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Методом M06/6-311++G(3df,3pd) найдены геометрическое строение, полные 

электронные энергии, гармонические и ангармонические частоты колебаний конформеров 

оксокана, цистеина и ацетилцистеина. В приближении «жёсткий ротатор – ангармонический 

осциллятор» для каждого конформера вычислены температурные зависимости свободной 

энергии Гиббса образования из простых веществ и определены мольные доли, энтропии 

смешения и свободные энергии смешения оксокана, цистеина и ацетилцистеина с учётом 

симметрии и изомерии в температурном интервале 298 – 1500 К в газовой фазе. 
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свободная энергия смешения, жёсткий ротатор – ангармонический осциллятор, конформеры. 

 

Квантово-химические расчёты позволяют существенно повысить эффективность 

изучения веществ. Современные методы дают приемлемые оценки свойств для газовой фазы, 

если известно геометрическое строение основного конформера, например, при определении 

энтальпии образования. Более точные значения, особенно если требуется «химическая 

точность» [3], получают с учётом всех конформеров в ангармоническом приближении. 

Небольшие молекулы представлены, как правило, одним конформером, но с 

увеличением числа атомов число возможных структур растёт экспоненциально [1], поэтому 

в конформационное пространство включают только те из них, чья мольная доля превышает 

несколько процентов и влияет на итоговое значение свойства. Обычно ограничиваются 

конформерами, лежащими в пределах 2 ккал/моль по энергии. В термодинамике определение 

числа и энергии низколежащих конформеров обязательно при расчёте энтропии и свободной 

энергии Гиббса (а также величин, с ними связанных) так как все эти величины существенно 

зависят от энтропии смешения и свободной энергии смешения, и для 20 – 30 атомных 

молекул ограничение только одним изомером может приводить к неправильным значениям 

свойств. 

Современные методы квантовой химии и статистической физики позволяют решить 

эти задачи. Поиск конформационного пространства соединений есть первый этап 

определения свойств многоатомных веществ; на следующем шаге находят мольные доли 

конформеров (чаще всего отбирают конформеры в заданном диапазоне энергий) и их 

температурные зависимости. Правильное определение мольных долей для «нежёстких» 

соединения требует выхода за пределы гармонического приближения [2]. Конформационное 

пространство многоатомных «нежёстких» молекул составляет значительное число структур, 

расположенных в неглубоких ямах на поверхности потенциальной энергии; и в каждой яме 

помещается много низколежащих колебательных состояний с малыми энергиями переходов. 
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Нами за последние годы было изучено большое количество многоатомных 

циклических (оксепан, оксокан, индолы, сквараиновая кислота и др) и ациклических 

(аминокислоты, кислород и азот замещённые акилбензолы, алкилтиофены, ибупрофен и др.) 

соединений. В представленной работе приведены примеры определения конформационного 

пространства и вкладов смешения для оксокана (гетероцикл), цистеина и ацетилцистеина. 

Материал и методы 

Конформационный анализ был сделан в программе ADF [4]. Исходные структуры 

были сгенерированы процедурой RDKit [6] и оптимизированы методом молекулярной 

механики с валентно-силовым полем UFF. Далее из полученных молмеханикой структур 

были отобраны низколежащие конформеры (не более 50), расположенные в интервале 10 

ккал/моль. Выбранные структуры были снова оптимизированы методом функционала 

плотности M06 и дополнительно PBE для цистеина и ацетилцистеина в базисе DZP 

слетеровых декартовых функций (6d 10f). Графики распределения конформеров по энергиям 

приведены на Рисунках 1 - 3. Все структуры, попадающие в интервал 5 кДж/моль по полной 

электронной энергии, оптимизировались с помощью функционалов BMK, CAM-B3LYP, LC-

wPBE, M06, wB97, wB97x в базисе 6-311++G(3df,3pd) гауссовых сферических гармоник (5d 

7f) в программе GAUSSIAN 09 [5]. Ангармонические частоты основных конформеров 

найдены с помощью колебательной теории возмущения второго порядка в квартичном 

силовом поле (VPT2 QFF). Ангармонические частоты (𝝎) вышележащих по энергии 

конформеров (см. Рис. 1 – 3) были вычислены с помощью масштабирования гармонических 

частот кубической параболой, проходящей через начало координат (1). Для M06/6-

311++G(3df,3pd) уравнение (1) имеет вид: 

 

𝝎 = −6.173 × 10−9𝜈ℎ𝑎𝑟𝑚
3 +  1.014 × 10−5𝜈ℎ𝑎𝑟𝑚

2 + 0.987𝜐ℎ𝑎𝑟𝑚   (1) 

 

 
UFF       M06 

Рис. 1. Распределение конформеров оксокана по энергии, построено с помощью [7] 
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UFF     PBE    M06 

Рис. 2. Распределение конформеров цистеина по энергии, построено с помощью [7] 

 

 
UFF    PBE    M06 

Рис. 3. Распределение конформеров ацетилцистеина по энергии, построено с помощью [7] 

 

Определение колебательного вклада в свойства веществ производилось с помощью 

моделирования крутильных, деформационных и валентных колебаний по колебательной 

теории возмущений второго порядка с помощью ряда Данхема, параметры которого были 

получены из двух наборов частот (гармонических и экспериментальных с добавлением 

расчётных ангармонических). Мольные доли i(T) (2), энтропии смешения Smix и свободные 

энергии смешения Gmix для газовой фазы в интервале 298 – 1500 К (Таблицы 1 - 3) были 

найдены из температурных зависимостей свободной энергии Гиббса образования из простых 

веществ ∆𝑓𝐺𝑖
0(𝑇) для каждого конформера; ∆𝑓𝐺𝑖

0(𝑇) вычислены в модели «жёсткий ротатор 

– ангармонический осциллятор» (RR-AO), полная электронная энергия, геометрическое 

строение и частоты конформеров получены с помощью метода M06/6-311++G(3df,3pd). 

𝜒𝑖(𝑇) =
𝑒

−  
∆𝑓𝐺𝑖

0(𝑇)

𝑅𝑇

∑ 𝑒
−  

∆𝑓𝐺𝑖
0(𝑇)

𝑅𝑇

𝑖

.      (2) 
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Результаты и обсуждение 

Таблица 1 

Зависимость мольных долей i(T), энтропии смешения Smix, JK
-1mol-1, и свободной 

энергии смешения Gmix, kJmol-1, от температуры с учётом симметрии и изомерии в 

состоянии идеального газа и в приближении «жёсткий ротатор – ангармонический 

осциллятор» (RR-AO), M06/6-311++G(3df,3pd), оксокан 

T, K 
i(T) 

Smix Gmix 
I II III IV V VI VII 

298.15 0,42 0,21 0,15 0,10 0,08 0,03 0,00 12.6 -3.8 

300 0,43 0,21 0,15 0,10 0,08 0,03 0,00 12.6 -3.8 

400 0,34 0,24 0,14 0,13 0,11 0,05 0,00 13.7 -5.5 

500 0,29 0,25 0,13 0,14 0,12 0,07 0,01 14.2 -7.1 

600 0,26 0,25 0,12 0,15 0,13 0,08 0,01 14.5 -8.7 

700 0,23 0,26 0,12 0,15 0,14 0,09 0,01 14.7 -10.3 

800 0,22 0,26 0,11 0,16 0,14 0,10 0,02 14.9 -11.9 

900 0,20 0,26 0,11 0,16 0,14 0,11 0,02 15.0 -13.5 

1000 0,19 0,26 0,10 0,16 0,14 0,12 0,02 15.1 -15.1 

1100 0,19 0,26 0,10 0,16 0,14 0,12 0,03 15.1 -16.6 

1200 0,18 0,26 0,10 0,17 0,14 0,13 0,03 15.2 -18.2 

1300 0,17 0,26 0,10 0,17 0,14 0,13 0,03 15.2 -19.8 

1400 0,17 0,25 0,10 0,17 0,15 0,14 0,03 15.3 -21.4 

1500 0,17 0,25 0,09 0,17 0,15 0,14 0,03 15.3 -22.9 
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Таблица 2 

Зависимость мольных долей i(T), энтропии смешения Smix, JK
-1mol-1, и свободной 

энергии смешения Gmix, kJmol-1, от температуры с учётом симметрии и изомерии в 

состоянии идеального газа и в приближении «жёсткий ротатор – ангармонический 

осциллятор» (RR-AO), M06/6-311++G(3df,3pd), L-cysteine 

T, K 
i(T) 

Smix Gmix 
I II III IV V VI 

298.15 0,45 0,22 0,15 0,13 0,03 0,03 12,1 -3,6 

300 0,45 0,22 0,15 0,13 0,03 0,03 12,1 -3,6 

400 0,31 0,26 0,19 0,15 0,05 0,05 13,2 -5,3 

500 0,24 0,28 0,22 0,15 0,05 0,06 13,6 -6,8 

600 0,20 0,29 0,24 0,16 0,05 0,07 13,7 -8,2 

700 0,17 0,29 0,25 0,16 0,05 0,07 13,7 -9,6 

800 0,15 0,29 0,26 0,17 0,06 0,08 13,7 -11,0 

900 0,14 0,29 0,27 0,17 0,06 0,08 13,7 -12,3 

1000 0,13 0,28 0,28 0,17 0,06 0,09 13,7 -13,7 

1100 0,12 0,28 0,28 0,17 0,06 0,09 13,7 -15,1 

1200 0,11 0,27 0,29 0,18 0,06 0,09 13,7 -16,5 

1300 0,11 0,26 0,29 0,18 0,06 0,09 13,7 -17,8 

1400 0,10 0,26 0,30 0,18 0,06 0,10 13,7 -19,2 

1500 0,10 0,26 0,30 0,19 0,06 0,10 13,7 -20,6 

 

Таблица 3 

Зависимость мольных долей i(T), энтропии смешения Smix, JK
-1mol-1, и свободной 

энергии смешения Gmix, kJmol-1, от температуры с учётом симметрии и изомерии в 

состоянии идеального газа и в приближении «жёсткий ротатор – ангармонический 

осциллятор» (RR-AO), M06/6-311++G(3df,3pd), L-acetylcysteine 

T, K 
i(T) 

Smix Gmix 
I II III IV V VI 

298.15 0,65 0,24 0,09 0,01 0,00 0,00 7,5 -2,2 

300 0,65 0,24 0,10 0,01 0,00 0,00 7,6 -2,3 

400 0,63 0,29 0,06 0,01 0,01 0,01 7,7 -3,1 

500 0,61 0,32 0,05 0,02 0,01 0,01 7,9 -4,0 

600 0,59 0,33 0,04 0,02 0,01 0,01 8,1 -4,9 

700 0,57 0,35 0,03 0,03 0,01 0,01 8,3 -5,8 

800 0,55 0,36 0,03 0,03 0,01 0,01 8,5 -6,8 

900 0,54 0,36 0,03 0,03 0,02 0,02 8,6 -7,8 

1000 0,53 0,37 0,03 0,04 0,02 0,02 8,8 -8,8 

1100 0,53 0,37 0,03 0,04 0,02 0,02 9,0 -9,9 

1200 0,52 0,37 0,03 0,04 0,02 0,02 9,1 -11,0 

1300 0,52 0,37 0,03 0,05 0,02 0,02 9,3 -12,0 

1400 0,51 0,36 0,03 0,05 0,02 0,03 9,4 -13,2 

1500 0,51 0,36 0,03 0,05 0,03 0,03 9,6 -14,3 
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Работа была выполнена с использованием ресурсов ЦКП Сибирский 

Суперкомпьютерный Центр ИВМиМГ СО РАН 
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