-
tion arises from the interplay of genetic predispositions and
environmental  influences,  leading  to  a  chronic  increase  in
blood pressure (BP) [2]. Despite the availability of various
treatments, the incidence of HTN is anticipated to rise soon
[3]. In this context, the importance of dietary habits in the
management of HTN has been increasingly recognized. Die-
tary intake plays a crucial role in the development and man-
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agement of chronic diseases, including HTN [4]. The quali-
ty, quantity, and balance of nutrients consumed can signifi-
cantly influence blood pressure and overall  cardiovascular
health. A diet rich in fruits, vegetables, whole grains, lean
proteins, and healthy fats has been shown to lower the risk
of hypertension and other chronic diseases. Conversely, di-
ets  high  in  sodium,  unhealthy  fats,  and  refined  sugars  are
strongly associated with increased blood pressure and a high-
er risk of HTN [5].

Polyphenols, a group of widely found dietary secondary
metabolites, are celebrated for their strong antioxidant and
anti-inflammatory  actions  both  in  laboratory  settings  and
within the human body [5, 6]. These compounds, found in
berries,  tea,  wine,  cocoa,  and  other  sources,  help  reduce
oxidative stress and inflammation, both of which contribute
to hypertension. Flavonoids, another type of polyphenol pre-
sent  in  citrus  fruits,  onions,  and  tea,  improve  endothelial
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function and reduce inflammation, which are key factors in
managing  blood  pressure.  Additionally,  dietary  nitrates,
found in leafy greens like spinach and beetroot, are convert-
ed into nitric oxide, a vasodilator that helps lower blood pres-
sure  [7].  Potassium,  abundant  in  foods  like  bananas,
oranges,  and  sweet  potatoes,  also  plays  a  critical  role  in
counteracting the effects of sodium and reducing BP [8]. Fat
consumption further influences the risk of developing hyper-
tension.  High intake of  saturated fats,  commonly found in
red meat, butter, and full-fat dairy, is linked to an increased
risk of HTN. Saturated fats can lead to the development of
atherosclerosis,  which  narrows  blood  vessels  and  raises
blood  pressure.  Trans  fats,  prevalent  in  many  processed
foods,  are  particularly  harmful,  contributing  to  increased
cholesterol levels and hypertension.

In  contrast,  unsaturated  fats,  such  as  monounsaturated
and polyunsaturated fats found in olive oil, avocados, nuts,
and  fatty  fish,  are  associated  with  lower  blood  pressure.
Omega-3 fatty acids, a type of polyunsaturated fat, have po-
tent  anti-inflammatory  effects  that  help  lower  blood  pres-
sure.  Research  has  shown  that  polyphenols  can  influence
various cell signaling pathways, contributing to their ability
to lower high BP. The underlying mechanisms of HTN in-
clude genetic variations and the abnormal production of tran-
scription factors [9]. Recently, non-coding RNAs (ncRNAs)
have garnered attention for their role in numerous cellular
functions. These RNA molecules, produced from DNA but
not  translated  into  proteins,  play  a  key  role  in  regulating
gene expression and affecting the translation and degrada-
tion of messenger RNA (mRNA) [10]. The fate of cells is of-
ten  determined  by  specific  patterns  of  expression  in  path-
ways  controlled  by  long  non-coding  RNAs  (lncRNAs),  a
subset of ncRNAs. Changes in lncRNAs due to disease pro-
cesses or genetic alterations can markedly affect disease pro-
gression [11].  Although research has  extensively  explored
microRNAs  (miRNAs)  in  relation  to  various  diseases,
studies on lncRNAs in HTN are still in their infancy. Howev-
er,  with  the  identification  of  ncRNAs,  numerous  studies
have shown how different polyphenols can modulate various
ncRNAs, thereby offering antihypertensive and anti-inflam-
matory benefits in the fight against CVDs [12]. Emerging re-
search  on  ncRNAs highlights  their  potential  as  novel  bio-
markers and therapeutic targets for hypertension. The associ-
ation between specific ncRNAs and hypertension risk offers
exciting  possibilities  for  the  development  of  personalized
medicine  approaches  in  managing  this  chronic  condition.
This  comprehensive  overview  underscores  the  significant
role of dietary intake, particularly the consumption of natu-
ral compounds like polyphenols and healthy fats, in reduc-
ing  the  risk  and  managing  hypertension.  Leveraging  po-
lyphenols in the treatment of HTN presents a promising ap-
proach to combat this global health issue while also unveil-
ing the complex mechanisms at play in cardiovascular dis-
eases.

1.1. Polyphenols and HTN
Polyphenols, derived from plants, are celebrated for their

health benefits and are broadly classified into flavonoids and

non-flavonoids.  Flavonoids,  which  include  subtypes  like
flavonols, and anthocyanidins, are known for their hydrox-
yl-rich  aromatic  rings.  Non-flavonoids,  such  as  phenolic
acids and stilbenes, typically possess a single aromatic ring,
contributing to unique health benefits (Figs. 1-3) [13, 14].

These compounds have been linked to improved cardio-
vascular health, showing potential in preventing HTN by mo-
dulating signaling pathways for antihypertensive and anti-in-
flammatory actions (Table 1) [15, 16].

Vascular health, essential in combating HTN and atheros-
clerosis,  relies  on  maintaining  vascular  tone,  a  redox  bal-
ance, and preventing platelet aggregation [17]. Endothelial
cells,  producing  crucial  substances  like  nitric  oxide  (NO),
play a significant role in this process [18]. However, oxida-
tive stress can impair NO availability, leading to endothelial
dysfunction. Polyphenols boost NO release, enhancing va-
sodilation and providing antioxidant benefits [19]. Specific
flavonoids and compounds like resveratrol increase NO bioa-
vailability,  influencing  pathways  such  as  PI3K/Akt  and
AMPK  [20].  Moreover,  polyphenols  directly  or  indirectly
cause vasodilation, with resveratrol also acting through its
phytoestrogen  properties  [21,  22].  These  findings  unders-
core polyphenols' potential in cardiovascular therapy.

Long-term  hypertension  contributes  to  cardiovascular
complications  primarily  through  vascular  endothelial  dys-
function. This dysfunction is characterized by reduced NO
bioavailability,  impaired  endothelium-dependent  hyperpo-
larization  (EDH),  and  increased  production  of  endotheli-
um-derived  contracting  factors  [23].  Given  the  need  for
more effective strategies to manage hypertension and its as-
sociated endothelial dysfunction, polyphenols—naturally oc-
curring compounds found in a variety of plant-based foods
—have garnered significant attention for their potential thera-
peutic  effects.  Endothelial  dysfunction in  hypertension re-
sults from a complex interplay of factors [23]. The endotheli-
um, the inner lining of blood vessels, plays a crucial role in
maintaining vascular homeostasis through the release of vari-
ous factors that regulate vasodilation and vasoconstriction.
In hypertension, there is a notable reduction in NO, a key va-
sodilator,  and  a  decline  in  EDH,  which  normally  comple-
ments NO-mediated vasodilation. Additionally, there is an
increase in endothelium-derived contracting factors, which
further exacerbates vascular tension and promotes hyperten-
sive pathology. These changes contribute to a vicious cycle
of increasing BP and worsening endothelial health, ultimate-
ly leading to CVD. The beneficial effects of polyphenols on
endothelial function are primarily mediated through their in-
fluence on NO and EDH pathways. Polyphenols enhance the
bioavailability of NO by promoting its synthesis and inhibit-
ing its degradation [23]. This leads to improved vasodilation
and reduces vascular resistance. Additionally, polyphenols
may support EDH, further contributing to vasodilation, espe-
cially  in  smaller  blood  vessels  where  EDH  plays  a  more
prominent  role  than  NO.  Preclinical  studies  using  animal
models of hypertension have shown that polyphenol supple-
mentation results in decreased BP and improved endothelial
function, mirroring the effects observed in clinical settings.
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Fig. (1). Classification of polyphenols and the natural origins from which they are derived. (A higher resolution / colour version of this figure
is available in the electronic copy of the article).

Table 1. Antihypertensive mechanisms of polyphenols.

Mechanism Polyphenols Target Systems/Effects

Endothelial Function Improvement Flavonoids (e.g., quercetin, epicat-

echin)

Enhanced nitric oxide (NO) bioavailability; improved endothelial-de-

pendent vasodilation.

Inhibition of Angiotensin-Converting Enzyme
(ACE)

Flavonoids (e.g., catechins, pro-

cyanidins)

Reduced angiotensin II levels lead to vasodilation and decreased

blood pressure.

Antioxidant Activity Resveratrol, quercetin
Reduction of oxidative stress, prevention of endothelial dysfunction,

and vascular inflammation.

Anti-Inflammatory Effects Curcumin, epigallocatechin gallate

(EGCG)

Reduced inflammation in vascular tissues and improved vascular

health.

Improvement of Vascular Smooth Muscle Func-
tion Resveratrol, anthocyanins

Modulation of calcium channels and potassium channels, leads to va-

sodilation.

Reduction of Sympathetic Nervous System Ac-
tivity

Flavonoids (e.g., hesperidin, narin-

genin)
Lowered heart rate and reduced vasoconstriction.

Improvement in Lipid Profile Polyphenols in olive oil, flavonoids
Reduction in LDL oxidation, improved HDL levels, contributing to

vascular health.

Modulation of Renin-Angiotensin System Catechins, procyanidins Reduction in renin activity, leading to decreased blood pressure.

Enhanced Nitric Oxide Synthase Activity Resveratrol, epicatechin
Increased production of NO, promoting vasodilation and reduced

blood pressure.

Regulation of Endothelin-1 Levels Resveratrol, flavonoids
Decreased levels of endothelin-1, a potent vasoconstrictor, leading to

vasodilation.
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Fig. (2). Simple phenolic acids (chemical structure). This group of phenolic compounds is comprised of benzoic and cinnamic acid deriva-
tives. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig. (3). Main phenolic compound’s chemical structure with a description of biological properties. (A higher resolution / colour version of
this figure is available in the electronic copy of the article).
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The  mechanisms  by  which  polyphenols  exert  their  ef-
fects on BP and endothelial function are multifaceted. These
compounds  can  modulate  signaling  pathways  involved  in
oxidative stress and inflammation, both of which are closely
linked  to  endothelial  dysfunction.  By  scavenging  reactive
oxygen species (ROS) and upregulating antioxidant defens-
es, polyphenols reduce oxidative damage to the endotheli-
um. Furthermore,  they inhibit  pro-inflammatory signaling,
thereby preventing endothelial cell activation and dysfunc-
tion. Polyphenols also influence the expression and activity
of enzymes involved in NO production, such as endothelial
nitric oxide synthase (eNOS), enhancing NO bioavailability.

Persistent inflammation is key in many non-communica-
ble diseases, especially CVD, and HTN, driven by cytokines
such  as  Interleukin  (IL)  1,  3,  6,  8,  and  18,  TNF-α,  and
macrophage colony-stimulating factor. Phenolic compounds
reduce inflammation by inhibiting inflammatory cell recruit-
ment,  decreasing pro-inflammatory molecules like TNF-α,
IL-6, and CRP, and reducing adhesion molecule production,
thus  preventing  monocyte  migration  [24].  By  modulating
gene  expression  pathways,  polyphenols,  including
flavonoids and resveratrol, target inflammatory markers and
influence MAPK, JAK/STAT, and NF-κB pathways, show-
casing  anti-inflammatory  effects  [24,  25].  Dyslipidemia,
linked with HTN, often starts with oxidized LDL cholesterol
accumulation in the vascular intima due to ROS, leading to
macrophage-mediated inflammation and subsequent vascu-
lar damage [26]. Polyphenols counteract LDL oxidation, pro-
tecting CVDs, including HTN [27, 28]. Their role in manag-
ing inflammation and lipid levels underscores their potential
in CVD and HTN treatment, indicating an area ripe for fur-
ther exploration.

Oxidative stress, marked by excessive free radicals and
reactive oxygen species (ROS), plays a crucial role in vari-
ous health issues, especially CVDs [29]. Polyphenols, recog-
nized  for  their  potent  antioxidant  action,  neutralize  these
harmful  radicals,  significantly  reducing  oxidative  stress
[30]. Scientific research underscores flavonoids' vast antioxi-
dant effects, revealing they act beyond simple radical scav-
engers. They regulate cellular activities by targeting specific
kinase signaling pathways [5]. Flavonoids lower BP primari-
ly through their ability to scavenge free radicals and ROS,
forming stable, less reactive products and thus serving as ef-
fective reducing agents [31]. Key antioxidants like flavonols
(e.g., quercetin), flavanones (e.g., naringenin), and stilbenes
(e.g., resveratrol) are notable for directly neutralizing radi-
cals and improving vascular health [32]. Dietary pro-antho-
cyanidins,  acting  as  antioxidants  and  signaling  molecules,
contribute  to  this  process  by  scavenging  ROS  [33].  Po-
lyphenols also mitigate cellular aging and enhance mitochon-
drial function in vascular cells via modulation of signal trans-
duction pathways [4].

Certain flavonoid subgroups, such as flavanones and an-
thocyanins, along with phenolic acids like caffeic acid, have
been shown to possess antioxidant capabilities by bolstering
cellular defense systems. This bolstering occurs through the
activation of transcription factors that  regulate antioxidant

and cell-protective enzymes, notably through the ERK/Nrf2
signaling pathway [34]. Polyphenols also play a role in mod-
ulating various cellular  pathways,  leading to the enhanced
expression of crucial antioxidant genes like HO-1, NQO1,
GCLC, and the stimulation of  endogenous antioxidant  en-
zymes including GPX, SOD, catalase, and GR, essential for
reducing oxidative stress [35]. In CVDs and HTN, the ren-
in-angiotensin-aldosterone system (RAAS) is often overac-
tive,  raising angiotensin II  (Ang II)  levels,  a  key factor  in
HTN development. Increased oxidative stress markers corre-
late  with Ang II  levels  in heart  failure (HF) patients.  Del-
phinidin,  an  anthocyanidin,  has  been  shown  to  counteract
Ang II-mediated hypertrophy by reducing ERK1/2, MAPK,
and JNK activation, as well as diminishing H2O2 and O2•−
levels through lowered NADPH oxidase activity, especially
Nox2  [36].  The  strategy  of  utilizing  antioxidants  and  free
radical scavengers to target ROS linked with excessive Ang
II  production  is  becoming  more  central  in  CVD  manage-
ment. Antioxidant therapy could offer benefits beyond con-
ventional treatments like ACEIs and ARBs by neutralizing
ROS from Ang II and pro-inflammatory cytokines involved
in CVDs, including HTN [36]. This research path highlights
the  significant  potential  of  antioxidants  in  cardiovascular
health,  promising further insights into their use in treating
CVD and HTN.

1.2. NcRNAs AND HTN
The formation of new drugs focuses on targeting specif-

ic  genes  and  proteins  within  key  signaling  pathways.  De-
spite  various  drug  classes  improving  cardiovascular  out-
comes—reducing  mortality  by  33%,  major  adverse  events
by 29%, and heart failure by 37% HTN continues to be a sig-
nificant global health issue [37]. This highlights the need for
a deeper understanding of HTN's molecular basis and the de-
velopment  of  targeted  therapies.  HTN's  complexity  arises
from the interplay between systems that are either overacti-
vated  (like  the  renin-angiotensin-aldosterone  system
(RAAS) and sympathetic nervous system) or underactivated
(such as the parasympathetic nervous system), leading to in-
creased vascular reactivity, sodium retention, and endothe-
lial dysfunction [38-41]. The role of genetics in HTN empha-
sizes the importance of identifying genetic predispositions to
high BP, although gene polymorphisms explain only a small
part of HTN susceptibility [42]. NcRNAs are pivotal in regu-
lating transcription and are increasingly recognized for their
roles  in  HTN,  affecting  nearly  all  cardiovascular-relevant
cell types [43]. Advances in genomic technologies like mi-
croarrays and next-generation sequencing have spotlighted
ncRNAs, especially miRNAs and lncRNAs, in the study of
HTN in both human and animal models [44]. The regulatory
scope of miRNAs across multiple genes and the significant
roles of lncRNAs in HTN suggest their potential as biomark-
ers and therapeutic targets [45, 46]. Epigenetic mechanisms,
including histone modification, DNA methylation, and ncR-
NA-regulated gene expression, also play roles in HTN. For
instance,  the phosphorylation of histone deacetylase 1 (H-
DAC1)  by  G-protein-coupled  receptor  kinase  type  4
(GRK4) affects the expression of the Angiotensin II receptor
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type  1  (AT1R),  influencing  the  body's  response  to  An-
giotensin  II  [47].  This  streamlined  understanding  unders-
cores the potential of targeted therapeutic strategies in man-
aging HTN, leveraging insights into genetics, ncRNA regula-
tion, and epigenetic mechanisms.

1.3. LncRNAs and HTN
LncRNAs are  a  class  of  RNA molecules  over  200 nu-

cleotides long, not coding for proteins but playing key roles
in epigenetic regulation and genetic processes [48]. They in-
fluence splicing, imprinting, epigenetic modifications,  and
gene transcription, adding a new layer to biological unders-
tanding  [49].  LncRNAs  are  categorized  based  on  their
proximity  to  protein-coding  genes  into  intergenic  (lincR-
NAs), intronic (within introns), sense (on the same strand),
and antisense (on the opposite strand) lncRNAs. Their pres-
ence in the blood of HTN patients suggests potential as diag-
nostic biomarkers [50]. Despite their emerging significance
in health and disease, studies on lncRNAs in HTN remain
limited. These molecules play a role in the development of
HTN by directly affecting vascular cells and indirectly influ-
encing various bodily systems [51]. Research shows that the
lncRNA  XR007793  is  notably  upregulated  in  vascular
smooth muscle cells (VSMCs), with its downregulation lead-
ing to reduced VSMC proliferation and migration, impact-
ing factors like IRF7, STAT2, and LIMO2 [52]. Inhibiting
miR-23b  was  found  to  decrease  the  expression  of  VSMC
markers, increasing VSMC proliferation and migration. This
reveals how XR007793 impairs VSMC function by negative-
ly  influencing  miR-23b  [53].  Genome-wide  association
studies (GWAS) have identified various genetic loci related
to BP regulation, adding complexity to understanding HTN.
For instance, the lncRNA H19 locus is linked to systolic BP

variations, and SNPs like rs10757274 and rs1333049 on ln-
cRNA CDKN2B-AS1 increase HTN risk [54]. The discov-
ery of lncRNAs, such as AK098656 and AK125261, which
show  altered  expression  in  hypertensive  patients'  plasma,
highlights  the  potential  of  lncRNA-based  biomarkers  for
HTN  [55].  Furthermore,  lower  levels  of  plasma  lncRNA
GAS5 in coronary artery disease (CAD) patients suggest ln-
cRNAs'    broader    significance   in  cardiovascular  health
(Table 2) [56].

1.4. miRNAs and HTN
miRNAs are crucial for gene regulation, impacting gene

expression  by  mRNA  cleavage  or  translation  inhibition.
They influence a broad range of genes and are regulated by
multiple miRNAs themselves. Operating post-transcriptional-
ly  in  eukaryotes,  miRNAs  are  vital  in  various  biological
functions and significantly affect conditions like HTN [62,
63].  Certain miRNAs, showing high expression in healthy
cardiac tissue, play roles in maintaining cardiac health. Re-
search  has  identified  miRNAs,  such  as  miR-126  and
miR-155, as potential CVD biomarkers, with variable expres-
sion  levels  noted  in  HTN  development  [64].  Microarray
studies pinpointed miRNAs like miR-425 and miR-505 as
upregulated in hypertensive patients, with miR-505 particu-
larly consistent across HTN cases [65]. Furthermore, varia-
tions  in  miRNA levels  in  fluids  like  serum highlight  their
connection to specific conditions, e.g., serum miR-29/a lev-
els link to hypertensive cardiac hypertrophy [66]. miRNAs'
diagnostic value lies in their circulation stability and detec-
tion in bodily fluids, resisting degradation by RNases. Their
expression changes are closely associated with HTN, mak-
ing  them potential  biomarkers  for  the  condition  (Table  3)
[67].

Table 2. LncRNAs in HTN.

LncRNA Regulation Tissue/Cell Type Function References

XR007793 Up
Sprague-Dawley rats/

VSMCs

Inhibition of XR007793 leads to the suppression of vascular smooth muscle cell

(VSMC) proliferation and migration. Decreased transcript levels of stat2, lmo2,

and irf7 accompany this downregulation.

[53]

AK098656 Up Human plasma/HASMCs
Stimulates the proliferation and migration of vascular smooth muscle cells

(VSMCs).
[54]

GAS5 Down VSMC/ EC

The expression of GAS5 is reduced in HTN. When GAS5 is knocked down,

there is an increase in systolic BP, diastolic BP, and mean arterial BP (in sponta-

neously hypertensive rats, SHR). This knockdown also leads to enhanced retinal

neovascularization, capillary leakage, endothelial activation, and proliferation.

[56]

sONE Down BHRs
Lycium Barbarum L. improved hypertension, decreased the expression of sONE,

and enhanced eNOS expression when compared to rats on a high-salt diet.
[57]

749 lncRNAs

Differential ex-

pression between

SHR and nor-

motensive rats

SHRs/ normotensive Wis-

tar-Kyoto (WKY) rats
Asb3, Chac2, Pex11b, Sp5 [58]

MALAT1 Up HUVECs Vessel growth, and endothelial cell function. [59]
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������



Polyphenol-Mediated Modulation of Non-Coding RNAs Current Hypertension Reviews, 2024, Vol. 20, No. 3   133

LncRNA Regulation Tissue/Cell Type Function References

CDKN2B-AS1 Up HT patients/ VSMC

There is a notable variance in the genotype frequencies of the four SNPs be-

tween individuals with HTN and normotensive individuals (NT). An association

has been identified between the genotypes AA of the SNPs rs10757274 and

rs2383207 and systolic blood pressure (SBP).

[60]

H19 Up
PASMCs/ SD rats,

C57/BL6 mice/ PAH model

The H19-let-7b-AT1R axis plays a role in the development of pulmonary arterial

hypertension (PAH) by promoting the proliferation of pulmonary arterial smooth

muscle cells (PASMCs).

[61]

Table 3. miRNAs in HTN.

miRNA Regulation Tissue/Cell Type Function Reference

miR-1 Up HASMCs/ VSMC/SHRs
MiR-1 controls vascular smooth muscle cell (VSMC) proliferation

by directing its actions toward IGF-1.
[68]

let-7 g Down
Human PASMCs and mouse lungs induced by

hypoxia

Let-7g and LOX-1 have a reciprocal inhibitory effect on each other's

expression.
[69]

miR-21 Down
LEAOD, MCT, hypoxia, hypoxia/Sugen5416,

lung and serum of PH patients
MiR-21 reduces BP in spontaneously hypertensive rats. [70]

miR-153 Up SHR/ Mas/ MCAs/ NT MAs
MiR-153, by targeting KCNQ4, plays a role in vascular dysfunction

associated with hypertension.
[71]

miR-199a-5p Up HPASMCs/ HPAECs
MiR-199a-5p affects pulmonary artery HTN by reducing the expres-

sion of Smad3.
[72]

miR34b Down VSMCs
The reduction in miR-34b levels is accountable for the increase in

BP.
[73]

miR-125a Up PAH/ CTEPH
MiR-125a encourages the proliferative characteristics of endothelial

cells in the context of pulmonary hypertension.
[74]

miR-98 Down

PAECs from PH patients, PAECs under hypoxia

and in lungs from mice induced by Sug-

en5416/hypoxia

PPARγ controls miR-98 to adjust the expression of ET-1 and the pro-

liferation of pulmonary artery endothelial cells (PAEC).
[75]

miR-210 Up
Ovine Uterine Arteries, PAECs induced by hy-

poxia

MiR-210 influences the response of human pulmonary artery smooth

muscle cells (PASMCs) to hypoxia through its interaction with

MKP-1.

[76]

miR-30c Down

PAECs from PH patients/ Rat induced by hy-

poxia and pulmonary arteries (PA) from PH pa-

tients.

MiR-30c plays a role in the progression of pulmonary HTN caused

by hypoxia.
[77]

1.5. The  Regulatory  Impact  of  Polyphenols  on  Key
ncRNAs Associated with HTN

Polyphenols, derived from natural sources such as fruits,
vegetables, tea, and traditional herbs, have shown significant
protective effects against diseases associated with oxidative
stress,  including  HTN  [78-80].  This  protective  capability
stems primarily from their potent antioxidant properties and
their influence on cellular mechanisms through modulation
of critical signaling pathways. Polyphenols exert antihyper-
tensive effects  by interacting with key signaling pathways
such as AKT/PI3K and NF-KB [81]. These pathways play
crucial roles in regulating various cellular functions that are
pivotal in the pathophysiology of hypertension. By modulat-
ing  these  pathways,  polyphenols  help  to  regulate  vascular
tone, reduce inflammatory responses, and prevent vascular

remodeling, all of which are essential for managing elevated
blood pressure levels. The ability of polyphenols to combat
ROS is another vital aspect of their therapeutic potential [82,
83].  They  provide  both  direct  and  indirect  antioxidant  ef-
fects, neutralizing ROS and thus mitigating oxidative stress,
a major contributing factor to the development and progres-
sion of hypertension. This antioxidant action helps to pre-
serve the integrity of vascular cells and improves endothelial
function, reducing the risk of hypertension-related complica-
tions. In addition to their antioxidant and signaling modula-
tion properties, polyphenols also induce significant epigenet-
ic  changes  within  myocytes.  These  changes  include  chro-
matin restructuring, DNA methylation, and alterations in the
expression of miRNAs [84]. Such epigenetic modifications
can influence gene expression and are crucial for the long-
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term regulation of blood pressure and vascular health. Over-
all,  the  comprehensive  role  of  polyphenols  in  managing
HTN underscores their potential as a valuable component of
hypertension treatment strategies. Their natural origin, cou-
pled with their broad spectrum of beneficial effects on cellu-
lar and molecular levels, highlights their potential as an ad-
junct therapy for managing not only hypertension but also
other oxidative stress-related conditions.

1.6. Polyphenols and lncRNAs
LncRNAs, with specific expression patterns across cell

types and tissues, play critical roles in development and dis-
ease mechanisms [85]. Research has shown that Lycium bar-
barum  can lower BP by inhibiting lncRNA sONE in a  rat
model, suggesting anti-hypertensive properties [57]. Further-
more,  overexpression  of  H19 in  human microvascular  en-
dothelial cells enhances their proliferation, migration, and an-
giogenesis while also downregulating miR-181a to activate
JNK  and  AMPK  pathways,  suggesting  H19's  potential  in
treating atherosclerosis and peripheral artery disease (PAD)
[86]. Fisetin, a flavonoid with antioxidant and anti-inflamma-
tory effects, suppresses hypertrophy in cardiac cells and im-
proves heart function in hypertensive rats, indicating its ther-
apeutic value against cardiac hypertrophy [87]. It also pro-
tects against Ang II-induced apoptosis via the IGF-IR-PI3K-
Akt pathway, underscoring the potential of targeting lncR-
NAs with polyphenols in HTN management [81].

1.7. Polyphenols and miRNAs
Recent findings highlight polyphenols' ability to interact

with cellular pathways, affect transcription factors, and thus
modify gene expression, notably influencing miRNA expres-
sion, which can be affected by diet and phytochemicals [88].
This interaction illustrates miRNAs' role in the effects of po-
lyphenols [89]. Specifically, flavanones like Hesperidin and
Naringenin,  found  in  citrus  fruits,  have  been  studied  in
ApoE mice and shown to alter 97 and 69 miRNAs, respec-
tively, with 31 miRNAs commonly affected, indicating their
potential in cardiovascular protection [89]. The miR-29 fami-
ly, important in cardiovascular health, can improve cardiac
function  when  upregulated,  while  its  downregulation  has
been  associated  with  reduced  BP  and  better  cardiac  out-
comes in hypertensive rats [90]. Polyphenols such as EGCG
and  resveratrol  modulate  miRNAs  across  all  HTN  stages
[91].  EGCG  treatment  in  pulmonary  hypertension  fi-
broblasts (PH-Fibs) alters gene and miRNA expression, af-
fecting oxidative and inflammatory pathways, indicating po-
tential effects on MAPK, NF-κB, and AMPK pathways and
epigenetic mechanisms like DNA methylation and histone
acetylation [92]. Studies highlight EGCG's ability to reduce
fibroblast  proliferation,  enhance  antioxidant  defenses,  and
decrease  inflammation,  including  upregulation  of
miR-29/b-2-5 linked to hypertension. Green tea extract, rich
in polyphenols, has been shown to improve cardiomyocyte
metabolism by lowering miR-29 levels [93]. Research indi-
cates that miRNAs like miR-21, miR-181b, and miR-155, in-
volved in the inflammatory response, were significantly al-
tered in those consuming resveratrol-enriched grape extract,

suggesting  an  anti-inflammatory  effect  in  hypertensive
T2DM patients [94]. Resveratrol influences miRNAs in is-
chemic hearts (e.g., miR-21), affecting cardiac health by mo-
dulating pathways like ERK-MAP kinase, and is proposed
to counteract pulmonary vascular remodeling via miR-638
[95,  96].  EGCG's antihypertensive properties  may involve
miRNA-150-5p through the SP1/AT1R pathway in hyperten-
sive  rats  [97].  Quercetin's  potential  in  treating  pulmonary
HTN could be via regulating PARP1 and miR-204, impact-
ing HIF1a and NFATc2 [98]. MiR-155's regulation by po-
lyphenols, particularly in macrophages, suggests its role as a
biomarker and target in HTN management [99, 100]. Resver-
atrol's  diverse  effects  include  modulating  miRNAs  like
miR-663 and miR-155 in monocyte cells, with implications
for inflammation and muscle function [101]. Quercetin and
isorhamnetin's anti-inflammatory action are linked to increas-
ing haem oxygenase 1 levels and down-regulating miR-155,
underlining the therapeutic potential of polyphenols in HTN
and inflammation (Figs. 4 and 5) [102].

2. DISCUSSION
Polyphenols have garnered significant attention as thera-

peutic agents in managing HTN due to their robust antioxi-
dant properties and potential to modulate ncRNAs, such as
miRNAs  lncRNAs.  These  naturally  occurring  compounds
combat oxidative stress, a major factor contributing to HTN
and broader CVDs. Notable polyphenols like EGCG, resver-
atrol, and curcumin can influence biological pathways relat-
ed to vascular function and BP regulation. By targeting ncR-
NAs, polyphenols have the potential to significantly affect
gene expression associated with endothelial function, vascu-
lar smooth muscle cell proliferation, and inflammation, offer-
ing a multifaceted approach to cardiovascular health manage-
ment. Despite these promising attributes, polyphenols face
notable challenges, particularly concerning their bioavailabil-
ity.  These  compounds  typically  exhibit  poor  absorption,
rapid  metabolism,  and  quick  elimination  from  the  human
body, severely limiting their therapeutic effectiveness. Fur-
thermore,  the  complexity  of  polyphenols'  actions  at  the
molecular level is not fully understood, with the exact mech-
anisms through which they exert their effects remaining par-
tially  elusive.  Clinical  trials  exploring  the  effects  of  po-
lyphenols on cardiovascular health have been numerous, yet
studies specifically targeting ncRNAs in the context of HTN
are relatively scarce. The mixed results from these studies,
largely due to variations in polyphenol sources, dosages, and
study  designs,  underscore  the  urgent  need  for  more  stan-
dardized  and  rigorous  research  to  delineate  their  potential
better and define their limitations in clinical settings. Achiev-
ing and maintaining effective plasma concentrations of po-
lyphenols is a significant hurdle in their therapeutic use, pri-
marily  due  to  their  low  bioavailability.  This  challenge  is
compounded  by  individual  variations  in  gut  microbiota,
which can alter the metabolism and efficacy of these com-
pounds.  Consequently,  innovative  formulation  strategies,
such  as  nanoparticle-based  carriers,  liposomal  encapsula-
tion, and complexation with cyclodextrins, have been devel-
oped to enhance the absorption and stability of polyphenols



Polyphenol-Mediated Modulation of Non-Coding RNAs Current Hypertension Reviews, 2024, Vol. 20, No. 3   135

Fig. (4). Schematic representation illustrating the pathological pathways by which polyphenols regulate the expression levels of microRNA
(miRNA) and its target genes in hypertension. (A higher resolution / colour version of this figure is available in the electronic copy of the ar-
ticle).

in the human body. These advanced formulations aim to pro-
tect polyphenols from premature degradation and facilitate
their more efficient delivery to targeted sites, potentially en-
hancing  their  therapeutic  effects.  The  therapeutic  implica-
tions  of  harnessing  polyphenols  to  modulate  ncRNAs  are
particularly  promising,  given  the  low  toxicity  and  natural
abundance  of  these  compounds.  Unlike  many  synthetic
drugs, polyphenols are widely available in the diet, making
them  accessible  to  a  broad  population.  This  accessibility,
combined with  their  potential  to  target  ncRNAs,  positions
polyphenols as attractive candidates for developing new ther-
apeutic strategies against HTN. Polyphenol-based interven-
tions could serve as a novel, non-pharmacological approach
to HTN management, either as a primary treatment or in con-
junction with conventional antihypertensive therapies. Pre-
liminary studies suggest that such combinations might pro-
duce  synergistic  effects,  potentially  allowing  for  lower

dosages of pharmaceuticals and reducing side effects. How-
ever,  detailed  studies  and  clinical  trials  are  necessary  to
establish safe and effective combination therapies fully. Fur-
ther  research is  needed to identify specific  ncRNA targets
most responsive to polyphenol intervention and to unders-
tand the dose-response relationships that optimize their thera-
peutic efficacy. Understanding these nuances is crucial for
translating  preclinical  findings  into  clinical  applications,
where  tailored  dietary  recommendations  or  supplements
could  be  used  to  prevent  or  treat  HTN effectively.  As  re-
search in this area continues to evolve, there is hope that po-
lyphenol-based interventions could become a cornerstone of
HTN management, providing a natural and effective means
of reducing the global burden of this condition. The intricate
interplay between polyphenols and ncRNAs offers valuable
mechanistic insights into how dietary components can influ-
ence HTN at the molecular level, potentially leading to im-
proved cardiovascular outcomes and enhanced public health.
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Fig. (5). Schematic representation illustrating the pathological pathways by which polyphenols regulate the expression levels of long non-
coding RNAs (lncRNAs) and their targets in hypertension. (A higher resolution / colour version of this figure is available in the electronic
copy of the article).

CONCLUSION
While the scientific community has persistently striven

to  unravel  the  molecular  intricacies  of  HTN,  a  significant
portion of its molecular underpinnings continues to elude un-
derstanding. Nonetheless, the deployment of advanced RNA
sequencing technologies, particularly small RNA sequenc-
ing, has emerged as a powerful tool, offering a glimpse into
the complex molecular processes that underlie HTN. This,
coupled with the discovery of ncRNAs targets implicated in
the pathogenesis of HTN, presents an exciting and promis-
ing avenue that could potentially lead to the development of
groundbreaking therapies aimed at preventing and even rev-
ersing the adverse consequences of this pervasive condition.
It is noteworthy, however, that despite the growing body of
evidence supporting the involvement of ncRNAs in the regu-
lation of BP and their role in HTN, this field of investigation
remains relatively fledgling within the domain of HTN re-
search. Yet, the potential implications are profound, hinting

at a sea change in our approach to understanding and manag-
ing this complex condition. These ncRNAs, spanning miR-
NAs and long non-coding RNAs (lncRNAs), have unlocked
doors  to  fresh  opportunities  and  breakthroughs,  especially
when considered within the context of clinical trials explor-
ing RNA interference (RNAi) as the next frontier in medical
therapy. Novel strategies in drug development can home in
on the suppression or inhibition of overexpressed ncRNAs,
offering a potent means of intervening in the molecular pro-
cesses at the heart of HTN. Conversely, in cases of deficient
ncRNAs, they can be bolstered or enhanced through overex-
pression  or  by  leveraging  synthetic  ncRNAs.  The  distin-
guishing hallmark of ncRNAs compared to traditional drug
molecules lies in their ability to pinpoint any gene of interest
and their potential to repress gene expression. This feat may
elude certain conventional drug compounds. The application
of  ncRNAs  in  the  domain  of  CVDs,  with  a  spotlight  on
HTN, holds the key to unlocking a new frontier in intelligent
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and precise medical interventions. By harnessing the formid-
able capabilities of these enigmatic molecules, the realm of
HTN research is poised for a transformative leap forward,
bringing with it the promise of more effective and personal-
ized  treatments  for  this  widespread  medical  condition.  As
our understanding deepens and the research advances, the po-
tential  benefits  for  patients  dealing  with  HTN become in-
creasingly tangible.
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