
Citation: Murashkina, A.V.;

Bogdanov, A.V.; Voloshina, A.D.;

Lyubina, A.P.; Samorodov, A.V.;

Mitrofanov, A.Y.; Beletskaya, I.P.;

Smolyarchuk, E.A.; Zavadich, K.A.;

Valiullina, Z.A.; et al. Base-Catalyzed

Reaction of Isatins and

(3-Hydroxyprop-1-yn-1-yl)

phosphonates as a Tool for the

Synthesis of Spiro-1,3-dioxolane

Oxindoles with Anticancer and

Anti-Platelet Properties. Molecules

2024, 29, 4764. https://doi.org/

10.3390/molecules29194764

Academic Editor: Giuseppe Manfroni

Received: 12 September 2024

Revised: 1 October 2024

Accepted: 7 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Base-Catalyzed Reaction of Isatins and
(3-Hydroxyprop-1-yn-1-yl)phosphonates as a Tool for the
Synthesis of Spiro-1,3-dioxolane Oxindoles with Anticancer
and Anti-Platelet Properties
Arina V. Murashkina 1 , Andrei V. Bogdanov 2,*, Alexandra D. Voloshina 3, Anna P. Lyubina 3 ,
Alexandr V. Samorodov 4 , Alexander Y. Mitrofanov 1,* , Irina P. Beletskaya 1 , Elena A. Smolyarchuk 5,
Kseniya A. Zavadich 5 , Zulfiya A. Valiullina 4 , Kseniya A. Nazmieva 4 , Vladislav I. Korunas 4

and Irina D. Krylova 4

1 Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia;
arinamr@mail.ru (A.V.M.); beletska@org.chem.msu.ru (I.P.B.)

2 A. M. Butlerov Institute of Chemistry, Kazan Federal University, 420008 Kazan, Russia
3 Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of

Sciences, 420088 Kazan, Russia; microbi@iopc.ru (A.D.V.); aplyubina@gmail.com (A.P.L.)
4 Department of Pharmacology, Bashkir State Medical University, 450008 Ufa, Russia;

avsamorodov@gmail.com (A.V.S.); z_suleimanova@mail.ru (Z.A.V.); nazmievaksenia@gmail.com (K.A.N.);
bsmu.korunas@gmail.com (V.I.K.); i.krylova16@yandex.ru (I.D.K.)

5 The A.P. Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University
(Sechenov University), 119571 Moscow, Russia; smolyarchuk_e_a@staff.sechenov.ru (E.A.S.);
zavadich_k_a@staff.sechenov.ru (K.A.Z.)

* Correspondence: abogdanov@inbox.ru (A.V.B.); mitrofanov@org.chem.msu.ru (A.Y.M.);
Tel.: +7-843-272-7384 (A.V.B.)

Abstract: An approach to the synthesis of phosphoryl substituted spiro-1,3-dioxolane oxindoles
was developed from the base-catalyzed reaction of various isatins with (3-hydroxyprop-1-yn-1-
yl)phosphonates. It was found that various aryl-substituted and N-functionalized isatins with the
formation of appropriate products with high yields and stereoselectivity when using t-BuOLi are able
to react. Cytotoxic activity evaluation suggests that the most significant results in relation to the HuTu
80 cell line were shown by N-benzylated spirodioxolanes. 5-Cloro-N-unsubstituted spirooxindoles
exhibit antiaggregational activity exceeding the values of acetylsalicylic acid.

Keywords: spiro compounds; isatin; phosphonates; cytotoxicity; anticoagulants; stereoselectivity

1. Introduction

Spirooxindoles have a unique three-dimensional structure and are a common fragment
in many natural products and pharmacologically significant compounds. A lot of diverse
spirooxindoles containing various hetero- and carbocyclic fragments have been obtained to
date using various multicomponent metal- and organocatalytic reactions of isatins and their
derivatives [1–5]. The 1,3-dioxolane fragment is also often found in natural sources and
presents in various synthetic bioactive structures. Despite this, spiroxindoles containing
the 1,3-dioxolane fragment have been studied significantly less [6–10], although they have
psychotropic [11], anticonvulsant [12], anxiolytic [13], and sedative–hypnotic activities [14].

The heterocyclic core of isatin features a privileged scaffold [15] and is a convenient
building block for the creation of a hybrid system in view of the easy functionalization of
the carbonyl group, aromatic moiety, and nitrogen atom [16–21]; its numerous derivatives
possess a wide range of biological activity [22–43]. Due to their synthetic and commercial
availability, isatins have been in the focus of attention as convenient starting compounds
for the synthesis of spirooxindoles [44,45].
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Phosphonic acids and their derivatives, due to their biological activity, are widely used
in medicine and agriculture and are actively used in coordination chemistry and materials
chemistry. In this regard, the introduction of phosphoryl substituents into complex bioac-
tive molecules can significantly change their properties and lead to the production of new,
practically useful compounds. In particular, several examples of spirooxindoles containing
a phosphoryl group, along with aziridine [46,47], oxirane [48,49], cyclopropyl [50], pyrazo-
line [51], and cyclohexene [52,53] rings, are known in the literature, but compounds with a
1,3-dioxolane fragment have not yet been obtained. Therefore, in this work, we decided to
obtain hybrid spirooxindoles that combine in one molecule both a phosphoryl group and
a 1,3-dioxolane fragment. It is worth noting that approaches in the literature use indole
derivatives such as substituted methyleneoxindoles, whereas the use of available isatins as
starting compounds seems more desirable [46–51].

We have previously shown that compounds of the (3-hydroxyprop-1-yn-1-yl)phosphonate
class can be used in a base-catalyzed reaction with activated trifluoromethyl ketones to obtain
(1,3-dioxolan-4-ylidene)methylphosphonates in high yields [54]. In this work, we proposed the
use of (3-hydroxyprop-1-yn-1-yl)phosphonates to obtain spirooxindoles by reaction with isatins,
which also have an activated carbonyl group at position 3 (Figure 1).
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2. Results
2.1. Synthesis

Based on previous results of the synthesis of 1,3-dioxolane derivatives using (3-
hydroxypropynyl)phosphonates, we assumed that in this case, their reaction with isatins
could also proceed in the presence of a base as a catalyst. Indeed, the model reaction of un-
substituted isatin 1a with phosphonate 2a proceeded within 16 h using 20 mol% t-BuOK as
a base in THF to form the corresponding spirooxindole 3a with an isomer ratio Z/E = 93/7
(entry 1, Table 1). At room temperature, the reaction practically did not proceed (entry
2). The use of other solvents (entries 3–6), as well as inorganic (potassium and cesium
carbonates) and organic bases (entries 7–10), did not result in an increase in stereoselectivity.
At the same time, the use of t-BuONa as a base led to an increase in stereoselectivity (entry
11), and the use of t-BuOLi made it possible to significantly reduce the reaction time (up to
4 h) and also led to the formation of spirooxindole 3a with almost complete stereoselectivity
(entry 12).



Molecules 2024, 29, 4764 3 of 14

Table 1. Optimization of reaction conditions for the synthesis of 3a a.
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1 t-BuOK (20) THF 60 16 100 (100) 93/7
2 t-BuOK (20) THF 25 16 5 (5) -
3 t-BuOK (20) toluene 60 16 100 (100) 84/16
4 t-BuOK (20) dioxane 60 16 85 (85) 91/9
5 t-BuOK (20) MTBE 60 16 42 (42) 92/8
6 t-BuOK (20) EtOH 60 16 95 (100) 87/13
7 Cs2CO3 (20) THF 60 16 100 (100) 86/14
8 K2CO3 (20) THF 60 24 93 (93) 91/9
9 DBU (20) THF 60 24 88 (88) 91/9

10 TEA (20) THF 60 24 0 -
11 t-BuONa (20) THF 60 16 78 (78) 96/4
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a Yields, conversion, and Z/E ratio were determined by 1H and 31P NMR spectroscopy.

Under the optimized conditions found, a series of different substituted spirooxindoles
were obtained with high yields and selectivity (Scheme 1, Supporting Information). The
presence of substituents in the starting isatins (donor or acceptor) did not affect the yield
and stereoselectivity, but required an increase in the reaction time. The reaction could also
be performed with 3-hydroxypropynylphosphonate 2b and 2c containing a cyclohexane
and cyclopentane fragment, leading to the corresponding dispirooxindoles 3j and 3k.

The reactivity of N-substituted isatins turned out to be significantly higher than
unsubstituted ones. Thus, the reaction of N-methyl- and various N-benzylisatins in the
presence of 20 mol% t-BuOLi ended in half an hour and led to N-substituted spirooxindoles
4 in high yields (Scheme 2).

The structure of the compounds was confirmed by 1H, 13C, 31P NMR, and high-
resolution mass spectra. For example, compound 3a had an olefinic proton with a chemical
shift of 4.52 (2JH,P = 7.1 Hz) ppm, which is in good agreement with known similar struc-
tures [54]. Also, the chemical shifts of carbon C1 and C3 (79.3 (d, 1JC,P = 196.8 Hz) and 86.1
(d, 3JC,P = 15.4 Hz) correspond to literature data of similar compounds.

As we have shown earlier using the example of the reaction of ethynylphospho-
nate with trifluoromethyl ketones, it is possible to carry out a three-component reac-
tion with activated ketones with the intermediate formation of 3-hydroxyprop-1-yn-1-
ylphosphonate [54]. However, in this case, ethynylphosphonate was inactive in the reaction
with isatins and did not lead to the production of bis-spirooxindoles, in contrast to the
previously published work [6] devoted to the reaction of propiolic acid esters with isatins.

The proposed mechanism for the formation of spirooxindoles is shown in Figure 2. In
the presence of a base, alcoholate I was generated, which added to the carbonyl group of
isatin to form intermediate II, which then underwent cyclization to form 3.
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2.2. Bioactivity
2.2.1. Anticancer Activity

The compounds were tested for cytotoxicity against cancer and normal cell lines
(Table 2). Cytotoxic activity data are presented as IC50 values.

Table 2. Cytotoxic effects (IC50, µM) and selectivity index (SI) of test compounds.

Cmpd Cancer Cell Line Normal Cell Line
M-HeLa HuTu 80 Chang Liver

IC50 SI IC50 SI

3b 91.0 ± 7.3 1.2 118 ± 9.3 ns 108 ± 8.4
3c 102.6 ± 8.2 ns 180 ± 14.4 ns 84.5 ± 6.8
3d 81.0 ± 6.5 2.5 119 ± 9.5 1.7 200 ± 16
3e 86.1 ± 6.9 2.1 68.6 ± 5.5 2.7 185 ± 14.8
3f 76.0 ± 6.1 1.4 131 ± 10 ns 103 ± 8.2
3g 92.7 ± 7.4 1.3 113.3 ± 9 1.0 118 ± 9.3
3h 107.0 ± 8.7 1.6 110.7 ± 8.9 1.5 167 ± 13.3
3i 99.3 ± 7.8 1.3 136.2 ± 11 ns 125 ± 9.9
3j 84.5 ± 6.8 2.5 124 ± 10 1.7 208 ± 16.4
3k 92.8 ± 7.4 ns 107.3 ± 8.6 ns 61.2 ± 4.9
4a 104.0 ± 8.1 1.9 129.0 ± 10 1.5 195 ± 15
4b 29.0 ± 2.3 1.3 31.4 ± 2.5 1.2 39.0 ± 2.8
4c 23.4 ± 5.0 1.1 15.4 ± 1.3 1.6 25 ± 2
4d 30.5 ± 3.6 1.3 14.3 ± 0.4 3.0 40.0 ± 3.1
4e 23.5 ± 1.8 1.1 23.3 ± 1.7 1.1 26 ± 2.1
3a na - na - nd
3j na - na - nd

5-fluorouracil 75.4 ± 5.9 1.1 65.2 ± 5.6 1.3 83.3 ± 6.7

The experiments were performed in triplicate. Results are expressed as the mean ± standard deviation (SD);
ns—no selectivity; na—no activity; nd—not determined.

The studied compounds showed moderate activity against human cervical carcinoma
(M-HeLa) and duodenal adenocarcinoma (HuTu 80) cancer cell lines and, in some cases,
demonstrated low cytotoxicity against normal liver cells. The most significant results in
relation to the HuTu 80 cell line were shown by benzylated analogs 4c and 4d, the IC50
values of which were 15.4 and 14.3, respectively. Both compounds were approximately
4 times more active than the reference drug 5-fluorouracil.

The selectivity of compounds for cancer cells is an important criterion for assessing
the cytotoxic effect. For this purpose, the selectivity index (SI) was calculated as the ratio
between the IC50 value for normal cells and the IC50 value for cancer cells. The selectivity
index values for the tested compounds are given in Table 2. It is evident that the highest
selectivity towards the HuTu 80 cancer cell line was demonstrated by compound 4d, which
contained a sterically hindered phenolic fragment and whose SI value was 3.0. Compounds
with SI ≥ 3 are generally considered selective [55]. According to these data, compound 4d
can be considered selective with respect to the HuTu 80 cell line. However, the reference
drug 5-fluorouracil was inferior to 4d in terms of selectivity.

2.2.2. Anticoagulant and Antiaggregating Activities

Systemic hypercoagulation and the risk of thromboembolic complications in cancer
patients have been well studied, and the concept of bidirectional pathways between cancer
and the blood clotting system has been elucidated [56].

For example, the results of current epidemiological studies demonstrate a 9-fold
increase in the risk of venous thromboembolism in people with cancer compared with
people without cancer [57]. However, the risk of thrombosis is heterogeneous and largely
depends on the individual prothrombotic risk profiles of patients [58]. In part, the risk
of thrombosis depends on the main risk factors specific to the patient, including age,
gender, and concurrent diseases, and it also depends on treatment [59,60]. This is why
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the presence of antiplatelet properties as a mechanism of action of potential antitumor
agents is considered as a promising approach to the development of therapeutic agents to
combat oncopathologies.

In this work, the anticoagulant and antiaggregation properties of spirooxindoles under
study were investigated (Table 3).

Table 3. Anticoagulant and antiaggregating activity of compounds.

Cmpd Latent Period, % of
Control

Maximum
Amplitude (MA), %

of Control

Aggregation Rate, %
of Control

Time to MA, % of
Control

APTT $, % of
Control

3b −2.4 (1.7–3.5) −3.8 (3.1–4.2) # −11.4 (10.5–12.7) * −18.5 (16.2–19.7) *,# +5.6 (4.9–7.2) *,†
3c −3.7 (3.1–4.2) −2.4 (2.1–3.5) # −13.7 (12.5–16.3) *,# +8.4 (7.5–9.6) *,# +7.7 (6.5–8.4) *,†
3d +4.8 (3.7–5.6) # −15.4 (13.3–16.7) * −7.6 (7.1–10.5) * +14.8 (13.5–16.7) * +4.7 (3.8–5.8) †
3e +6.5 (4.7–7.6) *,# −12.1 (10.5–14.2) * −31.7 (30.6–34.2) *,# −18.2 (17.4–21.3) *,# +4.9 (4.1–8.3) *,†
3f +2.3 (1.7–3.5) # −9.5 (8.2–10.9) *,# −16.2 (15.7–17.1) *,# −11.9 (10.2–13.6) *,# +3.8 (2.4–4.3) †
3g +20.3 (19.7–21.4) *,# −20.1 (18.7–23.5) *,# −18.4 (17.4–20.5) *,# −21.4 (17.4–22.9) *,# +8.3 (7.2–10.1) *,†
3h +13.4 (11.7–15.2) *,# −15.3 (14.8–18.2) * −13.6 (12.4–14.9) * −22.5 (21.7–23.9) *,# +8.7 (6.8–10.2) *,†
3i +5.1 (4.7–5.4) # −5.3 (4.7–7.5) *,# +2.7 (2.5–3.9) # −16.4 (16.1–19.5) *,# +5.7 (4.1–7.6) *,†
3j +3.1 (2.9–4.2) # −4.2 (2.6–4.8) # −10.4 (9.3–12.7) * +12.6 (10.3–15.7) * +7.3 (5.9–8.2) †
3k +7.3 (6.2–8.5) *,# −11.5 (9.2–13.1) * −27.4 (26.3–29.5) *,# −5.1 (3.7–6.4) *,# +9.7 (8.8–10.5) *,†
4a +25.7 (24.8–27.5) *,# −14.2 (13.1–15.7) * −12.4 (10.2–14.3) * +12.3 (11.7–13.5) * +6.1 (4.5–7.9) †
4b −3.1 (2.9–4.1) −2.4 (1.7–2.6) # −4.1 (3.9–5.6) # −9.7 (8.1–11.4) *,# +7.4 (6.3–9.2) *,†
4c +5.2 (4.7–6.1) *,# −6.8 (5.7–7.3) *,# −8.2 (7.1–10.4) * +11.8 (10.4–13.7) * +2.5 (1.7–3.2) †
4d +4.3 (3.8–5.7) # −6.7 (5.4–8.3) *,# −7.9 (7.1–10.4) *,# +10.2 (9.1–13.4) * +2.7 (1.7–2.8) †
4e +2.6 (2.1–3.8) # −7.2 (5.4–9.2) *,# +3.1 (2.9–4.2) # −11.4 (9.4–12.3) *,# +2.4 (1.8–3.7) †

Acetylsalicylic acid −2.1 (1.1–2.6) −13.7 (10.8–16.4) * −10.5 (7.6–12.3) * +10.5 (8.7–13.4) * -
Heparin sodium - - - - +20.3 (19.7–21.4) *

* p < 0.05—compared to control; # p < 0.05—compared to acetylsalicylic acid; † p < 0.05—compared to heparin
sodium; $ APTT—activated partial thromboplastin time.

The findings show that compound 3g exhibited antiaggregational activity exceeding
the values of acetylsalicylic acid (13.7 vs. 20.5 at p < 0.05). Compounds 3d, e, h, k, and
4a had an antiplatelet effect at the level of acetylsalicylic acid. However, one should note
that all compounds, in addition to antiaggregational activity, lengthen the lag period,
which characterizes the process of the release of endogenous agonists of aggregation from
platelets. This effect is absent in acetylsalicylic acid, which indicates the potentially wide
antithrombotic potential of the studied compounds. With respect to the coagulation link of
hemostasis, these compounds showed an effect exclusively on the APTT index. Therefore,
the resulting compounds have high potential as a scaffold for the development of effective
anticoagulant and antiaggregation agents.

3. Materials and Methods
3.1. Cells and Materials

For the experiments, we used tumor cell cultures M-HeLa clone 11 (epithelioid car-
cinoma of the cervix, subline HeLa, clone M-HeLa), HuTu 80, human duodenal adeno-
carcinoma from the collection of the Institute of Cytology, Russian Academy of Sciences
(St. Petersburg), and human liver cells (Chang liver) from the collection of the Research
Institute of Virology of the Russian Academy of Medical Sciences (Moscow).

3.2. Cytotoxic Assay

The cytotoxic effect on cells was determined using the colorimetric method of cell
proliferation—the MTT test. NADP-H-dependent cellular oxidoreductase enzymes can,
under certain conditions, reflect the number of viable cells. These enzymes are able to
reduce the tetrazolium dye (MTT)—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide—to insoluble blue-violet formazan, which crystallizes inside the cell. The amount
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of formazan formed is proportional to the number of cells with active metabolism. Cells
were seeded on a 96-well Nunc plate at a concentration of 5 × 103 cells per well in a volume
of 100 µL of medium and cultured in a CO2 incubator at 37 ◦C until a monolayer was
formed. Then, the nutrient medium was removed and 100 µL amounts of solutions of the
test drug in the given dilutions were added to the wells, which were prepared directly in
the nutrient medium with the addition of 5% DMSO to improve solubility. After 24 h of
incubation of the cells with the tested compounds, the nutrient medium was removed from
the plates and 100 µL of the nutrient medium without serum with MTT at a concentration of
0.5 mg/mL was added and incubated for 4 h at 37 ◦C. Formazan crystals were added with
100 µL of DMSO to each well. Optical density was recorded at 540 nm on an Invitrologic
microplate reader (Pharma, Russia). The experiments for all compounds were repeated
three times.

3.3. Anticoagulant and Antiaggregation Activities Study

The in vitro experiments were performed using the blood of healthy male donors
aged 18–24 years (total 78 donors). The study was approved by the Ethics Committee of
Federal State Budgetary Educational Institution of Higher Education at the Bashkir State
Medical University of the Ministry of Health of Russian Federation (No.1 dated 30 January
2024). Informed consent was obtained from all participants before blood sampling. The
blood was collected from the cubital vein using the system of vacuum blood collection
BD Vacutainer® equipment (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).
A 3.8% sodium citrate solution in a 9:1 ratio was used as a venous blood stabilizer. The
study of the effect on platelet aggregation was performed using the Born method [61]
using the «AT-02» aggregometer (SPC Medtech, Moscow, Russia). The assessment of the
antiplatelet activity of the studied compounds and reference preparations was started with
the final concentration of 2 × 10−3 mol/L. Adenosine diphosphate (ADP; 20 µg/mL) and
collagen (5 mg/mL) manufactured by Tehnologia-Standart Company, Barnaul, Russia, were
used as inducers of aggregation. The study on the anticoagulant activity was performed
by standard recognized clotting tests using the optical two-channel automatic analyzer
of blood coagulation, Solar CGL 2110 (CJSC SOLAR, Minsk, Belarus). The following
parameters were studied: activated partial thromboplastin time (APTT), prothrombin time
(PT), and fibrinogen concentrations according to the Clauss method. The determination
of the anticoagulant activity of the studied compounds and reference preparation was
performed in a concentration of 5 × 10−4 g/mL using the reagents manufactured by
Tehnologia-Standart Company (Barnaul, Russia) [62]. The results of the study of the
anticoagulant and antiaggregation activities were processed using the statistical package
Statistica 10.0 (StatSoft Inc., Tulsa, OK, USA). The Shapiro–Wilk test was used to check the
normality of actual data distribution. The form of the distribution of the data obtained
differed from the normal one; therefore, non-parametric methods were used for further
analysis. The data were presented as medians and 25 and 75 percentiles. Analysis of
variance was conducted using the Kruskal–Wallis test. A p value of 0.05 was considered
statistically significant.

3.4. Chemistry: Synthesis of 3 and 4
3.4.1. General Remarks

Unless otherwise specified, all reactions were performed under an air atmosphere.
The following anhydrous solvents were distilled prior to use: THF was distilled from
sodium using benzophenone as the indicator. Reagents were used as purchased, unless
otherwise indicated. Alkynylphosphonates 2a–2c were obtained according to the pro-
cedure in the literature [54]. Flash chromatography was performed on silica gel using
petroleum ether and EtOAc as eluents. 1H, 13C, and 31P NMR spectra were recorded on a
400 MHz spectrometer. Chemical shifts (ppm) were recorded with the solvent signal as the
internal standard (CHCl3, 1H NMR 7.26 ppm, 13C NMR 77.16 ppm). Chemical shifts are
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expressed in ppm, and J values are given in hertz. Mass spectra were obtained by ESI on
an Orbitrap spectrometer.

3.4.2. General Procedure for the Synthesis of Spiro-1,3-dioxolane Oxindoles 3 and 4

A vial containing a Teflon-coated stir bar was charged with (3-hydroxyprop-1-yn-1-
yl)phosphonate 2 (0.2 mmol), isatin 1 (0.22 mmol), t-BuOLi (3.2 mg, 0.04 mmol, 20 mol%),
and THF (2 mL). The vial was closed with a Teflon screw cap and stirred at 60 ◦C for
0.5–16 h. After solvent removal and purification by flash chromatography on silica gel
(petroleum ether/EtOAc, 1/1) products 3 and 4 were obtained as colorless oils, which
partially solidified upon standing.

Diethyl (Z)-((4′,4′-dimethyl-2-oxospiro[indoline-3,2′-[1,3]dioxolan]-5′-ylidene)methyl)
phosphonate (3a) (reaction time: 4 h); yield 66 mg (93%); 1H NMR (400 MHz, CDCl3) δ 9.44 (s,
1H), 7.14 (d, 3JH,H = 7.0 Hz, 1H), 7.07–6.99 (m, 1H), 6.89–6.82 (m, 1H), 6.63 (d, 3JH,H = 7.6 Hz,
1H), 4.52 (d, 2JH,P = 7.1 Hz, 1H), 4.15–3.96 (m, 4H), 1.79 (s, 3H), 1.63 (s, 3H), 1.30 (t, 3JH,H =
7.1 Hz, 3H), 1.27 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 173.7, 171.7, 143.0,
132.4, 124.8, 122.7, 122.5, 111.5, 106.0, 86.1 (d, 3JC,P = 15.4 Hz), 79.3 (d, 1JC,P = 196.8 Hz), 62.3
(d, 2JC,P = 4.2 Hz), 61.9 (d, 2JC,P = 4.2 Hz), 30.1, 28.8, 16.3; 31P NMR (162 MHz, CDCl3) δ 17.28;
HRMS (ESI): m/z calcd for C17H24NO5P+H+: 354.1470 [M+H]+; found: 354.1477.

Diethyl (Z)-((5′-methoxy-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3b) (reaction time: 16 h); yield: 66 mg (84%); 1H NMR (400 MHz, CDCl3)
δ 9.47 (s, 1H), 6.67 (s, 1H), 6.53 (s, 2H), 4.49 (d, 2JH,P = 7.2 Hz, 1H), 4.16–4.04 (m, 4H), 3.71 (s,
3H), 1.78 (s, 3H), 1.62 (s, 3H), 1.31 (t, 3JH,H = 7.1 Hz, 3H), 1.29 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR
(101 MHz, CDCl3) δ 173.9, 171.5, 136.4, 123.3, 117.0, 112.2, 111.3, 106.2, 86.0 (d, 3JC,P = 15.6 Hz),
79.2 (d, 1JC,P = 196.9 Hz), 62.3 (d, 2JC,P = 5.3 Hz), 61.7 (d, 2JC,P = 5.3 Hz), 55.8, 30.1, 28.8, 16.4;
31P NMR (162 MHz, CDCl3) δ 17.43; HRMS (ESI): m/z calcd for C18H26NO6P+H+: 384.1576
[M+H]+; found: 384.1574.

Diethyl (Z)-((4,4,5′-trimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)methyl)
phosphonate (3c) (reaction time: 16 h); yield: 62 mg (82%); 1H NMR (400 MHz, CDCl3) δ 9.40
(s, 1H), 6.92 (m, 1H), 6.80 (t, 3JH,H = 7.9 Hz, 1H), 6.50 (d, 3JH,H = 7.9, 1H), 4.50 (d, 2JH,P = 7.3 Hz,
1H), 4.16–4.05 (m, 4H), 2.21 (s, 3H), 1.79 (s, 3H), 1.64 (s, 3H), 1.32 (t, 3JH,H = 6.9 Hz, 3H), 1.30 (t,
3JH,H = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 173.8, 171.6, 140.6, 132.3, 131.9, 125.3, 122.3,
111.4, 106.2, 85.9 (d, 3JC,P = 16.0 Hz), 79.1 (d, 1JC,P = 196.8 Hz), 62.2 (d, 2JC,P = 5.3 Hz), 61.7 (d,
2JC,P = 5.3 Hz), 30.1, 28.8, 21.0, 16.3; 31P NMR (162 MHz, CDCl3) δ 17.49; HRMS (ESI): m/z
calcd for C18H26NO5P+H+: 368.1627 [M+H]+; found: 368.1637.

Diethyl (Z)-((5′-bromo-4,4,7′-trimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3d) (reaction time: 16 h); yield: 82 mg (89%); 1H NMR (400 MHz, CDCl3)
δ 10.49 (s, 1H), 7.00 (m, 2H), 4.39 (d, 2JH,P = 5.8 Hz, 1H), 4.28–4.04 (m, 4H), 1.99 (s, 3H), 1.76 (s,
3H), 1.61 (s, 3H), 1.32 (t, 3JH,H = 6.9 Hz, 3H), 1.31 (t, 3JH,H = 6.9 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ 174.3, 171.0, 141.5, 136.3, 124.88, 123.3, 122.7, 114.2, 105.5, 86.3 (d, 3JC,P = 15.8 Hz),
79.1 (d, 1JC,P = 197.7 Hz), 62.5 (d, 2JC,P = 5.3 Hz), 61.6 (d, 2JC,P = 5.3 Hz), 30.2, 28.9, 16.4; 31P
NMR (162 MHz, CDCl3) δ 16.66; HRMS (ESI): m/z calcd for C18H25BrNO5P+H+: 446.0732
[M+H]+; found: 446.0724.

Diethyl (Z)-((5′-bromo-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3e) (reaction time: 16 h); yield: 86 mg (96%); 1H NMR (400 MHz,
CDCl3) δ 10.22 (s, 1H), 7.18–7.05 (m, 2H), 6.40 (d, 3JH,H = 8.7 Hz, 1H), 4.45 (d, 2JH,P =
6.6 Hz, 1H), 4.18–4.05 (m, 4H), 1.77 (s, 3H), 1.62 (s, 3H), 1.33 (t, 3JH,H = 7.0 Hz, 3H), 1.31 (t,
3JH,H = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 174.1, 170.7, 142.5, 134.7, 127.6, 123.9,
114.7, 113.4, 105.4, 86.9 (d, 3JC,P = 16.0 Hz), 79.3 (d, 1JC,P = 198.3 Hz), 62.4 (d, 2JC,P = 5.2 Hz),
61.8 (d, 2JC,P = 5.3 Hz), 30.0, 28.8, 16.4; 31P NMR (162 MHz, CDCl3) δ 17.27; HRMS (ESI):
m/z calcd for C17H23BrNO5P+H+: 432.0575 [M+H]+; found: 432.0580.

Diethyl (Z)-((6′-bromo-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3f) (reaction time: 16 h); yield: 78 mg (90%); 1H NMR (400 MHz, CDCl3)
δ 10.22 (s, 1H), 7.02 (d, 3JH,H = 9.4 Hz, 1H), 6.95 (d, 3JH,H = 7.9 Hz, 1H), 6.65 (m, 1H), 4.47 (d,
2JH,P = 6.7 Hz, 1H), 4.21–4.06 (m, 4H), 1.80 (s, 3H), 1.64 (s, 3H), 1.37 (t, 3JH,H = 7.1 Hz, 3H), 1.34
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(t, 3JH,H = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 174.3, 171.0, 144.5, 126.2, 125.6, 125.5,
121.0, 115.0, 105.5, 86.2 (d, 3JC,P = 16.1 Hz), 79.1 (d, 1JC,P = 197.2 Hz), 62.4 (d, 2JC,P = 5.3 Hz),
61.8 (d, 2JC,P = 5.3 Hz), 30.0, 28.7, 16.4; 31P NMR (162 MHz, CDCl3) δ 17.45; HRMS (ESI): m/z
calcd for C17H23BrNO5P+H+: 432.0575 [M+H]+; found: 432.0584.

Diethyl (Z)-((5′-chloro-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3g) (reaction time: 16 h); yield: 72 mg (90%); 1H NMR (400 MHz, CDCl3)
δ 10.15 (s, 1H), 7.00 (s, Hz, 1H), 6.96 (d, 3JH,H = 8.1 Hz, 1H), 6.47 (d, 3JH,H = 8.4 Hz, 1H), 4.47
(d, 2JH,P = 6.5 Hz, 1H), 4.18–4.06 (m, 4H), 1.78 (s, 3H), 1.63 (s, 3H), 1.37–1.31 (m, 6H); 13C
NMR (101 MHz, CDCl3) δ 174.0, 170.9, 141.9, 131.9, 127.5, 124.9, 123.6, 112.9, 105.5, 86.3 (d,
3JC,P = 16.3 Hz), 79.3 (d, 1JC,P = 197.4 Hz), 62.4 (d, 2JC,P = 5.3 Hz), 61.8 (d, 2JC,P = 5.3 Hz), 30.0,
28.7, 16.3; 31P NMR (162 MHz, CDCl3) δ 17.27; HRMS (ESI): m/z calcd for C17H23ClNO5P+H+:
388.1081 [M+H]+; found: 388.1072.

Diethyl (Z)-((5′-fluoro-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3h) (reaction time: 16 h); yield: 73 mg (94%); 1H NMR (400 MHz,
CDCl3): δ 9.87 (s, 1H), 6.81–6.78 (m, 1H), 6.72–6.66 (m, 1H), 6.54–6.51 (m, 1H), 4.48 (d,
2JH,P = 6.7 Hz, 1H), 4.20–4.07 (m, 4H), 1.80 (s, 3H), 1.63 (s, 3H), 1.36–1.31 (m, 6H); 13C NMR
(101 MHz, CDCl3): δ 174.0, 171.2, 158.7 (d, 1JC,F = 241.0 Hz), 139.3, 123.5 (d, 3JC,F = 6.9 Hz),
118.4 (d, 2JC,F = 23.2 Hz), 112.6 (d, 3JC,F = 7.1 Hz), 112.6 (d, 2JC,F = 24.6 Hz), 105.7, 86.3 (d,
3JC,P = 16.0 Hz), 79.4 (d, 1JC,P = 197.5 Hz), 62.4 (d, 2JC,P = 4.6 Hz), 61.8 (d, 2JC,P = 5.6 Hz),
30.1, 28.8, 16.4 (d, 3JC,P = 6.5 Hz); 31P NMR (162 MHz, CDCl3) δ 17.26; HRMS (ESI): m/z
calcd for C17H23FNO5P+H+: 372.1376 [M+H]+; found: 372.1370.

Diethyl (Z)-((4,4-dimethyl-5′-nitro-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-5-ylidene)
methyl)phosphonate (3i) (reaction time: 16 h); yield: 76 mg (89%); 1H NMR (400 MHz,
CDCl3) δ 11.00 (s, 1H), 7.92 (d, 1H), 7.79 (m, 1H), 6.69 (d, 3JH,H = 8.6 Hz, 1H), 4.54 (d,
2JH,P = 6.3 Hz, 1H), 4.20–4.09 (m, 4H), 1.78 (s, 3H), 1.68 (s, 3H), 1.39–1.33 (m, 6H); 13C
NMR (101 MHz, CDCl3) δ 173.8, 171.2, 149.6, 143.0, 128.2, 123.2, 120.9, 111.7, 104.4, 86.7 (d,
3JC,P = 16.2 Hz), 80.0 (d, 1JC,P = 198.0 Hz), 62.5 (d, 2JC,P = 5.3 Hz), 62.2 (d, 2JC,P = 5.3 Hz), 30.0,
28.7, 16.4; 31P NMR (162 MHz, CDCl3) δ 16.73; HRMS (ESI): m/z calcd for C17H23N2O7P+H+:
399.1321 [M+H]+; found: 399.1329.

Diethyl (Z)-[(2′′-oxo-1′′,2′′-dihydrodispiro[cyclohexane-1,4′-[1,3]dioxolane-2′,3′′-indol]-
5′-ylidene)methyl]phosphonate (3j) (reaction time: 16 h); yield: 71 mg (84%); 1H NMR
(400 MHz, CDCl3) δ 9.50 (s, 1H), 7.10 (d, 3JH,H = 7.6 Hz, 1H), 7.01 (t, 3JH,H = 7.7 Hz, 1H), 6.83 (t,
3JH,H = 7.5 Hz, 1H), 6.62 (d, 3JH,H = 7.8 Hz, 1H), 4.49 (d, 2JH,P = 7.3 Hz, 1H), 4.15–4.01 (m, 4H),
2.63 (d, 2JH,H = 10.8 Hz, 1H), 1.98 (d, 2JH,H = 11.6 Hz, 1H), 1.68–1.51 (m, 7H), 1.32–1.25 (m, 7H);
13C NMR (101 MHz, CDCl3) δ 173.4, 171.7, 143.1, 132.3, 124.7, 122.8, 122.5, 111.5, 106.1, 87.6
(d, 3JC,P = 15.4 Hz), 79.3 (d, 1JC,P = 196.0 Hz), 62.1 (d, 2JC,P = 4.8 Hz), 61.8 (d, 2JC,P = 4.8 Hz),
38.8, 36.9, 24.9, 22.1, 22.0, 16.3; 31P NMR (162 MHz, CDCl3) δ 17.76; HRMS (ESI): m/z calcd for
C20H28NO5P+H+: 394.1783 [M+H]+; found: 394.1781.

Diethyl (Z)-[(2′′-oxo-1′′,2′′-dihydrodispiro[cyclopentane-1,4′-[1,3]dioxolane-2′,3′′-indol]-
5′-ylidene)methyl]phosphonate (3k) (reaction time: 16 h); yield: 77 mg (95%); 1H NMR
(400 MHz, CDCl3) δ 9.60 (s, 1H), 7.13 (d, 3JH,H = 7.4 Hz, 1H), 7.00 (t, 3JH,H = 7.7 Hz, 1H), 6.82 (t,
3JH,H = 7.5 Hz, 1H), 6.62 (d, 3JH,H = 7.8 Hz, 1H), 4.53 (d, 2JH,P = 7.3 Hz, 1H), 4.16–4.01 (m, 4H),
2.67–2.63 (m, 1H), 2.21–2.17 (m, 1H), 2.09–1.99 (m, 2H), 1.82–1.77 (m, 4H), 1.29 (t, 3JH,H = 7.1
Hz, 3H), 1.26 (t, 3JH,H = 7.1, 3H); 13C NMR (101 MHz, CDCl3) δ 173.6, 171.4, 143.1, 132.3, 124.7,
122.5, 122.3, 111.5, 105.8, 95.4 (d, 3JC,P = 16.0 Hz), 78.7 (d, 1JC,P = 197.2 Hz), 62.1 (d, 2JC,P = 4.5
Hz), 61.8 (d, 2JC,P = 4.5 Hz), 42.6, 42.3, 25.1, 24.9, 16.3; 31P NMR (162 MHz, CDCl3) δ 17.73;
HRMS (ESI): m/z calcd for C19H26NO5P+H+: 380.1627 [M+H]+; found: 380.1627.

Diethyl (Z)-((1,4′,4′-trimethyl-2-oxospiro[indoline-3,2′-[1,3]dioxolan]-5′-ylidene)methyl)
phosphonate (4a) (reaction time: 30 min); yield: 69 mg (94%); 1H NMR (400 MHz, CDCl3) δ
7.40–7.34 (m, 1H), 7.28 (d, 3JH,H = 7.4 Hz, 1H), 7.10–7.03 (m, 1H), 6.78 (d, 3JH,H = 7.8 Hz, 1H),
4.56 (d, 2JH,P = 8.1 Hz, 1H), 4.07–3.94 (m, 4H), 3.09 (s, 3H), 1.78 (s, 3H), 1.62 (s, 3H), 1.24 (t,
3JH,H = 7.1 Hz, 3H), 1.20 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 172.4, 170.4,
144.7, 132.7, 125.1, 123.6, 122.7, 109.0, 105.5, 86.1 (d, 3JC,P = 15.2 Hz), 80.1 (d, 1JC,P = 195.3 Hz),
62.0 (d, 2JC,P = 4.8 Hz), 61.8 (d, 2JC,P = 4.8 Hz), 30.0, 28.7, 26.2, 16.2 (d, 3JC,P = 5.6 Hz); 31P NMR
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(162 MHz, CDCl3) δ 16.82; HRMS (ESI): m/z calcd for C18H26NO5P+H+: 368.1627 [M+H]+;
found: 368.1631.

Diethyl (Z)-((1′-(2-chlorobenzyl)-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-indolin]-
5-ylidene)methyl)phosphonate (4b) (reaction time: 30 min); yield: 95 mg (96%); 1H NMR
(400 MHz, CDCl3) δ 7.36 (t, 3JH,H = 8.7 Hz, 2H), 7.27 (t, 3JH,H = 7.7 Hz, 1H), 7. 19 (t,
3JH,H = 7.7 Hz, 1H), 7.14 (t, 3JH,H = 7.5 Hz, 1H), 7.09–7.05 (m, 2H), 6.63 (d, 3JH,H = 7.9 Hz,
1H), 4.91 (s, 2H), 4.60 (d, 2JH,P = 7.5 Hz, 1H), 4.08–3.97 (m, 4H), 1.82 (s, 3H), 1.66 (s, 3H),
1.25 (t, 3JH,H = 7.1 Hz, 3H), 1.21 (t, 3JH,H = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ
171.9, 170.8, 143.5, 132.8, 132.7, 132.0, 129.8, 129.1, 127.7, 127.3, 125.3, 123.9, 122.7, 109.9,
105.4, 86.2 (d, 3JC,P = 15.1 Hz), 80.7 (d, 1JC,P = 195.3 Hz), 61.8 (d, 2JC,P = 5.3 Hz), 61.6 (d,
2JC,P = 5.3 Hz), 41.2, 30.0, 28.7, 16.3; 31P NMR (162 MHz, CDCl3) δ 16.42; HRMS (ESI): m/z
calcd for C24H29ClO5P+H+: 478.1550 [M+H]+; found: 478.1549.

Diethyl (Z)-((1′-(3,4-dichlorobenzyl)-4,4-dimethyl-2′-oxospiro[[1,3]dioxolane-2,3′-
indolin]-5-ylidene)methyl)phosphonate (4c) (reaction time: 30 min); yield: 93 mg (88%);
1H NMR (400 MHz, CDCl3) δ 7.36–7.27 (m, 4H), 7.09–7.05 (m, 2H), 6.64 (d, 3JH,H = 7.8 Hz,
1H), 4.76 (d, 2JH,H = 15.8 Hz, 1H), 4.69 (d, 2JH,H = 15.9 Hz, 1H), 4.59 (d, 2JH,P = 7.4 Hz, 1H),
4.06–3.96 (m, 4H), 1.80 (s, 3H), 1.65 (s, 3H), 1.25–1.18 (m, 6H); 13C NMR (101 MHz, CDCl3)
δ 171.8, 170.7, 143.3, 135.2, 133.0, 132.7, 132.1, 131.0, 129.2, 126.6, 125.5, 124.0, 122.7, 109.7,
105.3, 86.3 (d, 3JC,P = 15.1 Hz), 80.8 (d, 1JC,P = 195.3 Hz), 61.9 (d, 2JC,P = 5.3 Hz), 61.7 (d,
2JC,P = 5.3 Hz), 42.8, 30.0, 28.7, 16.3; 31P NMR (162 MHz, CDCl3) δ 16.33; HRMS (ESI): m/z
calcd for C24H28Cl2O5P+H+: 512.1160 [M+H]+; found: 512.1166.

Diethyl (Z)-((1′-(3,5-di-tert-butyl-4-hydroxybenzyl)-4,4-dimethyl-2′-oxospiro[[1,3]
dioxolane-2,3′-indolin]-5-ylidene)methyl)phosphonate (4d) (reaction time: 30 min); yield:
108 mg (92%); 1H NMR (400 MHz, CDCl3) δ 7.34–7.30 (m, 2H), 7.09 (s, 2H), 7.05 (t, 3JH,H =
7.5 Hz, 1H), 6.81 (d, 3JH,H = 7.8 Hz, 1H), 5.25 (s, 1H), 4.76 (d, 2JH,H = 15.3 Hz, 1H), 4.64 (d,
2JH,H = 15.6 Hz, 1H), 4.59 (s, 1H), 3.97–4.10 (s, 4H), 1.82 (s, 3H), 1.65 (s, 3H), 1.38 (s, 18H),
1.25–1.19 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 172.2, 170.6, 153.4, 144.2, 136.4, 132.4, 125.6,
125.2, 124.4, 123.4, 122.9, 110.0, 105.5, 86.0 (d, 3JC,P = 15.7 Hz), 80.6 (d, 1JC,P = 190.7 Hz), 61.9,
61.7, 44.1, 34.3, 30.2, 30.1, 28.7, 16.3; 31P NMR (162 MHz, CDCl3) δ 16.51; HRMS (ESI): m/z
calcd for C32H46NO6P+H+: 572.3141 [M+H]+; found: 572.3149.

Diethyl (Z)-((4,4-dimethyl-1′-(naphthalen-1-ylmethyl)-2′-oxospiro[[1,3]dioxolane-2,3′-
indolin]-5-ylidene)methyl)phosphonate (4e) (reaction time: 30 min); yield: 95 mg (94%);
1H NMR (400 MHz, CDCl3) δ 8.05 (d, 3JH,H = 8.3 Hz, 1H), 7.89 (d, 3JH,H = 8.0 Hz, 1H), 7.79
(d, 3JH,H = 8.2 Hz, 1H), 7.59 (t, 3JH,H = 7.0 Hz, 1H), 7.53 (t, 3JH,H = 7.0 Hz, 1H), 7.39–7.35
(m, 2H), 7.27 (d, 3JH,H = 7.1 Hz, 1H), 7.22 (t, 3JH,H = 7.8 Hz, 1H), 7.07 (t, 3JH,H = 7.5 Hz, 1H),
6.62 (d, 3JH,H = 7.9 Hz, 1H), 5.33 (d, 2JH,H = 16.5 Hz, 1H), 5.28 (d, 2JH,H = 16.5 Hz, 1H), 4.64
(d, 2JH,P = 7.4 Hz, 1H), 4.12–3.99 (m, 4H), 1.88 (s, 3H), 1.70 (s, 3H), 1.30–1.23 (m, 6H); 13C
NMR (101 MHz, CDCl3) δ 172.0, 170.8, 144.1, 133.8, 132.6, 130.8, 129.5, 129.0, 128.5, 126.7,
126.1, 125.32, 125.28, 124.0, 123.7, 122.8, 122.6, 110.3, 105.5, 86.2 (d, 3JC,P = 15.4 Hz), 80.7 (d,
1JC,P = 195.2 Hz), 61.9 (d, 2JC,P = 4.8 Hz), 61.7 (d, 2JC,P = 4.8 Hz), 41.9, 30.1, 28.7, 16.3; 31P
NMR (162 MHz, CDCl3) δ 16.54; HRMS (ESI): m/z calcd for C28H35NO5P+H+: 494.2096
[M+H]+; found: 494.2091.

4. Conclusions

In conclusion, we have developed a convenient approach for the synthesis of phosphoryl-
substituted spiro-1,3-dioxolane oxindoles by the t-BuOLi-catalyzed reaction of various avail-
able aryl- and 1-substituted isatins and (3-hydroxyprop-1-yn-1-yl)phosphonates. A large
series of various spirooxindoles were obtained in high yields regardless of the nature of the
substituents in isatins and phosphonates. The study of the cytotoxicity of new compounds
has shown the high potential of spirooxindoles containing a phosphonate group in the search
for selective antitumor drugs. In addition, this class of oxindole-based spiro-compounds has
high potential as a scaffold for the development of effective anticoagulant and antiaggrega-
tion agents.
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