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Abstract: The risk of depression could be evaluated through its multifactorial nature using the
polygenic score (PGS) approach. Assuming a “clinical continuum” hypothesis of mental diseases,
a preliminary assessment of individuals with elevated risk for developing depression in a non-
clinical group is of high relevance. In turn, epidemiological studies suggest including social/lifestyle
factors together with PGS to address the “missing heritability” problem. We designed regression
models, which included PGS using 27 SNPs and social/lifestyle factors to explain individual differ-
ences in depression levels in high-education students from the Volga–Ural region (VUR) of Eurasia.
Since issues related to population stratification in PGS scores may lead to imprecise variant effect
estimates, we aimed to examine a sensitivity of PGS calculated on summary statistics of depres-
sion and neuroticism GWAS from Western Europeans to assess individual proneness to depression
levels in the examined sample of Eastern Europeans. A depression score was assessed using the
revised version of the Beck Depression Inventory (BDI) in 1065 young adults (age 18–25 years,
79% women, Eastern European ancestry). The models based on weighted PGS demonstrated higher
sensitivity to evaluate depression level in the full dataset, explaining up to 2.4% of the variance
(p = 3.42 × 10−7); the addition of social parameters enhanced the strength of the model
(adjusted r2 = 15%, p < 2.2 × 10−16). A higher effect was observed in models based on weighted
PGS in the women group, explaining up to 3.9% (p = 6.03 × 10−9) of variance in depression level
assuming a combined SNPs effect and 17% (p < 2.2 × 10−16)—with the addition of social factors in
the model. We failed to estimate BDI-measured depression based on summary statistics from Western
Europeans GWAS of clinical depression. Although regression models based on PGS from neuroticism
(depression-related trait) GWAS in Europeans were associated with a depression level in our sample
(adjusted r2 = 0.43%, p = 0.019—for unweighted model), the effect was mainly attributed to the inclu-
sion of social/lifestyle factors as predictors in these models (adjusted r2 = 15%, p < 2.2 × 10−16—for
unweighted model). In conclusion, constructed PGS models contribute to a proportion of interindivid-
ual variability in BDI-measured depression in high-education students, especially women, from the
VUR of Eurasia. External factors, including the specificity of rearing in childhood, used as predictors,
improve the predictive ability of these models. Implementation of ethnicity-specific effect estimates
in such modeling is important for individual risk assessment.
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1. Introduction

Depression is a well-established cause of disability worldwide, which affects
4.4% of the world population [1]. Based on psychogenetics research, a heritability coefficient
of depression accounts for 35–50% [2], thus promoting a plethora of molecular-genetic stud-
ies. Multiple efforts were made to unravel the hypothesis-driven [3–5] and/or hypothesis-
free approaches [6–11] to dissect a genetic cause of depression. Existing molecular mech-
anisms underlying depressive pathology are based on the impaired neurotransmitter
signaling [12], hypothalamic–pituitary–adrenal (HPA) axis [5], oxytocin and arginine vaso-
pressin systems [4,13,14], inflammatory response [3,15], telomere length-associated molec-
ular pathways [16,17], nucleotide changes in target mRNA-miRNA binding sites [18,19],
etc. Genome-wide association studies (GWAS) of depression and their meta-analyses
implementing a hypothesis-free approach identified multiple genetic loci [7–9,11,20–22].
Although many of GWAS’ significant SNPs appear to reside in intergenic regions, their
regulatory role in associated molecular pathways has to be clarified.

Single genetic variants (even highly significant at the GWAS level) only confer a small
effect on disease manifestation, thus limiting our ability to evaluate individual disease
susceptibility. Therefore, simultaneous estimation of SNP effects may help to address
the “missing heritability” problem. A polygenic score (PGS) approach, as one of the
techniques aimed to estimate a simultaneous effect of multiple genetic loci on a phenotype
of interest, became a widely used instrument during the past decade. To date, several
GWAS-based PGS studies of clinical depression (diagnosed with major depressive disorder,
MDD) have been published, demonstrating the ability of such models to assess liability to
develop depression and related comorbid disorders [23,24]. Together with PGS estimating
a risk for complex phenotypes based on GWAS estimates [25,26], certain studies sought to
examine PGS implementing a limited number of attributed genetic variants based on their
functional relevance to molecular mechanisms of a disease [27–29]. However, a proportion
of variance in liability to depression explained by a combined genetic impact varies from
0.5 to 3% [26,28].

In turn, various environmental factors can trigger the development of clinical de-
pression symptoms in susceptible individuals. The impact of environmental factors has
been examined via epidemiological studies and those implicating gene-by-environment
interaction approaches. The last ones have been conducted in terms of SNP association
studies [30,31] and PGS-by-environment effects [32]. According to our previous research [4]
and existing epidemiological data, such factors as childhood trauma [30], stressful life
events, child–parent relationships, parenting behavior [33,34], socioeconomic status, and
family income [35] can significantly contribute to depression liability, partially due to the
epigenetic reprogramming of HPA axis signaling [36]. In turn, epidemiological studies
suggest the inclusion of demographic/lifestyle factors in the statistical model together
with PGS to address the “missing heritability” problem. However, to date, the number of
studies ascertaining an integrative effect of genetic scores and social variables on liability to
depression under the PGS paradigm is insufficient. Moreover, they are mainly focused on a
limited number of examined social factors, such as body mass index (BMI) [32], childhood
maltreatment [24,37], and smoking behavior [38]. Therefore, research examining a com-
bined effect of various social predictors and PGS in statistical models will help to increase
the proportion of variance explained in liability to depression.

Assuming a “clinical continuum” hypothesis of mental diseases, it is of high impor-
tance to design PGS models to assess individual susceptibility or proneness to depression,
even in a mentally healthy population cohort. In addition, depression as a multifactorial
mental disorder is known to manifest under certain circumstances, thus providing a ratio-
nale for estimating genetically-mediated depression levels in younger adults. However,
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existing studies incorporating the PGS approach to evaluate differences in depressive-like
traits in a general cohort are mainly based on GWAS of the clinical depression [23,25–27].
Nevertheless, attempts to detect associations between expression-based polygenic risk
scores and depressive symptoms in a non-clinical cohort have been made [39]. Imple-
menting the PGS approach, to date, several attempts have been made to examine PGS
from clinical depression to assess anxiety- and depression-related traits in non-clinical co-
horts of the European ancestry [23,25,26]. Moreover, state-of-the-art research, including the
phenome-wide approaches, confirmed a significant burden of depression co-morbidity with
a broad range of diseases, i.e., MDD PGS was significantly associated with an enhanced risk
for developing 22 various complex phenotypes, including anxiety and sleep disorders [23].
These studies provide a rationale to examine if PGS models based on summary statistics
from clinical depression can also explain individual differences in depression levels in a
general cohort.

To date, a plethora of PGS studies of depression and related phenotypes are mainly
based on Western Europeans, including UK Biobank cohort [23,25,26]. However, issues
related to population stratification in PGS estimates may lead to imprecise variant effect
estimates for genetic scores if those are transferred directly from other populations. Previous
studies indicated that PGS based on scores revealed by UK Biobank was inappropriate
to correctly classify an individual’s liability for developing depression in the East Asian
ancestry [37]. This demands a higher number of PGS studies on depression involving non-
European and Eastern European individuals. In this regard, the possibility of using genetic
scores calculated on the basis of GWAS-derived data from Western European populations to
evaluate depression levels in other populations of Eastern European ancestry (for instance,
Russian-descent individuals) has to be addressed.

In the present study, we aimed to use the PGS approach based on effect estimates from
27 SNPs examined in the Volga–Ural region of Eurasia and social/lifestyle factors to explain
the individual differences in BDI-measured depression in the higher-education students.
For sensitivity purposes, we aimed to estimate if PGS based on summary statistics of
depression and neuroticism GWAS in Western Europeans could assess individual proneness
to depression levels in the examined sample of Eastern Europeans.

2. Materials and Methods
2.1. Participants

Overall, we included 1065 higher-education students from the Volga–Ural region of
Eurasia (DeprVUR; mean age ± SD: 19.53 ± 1.75 years; age range: 18–25 years;
79% women). All the respondents were students at Universities in Russia of European
ancestry (357 Russians, 340 Tatars, 234 Udmurts, and 134 individuals of mixed ethnicity).
Individuals with a self-reported individual history of any mental disorder and suicidal
thoughts and actions in the past were excluded. Enrolled volunteers were asked to respond
to the questionnaire on sociodemographic parameters, including sex, age, and specificity
of rearing in childhood (rearing in a complete/incomplete family, family income, and
maltreatment).

The study was approved by the Biological Ethics Committee at the Institute of Bio-
chemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian
Academy of Sciences (Ufa, Russia) (protocol code 15, date of approval, 12 October 2017).
Written informed consent was obtained from all participants after they were acquainted
with the procedures. All participants were informed about the voluntary and confidential
nature of their participation. All procedures performed were in accordance with the ethi-
cal standards of the institutional and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards.

2.2. Psychological Assessment

We used the revised Russian version of the self-report Beck Depression Inventory
(BDI-II) for the assessment of depression level [40]. It is a 21-item multiple-choice question-
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naire to quantitatively measure depression severity on the basis of cognitive–affective and
somatic depression subscales.

The Parental Bonding Instrument (PBI, 25 items) [41] was used to evaluate maternal
and paternal styles of parenting based on two bipolar scales (“care” and “protection”).
The PBI recalls child-rearing attitudes separately toward maternal and paternal styles,
which are assessed on a four-point Likert scale. A summed number of “care” items
positively correlates with a degree of parental warmth toward offspring during childhood.
A “protection” score reflects the perceptions of how parents controlled their child’s decision-
making. The assignment to “high” or “low” categories was based on the following cut-
off scores: a “care” score of 27.0 and a “protection” score of 13.5 for mothers; a “care”
score of 24.0 and a “protection” score of 12.5 for fathers.

2.3. Blood Sample Collection, SNPs Selection, and Genotyping

We obtained peripheral blood samples from each participant in 8 mL EDTA-containing
vacutainer tubes. Subsequently, genomic DNA was isolated from blood leukocytes via
the phenol–chloroform extraction technique. DNA concentration was measured with a
NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Fitchburg, WI, USA) and
used at a final concentration of 30 ng/µL.

We selected 32 SNPs (Supplementary Table S1) from the dbSNP database with a minor
allele frequency (MAF) higher than 0.05 in Europeans (according to the 1000 Genomes
Project, accessed on 10 April 2023), based on their association with depression and affective
pathology in previous GWAS of Western Europeans. Selected SNPs were enriched in the
genes, which ablation or enhanced production of encoding proteins resulted in depression-
related phenotype in animal studies, including genes belonging to hypothalamic–pituitary–
adrenal, monoaminergic, inflammatory response, and miRNA binding pathways. The
OXTR rs13316193 (p = 2.15 × 10−11) and HTR2A rs7322347 (p = 0.0031) deviated from the
Hardy–Weinberg equilibrium (HWE); therefore, they were excluded from the subsequent
analysis.

Genotyping of selected SNPs was carried out with a competitive allele-specific PCR
(KASP) technology (LGC Genomics, Aarhus, Denmark) using CFX96 Touch™ Real-Time
PCR Detection System (BioRad, Hercules, CA, USA). DNA samples were amplified in a total
volume of 10 µL, 0.14 µL KASP Assay mix, and 5 µL KASP-TF Master Mix (LGC Genomics,
Denmark). Alleles were assigned based on fluorescence end-point analysis with the CFX
Manager™ Software (BioRad, USA). All SNPs demonstrated sufficient call rates (>98%).

2.4. Statistical Analysis

To calculate the genotype and allele frequencies of all examined SNPs and to manage
the HWE test, we used PLINK v.1.9 [42]. A measure of linkage disequilibrium between
SNPs located in the same genetic locus was assessed via r2 (PLINK v.1.9). The Kolmogorov–
Smirnov’s test was used (SPSS v.23, SPSS Inc., Chicago, IL, USA) to examine the corre-
spondence of BDI-measured depression score to the normality of distribution. The effect
of social–demographic categorical variables on individual variance in depression level
was evaluated via the Mann–Whitney U test (SPSS v.23). For this analysis, we applied a
correction for multiple testing for the number of examined social–demographic parameters
(PFDR < 0.05/8), which provided us with a threshold of PFDR < 0.0063.

To estimate the main effects of genetic variants on depression levels and to obtain
standardized regression coefficients for each SNP, a series of linear regression analyses was
carried out adjusted for sex, age, and ethnicity in the total sample under the additive effect
of SNPs in PLINK v.1.9. Obtained regression coefficients served as effect estimates for the
subsequent examination of the association of individual polygenic scores and depression
level in young adults under linear regression in R v.4.1.2 [43].
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2.5. PGS Calculation and Regression Models

The PGS calculation was carried out for each subject from the DeprVUR sample as a
weighted sum of all examined genetic variants based on the following formula:

PGS = β1x1 + β2x2 + . . . + βnxn, (1)

where βi—effect estimate (standardized regression coefficient) for ith SNP; xi—individual
dosage of the effect allele (number of effect alleles).

The calculation of PGS for each individual was performed using PLINK v.1.9; the num-
ber of effect alleles at each locus was multiplied by the standardized regression coefficient
(β). These coefficients have been initially obtained under the additive linear regression
model adjusted by sex, age, and ethnicity in the sample from the Volga–Ural region of
Eurasia. In the cases of negative β, we used an opposite sign of regression coefficient, which
was multiplied by the number of alternative alleles in that case, to obtain the association
with an enhanced depression score.

To provide the required assumptions for PGS calculation, we excluded three SNPs
due to the existence of proxy SNPs among the analyzed list of SNPs. Namely, the OXTR
rs237911—with rs2228485 (r2 = 0.44); the TNF rs1041981—with rs1800629 (r2 = 0.23); the
FKBP5 rs1360780—with rs3800373 (r2 = 0.55) in the examined DeprVUR sample. Therefore,
PGS-based models were constructed on the basis of 27 SNPs.

To examine the cumulative impact of genetic variants (PGS) and social–demographic
variables on depression level and to assess the percent of the variance in depression
explained by predictors, we analyzed four different linear regression models, including the
following predictors: (1) PGS; (2) sex, ethnicity, and age; (3) PGS, sex, age, and ethnicity;
(4) PGS, age, sex, ethnicity, and the most significant social predictors. A set of the most
significant lifestyle/social predictors in Model 4 was established using a stepwise backward
elimination function in R [43], based on the best values of Akaike information criterion,
effect size, and p-values. Adjusted r2 (determination coefficient) described a proportion of
variance in BDI-measured depression for all examined models. For sensitivity purposes,
we assessed the effect of unweighted PGS in the total sample and weighted PGS in women.
Due to a small number of males (n = 224), we did not perform sensitivity analysis in men.
Unweighted PGS was calculated as the sum of effect alleles (in the case of positive β) and
alternative alleles (in the case of negative β) based on initial linear regression analysis.

Since, to date, no summary statistics have been available for the selected SNPs on
depression-like phenotype in the Russian cohort, we performed a search for GWAS studies
of depression and anxiety-related traits with available summary statistics, which have been
conducted in individuals of European ancestry (Supplementary Table S2). As a result of our
search, we identified well-powered GWAS studies of depression [7,9,10] and neuroticism
(anxiety-related trait) [7,20]. Therefore, we calculated weighted and unweighted PGS for
each individual in the DeprVUR sample based on summary statistics from mentioned
studies for sensitivity purposes.

3. Results
3.1. Phenotypic Characteristics of the Study Sample

The characteristics of the study sample (DeprVUR) are reported in Table 1. Almost all
of the analyzed sociodemographic factors significantly affected individual differences in
depression levels after FDR correction. Namely, sex (p = 0.0041), income level (p = 0.0031),
maltreatment in childhood (p = 0.0033), and parental style of rearing (p < 0.001) contributed
to the variance in depression levels in young adults. To be more precise, an enhanced
depression was more prominent in women, individuals with lower than average income
level, who reported childhood maltreatment, low levels of parental care, and increased
parental protection. This observation points to a rationale for the inclusion of significant
social/lifestyle factors as predictors together with PGS in statistical models.
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Table 1. Characteristics of DeprVUR sample (n = 1065) and the effect of social/lifestyle factors on
BDI-measured depression.

Parameter n (%) Mean Depression
Score ± SD p-Value

Sex
0.0041Men 221 (20.75) 7.50 ± 7.32

Women 844 (79.25) 8.59 ± 7.05

Family income
0.0031lower than average 113 (10.57) 10.67 ± 8.59

average and higher 952 (89.43) 8.04 ± 6.94

Rearing in full family
0.891yes 892 (83.72) 8.33 ± 7.13

no 173 (16.28) 8.19 ± 6.84

Maltreatment
0.0033yes 104 (9.78) 10.67 ± 8.43

no 961 (90.22) 7.99 ± 7.03

Maternal care
<0.001high 728 (68.33) 7.07 ± 6.05

low 337 (31.67) 11.19 ± 8.73

Maternal protection
<0.001high 575 (4.02) 9.74 ± 7.85

low 490 (45.98) 6.76 ± 6.13

Paternal care
<0.001high 564 (52.95) 7.07 ± 6.44

low 501 (47.05) 9.70 ± 7.83

Paternal protection
<0.001high 500 (46.91) 9.63 ± 8.25

low 565 (53.09) 7.14 ± 6.00
Abbreviations: SD—standard deviation. Statistically significant p-values after correction for multiple comparisons
are marked in bold.

3.2. Association Analysis

A set of 31 examined SNPs was included in the present study after quality control
checks. Allele frequencies and their effects on depression levels in the DeprVUR sample
are shown in Table 2. As a result of linear regression analysis conducted in the DeprVUR
sample controlling for sex, ethnicity, and age, we observed significant effects of the PCLO
rs2715157 A-allele (β = 0.67, p = 0.03) and the IL18 rs187238 C-allele (β = 0.73, p = 0.03) on
BDI-measured depression.

Table 2. Effects of 31 examined genetic variants on BDI-Depression in DeprVUR sample (n = 1065).

SNP Gene Chr:Position
(GRCh38) EA/NEA EAF β SE p-Value Direction of Effect

rs3093077 CRP 1:159709846 G/T 0.079 −0.24 0.58 0.665 -

rs33911258 AVPR1B 1:206118034 G/A 0.167 0.01 0.42 0.990 -

rs1800587 IL1A 2:112785383 A/G 0.278 0.29 0.35 0.397 -

rs16944 IL1B 2:112837290 A/G 0.378 −0.26 0.32 0.411 -

rs7632287 OXTR 3:8749760 A/G 0.199 −0.16 0.38 0.661 -

rs2254298 OXTR 3:8760542 A/G 0.095 −0.13 0.54 0.795 -

rs53576 OXTR 3:8762685 A/G 0.473 −0.04 0.31 0.874 +
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Table 2. Cont.

SNP Gene Chr:Position
(GRCh38) EA/NEA EAF β SE p-Value Direction of Effect

rs2228485 OXTR 3:8768017 G/A 0.208 −0.25 0.38 0.493 +

rs237911 * OXTR 3:8768322 G/A 0.165 −0.04 0.42 0.928 NA

rs9818870 MRAS 3:138403280 T/C 0.139 0.36 0.46 0.424 -

rs1317082 TERC 3:169779797 G/A 0.341 −0.01 0.33 0.987 -

rs7726159 TERT 5:1282204 A/C 0.337 −0.31 0.33 0.339 -

rs41423247 NR3C1 5:143399010 C/G 0.352 −0.04 0.33 0.898 +

rs1800629 TNF 6:31575254 A/G 0.109 0.04 0.51 0.931 -

rs1041981 * TNF 6:31573007 A/C 0.248 −0.46 0.35 0.193 NA

rs3800373 FKBP5 6:35574699 C/A 0.234 −0.01 0.36 0.978 -

rs1360780 * FKBP5 6:35639794 T/C 0.280 −0.11 0.35 0.752 -

rs13212041 HTR1B 6:77461407 C/T 0.177 0.12 0.40 0.754 +

rs10457441 MIR2113 6:98124244 C/T 0.419 0.48 0.32 0.128 -

rs2148710 FYN 6:111801023 T/C 0.135 0.32 0.45 0.480 +

rs2715157 PCLO 7:82839058 A/G 0.438 0.67 0.31 0.031 NA

rs531564 MIR124 8:3445535 C/G 0.151 −0.22 0.44 0.610 -

rs2487999 OBFC1 10:103900068 T/C 0.087 0.65 0.56 0.240 +

rs1800955 DRD4 11:636784 C/T 0.402 −0.26 0.31 0.390 -

rs187238 IL18 11:112164265 G/C 0.283 −0.73 0.35 0.034 -

rs3803107 AVPR1A 12:63147054 T/C 0.176 0.64 0.41 0.120 -

rs1042615 AVPR1A 12:63150429 A/G 0.403 −0.03 0.31 0.920 +

rs10459194 MIR135 12:99039512 C/T 0.302 0.52 0.34 0.125 -

rs2230912 P2RX7 12:121184393 G/A 0.170 −0.01 0.41 0.995 +

rs1042173 SLC6A4 17:30197993 T/G 0.454 0.32 0.32 0.303 -

Abbreviations: EA/NEA—effect (minor) allele/non-effect (major) allele; EAF—effect allele frequency; β—
regression coefficient. Statistically significant allele effects are shown in bold. Sex, ethnicity, and age are included
in linear regression models as covariates. Proxy SNPs in the OXTR, TNF, and FKBP5 genes, which have been
excluded from the PGS calculation after LD checks, are marked with an asterisk. Direction of effect is shown
relative to effect estimates from Neuroticism GWAS [7]. NA - data non-available.

3.3. Effect of Weighted PGS and Social/Lifestyle Factors on BDI-Measured Depression Based on
DeprVUR Estimates

While performing weighted PGS analysis, we observed that a cumulative effect of
SNPs (Model 1) accounted for 2.4% of the variance in depression score in the DeprVUR
sample (pmodel = 3.42 × 10−7). The effect of sex, ethnicity, and age (Model 2) on de-
pression levels was also evident (pmodel = 1.21 × 10−5); it explains up to 2.5% of the
variance in the examined phenotype. A combined effect of SNPs, sex, age, and ethnicity
on depression (Model 3) was more pronounced and explained up to 4.6% of the variance
(pmodel = 1.15 × 10−9). The final examined regression model (Model 4), which represented
a combined effect of genetic variants and lifestyle factors on depression levels, explained
up to 15% of the variance (pmodel < 2.2 × 10−16) (Table 3, Figure 1). Based on a stepwise
backward elimination algorithm, almost all of the examined social/lifestyle factors except
for maltreatment and rearing in a complete/incomplete family significantly contributed to
Model 4. In general, individuals with higher PGS, being women of younger age, charac-
terized by low-income childhoods, low parental care, and overprotection, appeared to be
more prone to have higher depression levels.
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Table 3. Linear regression models demonstrating the effect of SNP-based PGS and social/lifestyle
predictors on BDI-measured Depression in DeprVUR sample (n = 1065).

Model Parameter β SE p-Value

1

PGS 57.65 11.23 3.42 × 10−7

Model p-value 3.42 × 10−7

Adjusted r2 0.024

2

Sex 1.12 0.54 0.038

Ethnicity
(Russians) −1.34 0.76 0.079

Ethnicity (Tatars) −2.77 0.76 2.96 × 10−4

Ethnicity
(Udmurts) −1.95 0.83 0.019

Age −0.30 0.13 0.022

Model p-value 1.21 × 10−5

Adjusted r2 0.025

3

PGS 53.44 11.19 2.05 × 10−6

Sex 1.07 0.54 0.045

Ethnicity
(Russians) −1.60 0.76 0.034

Ethnicity (Tatars) −2.74 0.76 2.95 × 10−4

Ethnicity
(Udmurts) −1.89 0.83 0.021

Age −0.30 0.13 0.018

Model p-value 1.15 × 10−9

Adjusted r2 0.046

4

PGS 52.70 13.27 7.98 × 10−5

Sex 1.50 0.63 0.017

Ethnicity
(Russians) −1.68 0.88 0.055

Ethnicity (Tatars) −2.54 0.84 0.0026

Ethnicity
(Udmurts) −1.34 1.01 0.18

Age −0.27 0.14 0.056

Income level
(average) −1.90 0.87 0.028

Maternal care −2.65 0.59 9.29 × 10−6

Maternal
protection 1.52 0.56 0.0063

Paternal care −1.07 0.54 0.047

Paternal
protection 1.43 0.55 0.0091

Model p-value <2.2 × 10−16

Adjusted r2 0.15
The best social/lifestyle predictors according to stepwise backward elimination procedure are included
in Model 4.
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Figure 1. Proportion of variance (adjusted r2) in BDI-measured depression explained by predictors in
DeprVUR sample based on weighted (W) PGS score. For sensitivity analysis, unweighted (UW) PGS
effects in DeprVUR sample and weighted PGS in women were examined. In all groups, examined
predictors in four different linear regression models were as follows: (1) PGS; (2) sex, ethnicity,
and age; (3) PGS, sex, age, and ethnicity; (4) PGS, age, sex, ethnicity, and the most significant
social/lifestyle predictors. Included predictors are described in detail in Table 3.

3.4. PGS-Based Sensitivity Analysis Based on DeprVUR Estimates

In the second stage, we examined whether the unweighted PGSs were sensitive
to explain the depression level in DeprVUR of the total sample. We observed that the
effects of unweighted PGS including models (pmodel = 1.61 × 10−4, r2 = 0.013 for Model 1;
pmodel = 1.49 × 10−7, r2 = 0.036 for Model 3; pmodel = < 2.2 × 10−16, r2 = 0.14 for Model 4)
were less significant than of including weighted PGS (Table S3, Figure 1).

In addition, we examined the sensitivity of weighted PGS to assess depression liability
in women due to a high prevalence in our cohort. Model 1, depicting the effect of SNPs, was
sensitive to estimating higher depression levels in women (pmodel = 6.03 × 10−9) and ex-
plained up to 3.9% of the variance (Table S3, Figure 1). The addition of sex, ethnicity, age
(Model 3, pmodel = 1.17 × 10−10, r2 = 0.061), and social factors (Model 4, pmodel < 2.2 × 10−16,
r2 = 0.17) into the model together with PGS enhanced a prognostic value of regression
model.

3.5. PGS-Based Sensitivity Analysis Based on GWAS Estimates in Europeans

To address the question on the applicability of effect estimates obtained from GWAS
of depression and related phenotypes in Western European populations for evaluating
depression levels in Eastern Europeans (for instance, Russian-descent cohort), we calcu-
lated both weighted and unweighted PGS for each individual from the DeprVUR sample.
For this purpose, we obtained the effect estimates from the summary statistics of pub-
licly available GWAS data of the unipolar depression [7,9,10]. However, PGS based on
clinical depression effect estimates failed to significantly explain higher BDI-measured
depression in the DeprVUR sample (p > 0.05 for weighted and unweighted PGS, data are
available on request). Subsequently, we examined PGS models based on the summary
statistics from neuroticism (depression-related trait) GWAS in the Europeans [7,20] to as-
sess BDI-measured depression in individuals from the Volga–Ural region. Although we
observed a significant effect of Models 2 and 3 on explaining depression in the DeprVUR
sample controlling social/lifestyle predictors, it seemed that the impact of genetic variants
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(Model 1) was rather small and significant only in the case of unweighted PGS effect
(pmodel = 0.019 [7], pmodel = 0.043 [20]) (Table S4, Figure S1). Moreover, unweighted
PGS explained a higher proportion of variance in depression compared to weighted PGS
(r2 = 0.0043 vs. r2 = 0.0027—for Okbay et al. [7]; r2 = 0.029 vs. r2 = 0.0021—for Turley
et al. [20]).

The inclusion of sex, age, ethnicity, and social factors as predictors improved the
model’s prediction sensitivity (pmodel < 2.2 × 10−16 for Model 4; r2 = 0.14 and 0.15 for
weighted and unweighted effects based on [7]; r2 = 0.15 for weighted and unweighted
effects based on [20]) (Table S4, Figure S1).

4. Discussion

In this study, for the first time, we assessed the ability to explain individual differ-
ences in depression levels in higher-education students from the Volga–Ural region of
Eurasia, implementing a polygenic score approach. The designed PGS model was based
on 27 SNPs residing in the genes belonging to hypothalamic–pituitary–adrenal, monoamin-
ergic, inflammatory response, and miRNA binding pathways. This PGS model explained
up to 2.4% of the variance in depression score in the DeprVUR sample, while the addi-
tion of sex, age, and ethnicity as predictors to the model together with PGS increases the
proportion of variance up to 4.6%. To date, several studies examining a cumulative contri-
bution of a limited number of genetic variants to depression liability have been reported in
European [32] and non-European populations [37]. We identified suggestive evidence of
PGS-including models to evaluate depression. Similar to our findings, PGS of depression
based either on a limited number of SNPs [37] or on a complete list of GWAS-available
genetic variants [26] explained ~2–3% of depressive symptoms. It should be noted that
PGS was based on genetic variants, which have been previously associated with impaired
mental health/psychopathologies in GWAS and simultaneously related to molecular path-
ways involved in depression development. However, the demonstrated effect of PGS to
evaluate individual liability to depressive personality in the DeprVUR sample is probably
attributed to a significant impact of the PCLO rs2715157 and the IL18 rs187238 (p < 0.05)
on depression score. The PCLO rs2715157 has been primarily established in MDD GWAS
in Europeans [8], while IL18 rs187238 was associated with clinical depression [3], and a
differential expression level of IL18 gene was related to rs187238 genotypes [44].

In the present study, we determined the regression models based on both PGS and
social parameters, which explained up to 15% (total DeprVUR sample) and 17% (sen-
sitivity analysis in women) of individual variance in depression levels. These values
were attributed to the effect of social predictors, including specificity of rearing in child-
hood, at a larger extent than to a cumulative impact of SNPs (2.4% in the total DeprVUR
sample and 3.9% in women). Previous studies also indicated a modulatory role of ex-
ternal factors, especially early life adverse events, on depression manifestation. For in-
stance, our previous research demonstrates a significant effect of parental rearing style
on OXTR gene-related association with negative personality in the examined cohort [45].
In line with our findings, several PGS-based studies estimated a combined effect of PGS
and non-genetic factors to evaluate depression liability, including such classical demo-
graphic variables as sex and age [32], childhood adversity [37], smoking behavior, and
number of alcoholic drinks per week [38]. Notably, PGS based either on a limited num-
ber of SNPs [32,37] as in our study or on a complete list of GWAS-available SNPs [26]
explained ~2–3% of the variance in depressive symptoms, while the addition of envi-
ronmental factors (even classic demographic variables, such as age, sex, and ethnicity)
improved a prediction ability of PGS-including model. For instance, the percent of the
variance in depressive symptoms in healthy adolescents and young adults explained by
GWAS-based PGS of depression [46] varied depending on responders’ age from 0.37%
in 10-year-olds to 2.21% in 23-year-olds [26]. In summary, published data on a smaller
proportion of phenotypic variance related to a cumulative impact of SNPs compared to
even classic demographic variables have been confirmed by our research group. However,
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the explained variance can be increased in some cases by a simultaneous analysis of a larger
number of SNPs as was reported, for instance, for sleep quality (PGS based on 5000 SNPs
accounted for ~9%) [47].

As a result of sensitivity analysis, constructed PGS-based model significantly explained
variability in BDI-measured depression separately in women, even to a greater extent.
Namely, a cumulative effect of SNPs and the addition of sex, age, and ethnicity as predictors
explained up to 3.9% and 6.1% of the variance in women compared to 2.4% and 4.6% in
the total sample, respectively. This result can be explained by a greater proportion of
women and by significantly higher mean depression level in women than in men in the
DeprVUR sample, which coincides with a widely established two-fold increase in the risk
of depression and related traits in women [2].

Despite multiple studies indicating the possibility of using PGS based on effect esti-
mates from related phenotypes to estimate one another, the number of PGS studies based
on effect estimates from clinical depression (i.e., MDD, unipolar depression) to evaluate
individual proneness to non-clinical depressive states remain scarce. For example, Guffanti
et al. [25] examined whether PGS was based on Okbay et al.’s [7] depression-related phe-
notypes can explain individual variance in anhedonia-related traits in mentally healthy
volunteers. The authors reported a significant negative association of genetic scores on the
changes in striatal reward prediction induced by stress, while no PGS effect was observed
on self-reported pleasure after exposure to psychosocial stressors [25]. Another study also
succeeded in predicting worse depressive symptoms in the sample of healthy adolescents
and young adults based on neuroticism and clinical depression PGS [26]. In turn, the
phenome-wide study of MDD PGS reported significant prediction ability for developing
22 various complex phenotypes, including anxiety [23]. Within a framework of sensitivity
analysis, we failed to explain variability in depression levels in a non-clinical cohort of
young adults based on summary statistics from depression GWAS. Similar to our findings,
Pearson-Fuhrhop et al. [27] detected that PGS based on clinical depression-related estimates
from the discovery sample insignificantly explained individual variance in depression lev-
els in mentally healthy individuals. Moreover, a large-scale study conducted in the Swedish
population evidenced that family genetic risk scores for depression, bipolar disorder, and
schizophrenia could clearly separate affective disorders from psychotic ones [48], thus
evidencing a unique polygenic score profile of a certain mental disorder or a psychological
profile.

Another finding coming from the analysis performed by our research group demon-
strates insensitivity of neuroticism PGS based on summary statistics from Western Euro-
peans [7,20] to explain the variance in depression levels in subjects from the Volga–Ural
region of Eurasia. This conclusion is based on our findings that unweighted neuroticism-
based PGS of Western Europeans demonstrated a more significant effect on evaluating
BDI-measured depression in the DeprVUR sample than weighted PGS. Such failure can be
attributed to significant interethnic differences in genotype frequencies, which have to be
considered while transmitting genetic data obtained from one population to another. These
results point to the necessity to construct PGS based on the effect estimates from GWAS of
the same or ethnically close population.

It should be noted that the present research has several prompts, including a relatively
homogenous cohort of young adults by age and level of education (they were all students
at the universities). We also included a number of social/lifestyle factors, including child–
parent relations, as predictors. However, the reported findings have several limitations.
First, PGS was calculated on the basis of a limited number of examined genetic variants,
thus resulting in a small value of the proportion of variance explained by PGS. It should
also be mentioned that to date, GWAS of depression conducted in a cohort of Russian
descent was carried out [49]; however, summary statistics from this study remain publicly
unavailable. Therefore, for the sensitivity analysis, we calculated PGS based on effect
estimates from GWAS of depression/neuroticism of Western Europeans. Moreover, the
discovery sample of higher-education-attaining young adults had a moderate sample
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size; thus, observed findings have to be verified in a larger replication sample of same-age
individuals from the same geographic location. Finally, the findings obtained are potentially
biased by the overrepresentation of women in the examined sample, thus indicating higher
sensitivity to explain individual variance in depression levels in women from the VUR.

5. Conclusions

In summary, the present study is a preliminary attempt to construct models implement-
ing the PGS approach to explain individual liability for manifesting depressive states under
the age of 25 years in individuals from the Volga–Ural region of Eurasia. The weighted
model considering PGS and social/lifestyle factors as predictors demonstrated the best
prognostic ability and accounted for up to 15% of the variance in depression score in the
DeprVUR sample and 17% in the women group. However, a combined effect of selected
SNPs explained up to 2.4% and 3.9% of the variance in depression levels in the DeprVUR
sample and among women, respectively. This observation indicates a significant impact
of social factors, including specificity of rearing in childhood, in individual differences in
depression.

Nevertheless, our data points to a weak prognostic ability of models implementing
the PGS approach calculated on the basis of summary statistics obtained from neuroticism
and Depression GWAS of other ethnic groups (i.e., Western Europeans). Naturally, future
research in this field would benefit from the use of the PGS approach based on GWAS
summary statistics of depression or related phenotypes conducted in Eastern Europeans,
including the Volga–Ural region of Eurasia. On the other side, summary statistics from the
whole genome, transcriptome, metabolome, and other “omics” data can become useful for
calculating the PGS-based individual liability to depression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14071355/s1, Figure S1: Proportion of variance (adjusted
r2) in BDI-measured depression explained by predictors in DeprVUR sample based on weighted (W)
and unweighted (UW) PGS score [7,20]; Table S1: Effects of examined SNPs on risk of depression
and other mental diseases in PheWAS (FinnGen5) and GWAS catalog [8,50–60]; Table S2: Effects of
examined genetic variants on BDI-Depression in DeprVUR (n = 1065) and on neuroticism in previous
GWAS; Table S3: Linear regression models demonstrating weighted and unweighted PGS effect
on BDI-measured Depression in DeprVUR and women group (for sensitivity purposes); Table S4:
Sensitivity models demonstrating the effect of PGS (controlling for various covariates) based on
published GWAS data of neuroticism on BDI-measured Depression in DeprVUR sample.
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