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Abstract. Age-related macular degeneration (AMD) is one of the leading 
causes of irreversible blindness. Every year, there is an increase in the number 
of patients with AMD worldwide. To date, the primary method in diagnosing 
AMD is optical coherence tomography (OCT), which provides the most visual 
data for identifying disease biomarkers. However, a growing volume of 
research requires optimizing the work of an ophthalmologist to minimize 
diagnostic errors. In this regard, the study aimed at integrating computer 
vision applications into the OCT image processing system is gaining popularity 
since it allows not only to identify images with the most likely presence of AMD 
but also to determine the stages of this disease, localize biomarkers and obtain 
a prognosis for the dynamics of its development. The variety of such 
approaches is expressed in the application of various machine learning 
algorithms, metrics for evaluating their effectiveness, sources of input 
information, and work verification. This statistical review analyzes examples 
of works devoted to computer vision algorithms in the study of OCT images for 
diagnosing, staging, or predicting the dynamics of AMD and highlights the 
features and trends within this area. © 2023 Journal of Biomedical Photonics 
& Engineering. 
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1 Introduction 

Age-related macular degeneration (AMD) is a 

multifactorial disease, one of the leading causes of 

irreversible blindness worldwide [1]. According to the 

massive Beaver Dam Eye Study, over ten years of 

follow-up, the incidence of AMD in individuals aged 

43–54 years increased by an average of 4.2%, and in 

those aged 75 years and older, by 46.2% [2]. Rising 

morbidity leads to decreased working capacity and 

disability of the population, which is a medical and social  

problem [3–5].  

The disappointing dynamics of the disease’s spread 

have generated many reviews on various aspects. Thus, 

an analysis of the AMD prevalence shows risk groups 

and the epidemiological situation over time [6–8], while 

the study of risk factors and pathogenesis provides the 

trend in the distribution of the patients, possible 

preventive measures, and method to slow down the 

progression [9–13]. Finally, many studies are devoted to 

modern advances in treating AMD [14–19]. 

The timely detection and staging of AMD based on 

already explored pathogenetic reactions is the leading 

assurance of successful therapy, which is the aim of 

various diagnostic methods.  
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To date, the predominant approaches for diagnosing 

AMD and other retinal diseases are methods of 

visualization of the retinal layers. These include 

autofluorescence photography, dilated eye examination, 

fundoscopy or ophthalmoscopy, visual acuity eye testing, 

fundus photography, fluorescein angiography, 

tonometry, and optical coherence tomography (OCT). 

The most recognized and frequently used are the 

non-invasive Color fundus photography (CFP) and OCT 

methods [20].  

The advantages of the CFP are high data acquisition 

speed, reproducibility, high resolution, and simple image 

acquisition. Thanks to that, CFP is a widely used method 

for digital imaging of the retina. However,  the quality of 

CFP images in the presence of macular edema without 

stereoscopic visualization is limited and 

time-consuming [21]. 

In turn, OCT provides three-dimensional cross-

sectional in vivo visualization of the retina to assess the 

layers’ thickness and the presence or absence of 

pathologies. Moreover, it helps monitor treatment 

effectiveness, necessity, and expected response [22–24]. 

In 1991, OCT was first described as a possible retinal 

imaging tool [25]. Since then, OCT has become of great 

importance in diagnosing diseases of the macular area, 

particularly AMD [26]. Drusen, hypopigmentation or 

hyperpigmentation of the retinal pigment epithelium, 

atrophy of the pigment epithelium and choriocapillaris, 

neovascularization, detachment of the pigment 

epithelium and retinal neuroepithelium, intraretinal 

deposits, cystic edema of the neuroepithelium, subretinal 

scarring are typical retinal changes that are detected using 

spectral domain OCT (SD-OCT) method in patients with 

AMD [27, 28]. Thus, in diagnosing and monitoring 

AMD, OCT methods are the most effective and 

promising for further development [29]. 

The possibility of storing and processing digitized 

archives of diagnostic images opens up vast opportunities 

for the development of methods for their automatic 

processing. Intelligent data processing methods have 

been widely used [30–32]. A sufficient amount of 

information presented in digital form makes it possible to 

carry out statistical analysis and intelligent data 

processing [33]. Modern computer vision methods based 

on machine learning (ML) algorithms allow the most 

efficient visual information processing [34]. Recent 

studies in integrating recommender systems based on ML 

algorithms into ophthalmology demonstrate impressive 

results in reducing the time for diagnosis and the impact 

of the human factor [35, 36].  

There are many reviews on using ML algorithms to 

analyze visual information from retinal scans. CFP data 

analysis is represented by a rather extensive range of 

studies, primarily due to the prevalence of 

devices [37, 38]. After the introduction of SD-OCT 

devices with high scanning speed and sufficient 

visualization accuracy, an increase in the number of 

reviews of the use of ML for OCT data analysis [39] and 

both OCT and CFP began [40–42]. However, these 

reviews do not provide detailed information about all 

articles on the number of images in the dataset [39], the 

use of image preprocessing [39, 40], validation to assess 

the generalizing ability of algorithms, which 

demonstrates the stability of the algorithm [39–41], and 

the use of ML in image biomarker segmentation 

tasks [42]. Due to insufficient research features under 

consideration, it is not always possible to assess the 

factors that increase the likelihood of developing an 

effective application for analyzing OCT images with 

AMD. In turn, analyzing the dynamics of these research 

traits over time can demonstrate their “natural selection”, 

which identifies the most viable ones. 

The increase in the incidence of AMD determines the 

need for the introduction of productive tools for the 

intelligent analysis of medical images to improve the 

effectiveness of patient treatment, including dynamic 

monitoring. A convenient tool for specialists who assume 

the use of machine learning methods in diagnosing and 

treating AMD with the help of OCT would be the 

complete review of the proposed solutions, considering 

their effectiveness and maturity. To date, there is no such 

review to our knowledge. Therefore, the task of this work 

is a systematic review that aims to analyze the evolution 

of the ML application for diagnosing, staging, and 

predicting the dynamics of AMD by OCT, as well as 

searching and isolating biomarkers on OCT images, 

substantiating the specifics and conclusions that will be 

useful to ML users in ophthalmology.  

2 Materials and Methods  

2.1 Selecting Publications 

In the research, we systematically reviewed papers in the 

international databases Pubmed, Scopus, Nature, and The 

Lancet, and the Russian database eLibrary. The search 

was focused on methods for extracting data from OCT 

images using ML, aimed at identifying predictors for the 

presence of AMD, its stage, and dynamics. To show the 

variety of approaches and their performance, we added to 

the selection studies, in which OCT data was processed 

with other information about the patient and, in addition 

to AMD, diagnosed other retinal diseases.  

Thus, the search criterion was the presence in the title, 

abstract, and/or keywords of the terms: “optical 

coherence tomography”, “age-related macular 

degeneration”, “machine learning”, “deep learning”, 

“neural network”, “artificial intelligence”. The logical 

relationships of these terms were built in such a way that 

the first two of the above always appeared in queries with 

the “AND” operator, the rest with “OR”: term No. 1 & 

term No. 2 & (term No. 3 | term No. 4 | term No. 5). 

Another limitation was the publication in the period from 

2017 to 2022 inclusive. A link to the database or a digital 

DOI uploaded the full text.  

After gathering the search results, we subsequently 

filtered them in several steps. The first step excluded 

duplications between databases and non-full-text articles, 
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Fig. 1 Flowchart for systematic review. 

and the screening step evaluated the relevance of the 

content to the search goal. We excluded the papers of 

three categories: where the retina analysis did not rely on 

OCT data, AMD or related pathologies were not included 

in the list of detected objects, or ML methods were not 

implied (Fig. 1). Thus, 142 studies were found, of which 

54 were screened out at the search stage, including 

42 duplications and 13 non-full-text articles. At the 

screening stage, 32 papers were removed, i.e., 18 relied 

on data from the fundus camera, 11 without the AMD 

diagnosing, and three without ML, after which 56 papers 

remained for inclusion in the study.  

2.1 The Analysis of Publications 

For the analysis, the following points were identified that 

characterize the features of ML performance in 

diagnosing AMD and other retinal diseases: 

1. Date of publication, providing to track the time 

trend of this topic. 

2. Data sources, including the existing databases 

of OCT images, without specifying the tomograph or 

other specific equipment. 

3. Number of OCT images included in the dataset. 

4. Tasks to be solved regarding the application of 

the ML algorithm:  

a) classification as the problem solution for direct 

diagnostics;  

b) segmentation to allocate the pathologies 

markers of a particular disease, which are the desired 

features of this type of image since they most fully 

characterize the state of the retina in the OCT image; 

c) a multimodal approach using multiple sources 

of patient data;  

d) a recommender system based on the patient data 

analysis and designed to accompany the diagnostician’s 

decision. 

5. Validation of the algorithm, demonstrating the 

degree of its generalization and the scope of its relevance. 

6. The Technology Readiness Level of the 

proposed algorithm. 

The indicators in feature 4 are not mutually exclusive 

since they can include each other as intermediate steps, 

comparable to classifying/diagnosing a disease by 

analyzing the selected form of pathologies achieved 

using segmentation. In turn, feature 5 directly influenced 

the assessment of feature 6, both for cross-validation of 

the solutions with the defined application and for 

solutions operating with new data aiming to increase the 

application area. 

At the same time, the following features were 

identified for greater detail of the methods used: 

1. pre-processing of images to facilitate the 

operation of the ML algorithm or extract the initial 

parameters; 

2. research methods indicating the type of 

algorithm used; 

3. the software for the algorithm implementation; 

4. metrics used to evaluate the algorithms 

performance; 

5. distinguished classes/features during the 

operation of the algorithm. 

It is worth noting that features 2 and 4 were not 

indicated in some studies, which was especially common 

for those with TRL3. 
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3 Results 

3.1 Initial Data 

The papers in the final list included 11 Pubmed articles, 

31 in Scopus, 10 in Nature, 2 in The Lancet, and 2 in 

eLibrary. Of all the papers, one was in Russian, and all 

the rest were in English. We used only Russian and 

English for the search, allowing for unaccounted articles 

published in other languages (Japanese, Chinese, etc.). 

For a systematic analysis, the results were detailed 

according to the main features presented in Section 2.2 

(Table 1). The detailed methods are given in the Table 2. 

The trend of the publications’ distribution over time 

makes it evident that the popularity of computer vision in 

AMD diagnosing by OCT images has risen dramatically. 

  

 

Table 1 Initial data of research detailing. 

Feature Number % References 

Publication year  

2017 4 7.14 [43, 49, 55, 59] 

2018 5 8.93 [45, 46, 50, 53, 64] 

2019 12 21.43 [44, 48, 60, 65–73] 

2020 10 17.86 [47, 58, 62, 74–80] 

2021 14 25.00 [51, 61, 63, 81–90] 

2022 11 19.64 [52, 56, 57, 91–98] 

Data sources  

Database 15 27.00 [43, 45, 48, 58, 59, 63, 65, 70, 71, 73, 76, 77, 85, 90] 

Tomographs 41 73.00 
[12, 20, 32, 34–36, 38–41, 44, 22, 45, 46, 48, 49, 58–63, 23, 64–73, 24, 

74, 75, 25–28, 30] 

Tasks to be solved  

Multimodality-

classification 
9 16.07 [49, 65, 68, 70, 84, 86, 89, 93, 96] 

Classification 29 51.79 [43, 45, 48, 49, 55–61, 63, 67, 71–73, 79–81, 85–87, 90, 94–96, 99]  

Segmentation 33 58.93 [44–47, 49–53, 57–66, 68–70, 74–77, 83, 88, 89, 91–93, 97] 

Recommender 

system 
11 19.64 [46, 49, 59, 69, 76, 78, 81, 82, 88, 93, 98] 

Technology 

readiness level 
 

TRL3 26 46.43 [43–48, 55, 56, 62, 65, 66, 70, 72–74, 79, 81, 83, 85, 90, 94, 95, 99] 

TRL4 25 44.64 [48–50, 53, 55, 57, 58, 61, 63, 67, 68, 75–78, 80–82, 84, 86–89, 91, 95] 

TRL5 5 8.93 [51, 52, 59, 60, 97] 

Number of OCT 

images in the 

dataset 

 

hundreds 11 19.6 [15, 44, 49, 57, 68–70, 92, 93, 96, 98] 

thousands 23 41.07 [43, 47, 50–53, 55, 56, 61, 65, 66, 75, 77, 81, 83, 84, 86–89, 94, 95, 97] 

tens of thousands 16 28.6 [46, 60, 63, 64, 67, 71–74, 78–80, 85, 90, 91, 99] 

hundreds of 

thousands 
5 9 [48, 58, 59, 76, 82] 
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Table 2 Detailing of research methods. 

Characteristics of methods Number % References 

Image pre-processing  

Without pre-processing 36 64.29 
[46, 47, 50–52, 55, 57, 61, 66, 67, 69, 70, 72–74, 77–83, 

85–91, 93–99] 

Normalization 8 14.29 [45, 58, 59, 63, 64, 71, 75, 76] 

Augmentation 11 19.64 [21, 53, 56, 60, 63, 65, 71, 76, 79, 90, 92] 

Noise suppression 4 7.14 [45, 48, 62, 84] 

Salient Patch Detection 6 10.71 [43–45, 49, 62, 68] 

Research methods    

Conventional ML methods 7 12.50 [43–46, 48, 49, 51] 

Deep learning models 49 87.50 [46, 47, 50, 52, 53, 55, 56, 58–99] 

Software  

Not specified 36 64.29 
[43, 45, 46, 48, 49, 51, 53, 60–63, 67–69, 71, 72, 74, 75, 

78–85, 87–89, 91, 92, 94–98] 

MATLAB 4 7.14 [44, 52, 65, 76] 

Python 16 28.57 [47, 50, 55–59, 64, 66, 70, 73, 77, 86, 90, 93, 99] 

Metrics  

Kappa parameter 5 8.93 [60, 86, 89, 95, 96] 

Intraclass correlation 

coefficient (ICC) 
6 10.71 [53, 61, 64, 70, 83, 92] 

Pearson’s correlation 

coefficient (PCC) 
2 3.57 [52, 74] 

Jaccard index (IOU) 2 3.57 [62, 66] 

Determination coefficient (R2) 3 5.36 [47, 74, 82] 

Dice similarity coefficient 

(DSC) 
12 21.43 [44, 45, 53, 61, 62, 64, 68, 83, 88, 89, 91, 97] 

F1-score 11 19.64 [51, 55, 61, 79, 80, 84–86, 93, 99] 

Quadratic error (RMSE) 1 1,79 [44] 

Point of interest (POI) 1 1.79 [57] 

CAMs 6 10.71 [57, 58, 85, 87, 90, 95] 

AUS 21 37.50 
[43, 46, 48, 49, 57, 58, 65, 67–69, 75, 76, 78, 80–83, 85, 87, 96, 

98] 

precision/recall 12 21.43 [48, 57, 62, 65, 67, 68, 79, 81, 85, 91, 97, 99] 

Regression coefficient 3 5.36 [51, 59, 82] 

Sensitivity/specificity 21 37.50 
[43, 49, 51, 55, 57, 59, 61, 63, 65, 67, 71–73, 77, 79, 81, 86, 87, 

89, 93, 98] 

Accuracy, % 25 44.64 
[48, 50, 51, 55–57, 59–61, 63, 65, 67, 71–73, 81, 84, 85, 87, 90, 

93–95, 98, 99] 

Validation 31 55.36 
[46, 48–50, 52, 55, 57–59, 61, 63, 65, 67–69, 73, 75, 76, 78–82, 

86, 89, 91, 92, 95, 96, 99] 

Distinguishable 

classes/features 
 

Binary classification 

(absence/presence of AMD) 
4 7.14 [55, 62, 73, 87] 

AMD and other diseases 12 21.43 [45, 56, 60, 63, 72, 76, 87, 90, 92, 95, 96, 99] 

Stages of AMD 15 26.79 [43, 46, 48, 57, 65, 67, 69, 71, 77–79, 84, 86, 93, 94] 

AMD biomarkers 28 50.00 
[44, 47, 49–53, 58, 61–64, 66, 68–70, 74, 75, 83–85, 88, 89, 

91–93, 97] 

Prognosis of the disease 

dynamics  
11 19.64 [49, 51, 59, 67, 69, 75, 77, 78, 81, 82, 98] 
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ML algorithms used in computer vision can be divided 

into standard (without using multilayer neural networks) 

and deep learning methods. The standard ML methods 

include classification based on the visual dictionary [43], 

pathology detection based on clustering of retinal 

layers [44, 45], layer and pathology segmentation based 

on graphs [46, 47] and disease markers identification 

based on support vectors for finding clusters of 

superpixels extracted with a shallow autoencoder [48] 

and voxel clusters for 3D-OCT [49]. Also, standard 

methods are used in ophthalmological devices’ software 

for automatic retinal layers segmentation, where graph-

based methods have become very popular [50–52].  

Over the past few years, deep learning methods have 

become more prevalent than standard ML methods. 

Firstly, the reason is that standard methods have a greater 

tendency to operate on the “ad-hoc” principle, which, on 

average, increases their performance with the data 

sources considered in the study, however limiting their 

generalizing abilities [53, 54]. Secondly, the evolution of 

deep learning possibilities is promoted by accumulating 

a large amount of OCT data and improving its quality by 

enhancing the visualizing mechanisms of optical 

equipment [55–57]. As part of the growing popularity of 

deep learning in diagnosing/classifying AMD and other 

retinal diseases, there is a trend towards using segmented 

biomarkers on OCT images as predictors [45, 49, 57–63]. 

That is due to the previously stated conclusions, coupled 

with improving the elaborateness of deep learning 

methods without a high risk of overfitting. 

Many studies have demonstrated the high efficiency 

of OCT image analysis. However, the results can 

significantly change in natural experiments with data 

from sources not represented in the training set. 

Therefore, in the application’s design, it is essential to 

understand the generalizing ability of the algorithm, 

carrying out verification using cross-validation and other 

data sets from different sources, e.g., ophthalmic 

equipment from various manufacturers and/or various 

patient samples. 

The division of the proposed solutions by TRL relied 

on the results' maturity, the size of the training and test 

datasets, and the procedure of verification. For TRL3, the 

idea was typically experimentally confirmed with data 

from the training set provided by a single database or one 

type of commercial tomograph. TRL4 included the 

concept validation on data from various sources, while 

for TRL5, the proposed ideas were tested during the 

diagnostics in natural conditions. The most significant 

results with TRL5 have been published over the past 

year, demonstrated in Table 1, indicating the relevance of 

these methods in OCT diagnostics. 

The algorithm’s generalizing ability strongly depends 

on the training dataset’s size when operating with actual 

data. At the same time, the relevance of performance 

indicators for the entire variety of input data depends on 

the test dataset. In studies using several hundred 

examples obtained from one or two brands of 

tomographs, the applicability of the results is severely 

limited. However, such an approach can be practical for 

testing the concepts of AMD data processing at low 

dataset costs [44, 45, 69, 70, 92, 93, 96, 98]. 

In most papers, a dataset contained thousands of OCT 

image examples obtained by the collaboration of several 

institutions that provided their databases of OCT images, 

which made it possible to bring more hardware and racial 

diversity into the dataset. In addition to direct data 

collection, many studies use publicly available datasets 

to generate tens of thousands of images, including the 

most popular OCT2017 [100]. For example, this dataset 

was used both for training and testing the 

algorithm [71, 72, 90] and only for training in 

Refs. [63, 79], while for testing, researchers assembled a 

separate small set (hundreds of images).  

The most extensive datasets of hundreds of thousands 

of OCT images were created by using large databases 

accumulated over a long period [59, 76, 82], or by 

merging several databases into one dataset [48, 58]. The 

ML algorithm trained on such a dataset will potentially 

have the highest generalizing ability, as well as adequate 

behavior on the entire variety of input data. It should be 

noted that regardless of the size of the dataset, the 

distribution of standard and non-standard ML algorithms 

applied in the studies has minimal differences.  

Finally, several papers on the analysis of the AMD 

progression over time do not indicate the exact number 

of images in the dataset [49, 52, 67, 69, 70, 73, 75]. In 

such cases, we calculated the number of samples based 

on the provided information on the study’s duration, the 

number of eyes examined, and the frequency of scanning 

patients.  

Several studies have used image augmentation and 

Generative Adversarial Networks (GAN) [60, 64, 68, 70], 

synthesizing OCT images with AMD to move up to the 

larger category regarding the number of scans. However, 

in the case of GAN, the generated dataset must be peer-

reviewed to filter out the most outliers from the real 

picture, in addition to using methods to measure the 

similarity between two images like the Structural 

Similarity Index Measure (SSIM) [70]. The usefulness of 

augmentation, in turn, is limited by the fact that the 

images obtained on its basis have a certain tilt of the 

retina. However, in most modern tomographs, the 

presentation of OCT images of the retina occurs with 

layer alignment.  

Regarding the sources of OCT data, the public 

databases were typical for studies of image classification 

with TRL3 [43, 45, 48, 56, 58, 65, 70, 71, 73, 90]. At the 

same time, studies identified as TRL4 [63, 76, 77, 87] 

indicated the data on institutions and other sources that 

provided databases for compiling the dataset. However, 

they did not provide specific equipment brands for 

obtaining OCT images. In turn, for pathologies 

segmentation, in which the features of visualization and 

OCT images’ resolution play a significant role, the 

optical devices were specified in most studies.   

Most of the papers that mentioned the brand of the 

tomograph used SD-OCT technology, as it has become 

very popular in research and medical institutions due to 

its high scanning speed. The prevalence of this 
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technology among images in datasets was also noted in a 

review paper devoted to the direct diagnosis of 

AMD [42]. Along with SD-OCT, the Swept Source OCT 

(SS-OCT) technology is employed [52, 66, 81, 92], 

which allows to achieve of higher scanning speeds with 

high resolution [101]. All studies based on SS-OCT used 

convolutional neural networks (CNN) for biomarker 

extraction [52, 66, 92] and analysis of disease  

dynamics [81]. At the same time, the performance 

indicators of the algorithm for SS-OCT are at the level of 

similar works for SD-OCT. To isolate biomarkers in 

three dimensions, 3D-OCT is typically used, which 

potentially provides more information about their actual 

shape [44, 47, 66, 76, 83, 88, 93] and dynamics of 

changing [69, 77, 82]. 

As already noted, the classification primarily relied 

not only on the preliminary visual data processing when 

extracting features for ML algorithms [43, 48] or 

arbitrary parameter selection by deep learning algorithms 

[43, 48, 55, 56, 67, 71–73, 79–81, 86, 87, 90, 95,96, 99], 

but rather on selected image segments associated with the 

pathologies of diseases [45, 49, 58, 61–63, 84, 85]. Such 

solutions, in some cases, demonstrate a more remarkable 

generalizing ability and easier verifiability of the 

algorithm.  

The multimodal approach was performed for 

pathologies segmentation on OCT and images from the 

fundus camera, where the correlated appearance of 

disturbances helped to estimate the probability of their 

presence [49, 65, 70, 84, 86, 89], or when processing 

images of several OCT modes together [68, 93, 96].  

Existing recommender systems use the above 

methods with the application of risk models based on the 

information received. Examples of such systems are 

predictive models for evaluating AMD treatment 

strategies through intravitreal injection of a blocking 

vascular endothelial growth factor. That is especially true 

since such treatment is expensive. Therefore, methods 

have been proposed to predict the injection response 

based on an OCT image before the 

procedure [55, 61, 78, 81, 98] or identify accumulation 

areas of fluid and its type in the macula 

[46, 52, 53, 59, 76]. Other forms of recommender 

systems allowed the prediction of AMD progression by 

biomarkers [49, 69, 75, 88, 93]. 

3.2 Research Methods 

Since the form of retinal disease biomarkers varies 

depending on patients’ race [102], there is a need to 

increase the generalizing ability of OCT image analysis 

algorithms. At the same time, a high generalizing ability 

is necessary for processing data from several types of 

tomographs since they have different visualization 

features of OCT images. A more detailed specification of 

the methods used showed the predominant advantage of 

neural network approaches due to the potentially high 

generalizing ability for various characteristics of input 

data [54]. Accordingly, using neural network approaches, 

combined with training on an extensive data set, can 

significantly increase the efficiency of allocating 

biomarkers for diseases. [49, 66, 76] and allow you to 

create an application designed to work with data from 

several types of tomographs [44, 52, 53]. 

Another feature of deep learning is the transfer 

learning ability, which uses neural networks pre-trained 

on a large data set. That enables efficiently detecting of 

objects with just a priori data about their boundaries and 

textures, which in some cases demonstrated a boost in 

performance indicators in comparison with similar 

architectures without transfer learning 

[55, 63, 67, 73, 76, 85, 95]. However, due to the 

specificity of OCT images and pathologies, as well as the 

relatively large number of parameters in pre-trained 

models, some studies deliberately did not use transfer 

learning [57, 90]. Regarding the last argument, a real-

time OCT data analysis based on deep learning methods 

requires a limited number of free parameters to reduce 

the computational complexity that affects the maximum 

system response time [56]. 

Convolutional neural networks have demonstrated 

their significance in a variety of computer vision 

applications and, as expected, have been used in the 

majority of works that use deep learning for processing 

OCT images [46, 47, 52, 53, 55–99]. However, in some 

cases, recurrent neural networks are preferable since they 

have shown high efficiency in assessing the dynamics of 

various processes over time. In conjunction with 

convolutional networks, recurrent neural networks can 

obtain potentially highly accurate predictions regarding 

the dynamics of the disease and the likelihood of 

progression of AMD [78, 80].  

Image pre-processing can be used for pre-feature 

extraction for traditional ML methods [43–45, 49], 

dataset extension using augmentation 

[21, 53, 56, 60, 63, 65, 71, 76, 79, 90, 92] and to reduce 

the shortcomings of visualization and normalization, 

which in most cases speeds up the training of intelligent 

algorithms [45, 48, 58, 59, 62–64, 71, 75, 76]. 

Predominantly, the platform for developing the ML 

algorithm was not specified. Most of the studies in which 

this information was provided used Python, which has 

more flexible functionality than Matlab. 

The applicability of the metrics depended mainly on 

the nature of the output information and the task at hand. 

To assess the classification efficiency, it is essential to 

evaluate the errors of the “first” and “second” kinds for 

each distinguished class is essential. From the given 

compilation devoted to classification, the following were 

used as metrics:  

 accuracy in terms of the percentage of correct 

answers, which was most often used in research; 

 F1 is a harmonic mean of accuracy and recall;  

 sensitivity and specificity, reflecting the 

proportion of positive and negative results, respectively;  

 AUC-ROC (Area Under Curve-Receiver 

Operating Characteristic) representing the area under the 

curve of errors, which is more resistant to class 

imbalance, which is relevant for stages and pathologies 

of AMD with a varying frequency of detection during an 

examination of patients.  
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An additional verifying method for the classifier is 

the visualization of the attention areas on the image, 

relying on which it is possible to understand which 

information supports the decision. For this purpose, 

several works used class activation maps [57, 58, 90, 95] 

and the selection of points of interest [57]. 

In the problems of pathologies segmentation, the 

rules for evaluating the result are more manageable. To 

assess the accuracy of area selection, it is possible to 

represent the sets of segmented pixels of the example and 

the impact of the algorithm as two compared sets. That 

enables using the Pearson correlation coefficient, 

representing a measure of the correlation between two 

data sets [52, 74]. By limiting the selected areas as an 

image segment, it is also possible to estimate the overlap 

area of the original mask, chosen by experts, and the 

image segmented by the algorithm based on the Jaccard 

index [66]. The Dice similarity coefficient is a more 

commonly used analog for the Jaccard index applicable 

in cases with significant class imbalance [44, 53, 61, 88].  

It is also essential to evaluate the degree of 

consistency between the experts and the ML algorithm, 

especially when developing a recommender system. 

Examples of metrics suitable for this assessment are 

Cohen’s Kappa coefficient when measuring interregional 

agreement, which is more typical for 

classification/diagnosing problems [60, 95]. An expert’s 

activity in analyzing AMD data is based on background 

information about the shape and size of biomarkers and 

professional experience. Therefore, the generally 

accepted statistical approach is to correlate the found 

form of pathology with tabular data. The ability of an 

intelligent algorithm to reproduce this activity can be 

assessed by parallel testing of experts unfamiliar with the 

test dataset and the algorithm itself. Numerically, the 

results of the comparative test are evaluated 

using the intraclass correlation coefficient 

(ICC) [53, 61, 64, 83, 92]. 

Distinguished classes or features represent the results 

of the algorithm operation. Classes in most works 

personified the diagnoses of either the presence or 

absence of AMD in the case of binary classification, the 

stages of AMD, or various retinal diseases. For the OCT 

image segmentation tasks, the algorithm’s output data 

was the selected biomarkers, which act either as the final 

goal or as an intermediate one, based on which a 

diagnosis, recommendation, or prediction of the disease 

dynamics was made. Such approaches most reliably 

reflect an expert's diagnosing process and are easier to 

analyze the decision-making process using deep learning 

algorithms.  

With a dataset size of hundreds of examples, Unet 

architectures showed the highest ICC, primarily due to 

the mechanism for refining the edges of an object based 

on the concatenation of parallel layers. In turn, Resnet 

networks showed an accuracy of 86% on average. At the 

same time, the OptiNet architecture [57], whose structure 

consists of serial convolution instead of parallel 

convolution in Resnet, demonstrated an accuracy of 98% 

that the highest binary classification accuracy. 

For datasets of thousands of examples, the VGG 

network has become the most commonly used model. 

She also presented the highest numerical performance 

indicators values, up to 97.7% accuracy. The sensitivity 

and specificity of the model reach 0.91 and 0.896, 

respectively [65]. However, Unet networks showed the 

best specificity at 0.98 [61]. In addition, VGG has 

demonstrated its potential in optimizing its structure for 

real-time operation. 

For datasets of tens of thousands of images, the 

highest performance indicators of deep algorithms were 

demonstrated by pre-trained Resnet networks, where 

parallel convolutions of different sizes helped to 

highlight standard features of the same biomarkers that 

are displayed with differences depending on different 

tomographs and augmentations. The achieved values of 

accuracy of 99% and sensitivity and specificity of 0.99 

were performed on test data obtained from tomographs 

not included in the training set [63]. The results obtained 

on a reasonably large data set show the prospects for pre-

training the model on a data bank like the OCT2017.  

For several hundred thousand OCT images, parallel 

network convolutions in the GoogLeNet structure have 

also shown their effectiveness. Thanks to them, an 

accuracy of up to 95.5% was obtained, with specificity 

and sensitivity of 0.9 and 0.96, respectively [59]. 

4 Discussions 

According to the collected data, the application of ML 

methods for OCT data analysis in diagnostics, staging, 

search and isolation of biomarkers, and prediction of 

AMD dynamics, is gaining more and more popularity. 

An increasing number of publications over the past five 

years confirm this conclusion. This trend (Fig. 2) is 

primarily due to the transition from standard ML to deep 

learning. One of the prerequisites for this transition is 

extending capabilities to generate large datasets from 

hundreds to hundreds of thousands of OCT scan samples, 

which directly affects the efficiency of deep neural 

network models [40]. The importance of this requirement 

for datasets in ophthalmology is consistent with the 

review's conclusions [39]. The availability of large 

datasets is due to the increasing spread of OCT devices, 

a collaboration between research and medical 

institutions, and the improvement of algorithms for the 

synthetic generation of OCT images. However, synthetic 

generation, along with augmentation, requires additional 

expert guidance. In all the analyzed works, ML methods 

were applied correctly concerning the processed 

information and methods for evaluating the results 

obtained. 

It is worth noting that at the time of writing the 

systematic review, not all studies conducted in 2022 have 

been published, affecting the shape of the bar graphs that 

display the indicators mentioned below.  

The efficiency of deep learning is due to the 

potentially high generalization ability compared to ML 

methods and the ability to extract algorithm predictors 

automatically, simplifying application development. 
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Fig. 2 Distribution of standard and deep ML approaches 

by years. 

The approach to working with AMD data is also 

changing. Advanced intelligent systems make it possible 

to bring the classification of OCT images, similar to 

direct diagnostics requiring additional sufficiency 

verification of computer vision logic, to the progressive 

level equal to an expert’s visual assessment. The latter 

relates to segmentation algorithms for retinal 

pathologies, based on the analysis of which the doctor 

and an additional classification algorithm carry out 

diagnostics or staging. Methods for analyzing 

pathologies and biomarkers have also found wide 

application in recommender systems and multimodal 

diagnostic techniques. 

This transition from direct diagnosis to the analysis of 

the retina’s segmented areas influenced the quality 

metrics of ML algorithms used. For direct classification 

(classic for medical diagnostic mechanisms), the 

parameters of accuracy, sensitivity, and specificity, i.e., 

AUS and F1, are evaluated. In turn, various studies differ 

in the methods used to assess the accuracy of segment 

boundary detection for segmentation mechanisms. 

However, recent studies show a greater preference for 

DSC and IOU due to the calculation simplicity and the 

relative accuracy of matching with natural segment 

boundaries. 

The specifics of the transition from classical ML to 

deep learning also influenced the need for pre-processing 

of images since primary processing, which is extremely 

important for the self-selection of predictors, does not 

always make a significant contribution to processing by 

deep neural networks.  

Among the structures used in deep neural network 

approaches, in connection with the above trends, auto-

encoders are distinguished by type: Unet, Resnet, VGG, 

and a specially designed structure OptiNet. They are 

applied as the basis for classifiers, clusterers, and 

predictive models of diseases. Each dimension category 

of the dataset contains a different variety of data on the 

nationality of patients. Consistent with the conclusions 

in Ref. [41], the analysis confirmed the influence of 

nationality on the shape of biomarkers with the same 

diagnosis, which imposes additional requirements on the 

generalizing ability of intelligent algorithms for 

applications positioned as universal. 

Since the dataset’s size significantly affects the 

algorithm's relevance limitations, different deep learning 

architectures and numerical indicators of their 

effectiveness should be compared only within the same 

category It should also be noted that it is difficult to 

compare research results in many cases due to using 

different indicators. Therefore, examples of comparisons 

with only the same indicators are presented below.  

Fig. 3 shows the average accuracy of deep learning 

models. On the given histogram, they are arranged in 

descending order of their use in the OCT data analysis. 

The selected most effective deep learning models are 

included in the selection of basic models for classifiers 

and segmenters given in Ref. [37] which is devoted to 

working with CFP data. 

 

 

Fig. 3 Average achievable accuracy of deep learning 

models in disease classification tasks. 

According to the results of the metrics used, such as 

AUS, F1, and sensitivity and specificity, for direct 

diagnostic methods, the highest indicators were 

demonstrated by: VGG and ResNet. The same and 

GoogLeNet with a sufficient data set for segmentation of 

pathologies.  

Based on the papers reviewed in this work and paying 

particular attention to those studies in which the greatest 

TRL was obtained, it is possible to identify the key 

components that characterize the most effective 

approaches. These approaches included a data set of at 

least a thousand images, deep learning methods, and 

operations of both cross-validation and validation on data 

from other sources (different brands of tomographs or 

groups of people with different parameters). When 

solving the problem of diagnosing and staging AMD, 

approaches with the allocation of biomarkers have the 

greatest informativeness and explainability, which most 

clearly reflects the visual analysis of the expert. These 

circumstances may increase the likelihood of 

successfully developing an OCT image processing 

application with a high generalization capability. 

5 Conclusions 

Due to the trend of increasing the number of integrations 

of intelligent systems in ophthalmology, the dynamics of 

the use of various ML applications to solve problems in 
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this area will inevitably correlate with the dynamics of 

the development of intelligent technologies. This 

statistical review evaluated this correlation by analyzing 

56 studies on the use of ML methods in OCT image 

analysis tasks with AMD, according to a variety of 

features. Among the highlighted features were: 

Publication year, Data sources, Tasks to be solved, 

Technology readiness level, Number of OCT images in 

the dataset, Image pre-processing, Research methods, 

Software, Metrics, Validation, and Distinguishable 

classes/features. Analyzing feature data in the time 

domain allowed us to identify the most important and 

viable factors for creating an up-to-date intelligent OCT 

image analysis application with AMD. These effective 

artificial intelligence programs provide us with a unique 

opportunity to analyze visual information about the state 

of the retina and help make clinical decisions in the field 

of ophthalmology, in particular, in diagnosing the 

disease, automatically identifying biomarkers, and 

forming and correcting treatment strategies. 
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