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A B S T R A C T

It is well known that a modulationally unstable short-wavelength delocalized nonlinear vibrational mode
(DNVM) can create chaotic discrete breathers (DBs) in a nonlinear lattice. A necessary condition for this is
that the DNVM must have a frequency outside the phonon spectrum of the lattice. This phenomenon has been
repeatedly analyzed for one- and two-dimensional lattices, and here it is studied for a bcc lattice with 𝛽-Fermi–
Pasta–Ulam–Tsingou potential. Using the group-theoretical approach developed by Chechin and Sakhnenko,
four DNVMs are found with a wave vector at the boundary of the first Brillouin zone and frequencies above
the phonon spectrum. It is shown that the development of the modulational instability of all four DNVMs
with amplitudes above a certain value leads to the formation of chaotic DBs, which is justified by calculating
the energy localization parameter and the maximum particle energy. Chaotic DBs in the three-dimensional
bcc lattice radiate their energy faster than in previously studied two-dimensional lattices. The results obtained
describe one of the possible mechanisms of energy dissipation by a crystal lattice in a far-from-equilibrium
system.
1. Introduction

Pioneer works [1–3] showed that spatial localization of vibrational
energy is possible in defect-free nonlinear lattices. Such high-amplitude
localized oscillations are called discrete breathers (DBs) or intrinsic
localized modes. Many interesting results on DBs, summarized in the
reviews [4–6], were obtained for one-dimensional and, more rarely,
two-dimensional lattices [7,8]. The desire to elucidate the role of
DBs in crystal physics leads to the need to study three-dimensional
lattices [9]. Experimental study of discrete breathers in crystals is
based on the measurement of vibrational spectra using the methods of
Raman scattering, X-ray and neutron scattering [10–13]. In theory, the
method of molecular dynamics is actively used, which made it possible
to show the existence of discrete breathers in ionic crystals [14–16],
covalent crystals [17,18], metals with fcc [19–25], bcc [19,26–28],
and hcp [29,30] lattices, in 𝛼-uranium [31], in ordered alloys [32,33],
on the surface of a crystal [34], as well as in crystals with Morse
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potential [35,36], coronene [37], carbon nanotubes [38–41], honey-
comb structures [42], graphene [43–46] and graphane [47,48]. The
interaction of DBs with defects in the crystal structure [40,49–52] and
their influence on the macroscopic properties of crystals [53–57] are
studied. The problem of finding DBs in crystals at thermal equilibrium
has been addressed [16,35,58].

In 1990, Burlakov, Kiselev and Rupasov discovered a very un-
expected phenomenon of the spontaneous appearance of DBs in a
nonlinear chain as a result of the development of the modulation
instability of a vibrational mode with a wave vector at the bound-
ary of the first Brillouin zone [59]; such DBs were called chaotic.
This phenomenon, sometimes related to the anti-Fermi–Pasta–Ulam–
Tsingou (FPUT) problem [60], has been comprehensively studied for
one-dimensional [59–66] and two-dimensional lattices [8,60,67,68],
but for three-dimensional systems, to date, there is a very limited
number of works [20]. Daumont, Dauxois, and Peyrard have show
how the discreteness drastically modifies the modulational instability
condition and also noted that it is the first step to energy localization
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in the nonlinear chain [61]. Yoshimura has studied the modulational
instability of the zone boundary mode in nonlinear chains with generic
polynomial potentials and presented an exact expression of the insta-
bility growth rate [62]. Kosevich and Lepri have studied modulational
instability and energy localization in an anharmonic chain within a
continuum theory and described the initial localization stage as a gas
of envelope solitons [63].

A necessary condition for the creation of chaotic DBs by an unstable
zone-boundary mode is that its frequency must lie outside the phonon
band of the lattice. In this case, the energy of the zone-boundary
mode cannot be directly transferred to extended phonons, and the
development of instability leads to energy localization on chaotic DBs.

In view of this, a consistent study of chaotic DBs arising as a result
of the modulation instability of short-wavelength modes should begin
with a search for modes that have frequencies outside the phonon spec-
trum. This problem can be solved on the basis of the group-theoretical
approach developed by Chechin and Sakhnenko [69], which derives
such modes from the symmetry analysis of the considered lattice. Using
this approach, it was shown that for lattices of higher dimensions,
the existence of more than one zone-boundary mode with a frequency
outside the phonon band is possible. For example, there are three such
modes in a triangular lattice [56,70], two in a square lattice [71,72],
three in an fcc lattice [73] and four in a bcc lattice [74].

An introduction to the group-theoretical approach of Chechin and
Sakhnenko can be found in the appendices to Ref. [70]. This approach
is aimed at finding exact oscillatory solutions to the equations of motion
of a nonlinear discrete system considering only the symmetry of the
system and, therefore, such solutions exist independently of the type of
interatomic interactions and for an arbitrary amplitude. Such solutions
can be obtained for molecules [75], for infinite lattices [76–78], or for
finite size lattices [79]. In the original papers they were called bushes
of nonlinear normal modes, but in some studies related to lattices they
are called delocalized nonlinear vibrational modes (DNVMs) and the
latter term will be used here.

DNVMs can be used to check the accuracy of interatomic potentials
for molecular dynamics simulations [80].

It should be said that the study of the nonlinear dynamics of the bcc
lattice is of interest, since a number of metals have such a lattice, for
example, iron, tungsten, tantalum, molybdenum, niobium, vanadium,
chromium, manganese, and barium.

The natural question is how to excite DNVMs in crystals. The
successes of recent years in the development of laser technologies
have opened up new ways of perturbing the crystal lattice of ma-
terials at terahertz frequencies, making it possible to induce forced
vibrations of atoms with amplitudes of a few percent of the inter-
atomic distance (see reviews [81–86]). The use of ultrashort laser
pulses to perturb crystalline samples on subpicosecond time scales is
becoming an increasingly accessible experimental technique. In most
condensed matter experiments performed to date, such pulses cause
strong athermal excitation of electrons, which relax mainly by electron–
electron scattering followed by thermalization by coupling with phonon
degrees of freedom. Some DNVMs have frequencies above the phonon
spectrum, and their excitation can be expected under the action of
a laser pulse with such a frequency. Further evolution of the excited
DNVMs can in principle lead to the formation of chaotic DBs.

The role of DBs and DNVMs in far-from-equilibrium states of met-
als under plastic deformation, irradiation, ion implantation, and laser
processing is not fully understood. The present study is a step in this
direction.

In the rest of the paper, the FPUT bcc lattice is described in
Section 2. The phonon dispersion relation for the lattice is derived
in Section 3, DNVMs with frequencies above the phonon band are
described in Section 4. In Section 5, the modulational instability of
DNVMs and formation of chaotic DBs are studied numerically. The
results are summarized in Section 6.
2

2. FPUT bcc lattice

A three-dimensional bcc 𝛽-FPUT lattice with nearest and next-
earest neighbor interactions is considered, see Fig. 1(a). The bcc lattice
ith the step ℎ is a set of points in the three-dimensional space with

adius vectors

𝑖,𝑗,𝑘 = 𝑖𝒆1 + 𝑗𝒆2 + 𝑘𝒆3, (1)

here 𝑖, 𝑗 and 𝑘 are integers and the basis vectors of the lattice are
1 = (ℎ, 0, 0), 𝒆2 = (0, ℎ, 0) and 𝒆3 = 1∕2(ℎ, ℎ, ℎ).

The lattice points are occupied by the particles of mass 𝑚, each
aving three degrees of freedom, the components of the displacement
ector 𝜹𝑖,𝑗,𝑘 = (𝑢𝑖,𝑗,𝑘, 𝑣𝑖,𝑗,𝑘, 𝑤𝑖,𝑗,𝑘). Position of the particle 𝑖, 𝑗, 𝑘 at time 𝑡
s given by the radius vector 𝒓𝑖,𝑗,𝑘(𝑡) = 𝝃𝑖,𝑗,𝑘 + 𝜹𝑖,𝑗,𝑘(𝑡).

Each particle interacts with the eight nearest (𝑛) and six next-nearest
𝑛𝑛) neighbors via the 𝛽-FPUT potential

𝑛,𝑛𝑛(𝑟) =
𝑐𝑛,𝑛𝑛
2

(𝑟 − 𝑎𝑛,𝑛𝑛)2 +
𝛽𝑛,𝑛𝑛
4

(𝑟 − 𝑎𝑛,𝑛𝑛)4, (2)

where 𝑟 is the distance between the particles, 𝑎𝑛 =
√

3ℎ∕2 and 𝑎𝑛𝑛 = ℎ
or the nearest and next-nearest bonds, respectively; 𝑐𝑛 and 𝑐𝑛𝑛 (𝛽𝑛

and 𝛽𝑛𝑛) are the coefficients for the harmonic (anharmonic) part of
the potential for the nearest and next-nearest bonds, respectively. We
take ℎ = 1 and 𝑐𝑛 = 1 by choosing the units of distance and energy,
respectively. For simplicity, 𝑐𝑛𝑛 = 1 is set. For the anharmonicity
coefficients we set 𝛽𝑛 = 𝛽𝑛𝑛 = 10, then the nonlinearity effects become
oticeable for particle displacements of the order of 0.1ℎ. For the
article mass 𝑚 = 1 is set by choosing a unit of time.

Referring to Fig. 1(a), we define the following vectors connecting
he nearest and next-nearest neighbors of the 𝑖, 𝑗, 𝑘 particle:

𝑹𝑖,𝑗,𝑘,1 = 𝒓𝑖,𝑗,𝑘−1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,2 = 𝒓𝑖+1,𝑗,𝑘−1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,3 = 𝒓𝑖+1,𝑗+1,𝑘−1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,4 = 𝒓𝑖,𝑗+1,𝑘 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,5 = 𝒓𝑖−1,𝑗−1,𝑘+1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,6 = 𝒓𝑖,𝑗−1,𝑘+1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,7 = 𝒓𝑖,𝑗,𝑘+1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,8 = 𝒓𝑖−1,𝑗,𝑘+1 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,9 = 𝒓𝑖,𝑗−1,𝑘 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,10 = 𝒓𝑖,𝑗+1,𝑘 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,11 = 𝒓𝑖−1,𝑗,𝑘 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,12 = 𝒓𝑖+1,𝑗,𝑘 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,13 = 𝒓𝑖+1,𝑗+1,𝑘−2 − 𝒓𝑖,𝑗,𝑘,

𝑹𝑖,𝑗,𝑘,14 = 𝒓𝑖−1,𝑗−1,𝑘+2 − 𝒓𝑖,𝑗,𝑘. (3)

Computational cell includes 𝐼 × 𝐽 × 𝐾 particles subject to the
periodic boundary conditions, 𝒓𝑖,𝑗,𝑘 = 𝒓𝑖+𝐼,𝑗,𝑘 = 𝒓𝑖,𝑗+𝐽 ,𝑘 = 𝒓𝑖,𝑗,𝑘+𝐾 . The
Hamiltonian (total energy) of the computational cell is the sum of the
kinetic energy of particles and potential energies of the nearest and
next-nearest bonds:

𝐻 = 𝐾 + 𝑃𝑛 + 𝑃𝑛𝑛 =
𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1

𝑚
2
|�̇�𝑖,𝑗,𝑘|2

+1
2

𝐼
∑

𝑖=1

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1

(

8
∑

𝑠=1
𝜑𝑛(|𝑹𝑖,𝑗,𝑘,𝑠|) +

14
∑

𝑙=9
𝜑𝑛𝑛(|𝑹𝑖,𝑗,𝑘,𝑙|)

)

, (4)

where overdot means differentiation with respect to time.
The Hamilton’s equations of motion derived from Eq. (4) are

𝑚�̈�𝑖,𝑗,𝑘 =
8
∑

𝐷𝑛𝑅𝑖,𝑗,𝑘,𝑠,𝑥 +
14
∑

𝐷𝑛𝑛𝑅𝑖,𝑗,𝑘,𝑙,𝑥,

𝑠=1 𝑙=9
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Fig. 1. (a) Cubic translational cell of the bcc lattice with the lattice parameter equal to ℎ. The bcc lattice can be regarded as a union of two simple cubic lattices shifted one
ith respect another by the vector 1∕2(ℎ, ℎ, ℎ). Vectors 𝒆1 = (ℎ, 0, 0), 𝒆2 = (0, ℎ, 0), and 𝒆3 = 1∕2(ℎ, ℎ, ℎ) show a non-orthogonal primitive translational cell of the lattice containing

single particle. The nearest and next-nearest bonds are taken into account, they are colored red and blue, respectively. Nearest and next-nearest bonds have length ℎ
√

3∕2 and ℎ,
espectively. (b) The first Brillouin zone of the bcc lattice. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)
𝑚

𝑚

�̈�𝑖,𝑗,𝑘 =
8
∑

𝑠=1
𝐷𝑛𝑅𝑖,𝑗,𝑘,𝑠,𝑦 +

14
∑

𝑙=9
𝐷𝑛𝑛𝑅𝑖,𝑗,𝑘,𝑙,𝑦,

�̈�𝑖,𝑗,𝑘 =
8
∑

𝑠=1
𝐷𝑛𝑅𝑖,𝑗,𝑘,𝑠,𝑧 +

14
∑

𝑙=9
𝐷𝑛𝑛𝑅𝑖,𝑗,𝑘,𝑙,𝑧, (5)

here

𝑛 =
𝜑′
𝑛(|𝑹𝑖,𝑗,𝑘,𝑠|)
|𝑹𝑖,𝑗,𝑘,𝑠|

, 𝐷𝑛𝑛 =
𝜑′
𝑛𝑛(|𝑹𝑖,𝑗,𝑘,𝑙|)
|𝑹𝑖,𝑗,𝑘,𝑙|

. (6)

In the Appendix it is shown how the equations of motion Eq. (5) are
obtained from the Hamiltonian Eq. (4).

The influence of the computational cell size is studied considering
𝐼 = 𝐽 = 𝐾∕2 = 10, 20 and 40. The total number of particles for these
three cases is 2000, 16 000 and 128 000, respectively.

The equations of motion are integrated numerically employing the
symplectic Störmer integrator of order six [87] with the time step of
0.001 time units.

3. Phonon dispersion relation

Assuming that 𝑢𝑖,𝑗,𝑘, 𝑣𝑖,𝑗,𝑘, and 𝑤𝑖,𝑗,𝑘 ≪ ℎ, we expand the right-
hand side of Eq. (5) and discard terms with powers greater than linear,
obtaining linearized equations of motion

𝑚�̈�𝑖,𝑗,𝑘 = 𝑐𝑛𝑛(𝑢𝑖−1,𝑗,𝑘 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖+1,𝑗,𝑘)

+
𝑐𝑛
3
(𝑢𝑖,𝑗,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖,𝑗,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑢𝑖+1,𝑗,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖−1,𝑗,𝑘+1)

−
𝑐𝑛
3
(𝑣𝑖+1,𝑗,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖−1,𝑗,𝑘+1)

−
𝑐𝑛
3
(𝑤𝑖+1,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖−1,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑢𝑖+1,𝑗+1,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖−1,𝑗−1,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖+1,𝑗+1,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖−1,𝑗−1,𝑘+1)

−
𝑐𝑛
3
(𝑤𝑖+1,𝑗+1,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖−1,𝑗−1,𝑘+1)

+
𝑐𝑛
3
(𝑢𝑖,𝑗+1,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖,𝑗−1,𝑘+1)

−
𝑐𝑛 (𝑣 − 2𝑣 + 𝑣 )
3

3 𝑖,𝑗+1,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗−1,𝑘+1
+
𝑐𝑛
3
(𝑤𝑖,𝑗+1,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗−1,𝑘+1), (7)

�̈�𝑖,𝑗,𝑘 = 𝑐𝑛𝑛(𝑣𝑖,𝑗−1,𝑘 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖,𝑗+1,𝑘)

+
𝑐𝑛
3
(𝑢𝑖,𝑗,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖,𝑗,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗,𝑘+1)

−
𝑐𝑛
3
(𝑢𝑖+1,𝑗,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖−1,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖+1,𝑗,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖−1,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖+1,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖−1,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑢𝑖+1,𝑗+1,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖−1,𝑗−1,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖+1,𝑗+1,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖−1,𝑗−1,𝑘+1)

−
𝑐𝑛
3
(𝑤𝑖+1,𝑗+1,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖−1,𝑗−1,𝑘+1)

−
𝑐𝑛
3
(𝑢𝑖,𝑗+1,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖,𝑗−1,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖,𝑗+1,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖,𝑗−1,𝑘+1)

−
𝑐𝑛
3
(𝑤𝑖,𝑗+1,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗−1,𝑘+1), (8)

�̈�𝑖,𝑗,𝑘 = 𝑐𝑛𝑛(𝑤𝑖,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑢𝑖,𝑗,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖,𝑗,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗,𝑘+1)

−
𝑐𝑛
3
(𝑢𝑖+1,𝑗,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖−1,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑣𝑖+1,𝑗,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖−1,𝑗,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖+1,𝑗,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖−1,𝑗,𝑘+1)

−
𝑐𝑛
3
(𝑢𝑖+1,𝑗+1,𝑘−1 − 2𝑢𝑖,𝑗,𝑘 + 𝑢𝑖−1,𝑗−1,𝑘+1)

−
𝑐𝑛
3
(𝑣𝑖+1,𝑗+1,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖−1,𝑗−1,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖+1,𝑗+1,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖−1,𝑗−1,𝑘+1)

+
𝑐𝑛 (𝑢 − 2𝑢 + 𝑢 )

3 𝑖,𝑗+1,𝑘−1 𝑖,𝑗,𝑘 𝑖,𝑗−1,𝑘+1
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−
𝑐𝑛
3
(𝑣𝑖,𝑗+1,𝑘−1 − 2𝑣𝑖,𝑗,𝑘 + 𝑣𝑖,𝑗−1,𝑘+1)

+
𝑐𝑛
3
(𝑤𝑖,𝑗+1,𝑘−1 − 2𝑤𝑖,𝑗,𝑘 +𝑤𝑖,𝑗−1,𝑘+1). (9)

It is well-known that the linear equations of motion Eqs. (7)–(9)
support the solutions of the form

𝑢𝑖,𝑗,𝑘 = 𝑈 exp[i(𝑞𝑖 + 𝑠𝑗 + 𝑝𝑘 − 𝜔𝑡)],

𝑣𝑖,𝑗,𝑘 = 𝑉 exp[i(𝑞𝑖 + 𝑠𝑗 + 𝑝𝑘 − 𝜔𝑡)],

𝑤𝑖,𝑗,𝑘 = 𝑊 exp[i(𝑞𝑖 + 𝑠𝑗 + 𝑝𝑘 − 𝜔𝑡)], (10)

where i is imaginary unit, 𝑞, 𝑠, 𝑝 are the wavenumbers, 𝑖, 𝑗, 𝑘 are
arbitrary integers, 𝑈 , 𝑉 , 𝑊 are the components of the eigenvector, 𝜔 is
frequency and 𝑡 is time. Substituting Eq. (10) into the linear equations
of motion Eqs. (7)–(9) one finds

(𝑚𝜔2 + 𝑃 )𝑈 +𝑍𝑉 + 𝑆𝑊 = 0,

𝑍𝑈 + (𝑚𝜔2 + 𝑃 )𝑉 +𝑄𝑊 = 0,

𝑆𝑈 +𝑄𝑉 + (𝑚𝜔2 + 𝑃 )𝑊 = 0, (11)

where

𝑃 = −𝛿 − 𝛾 − 𝜅 − 𝜂 − 𝜉,

𝑍 = −𝛾 + 𝜅 − 𝜂 + 𝜉,

𝑆 = −𝛾 + 𝜅 + 𝜂 − 𝜉,

𝑄 = −𝛾 − 𝜅 + 𝜂 + 𝜉, (12)

and

𝛿 = 4𝑐𝑛𝑛 sin
2 𝑞
2
, 𝛾 = 4

𝑐𝑛
3
sin2

𝑝
2
,

𝜅 = 4
𝑐𝑛
3
sin2

𝑞 − 𝑝
2

, 𝜂 = 4
𝑐𝑛
3
sin2

𝑞 + 𝑠 − 𝑝
2

,

= 4
𝑐𝑛
3
sin2

𝑠 − 𝑝
2

. (13)

A homogeneous system of linear equations Eq. (11) in 𝑈 , 𝑉 , and
𝑊 has a non-zero solution if its determinant is equal to zero. This
condition leads to a cubic equation in 𝜔2 which defines three branches
of the dispersion relation,

𝑚3𝜔6 + 3𝑃𝑚2𝜔4 + (3𝑃 2 − 𝑆2 −𝑍2 −𝑄2)𝑚𝜔2

+2𝑍𝑄𝑆 + 𝑃 (𝑃 2 − 𝑆2 −𝑍2 −𝑄2) = 0. (14)

For our purposes of finding the maximum phonon frequency, it
suffices to analyze the special case of 𝑞 = 𝑠 = 𝑝. Then from Eq. (13)
one has 𝜅 = 𝜉 = 0 and 𝛾 = 𝜂. Eqs. (11) obtain the form

(𝑚𝜔2 − 𝛿 − 2𝛾)𝑈 − 2𝛾𝑉 = 0,

−2𝛾𝑈 + (𝑚𝜔2 − 𝛿 − 2𝛾)𝑉 = 0,

𝑚𝜔2 = 𝛿 + 2𝛾. (15)

The third equation in Eq. (15) defines the dispersion relation for
𝑇2 transverse phonon modes. Two other branches are obtained by
equalizing to zero the determinant of the first and second equations
of Eq. (15). This leads to the quadratic equation (𝑚𝜔2 − 𝛿−2𝛾)2 = (2𝛾)2

which has the roots

𝑚𝜔2 = 𝛿, 𝑚𝜔2 = 𝛿 + 4𝛾. (16)

The first dispersion curve in Eq. (16) describes the lowest frequency 𝑇1
transverse phonons and the second — the highest frequency longitudi-
nal phonons.

The highest phonon frequency is achieved on the longitudinal
branch at 𝑞 = 𝑠 = 𝑝 = 𝜋:

𝜔max = 2
√

1
𝑚

( 4
3
𝑐𝑛 + 𝑐𝑛𝑛

)

. (17)

For 𝑚 = 1, 𝑐𝑛 = 𝑐𝑛𝑛 = 1 one has 𝜔max = 2
√

7∕3 = 3.055.
The three dispersion curves along the line 𝑞 = 𝑠 = 𝑝 are presented

n Fig. 2 for 𝑚 = 1, 𝑐 = 𝑐 = 1.
4

𝑛 𝑛𝑛
Fig. 2. Dispersion curves of the bcc lattice for the highly symmetrical line of the first
Brillouin zone 𝑞 = 𝑠 = 𝑝. The branch of longitudinal phonon vibrations is denoted as
𝐿, and the two branches of transverse vibrations are denoted as 𝑇1 and 𝑇2. Maximal
phonon frequency is achieved on the 𝐿 branch at 𝑞 = 𝑠 = 𝑝 = 𝜋 and is equal to
𝜔max = 2

√

7∕3 = 3.055 for the parameters used in simulations: 𝑚 = 1 and 𝑐𝑛 = 𝑐𝑛𝑛 = 1.

4. DNVMs with frequencies above the phonon spectrum

Sixteen one-component DNVMs of bcc lattices have been described
in [74]. For the 𝛽-FPUT potential with positive 𝛽, four of them have
requencies above the phonon spectrum for any amplitude. In this
aper, such DNVMs are numbered with Greek numerals from I to IV, see
ig. 3. The presented DNVMs are single-degree-of-freedom vibrational
odes.

Initial displacements of particles used for excitation of DNVMs are
hown by arrows in the four successive planes parallel to the 𝑥, 𝑦 plane,
= 0, ℎ∕2, ℎ, and 3ℎ∕2. Cubic translational units of size 2ℎ×2ℎ×2ℎ are

hown. Negative and positive displacements along the 𝑧 axis are shown
y the circle with cross and dot, respectively. An empty circle means
ero displacement along the 𝑧 axis. All non-zero displacement vectors
ave the same length.

In the small-amplitude limit all four DNVMs reduce to the longi-
udinal phonon modes at the point 𝑁 of the first Brillouin zone, see
ig. 1(b).

In DNVM III there are particles with zero initial displacement and
hey remain at rest while initially displaced particles oscillate.

In Fig. 4, the frequency response of DNVMs I–IV is shown in red,
lue, black, and green, respectively. The numerically found frequencies
re shown by circles, and the lines serve as a guide for the eye. The
pper edge of the phonon spectrum is shown as a horizontal dashed
ine, 𝜔max = 2

√

7∕3 = 3.055.

5. Chaotic discrete breathers

If the DNVM amplitude exceeds the threshold value, it exhibits
modulational instability [8,55,64–67,88,89]. The DNVM energy, whose
frequency is outside the phonon band, cannot be directly transferred to
delocalized phonon waves, so the modulational instability develops by
localizing the energy on chaotic DBs.

The following localization parameter can be used to measure the
degree of energy localization in the lattice

𝐿 = 𝑁
∑𝑁

𝑛=1 𝑒
2
𝑛

(
∑𝑁

𝑛=1 𝑒𝑛)2
, (18)

here 𝑁 is the number of particles in the system and 𝑒𝑛 is the total
nergy of the 𝑛th particle, which is given by

𝑛 =
𝑚
|�̇�𝑛|

2 + 1
8
∑

𝜑𝑛(|𝑹𝑛𝑠|) +
1

14
∑

𝜑𝑛𝑛(|𝑹𝑛𝑙|), (19)

2 2 𝑠=1 2 𝑙=9
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Fig. 3. One-component DNVMs in a bcc lattice with frequencies above the phonon
spectrum [74]. Displacements of particles are shown by arrows in four planes: 𝑧 = 0,
𝑧 = ℎ∕2, 𝑧 = ℎ, and 𝑧 = 3ℎ∕2. Positive (negative) displacements along the 𝑧 axis are
shown by dots (crosses). An empty circle means that the displacement along the 𝑧 axis
is zero.

Fig. 4. Frequency as the function of amplitude for DNVMs from I to IV color-coded
according to the legend. The highest phonon frequency, 𝜔max = 2

√

7∕3 = 3.055, is shown
by the dashed line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
5

Fig. 5. (a–c) Localization parameter and (d–f) energy of the highest energy particle
as the functions of time during the development of the modulational instability of
DNVM I. Computational cell size: (a,d) 10 × 10 × 20, (b,e) 20 × 20 × 40, and (c,f)
40 × 40 × 80 particles. Results for three DNVM amplitudes are presented: 𝐴 = 0.03 red
line, 𝐴 = 0.04 blue line, and 𝐴 = 0.05 black line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where the first term is the kinetic energy of the 𝑛 particle, and the
second and third terms sum the halves of the energies of the bonds
connecting the 𝑛th particle to the nearest and next-nearest particles,
respectively. The vectors 𝑹𝑛𝑠 and 𝑹𝑛𝑙 connect the 𝑛th particle to the
𝑠th nearest and 𝑙th next-nearest particles, respectively.

If the energy of the system belongs to one particle, then 𝐿 = 𝑁 . If
all particles share the energy equally, then 𝐿 = 1.

Figs. 5–8 show numerical results for DNVMs I–IV, respectively. Pan-
els (a–c) show the time course of the localization parameter Eq. (18),
and panels (d–f) show the energy of the highest energy particle as
a function of time. Three values of the initial DNVM amplitude are
analyzed: 𝐴 = 0.03 (red lines), 𝐴 = 0.04 (blue lines) and 𝐴 = 0.05
(black lines). The size of the computational cell also varies. Results for
a computation cell including 10 × 10 × 20 particles are shown in (a,d),
20 × 20 × 40 particles in (b,e) and 40 × 40 × 80 particles in (c,f).

The results for all four DNVMs look similar, however some impor-
tant differences will be identified and explained below.

The localization parameter remains small during the development
of the instability and then sharply increases, which is associated with
the formation of chaotic DBs in the system. The appearance of DBs
is also confirmed by an increase in the energy of the particle with
the highest energy synchronously with an increase in the localization
parameter. Chaotic DBs gradually radiate their energy in the form of
small-amplitude thermal oscillations, which leads to a decrease in 𝐿
and 𝑒max with time. Finally, the system reaches a state of thermal
equilibrium, and 𝐿 and 𝑒max become small.

If the initial DNVM amplitude 𝐴 is less than the threshold value,
no energy localization occurs, an example of this is the result shown
in Fig. 5(a,d) for 𝐴 = 0.03 (red lines) for the smallest computational
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Fig. 6. (a–c) Localization parameter and (d–f) energy of the highest energy particle
as the functions of time during the development of the modulational instability of
DNVM II. Computational cell size: (a,d) 10 × 10 × 20, (b,e) 20 × 20 × 40, and (c,f)
40 × 40 × 80 particles. Results for three DNVM amplitudes are presented: 𝐴 = 0.03 red
line, 𝐴 = 0.04 blue line, and 𝐴 = 0.05 black line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

cell. However, an increase in the size of the computational cell leads to
the formation of DBs even at 𝐴 = 0.03, see Fig. 5(b,e) and (c,f). This is
due to the fact that in a larger computational cell, the energy for the
formation of DBs can be accumulated from a larger volume, and the
threshold value of DNVM amplitude becomes smaller.

Only DNVM I with 𝐴 = 0.03 and the smallest computational cell
does not produce chaotic DBs, while all other DNVMs produce chaotic
DBs under the same conditions. This is because DNVM I has the lowest
frequency for the same amplitude, see Fig. 4. A DNVM with a higher
frequency interacts less with the phonon band, and the nonlinearity
effects are more pronounced.

For a larger initial DNVM amplitude 𝐴, the critical exponent of the
instability is larger, and the time to a sharp increase in 𝐿 and 𝑒max is
shorter. The computational size effect has little effect on the time to the
sharp increase in 𝐿 and 𝑒max, especially for the initial DNVM amplitudes
equal to 0.04 and 0.03.

The maximum localization parameter increases as 𝐴 decreases,
while 𝑒max only slightly decrease as 𝐴 decreases. It can be concluded
that with decreasing 𝐴 the number of chaotic DBs decreases but their
energy is about the same. For smaller 𝐴 the energy of a chaotic DB
is accumulated from a larger volume because the wavelength of the
instability wave increases [62,63].

High-energy particles at time 𝑡∗, at which the localization parameter
reaches its maximum, are shown in Fig. 9 for a computational cell
of 40 × 40 × 80 particles. Particles are shown in a cubic cell, the
volume of which is equal to the volume of a real computational cell
with a non-orthogonal basis. Only particles with energies above 0.7𝑒max
are shown. The results were obtained for DNVM II excited with the
amplitude 𝐴 = 0.04. Panels (a–d) show the results of four numerical
6

Fig. 7. (a–c) Localization parameter and (d–f) energy of the highest energy particle
as the functions of time during the development of the modulational instability of
DNVM III. Computational cell size: (a,d) 10 × 10 × 20, (b,e) 20 × 20 × 40, and (c,f)
40 × 40 × 80 particles. Results for three DNVM amplitudes are presented: 𝐴 = 0.03 red
line, 𝐴 = 0.04 blue line, and 𝐴 = 0.05 black line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

runs. The initial conditions were perturbed by adding to the initial
displacements of particles random numbers uniformly distributed in
the range −10−12 ≤ 𝜌 ≤ 10−12. Small initial perturbations lead to a
different number of high-energy particles. Inspection of the distribution
of high-energy particles over the volume of the computational cell
showed that in most cases one such particle corresponds to one DB,
and in rare cases DBs are presented by two neighboring high-energy
particles. This means that most DBs are particle-centered and only a
few are bond-centered. The numbers of DBs in Fig. 9(a–d) are 41,
38, 31 and 27, respectively. Note that Doi, Komiya, Nagashima, and
Nakatani, using molecular dynamics based on embedded atom method
many-body potential, have found bond-centered and particle-centered
DBs in bcc vanadium [28].

Many chaotic DBs perform wandering motion, as shown in Fig. 10,
where the distance of three neighboring particles from their equilib-
rium positions is shown as a function of time. Black, red and blue curves
correspond to particles (𝑖, 𝑗, 𝑘), (𝑖, 𝑗, 𝑘+1), and (𝑖−1, 𝑗, 𝑘+1) respectively.
At 𝑡 = 𝑡∗, where 𝑡∗ is the time when the localization parameter reaches
its maximum, the particle (𝑖, 𝑗, 𝑘) oscillates with a large amplitude. Then
the oscillation amplitude of this particle begins to decrease, but its
energy is spent on the excitation of the particle (𝑖, 𝑗, 𝑘 + 1), which then
transfers its energy to the excitation of the particle (𝑖 − 1, 𝑗, 𝑘 + 1). It
can be seen that the direction of energy transport changes with time.
In some cases, a quasi-periodic back and forth energy exchange is
observed between two neighboring particles. Partial energy exchange
between DBs was observed earlier in graphene [90] and in ionic crystal
with NaCl structure [91].

In Fig. 11, chaotic DBs are shown by projecting the particle tra-
jectories onto the 𝑥𝑦 plane. In (a) and (b) the inter-site and on-site



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 178 (2024) 114339I.D. Kolesnikov et al.
Fig. 8. (a–c) Localization parameter and (d–f) energy of the highest energy particle
as the functions of time during the development of the modulational instability of
DNVM IV. Computational cell size: (a,d) 10 × 10 × 20, (b,e) 20 × 20 × 40, and (c,f)
40 × 40 × 80 particles. Results for three DNVM amplitudes are presented: 𝐴 = 0.03 red
line, 𝐴 = 0.04 blue line, and 𝐴 = 0.05 black line. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. High-energy particles at the time 𝑡∗ of maximum localization parameter in the
computational cell of 40 × 40 × 80 particles. Only particles having energies greater
than 0.7𝑒max are shown. Initially, DNVM II was excited with amplitude 𝐴 = 0.04 and
very small random perturbations. The results of four numerical runs are shown in
(a)–(d). The results differ from each other due to the stochastic nature of the chaotic
DBs.
7

Fig. 10. Wandering motion of a chaotic DB shown by the time evolution of the
distance of three neighboring particles from the equilibrium positions, |𝜹𝑖,𝑗,𝑘|. Results for
DNVM II excited with the amplitude 𝐴 = 0.04 in the computational cell of 40 × 40 × 80
particles. 𝑡∗ is the time when localization parameter reaches its maximum. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 11. Chaotic DB in (a) inter-site and (b) on-site configurations. Trajectories of
particles are projected onto the 𝑥𝑦 plane. Particles belonging to two different cubic
sublattices are colored white and blue. These DBs were found in the computational
cell of size 40 × 40 × 80 particles, where DNVM II was excited with the amplitude
𝐴 = 0.03. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

versions of the DB are shown. While moving, the DB passes through
these configurations.

6. Conclusions

In this study, we analyzed the unstable dynamics of four DNVMs
with a wave vector at the boundary of the first Brillouin zone and
frequencies above the phonon spectrum of the 𝛽-FPUT bcc lattice. The
DNVMs were found by the group-theoretical method [69] from the
analysis of the symmetry of the bcc lattice.

Development of instability of all four studied DNVMs produces
chaotic DBs, if their amplitude is above a threshold value, which is
of the order of magnitude of 10−2ℎ. The appearance of DBs in the
system is confirmed by the sharp increase of the energy localization
parameter Eq. (18) and maximal energy of particles, see Figs. 5–8.
Chaotic DBs constantly radiate energy and eventually disappear when
the system reaches thermal equilibrium. During this process the energy
localization parameter decreases and reaches a constant small value.

Note that in two-dimensional lattices the localization parameter de-
creases approximately linearly with time from its maximum value [56,
71], while in the three-dimensional bcc lattice it decreases faster, see
Figs. 5–8. Such an effect of the lattice dimension on the rate of energy
emission by chaotic DBs can be explained by the fact that in the 2D
case the energy is emitted radially, while in the 3D lattice it is emitted
spherically.

The moment of time when the localization parameter 𝐿 reaches
its maximum is denoted as 𝑡∗. As the DNVM amplitude increases, the
rate of instability development increases and the time 𝑡∗ decreases, see
Figs. 5–8. On the other hand, the maximum value of 𝐿 increases with
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decreasing DNVM amplitude. The size of the computational cell has
little effect on the dependence 𝐿(𝑡).

Chaotic DBs make a wandering motion in bcc lattice, see Fig. 10.
In some cases, a quasi-periodic energy exchange between two neigh-
boring DBs was observed, similar to what was observed for DBs in
graphene [90] and in an ionic crystal with the NaCl structure [91].

In the forthcoming work, results on the modulational instability
of DNVMs in a diatomic bcc lattice will be presented. DNVMs with
frequencies in the bandgap will be analyzed.
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Appendix

Let us show how the equations of motion Eq. (5) can be derived
from the Hamiltonian Eq. (4).

Let the computational cell includes 𝑁 particles numbered 𝑛 =
1,… , 𝑁 . The 𝑛th particle has the lattice position 𝝃𝑛 and the displace-
ment vector 𝜹𝑛, so that its radius-vector is 𝒓𝑛(𝑡) = 𝝃𝑛 +𝜹𝑛(𝑡). The Hamil-
tonian is the function of the particle displacements 𝜹𝑛 = (𝑢𝑛, 𝑣𝑛, 𝑤𝑛) and
elocities �̇�𝑛 = (�̇�𝑛, �̇�𝑛, �̇�𝑛),

= 𝐻(𝛿𝑛, �̇�𝑛) = 𝐾(�̇�𝑛) + 𝑃 (𝛿𝑛), (20)

here 𝐾 and 𝑃 are the kinetic and potential energies of the computa-
ional cell.

According to the Hamilton’s principle [92], the three equations of
otion for the 𝑛th particle, in the case when 𝐾 = 𝐾(�̇�𝑛) and 𝑃 = 𝑃 (𝛿𝑛),

re
𝑑
𝑑𝑡

( 𝜕𝐾
𝜕�̇�𝑛

)

= − 𝜕𝑃
𝜕𝑢𝑛

, (21)

𝑑
𝑑𝑡

( 𝜕𝐾
𝜕�̇�𝑛

)

= − 𝜕𝑃
𝜕𝑣𝑛

, (22)

𝑑
𝑑𝑡

( 𝜕𝐾
𝜕�̇�𝑛

)

= − 𝜕𝑃
𝜕𝑤𝑛

. (23)

Let us derive Eq. (21) describing the motion of the 𝑛th particle along
the 𝑥 axis and the other two equations can be derived similarly.

The kinetic energy of the 𝑛th particle due to its motion along the 𝑥
axis is 𝐾(�̇�𝑛) = 𝑚�̇�2𝑛∕2 and hence, the left-hand side of Eq. (21) is

𝑑 ( 𝜕𝐾 )

= 𝑚�̈�𝑛. (24)
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𝑑𝑡 𝜕�̇�𝑛
Fig. 12. Schematic representation of two interacting particles (shown by circles).

Suppose that the 𝑛th particle interacts with its 𝐿 neighbors num-
bered 𝑙 = 1,… , 𝐿. The potential energy of the computational cell 𝑃
includes the 𝐿 contributions that depend on the position of the 𝑛th
particle,

𝑃 (𝑢𝑛) =
𝐿
∑

𝑙=1
𝜑(|𝑹𝑛𝑙|), (25)

where 𝑹𝑛𝑙 = (𝝃𝑙+𝜹𝑙)−(𝝃𝑛+𝜹𝑛) and 𝜑(|𝑹𝑛𝑙|) is the potential energy of the
ond connecting the 𝑛th and 𝑙th particles, see Fig. 12. The right-hand
ide of Eq. (21) is

− 𝜕𝑃
𝜕𝑢𝑛

= −
𝐿
∑

𝑙=1

𝜕𝜑(|𝑹𝑛𝑙|)
𝜕𝑢𝑛

= −
𝐿
∑

𝑙=1
𝜑′(|𝑹𝑛𝑙|)

𝜕|𝑹𝑛𝑙|

𝜕𝑢𝑛

= −
𝐿
∑

𝑙=1
𝜑′(|𝑹𝑛𝑙|)

𝑅𝑛𝑙,𝑥

|𝑹𝑛𝑙|

𝜕𝑅𝑛𝑙,𝑥

𝜕𝑢𝑛

=
𝐿
∑

𝑙=1
𝜑′(|𝑹𝑛𝑙|)

𝑅𝑛𝑙,𝑥

|𝑹𝑛𝑙|
. (26)

In the derivation of Eq. (26) it was taken into account that 𝑅𝑛𝑙,𝑥 =
𝜉𝑙,𝑥 + 𝑢𝑙 − 𝜉𝑛,𝑥 − 𝑢𝑛, while 𝑅𝑛𝑙,𝑦 and 𝑅𝑛𝑙,𝑧 are independent of 𝑢𝑛.

In view of Eqs. (24) and (26), the equation of motion of the 𝑛th
article along the 𝑥 axis, Eq. (21), obtains the form

�̈�𝑛 =
𝐿
∑

𝑙=1
𝜑′(|𝑹𝑛𝑙|)

𝑅𝑛𝑙,𝑥

|𝑹𝑛𝑙|
, (27)

which essentially coincides with the first line of Eq. (5).
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