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A B S T R A C T   

Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a range of cell types, 
including osteoblasts, chondrocytes, myocytes, and adipocytes. Multiple preclinical investigations and clinical 
trials employed enhanced MSCs-dependent therapies in treatment of inflammatory and degenerative diseases. 
They have demonstrated considerable and prospective therapeutic potentials even though the large-scale use 
remains a problem. Several strategies have been used to improve the therapeutic potency of MSCs in cellular 
therapy. Treatment of MSCs utilizing pharmaceutical compounds, cytokines, growth factors, hormones, and 
vitamins have shown potential outcomes in boosting MSCs’ stemness. In this study, we reviewed the current 
advances in enhancing techniques that attempt to promote MSCs’ therapeutic effectiveness in cellular therapy 
and stemness in vivo with potential mechanisms and applications.   

1. Introduction 

Mesenchymal stem cells (MSCs) are mesodermal progenitors that can 
be isolated from all vascularized tissues. Many human tissues, such as 
bone marrow [1], adipose tissue [2], dental pulp [3], and some em
bryonic tissues [4], have been demonstrated to be preferred sources of 
MSCs (Fig. 1). MSCs are a cell population that adheres spontaneously to 
plastic; they have a particular immunophenotypic profile (express a 
certain collection of surface CDs markers), and they develop into oste
ocytes, adipocytes, and chondrocytes [5]. Because of their exceptional 
anti-inflammatory, immunosuppressive, immunomodulatory, and 

regenerative characteristics, MSCs have been studied in cell-based 
therapeutics [6,7]. The promising therapeutic effects of MSCs are also 
due to their capacity to undergo lineage-specific differentiation, influ
ence the immune system, and release essential bioactive molecules [5,8, 
9]. MSCs are thus very desirable candidates for cell-based therapy in 
inflammatory and degenerative diseases [6,10]. MSCs-based therapies, 
including their secretomes and conditioned media, have attracted 
attention for several therapeutic applications due to their distinct 
anti-inflammatory profile. In the last decade, several preclinical in
vestigations and more than 5000 clinical trials involved MSCs have been 
registered, and more than 1500 have been completed (source: 
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http://www.clinicaltrials.gov). It was updated in 2016 that around two 
thousand individuals have received autologous or culture-expanded 
allogeneic MSCs to treat various disorders during the last 20 years 
[11]. Enhancing MSCs stemness has been widely used to induce their 
therapeutic efficacy in treating several diseases. The concept of 
increasing the stemness of MSCs is to stimulate MSCs in vitro prior to 
their use in vivo or sometimes to use an enhancer together with MSCs 
simultaneously as an adjuvant. A lot of preclinical studies have used 
several biomolecules such as IL-1α, IL-1β, IFN-γ, TNF-α, IGF-1, FGF-2, 
IL-17A, Poly I:C, and LPS for enhancing MSCs [12,13]. Current cellular 
therapy research focuses on elucidating the molecular processes that 
regulate or influence the immunomodulatory capacity of MSCs. Indeed, 
MSCs’ immunoregulatory effectiveness is diminished by cellular aging 
[14] and other impediments [15]. Thus, the researchers attempted to 
identify the solutions for overcoming these suppressors and enhancing 
the MSCs’ ability to tackle age-related disorders and inflammatory dis
eases. Of these solutions, stimulation the immunomodulatory potency of 
MSCs by changing the culture environment condition, priming by TLRs 
ligands or inflammatory biomolecules, or incubation at hypoxic atmo
sphere or in 3D-culture [12,13]. This updated review provides a 
comprehensive discussion about the recent trends of enhancers (Fig. 1) 
used to induce the stemness of MSCs in the research field. These en
hancers are metformin, resveratrol, antioxidants, mTOR inhibitors, and 
miscellaneous pharmacological compounds. Cytokines, growth factors, 
hormones, and vitamins are also included. Additionally, this review 
suggests potential MSCs’ enhancers’ strategies that could be used in vivo 
if translated well. More important, the mode of action for all included 
enhancers is discussed. 

2. Pharmacological compounds 

As a result of their understanding of the processes that affect the 
proliferation, differentiation, and paracrine secretions of MSCs, re
searchers can recommend specific pharmacological modulators for 
improving the therapeutic efficacy of MSCs. In this study, we discuss the 
effects of numerous drugs, including metformin, resveratrol, antioxi
dants, and mammalian target of rapamycin (mTOR) inhibitors. 

2.1. Metformin 

Metformin is a well-known drug that is clinically approved for the 
treatment of type 2 diabetes. Studies have extensively revealed a novel 
effect of metformin on the augmentation of the potency of MSCs (Fig. 2) 
via the activation of osteogenic and neuronal differentiation and the 
upregulation of certain stemness markers. Metformin maintained the 
signaling pathways involved in the normal activities of MSCs, delayed 
replicative senescence, reduced apoptosis, and induced superoxide dis
mutase 1 (SOD1), SOD2, CAT, GSTP1, and GLRX anti-oxidant proteins 
[16]. Metformin can also increase the therapeutic efficacy of MSCs by 
enhancing the release, abundance, and quality of exosomes, one of the 
stemness’ primary features. These effects were mediated by an 
autophagy-dependent pathway. Metformin promotes proteins of cell 
development, which can exert a positive effect on the senescence of 
intervertebral disc cells in vitro and in vivo, according to the proteomic 
study [17]. Gu et al. reported a novel activity for metformin on MSCs 
generated from human chorionic villous in which metformin can stim
ulate osteogenesis activation and inhibit adipogenesis. In osteogenic 
differentiation media containing metformin, alkaline phosphatase (ALP) 

Fig. 1. An overview of MSCs’ stemness’ en
hancers. MSCs isolated from bone marrow, ad
ipose tissues, umbilical cord, dental pulp, 
endometrium, and blastocyst could be 
enhanced by a wide variety of biomolecules, 
including pharmacological medications, cyto
kines, growth factors, hormones and vitamins 
to enhance (green) their stemness. In case of 
human clinical usage of enhanced MSCs, the 
procedures of in vitro MSCs cultivation and 
preparation for transplantation shall follow 
Good Manufacturing Practices (GMP). Lifestyle 
modifications and clinically approved medica
tions could be considered to enhance MSCs’ 
stemness in human body.   
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activity and calcium mineralization were elevated in MSCs. In the 
meantime, metformin stimulated the expression of the bone formation 
component, endothelial nitric oxide synthase (eNOS). However, treat
ment of MSCs with metformin reduced adipocyte development in both 
adenosine monophosphate-activated protein kinase (AMPK)-dependent 
and -independent ways via down-regulation of peroxisome 
proliferator-activated receptor gamma (PPARγ) [18,19]. In addition, 
metformin contributed to the development of MSCs from the dental pulp 
into odontoblasts via an extracellular signal-regulated kinase 
(ERK)/AMPK-dependent pathway, as evidenced by an increase in 
osteocalcin, dentin sialophosphoprotrin, and other odontoblastic 
markers [20,21]. Moreover, adipose-derived MSCs exhibited an 
enhanced osteogenic effectiveness in bone production and resilience to 
the oxidative stress after metformin treatment [22]. 

MSCs derived from human induced pluripotent stem cells improve 
their osteogenic differentiation potential in response to metformin [23]. 
The effect of metformin on the osteogenic differentiation of MSCs is 
mediated via inhibition of glycogen synthase kinase-3 β (GSK3β) [24]. It 
has also been demonstrated that metformin promotes neural develop
ment in MSCs. The presence of metformin in the neural development 
environment hastens the differentiation of MSCs, resulting in an increase 
in neurite length. Further exploration demonstrated that metformin 
increased neuronal proteins such as MAP-2 and Tuj-1 by activating 
AMPK [25]. These results indicate the potential relevance of metformin 
and its derivatives in the treatment of age-related diseases, particularly 

bone-loss diseases and neurodegenerative disorders. In another field, 
metformin treatment of MSCs-derived from Hutchinson-Gilford progeria 
syndrome (HGPS) induced pluripotent stem cells revealed positive re
sults in vitro as an anti-aging agent by modulation of decreased 
expression of progerin [26]. Indeed, animal experiments in mice with 
diabetes mellitus type 2 revealed a synergistic effect of injected 
metformin-preconditioned adipose tissue-derived MSCs on decreasing 
hyperglycemia, hyperinsulinemia, and triglyceridemia [27]. It has also 
been reported that metformin regulates Yes-associated protein (YAP) 
activity and block the stemness-related marker, CD133 in glioma stem 
cells [28], or halts the transforming growth factor-β (TGF-β)-dependent 
epithelial-mesenchymal transition via Akt/mTOR/ZEB1[29] as well as 
in breast cancer [30]. In the same context, the resistance of cancer stem 
cell-like HepG2 for sorafenib was ameliorated by a low dose of met
formin through reversing epithelial-mesenchymal transformation [31]. 

Although the positive impact of metformin in boosting the potency of 
MSCs is emphasized, a negative effect was also demonstrated in diabetic 
mice with myocardial infarction. Experiments demonstrated that met
formin inhibited the therapeutic effectiveness of MSCs by activating 
apoptosis through AMPK [32]. Through regulation of the mTOR 
pathway, chronic metformin administration impaired angiogenic and 
differentiation capacity, migration, and cell survival of MSCs [33]. 
Taking together, metformin enhances the therapeutic efficacy of MSCs, 
particularly in illnesses of bone loss, neurologic degenerative diseases, 
and cancer, but in other age-related diseases, the topic remains 

Fig. 2. Metformin enhances MSCs’ stemness. Metformin can induce MSCs’ therapeutic potency through activating AMPK, ERK, and autophagy pathways. Thanks 
to regulating these pathways, metformin activating MSCs’ osteogenesis and odontogenesis through modulating GSK3β and neurogenesis by MAP-2 and Tuj-1 
overexpression. Additionally, it can inhibit MSCs’ adipogenesis via inhibiting PPAR-γ and aging by antioxidant effects or decreasing progerin expression. 
Through activating autophagy, metformin can improve the quantity and ingredients of MSCs’ exosomes, and promote anti-tumor action by inhibiting migration, cell 
survival, angiogenesis TGF-β-mediated EMT of cancer stem cell. Activate or regulate ( ), Inhibit ( ). 
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debatable. 

2.2. Resveratrol 

Resveratrol is a polyphenol with antioxidant properties that is found 
in the skin of red grapes, peanuts, Japanese knotweed, and blueberries. 
Due to its impact on AMPK, Sirtuin, autophagy, and oxidative stress 
pathways, resveratrol has generated increased interest in the scientific 
community. These pathways are also important for the stemness of 
MSCs, suggesting that resveratrol may enhance the therapeutic efficacy 
of MSCs (Fig. 3). Recent studies have demonstrated that resveratrol is 
one of the optimal adjuvants for treating diabetes mellitus using MSCs. 
This positive effect of resveratrol is attributed to its capacity to improve 
glucose metabolism and promote cell viability [34]. MSCs pretreated 
with resveratrol promoted wound healing in type 1 diabetes by sup
pressing tumor necrosis factor-associated factor 6 (TRAF6) via extra
cellular vesicle’s miR-129 [35]. Acceleration of wound healing by 
resveratrol-treated MSCs is also attributed to increased secretion of 
growth factors, TGF-β1, platelets derived growth factor (PDGF), EGF, 
and HGF [36]. Resveratrol may induce the hermetic response of pro
moting proliferation, osteogenic differentiation [37,38], and resilience 
to cellular stress can improve the stemness of MSCs [39]. Interaction 
between miR-139a and Sirt7 [40], modulation of the miR 320c/Runt-re
lated transcription factor 2 (Runx2) axis [41], or activation of the 
Wnt/β-catenin pathway [42] underlie resveratrol-induced osteogenesis 
in MSCs. In the same context, to avoid bone loss in osteoporosis, bone 

marrow MSCs can be treated by resveratrol to suppress TNF-α inflam
matory niche, thereby regulating nuclear YAP [43], or upregulate 
miR-146a which in turn regulates Wnt/FOXO and Sirt1/nuclear factor 
kappa-light-chain-enhancer of activated B Cells (NF-κB) pathways [44]. 
It has also been observed that resveratrol can promote osteogenesis in 
MSCs generated from periosteum and increase mitochondrial biogenesis 
[45]. Intriguingly, resveratrol exhibited anti-aging effects on MSCs by 
reducing premature senescence via modulation of RELA/Sirt1 pathway 
[46], and by enhancing hematopoiesis via induction of Sirt1 over
expression [47]. In rats with hyperglycemia-induced cardiomyopathy, 
MSCs from adipose tissue treated with resveratrol served as antioxidants 
via Sirt1/Akt pathway [48]. Resveratrol also rejuvenate MSCs after 
hyperglycemia-induced senescence and promote their therapeutic po
tency to heart recovery after myocardial infarction in diabetic rats [49]. 
Combined treatment of atorvastatin and resveratrol protects MSCs from 
rapamycin-induce apoptosis and promotes cell migration by Akt 
pathway [50]. 

Exosomes obtained from MSCs following treatment with 5-azacyti
dine and resveratrol inhibit aging and apoptosis and alleviate endo
plasmic reticulum stress in cells derived from animals with equine 
metabolic syndrome [51]. In addition, neuronal differentiation and 
neuronal progenitor makers, NES and SOX1, were observed after 
priming of human stem cell from apical papilla by resveratrol [52]. 
Indeed, treatment of MSCs by resveratrol is promising in the treatment 
of rats severe acute pancreatitis via modulation of the PI3K/Akt/VEGFA 
pathway in pancreatic cells and human umbilical vein endothelial cells, 

Fig. 3. Resveratrol enhances MSCs’ stemness. Resveratrol extracted from grapes, blueberries, or peanuts can induce MSCs’ therapeutic potency by activating 
AMPK, sirtuin, Wnt/β-catenin, and autophagy pathways as well as mitochondrial biogenesis. It can inhibit osteoporosis through Wnt/β-catenin/Runx2-mediated 
osteogenesis and promote wound healing via inducing expressions of growth factors, TGF-β, PDGF, EGF, and HGF in paracrine secretion. Resveratrol can also inhibit 
MSCs’ senescence via Sirt1 and inflammation via regulating NF-κB as well as inducing cell survival and relieving endoplasmic reticulum stress. Activate or regulate 
( ), Inhibit ( ). 
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thereby protecting from cell death and inducing regeneration of 
damaged tissues [53]. 

In treatment of cancer, resveratrol is also considered, especially in 
targeting MSCs residing at tumor microenvironment. The antitumor 
effect of resveratrol on gastric cancer MSCs was demonstrated by the 
downregulation of interleukin-6 (IL-6), IL-8, vascular endothelial 
growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1) 
expressions [54]. Collectively, at the preclinical level, resveratrol in
duces MSCs’ stemness by inducing antioxidants, correcting skewed 
differentiation, preventing mitochondrial dysfunction, enhancing para
crine secretion, and promoting cell survival. 

2.3. Antioxidants 

The generation of reactive oxygen species (ROS) is one of the most 
powerful mechanisms for inhibiting MSCs’ stemness and activating 
cellular senescence. Therefore, addressing oxidative stress or triggering 
antioxidant mechanisms is one of the preferred methods for researchers 
to improve the therapeutic efficacy of MSCs in clinical applications 
(Fig. 4). While there are many forms of antioxidants, including enzy
matic and non-enzymatic varieties, the most important antioxidants are 
those found naturally in seafood, meats, fruits, and vegetables. Recent 
research has focused on identifying the most effective antioxidant to 
combat oxidative stress, a phenomenon that accelerates MSCs’ senes
cence and inhibits MSCs’ stemness. As an illustration, astaxanthin, a 
xanthophyll present in certain seafood such as shrimp and salmon, can 
protect MSCs from apoptosis and oxidative stress by boosting expression 
of nuclear factor erythroid 2- related factor 2 (Nrf2) [55]. After palmi
tate treatment, astaxanthin exerted anti-inflammatory effects on human 
bone marrow-derived MSCs [56]. Selenium nanoparticles promoted 
MSCs’ viability and osteogenic differentiation by inducing antioxidant 

levels and activation of JNK/FOXO3 pathway [57]. The polyphenol in 
green tea, -(-) epigallocatechin-3-gallate (EGCG), functions as an alter
native antioxidant that can induce MSCs’ osteogenesis [58]. In a 
high-glucose environment, it can also promote MSCs’ survival by 
increasing Akt phosphorylation [59]. In addition, Cladophora glomerata 
methanolic extract was reported to have an antioxidant impact on MSCs 
obtained from equine adipose tissues. The extract increased the MSCs’ 
viability and the expression of antioxidant enzymes, SOD2 and catalase, 
while decreasing the expression of p53, p21, Bax, and caspase 9 [60]. 
Indeed, plant saponins from Tribulus terrestris performed admirably as 
antioxidants by reversing oxidative damage generated by H2O2 in adi
pose tissue-derived MSCs [61]. 

Moreover, the steric impact of sanggenons C and D antioxidants from 
the Chinese medicine Sang-bai-pi protected MSCs from oxidative stress. 
Comparing the two medications found that sanggenon C is more effec
tive than sanggenon D [62]. Traditional Chinese herbal medicines Mori 
fructus and Mori ramulus have been shown to have an antioxidant effect 
on MSCs by protecting them from OH-induced damage [63]. Resvera
trol, another anti-oxidant derived from food, has been thoroughly 
addressed above in this article. 

N-acetylcysteine (NAC), a well-known ROS-scavenger, may poten
tially be utilized to improve the therapeutic efficacy of MSCs in the 
research field. Experiments on animals showed that the combination of 
MSCs and NAC lowered proinflammatory markers and raised antioxi
dant markers in rats with severe acute pancreatitis [64]. Interestingly, 
scientists have observed a synergistic antioxidant effect for the admin
istration of α-lipoic acid and antihypertensive medications, amlodipi
ne/perindopril, after MSCs’ transfusion in experimental mice with 
isoproterenol-induced heart damage. This synergy increased cellular 
antioxidant levels [66]. In another context, CCR2-overexpressed MSCs 
triggered an antioxidant mechanism that increased the therapeutic 

Fig. 4. Antioxidants enhance MSCs’ stemness. Inhibition of oxidative stress induces MSCs’ therapeutic potency by inhibiting skewed differentiation, apoptosis, 
senescence, and inflammation, and inducing antioxidants molecules, SOD1,2 and catalase. Among antioxidants, astaxanthin, ECGC, and selenium which down
regulate oxidative stress through Nrf2, phosphorylated Akt, and JNK/FOXO3 pathways respectively. Activate or regulate ( ), Inhibit ( ), antioxidant (bold 
and underlined), living organism (italic, bold, and underlined). 
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efficacy of MSCs in the treatment of rats’ acute ischemic stroke of the 
brain [65]. In conclusion, addressing ROS signaling by antioxidants is 
important for enhancing the therapeutic efficacy of MSCs. Vitamins that 
function as antioxidants were described briefly below. In Table 1, we 
compiled a summary of representative antioxidants employed by re
searchers to stimulate the therapeutic efficacy of MSCs. Not very far 
from oxidative stress downregulation, hypoxic environment was 
reviewed as an enhancer for MSCs’ therapeutic potency [12,13]. 

2.4. mTOR Inhibitors 

It is generally recognized that the mTOR signaling pathway plays a 
crucial role in cellular functions such as autophagy and cell survival. 
Therefore, regulation of mTOR activity is a crucial step in improving the 
stemness of MSCs. Strong evidence suggests that mTOR signaling pro
motes senescence and stemness downregulation in MSCs. In this context, 
the direction of research is centered on exploring and improving the 
optimal mTOR inhibitors (Table 2), which may protect MSCs from early 
senescence and enhance their immunomodulatory potential (Fig. 5). 
Rapamycin has recently been found to reverse MSCs’ replicative 
senescence and induce therapeutic efficacy in treating ischemia illness 
in mice by preserving proangiogenic factor overexpression, VEGFR2 
[67]. In vitro, rapamycin was reported to promote the migration of 
MSCs from the umbilical cord via CXCR4. In vivo experiments revealed 
that preconditioning MSCs with rapamycin allows them to alleviate liver 
ischemia injury in mice [68]. Rapamycin treatment of stem cells derived 
from the apical papilla (SCAP) enhanced osteogenic and dentinogenic 
differentiation in vitro and in vivo by suppressing mTOR pathway [69]. 
A low dose of rapamycin strengthened the ability of MSCs to preserve 
allografts, which increased allograft survival in mice with major histo
compatibility complex (MHC) incompatibility [70]. In addition, incu
bation of MSCs with rapamycin and its derivative, everolimus presented 
immunomodulatory potency enhancement [71]. A clinical trial was 
registered and hypothesized that the autonomous infusion of MSCs with 
everolimus maintaining renal structure and function in renal transplant 
recipients, but no results declared up to date [72]. A further rapamycin 
derivative, temsirolimus, was shown to inhibit cancer stem cells by 
inhibiting their stemness and epithelial-mesenchymal transition [73, 
74]. Research has led to the development of a new generation of mTOR 

inhibitors that block the downstream substrate of both mTOR complex 1 
and 2 [75], sapanisertib, or INK128; a small-molecule drug that inhibits 
the mTOR pathway via the ATP site. It is demonstrated that INK128 has 
a function in promoting the differentiation and rejuvenation of MSCs 
[76]. In short, mTOR signaling modulation is critical for MSCs’ stemness 
increase. 

2.5. Miscellaneous pharmacological agents 

Diverse pharmacological compounds were studied in the research 
field to test their action on MSCs’ biological activities, particularly those 
related to immunomodulatory potency (Table 3). For instance, fullerol 
nanoparticles was observed to have anti-inflammatory and antioxidant 
effects on vertebral MSCs displayed by down-regulation of IL-1β- 
induced ROS, MMP1/2/13, and TNF-α [77], as well as inhibition of 
adipogenesis and stimulation of osteogenesis by alleviation 
dexamethasone-stimulated oxidative stress [78]. Another compound, 
fucoidan, has been shown to improve MSCs osteoblast differentiation by 
promoting the angiogenic factor, VEGF [79], especially when combined 
with the β-tricalcium phosphate-chitosan scaffold [80]. 

Isoproterenol-induced heart failure of the rat was improved after 
being treated by MSCs with nicorandil, suggesting a role for nicorandil 
in enhancing MSCs’ therapeutic power [81]. It is reported previously 
that nicorandil could protect MSCs from oxidative stress and nutrients 
depletion-induced apoptosis [82]. Carvedilol promoted the therapeutic 
potency of MSCs in treatment of heart injury in animal model through 
caspase-3 down-regulation [83] and protected from oxidative 
stress-induced cell death by phosphorylation of PI3K-Akt pathway in 
vitro[84]. 

While isoquercitrin promoted osteogenesis differentiation of bone 
marrow MSCs [85], aspirin low-dose reduced some paracrine secretion 
of MSCs derived from decidua basalis of pregnant with preeclampsia 
[86]. Indeed, it is reported that MSCs’ osteogenesis could be enhanced 
by multiple drugs, such as anthocyanidins, malvidin, delphinidin, and 
cyanidin; however, adipogenesis is inhibited by delphinidin [87]. 
Furthermore, treating adipose tissues MSCs with azacytidine and 
resveratrol mediated outstanding anti-inflammatory activities when 
incubated with PBMCs and macrophages, and associated with promot
ing T regulatory cells [88]. In summary, in addition to metformin, 

Table 1 
Antioxidants used in research to enhance the stemness of MSCs.  

Source Anti-oxidant Mode of action Outcome Ref. 

Carotenoids chemicals Astaxanthin Inhibits IL-6, VEGF, and MCP-1 Down-regulates inflammation and apoptosis in MSCs [55, 
56] 

Fish and shellfish Selenium Inducing JNK/FOXO3 pathway Activates MSCs’ viability and differentiation [57] 
Green tea polyphenol EGCG Increasing ALP activity and 

mineralization 
Promotes murine MSCs’ osteogenesis [58] 

Cladophora glomerata Methanolic extract Decreases cell cycle inhibitors Promotes the equine MSCs’ viability. [60] 
Plant saponins TTS - Decreases oxidative stress [61] 
Chinese drug, Sang-bai-pi Sanggenons C and D Inducing Fe2+-binding Protects MSCs’ from oxidative stress [62] 
Mori Fructus and Mori Ramulus LAMF and LAMR Decreases ROS generation Increase MSCs’ viability [63] 
Modified amino acid NAC Increases antioxidant marker, 

SOD 
Decreases markers of inflammation and serum amylase in rat 
with acute severe pancreatitis 

[64] 

Cellular proteins CCR2 overexpression Upregulates expression of 
PRDX4 

Induces targeted migration of MSCs in the treatment of acute 
ischemic brain stroke in rats 

[65] 

- α-lipoic, Fatty acid 
- Amlodipine, 
antihypertensive drug 

α-lipoic acid and amlodipine 
combination 

ROS-scavenging Synergistic antioxidant effect in rats cardiac injury [66]  

Table 2 
mTOR inhibitors used in research to enhance the stemness of MSCs.  

mTOR inhibitor Mode of action Outcome Ref. 

Rapamycin Inhibition of AKT/mTOR signaling Promotes dentinogenic and osteogenic differentiation of SCAP [69] 
Rapamycin and everolimus In vitro inhibition of induced T lymphocyte Enhancing immunomodulatory potency of MSCs [71] 
Temsirolimus Suppression of MSCs’ oncogenic stemness Attenuation of cancer stem cells [73,74] 
INK128 Inhibits phosphorylation of 4EBP1 and p70S6K1/2 Enhancing anti-aging mechanisms in MSCs [76]  
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resveratrol, antioxidants, and mTOR inhibitors, there are a number of 
modulators that can improve the therapeutic potency of MSCs by con
trolling many of the stemness mechanisms (Table 3). 

3. Cytokines 

Because of their essential functions in cell autocrine, paracrine, and 
endocrine signaling, the stimulation of MSCs by cytokines is becoming a 
hot issue due to their beneficial effects on enhancing cellular therapeutic 
potency (Table 4) (Fig. 6). Pretreatment of MSCs from synovial tissue by 
IL-1β, for instance, boosted their proliferation and chondrogenic dif
ferentiation capacity [89], and enhanced their migration via the 

MMP1/protein-activator receptor-1 (PAR1) and G-protein-coupled 
pathway [90]. In addition, preconditioning MSCs with IL-1β inhibited 
LPS-induced inflammation in microglia cells via IL-1 receptor type1 
(IL-1R1) and granulocyte-colony stimulating factor (G-CSF) [91]. 
Moreover, stimulation MSCs by IL-1β and IFN-γ mediated immunoreg
ulatory enhancement on macrophage polarization and promoted 
anti-inflammatory ability [92]. 

IL-6 contributes to the enhancement of carcinogenesis by recruiting 
cancer stem cells [93]. In hypoxic environment, IL-8 was reported as an 
enhancer for MSCs because it promoted their proliferation and 
decreased the proportion of apoptotic cells via the Akt/ signal trans
ducer and activator of transcription 3 (STAT3) pathway [94]. IL-8 also 

Fig. 5. mTOR inhibitors enhance MSCs’ stemness. Inhibiting mTOR pathway induce MSCs’ therapeutic potency by maintaining the right path of autophagy. 
Maintaining autophagy can activate migration and angiogenesis, and inhibit senescence and tumorigenesis via regulation of CXCR4, VEGF, processing DAMP and 
damaged mitochondria, and inhibiting IL-6, IL-1β, and TNF-α-mediated cancer stem cell EMT respectively. Activate or regulate ( ), Inhibit ( ), mTOR in
hibitor (bold and underlined). 

Table 3 
Miscellaneous compounds used in research to enhance the stemness of MSCs.  

Compound Mode of action Outcome Ref. 

Fullerol nanoparticles Down-regulation of ROS, MMP1/2/13, and TNF-α Anti-inflammatory and antioxidant effects [77] 
Fucoidan Induces VEGF expression Enhances osteogenesis [79] 
Nicorandil Induces anti-oxidant and anti-apoptotic mechanisms Induces MSCs’ survival [82] 
Carvedilol Caspase-3 down-regulation [83] and Phosphorylation of PI3K-Akt pathway  

[84] 
Promotes the therapeutic potency of MSCs in animal 
model 

[83, 
84] 

Isoquercitrin Induces ALP activity Promotes osteogenesis [85] 
Aspirin Induces MSCs’ adhesion Modulates paracrine secretion of MSCs [86] 
Cyanidin and malvidin Induce expression of Runx2 and BMP-2 genes Enhance MSCs’ osteogenesis [87] 
Delphinidin Decreases expression of adiponectin genes and FABP4 Inhibits adipogenesis [87] 
Azacytidine and 

resveratrol 
Promoting mitophagy Anti-inflammatory effects [88]  
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enhanced MSCs’ therapeutic potency in bone formation and chondro
genesis by regulation PI3K/Akt pathway in CXCR2-dependent manner 
[95]. Worth mentioning, inhibiting IL-8 causes MSCs generated from 
placenta to age prematurely [96]. 

Increasing the expression of the proinflammatory cytokine IL-18 
improved the therapeutic effect of MSCs in breast cancer in vitro [97] 
and in vivo [98], suggesting that the establishment of procedure to 
stimulate MSCs’ IL-18 production may introduce a promising remedy in 
cellular therapy. Conversely, myocardial infarction in rats model was 
improved with IL-18 binding protein genetically modified MSCs [99]. 
Also, TNF-α activation of MSCs enhanced expressions of IL-10 and TGF-β 
[100], thereby recruiting MSCs for inflammation suppression. Consis
tently, after treatment with TNF-α, MSCs and their exosomes exhibited 
distinct microRNA expression [101]. In addition, preconditioning of 
murine MSCs with TNF-α facilitated bone regeneration and immune 
modulation [102]. 

IFN-γ pretreatment of MSCs mediated their immunosuppressive ef
fect on activated lymphocytes through increased expression of immu
nosuppressive molecules, TGF-β, HGF, and PGE2 [103]. The 
IFN-γ-induced morphological alterations on MSCs have been considered 
when predicting immunosuppressive capacity [104]. It was shown that a 
cocktail of cytokines, IFN-γ, TGF-β, and retinoic acid stimulated MSCs 
stemness by activating indoleamine 2, 3-dioxygenase (IDO) and PD-L1 
immunologic mediators [105]. In contrast, IFN-γ may have a detri
mental effect on the therapeutic efficacy of mouse MSCs by producing 
aging-related characteristics [106] but it had no influence on the MSCs’ 
inhibitory effect on lymphocyte proliferation in vitro [107]. 

CXCR2 receptor of CXCL1 chemokine may regulate the adipogenesis 
of MSCs via altered activation of the p38/ERK-ELK1 pathway in co- 
culture with macrophage [108]. Moreover, IL-3 has been identified as 
a promoter for MSCs in bone regeneration via JAK/STAT pathway 
[109], cartilage formation by decreasing MMP expressions [110], and 
enhancing MSCs’ migration [111]. In the same context, Hong et al. also 
reported that IL-3 played dual roles related to osteoclastogenesis in 
which promoted osteoclast progenitors development but discourage the 
process of osteoclastogenesis [112]. NF-κB-mediated IL-4 increased the 
anti-inflammatory property of MSCs [113], as well as engineered MSCs 
were reported to have a beneficial effect on osteogenesis through 
co-overexpressing of PDGF-BB and IL-4 [114]. Although IL-7 promoted 
renal regeneration by enhancing the fusion ability of rat 
hypoxic-stressed MSCs [115], it is reported that IL-7 inhibited MSCs 
differentiation into osteoblast [116] through inhibition of the MAPK 
pathway [117]. 

IL-17-stimulated MSCs increased skin transplant survival from allo
genic source [118], and increased therapeutic efficiency in renal dis
eases [119], whereas IL-17b modulated the immunoregulatory potency 
of MSCs to promote gastric cancer progression [120]. In addition, IL-22 
promoted MSCs’ migration, proliferation, and osteogenic differentiation 

[121]. Indeed, IL-25-primed MSCs alleviated autoimmune inflammatory 
intestinal diseases, IBD in rat model presents by low IL-17 and elevated T 
regulatory lymphocytes [122]. Moreover, a lymphokine, granulocyte 
macrophage-colony stimulating factor (GM-CSF) promoted cartilage 
rejuvenation by increasing numbers of MSCs in rabbits [123]. Further
more, TL1A promoted the stemness-related biological behaviors of MSCs 
derived from bone marrow in order to enhance their immunoregulatory 
potency in alleviating inflammation in T lymphocytes and fibroblast-like 
synoviocytes of rheumatoid arthritis patients [124]. In other words, 
cytokines implicate in modulating the stemness of MSCs via diverse 
related pathways (Table 4), indicating that engineering MSCs to acquire 
specific cytokine secretion phenotypes could be a strategy for enhancing 
immunomodulatory efficacy. 

4. Growth factors 

Due to their physiological functions in encouraging cellular growth, 
proliferation, and differentiation, growth factors have the potential to 
enhance the efficacy of MSCs-based therapies (Table 5) (Fig. 6). The use 
of MSCs and growth factors in the treatment of bone fractures reported 
to be a promising therapeutic method [125]. Among diverse growth 
factors that may enhance the MSCs activities, here we discuss the 
following growth factors; suramin, and sphingosine-1-phosphate (SIP), 
TGF-β, PDGF, IGF1, fibroblast growth factors (FGF), and VEGF. 

Scientists succeeded in the production of cardiac tissue in cell culture 
from human umbilical cord MSCs using growth factors, suramin and SIP 
by hanging drop technique [126]. Pretreatment of umbilical cord MSCs 
by TGF-β alter their immunomodulatory functions their extracellular 
vesicles [127]. Indeed, TGF-β overexpressed MSCs characterized by 
increased proliferation, normal cell cycle, and no apoptotic or senes
cence signs [128]. 

In vivo experiments reported that PDGF increased MSCs’ extracel
lular vesicles protective action via increased expressions of IL-10 and 
TGF-β in PBMCs from acute muscle ischemia model [129]. IGF1 over
expression stimulated MSCs’ immunomodulatory and regenerative po
tential in Chagas disease [130]. Basic FGF (b-FGF) improved the 
regenerative effect of MSCs of human amniotic fluid when combined 
with selenium [131], whereas MSCs which overexpressed FGF-2 were 
characterized by increased vascular regeneration properties when 
combined with xenogeneic antigen-extracted cancellous bone (XACB) 
[132]. In this context, VEGF increased MSCs’ neuroprotective efficiency 
in rat with cerebral ischemia if co-overexpressed with brain-derived 
neurotrophic factor (BDNF) [133]. To be brief, many growth factors 
(Table 5) were proved to have a crucial role in enhancement of MSCs’ 
immunomodulatory potency. 

Table 4 
Cytokines used in research to modulate the stemness of MSCs.  

Cytokine Mode of action Output Ref. 

IL-1β Activating MMP1/PAR1 pathway [90] Induces migration [90] and anti-inflammatory ability of MSCs [91] [90,91] 
IL-6 Induces MAPK, STAT3, and Akt signaling Increases stemness of cancer stem cell [93] 
IL-8 Regulating Akt-STAT3 [94] and PI3K/Akt pathways [95] Induces proliferation, cell survival [94], osteogenesis and 

chondrogenesis [95] 
[94,95] 

IL-18 Suppressing tumor cells proliferation through activating immune cells and 
cytokines 

Improves the therapeutic effects of MSCs in breast cancer [97,98] 

TNF-α Increasing IL-10 and TGF-β expression Increases anti-inflammatory effects of MSCs [100] 
IFN-γ Upregulation of TGF-β, HGF, and PGE2. Improves the immunosuppressive effects of MSCs [103] 
IL-3 Activation of JAK/STAT pathway [109] Modulates MSCs’ osteogenesis and chondrogenesis [109–112] 
IL-4 Overexpression of IL-4 Increases anti-inflammatory power of MSCs [113] 
IL-7 Downregulation of the MAPK pathway Suppresses MSCs’ osteogenesis [117] 
IL-17 Improvement of immunoregulatory properties Induces MSCs’ therapeutic potency [118,119] 
IL-22 Induction of MSCs’ viability Promotes osteogenic differentiation [121] 
IL-25 Decreases expression of IL-17 and increase T regulatory lymphocytes Increases MSCs’ immunoregulation in treatment of of rats IBD [122] 
GM-CSF Inducing MSCs’ proliferation Improves chondrogenesis [123]  

M. Al-Azab et al.                                                                                                                                                                                                                                



Biomedicine & Pharmacotherapy 162 (2023) 114356

9

5. Hormones 

In addition to their well-known functions in human physiology and 
endocrinology, hormones may potentially affect MSCs’ therapeutic ef
ficacy (Table 5) (Fig. 7). For example, leptin, a hormone generated from 
adipose tissue, inhibited the development of MSCs in rabbits by regu
lating ERK1/2 pathways [134], but melatonin enhanced their thera
peutic effectiveness in diabetic rats [135]. In the same context, 
melatonin corrects iron overload-mediated biased differentiation and 
senescence of MSCs, and inhibits P53 and ROS [136]. 

Growth hormone increased osteogenesis at the expense of adipo
genesis in MSCs through Wnt signaling [137] but inhibited adipogenesis 
by increased myogenesis [138]. Ghrelin, a ligand for the growth hor
mone, also triggered chondrogenic differentiation of MSCs through 
ERK1/2 [139]. Notably, higher circulating MSCs in postmenopausal 
osteoporosis patients following injection of the parathyroid hormone 
1–34 (PTH 1–34) have been described. Also, after PTH administration, 
MSCs’ osteogenesis was accelerated in vitro [140]. The glycoprotein 
hormone stanniocalcin 2 improved the immunoregulatory capabilities 
of MSCs in inhibiting activated T cells [141]. Erythropoietin hormone 
enhanced MSCs’ regenerative potential by increasing their differentia
tion toward osteocytes using p38/MAPK pathway [142]. Another hor
mone, β-estradiol, was reported to protect MSCs from the damaging 
effects of oxidants via Nrf2/Sirt3/MnSOD pathway [143] as well as from 
caffeine through ER β/cAMP pathway [144]. 

Interestingly, pre-processing to enhance insulin activity half-life by 
incorporation of insulin-loaded poly lactic-co-glycolic-acid (PLGA) 
nanospheres with nono-hydroxyapatite/collagen (nHAC) scaffolds was 
reported to support proliferation, adhesion, differentiation of MSCs in 
vitro and induce rabbit bone regeneration in vivo [145]. In order to get 
insulin-producing cells from MSCs, scientists recommended stimulation 
by the gut hormone, obestatin [146]. 

MSCs pre-treatment with dihydrotestosterone also promoted their 
regeneration ability in regeneration of cardiac tissue through activating 
pro-angiogenic factors [147]. Oxytocin has also been used to recruit 
MSCs for therapeutic usage [148]. Finally, a peptide hormone, angio
tensin II was recommended to enhance MSCs’ adipogenic differentiation 
due to its activity mediated by angiotensin type 2 receptor [149]. To put 
it concisely, considering intrinsic or supplementary hormones in 
inducing MSCs’ stemness is a promising strategy (Table 5). 

6. Vitamins 

Vitamins are essential co-factors in eukaryotes’ metabolism because 
they induce anti-oxidants mechanisms. Recent research investigated the 
relevance of vitamins to increase MSCs’ therapeutic efficacy (Table 5) 
(Fig. 7). For instance, in vitro and in vivo treatment of MSCs with 
ascorbic acid 2-glucoside enhanced proliferation, migration, and 
angiogenesis. These effects were attributed to demethylation process by 
regulating TET2 and VEGF expression through inducing PI3K/Akt 

Fig. 6. Cytokines and growth factors enhance MSCs’ stemness. TNF-α, IFN-γ, and PDGF regulate IL-10 and TGF-β to induce migration and anti-inflammatory 
ability of MSCs. IL-1β, IL-3, IL-8, IL-22, CXCL1, and GM-CSF activate osteogenesis, adipogenesis, chondrogenesis, proliferation, and cell survival through regula
tion of indicated signaling pathways. TGF-β, suramin, SIP, VEGF, FGF-2, and b-FGF contribute to MSCs’ rejuvenation. IL-7 inhibits osteogenic differentiation through 
inhibiting MAPK pathway, while IL-6 induces stemness of cancer stem cell via MAPK/STAT3/Akt pathway. Activate or regulate ( ), Inhibit ( ), cytokine or 
growth factor (bold and underlined). 
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pathway [150]. Ascorbic acid and b-FGF contribute to the tenogenic 
differentiation of MSCs from adipose tissue and bone marrow, and 
tendon cells [151]. Indeed, ascorbic acid and iron induce MSCs potency 
in minipigs knee joints chondrogenesis [152]. Consistently, L- ascorbic 
acid involved in adipose tissue MSCs chondrogenic differentiation 
combined with platelets rich plasma on silk fibroin scaffold [153]. 

Vitamin D was reported as an activator for osteogenesis ability of 
MSCs through expression of αvβ3 integrin modulation [154], and 
chondrogenesis through TGF-β/ERK/JUNK pathway regulation [155]. 
Recently, it has been reported that vitamin D3 can partially modulate 
Sirt1 and then promote stemness and osteogenesis of MSCs from human 
bone marrow [156]. Vitamin D3, K2, and magnesium loaded in com
posites nanofibers (DKMF) promote the osteogenesis of MSCs, and the 
underline mechanism is upregulation of Runx2 and downregulation of 
PPARγ through activation of Wnt/β-catenin pathway [157]. 

Retinoic acid with taurine promotes the differentiation of human 
bone marrow-derived MSCs into neuroretinal or photoreceptor-like cells 
in vitro [158]. Moreover, adenosylcobalamin B12 (Ado B12)-dependent 
photoresponsive protein hydrogels may promote MSCs’ viability in 3D 
culture [159]. Furthermore, vitamin E treated Wharton’s jelly MSCs 
displayed more efficient therapeutic output in the treatment of breast 
cancer [160] and liver fibrosis [161]. Concisely, vitamins, A, C, E, D3, 
B12, and K3 can modulate the therapeutic potency of MSCs through 
different mechanisms (Table 5). 

7. Enhancing MSCs’ stemness in human body 

Based on the above enhancers, it is becoming possible that clinically 
approved modulators could be used to improve the stemness of MSCs in 
vivo as a way to prevent aging [14] and treat diseases related to aging. 
Finding fully clinical proof for the biomolecules discussed above is an 
urgent need in order to introduce novel strategies in fighting diseases 
such as autoimmune diseases, cardiovascular diseases, and cancer. More 
basic details about this section were explained in the previous parts of 

this review. 
More important, following the protocols to modify lifestyle and 

improve the quality of life may naturally incite our body MSCs’ stemness 
without pharmacological intervention. This can contribute to avoid 
suffering from a wide variety of diseases, including aging-related dis
eases. Lifestyle modifications include, exercise on a regular basis, 
appropriate nutritious diet, adequate and high-quality sleep, quitting 
smoking, and fighting pollution (Fig. 8). For example, it is has been 
reported that obesity can cause disruption in the bone marrow micro
environment through regulating many molecular modulators, and this 
has an effect on bone marrow MSCs [162]. Obesity was identified as a 
major factor that could lead to global genomic epigenetic alterations 
[163], induce inflammation and adipogenesis, and suppress prolifera
tion and osteogenesis of MSCs [164]. In obese children, MSCs favored 
differentiation toward adipocytes which in turn promote 
pro-inflammatory cytokines to activate osteoclast, thereby promoting 
bone fragility [165]. Although the injection of human MSCs in mice has 
anti-obesity effects by inducing upregulation of uncoupling protein-1 
[166], the markers of cancer stem cells were promoted by colonic MSCs 
through regulation of Bas-FXR pathway in mice with a high-fat diet 
[167]. High-fat diet in rats may also predispose MSCs’ dysfunction 
characterized by CXCL2/ROS activation and senescence [168]. In 
addition, high glucose microenvironment containing GSK3β suppressed 
MSCs’ stemness by inhibiting osteogenesis in diabetic mice by inacti
vation of β-catenin/Tcf7/Ccn4 pathway [169]. However, combining a 
fasting-mimicking diet and MSCs in mice boosts the therapeutic output 
in treatment of type 2 diabetes by decreasing hyperglycemia and 
inducing the metabolism of fat [170]. Thus, keeping a lower body mass 
index by following the different clinically approved and optimized di
etary systems may improve the body MSCs’ stemness, thereby having 
healthier body away from obesity-related diseases. 

Beside diet systems, the knowledge about nutritional composition of 
daily food may introduce some key points about the most important 
bioactive compounds that can induce MSCs’ biological activities. In the 

Table 5 
Growth factors, hormones, and vitamins used in research to modulate the MSCs’ stemness.  

Enhancer Mode of action Output Ref. 
Growth factors 

Suramin and SIP Inducing differentiation ability of MSCs Promote MSCs’ regenerative potency [126] 
TGF-β Modulation of MSCs’ immunomodulatory functions Induces cell survival and rejuvenation [127], 

[128] 
PDGF Activation of anti-inflammatory cytokine, IL-10 Induces MSCs’ therapeutic potency [129] 
IGF1 Modulation of MSCs’ immunomodulatory functions Induces MSCs’ therapeutic potency [130] 
b-FGF Inhibiting ROS accumulation Promotes MSCs’ regenerative potency [131] 
FGF-2 Inducing angiogenesis and osteogenesis Promotes MSCs’ regenerative potency [132] 
VEGF Increasing MSCs’ neuroprotective efficiency in rat. Promotes MSCs’ regenerative potency [133] 
Hormones 
Leptin Regulation ERK1/2 pathways Inhibits MSCs growth [134] 
Melatonin Activates antioxidants’ mechanisms Induces MSCs stemness [135] 
Growth hormone Through Wnt pathway Corrects biased MSCs’ differentiation [137] 
Ghrelin Via ERK1/2 pathway Stimulates chondrogenesis of MSCs [139] 
PTH 1–34 Through inducing ALP activity and mineralization Promotes MSCs’ osteogenesis [140] 
Stanniocalcin 2 By regulating oxygenase 1 (HO-1) Improves MSCs’ immunoregulatory ability [141] 
Erythropoietin Through p38/MAPK pathway Induces MSCs’ osteogenesis [142] 
β-estradiol By Nrf2/Sirt3/MnSOD pathway Exerts antioxidant effects [143] 
Insulin Through increasing MSCs’ proliferation, adhesion, and differentiation using PLGA-nHAC 

scaffold 
Enhances bone regeneration [145] 

Obestatin - Promotes differentiation to β-cells [146] 
Dihydrotestosterone By upregulation of androgen receptors Induces MSCs’ therapeutic potency [147] 
Oxytocin Inducing cell survival and antioxidants’ mechanisms Induces MSCs’ therapeutic potency [148] 
Angiotensin II Through angiotensin type 2 receptor Enhances MSCs’ adipogenesis [149] 
Vitamins 
Ascorbic acid Increasing expression of decorin Promotes MSCs’ differentiation [151] 
Retinoic acid Inducing MSCs’ differentiation into neuroretinal cells in presence of taurine Promotes MSCs’ differentiation [158] 
Vitamin K2 Activating Runx2 / Wnt/β-catenin pathway using DKMF Promotes MSCs’ osteogenesis [157] 
Vitamin D3 Activating expression of integrin, and TGF-β by ERK/JUNK pathway using DKMF [157] Improves MSCs’ osteogenesis and 

chondrogenesis 
[154,155] 

Ado B12 Using 3D cell culture and photoresponsive protein hydrogels Maintains MSCs’ viability in vitro [159] 
Vitamin E Maintains MSCs’s viability and proliferation Induces MSCs’ therapeutic potency [160]  
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literature, there are plenty of articles that explain this issue, and we 
regret that we cannot include them all here. As a representative 
example, the bioactive compounds found in olive oil were considered to 
have positive effects on MSCs’ proliferation, differentiation, viability 
and regenerative capacity, the detailed aspects of olive oil outputs were 
reviewed in this study [171]. Inducing MSCs’ osteogenesis at the cost of 
adipogenesis is exerted by one polyphenol found in olive tree products, 
oleuropein. This effect was attributed to decreasing expression of 
PPARγ, suggesting olive tree products to be used in treatment of bone 
loss and osteoporosis [172]. Moreover, EGCG, a polyphenol derived 
from green tea inhibited the expression of IL1β, IL-6, CCL2, and CCL5 in 
MSCs treated by a conditioned medium of triple-negative breast cancer 
cell [173]. In sum, optimizing diet is more than just a diet; it should also 
include nutrients that have been proven to have clinical significance. 

Physical exercise, and enough and high-quality sleep are significant 
determinants of our life quality; both have a favorable impact on the 
general health, and the health of MSCs is not far behind. For instance, 
MSCs’ therapeutic potency in animal models was improved due to the 
physical exercises [174,175]. The training exercise can change in the 
mechanisms of amino acid metabolism in adipocytes derived from MSCs 
[176]. More interesting, aerobic exercises for pregnant women may 
improve the biological activities of MSCs isolated from their neonates 
[177]. In addition, it is reviewed that exercise can reduce MSCs’ SASP, 

thereby decreasing MSCs’ exhaustion and inducing osteogenesis [178]. 
Indeed, the combination of exercises and MSCs was proposed as a 
promised strategy in treatment of multiple sclerosis [179]. Collectively, 
regular exercise could contribute positively to the MSCs’ stemness in 
vivo. In relation to sleep, engineering MSCs to produce sleep-related 
circRNA3503-loaded exosomes induced the therapeutic outputs in pre
venting osteoarthritis progression [180]. This may indicate the impor
tance of high-quality sleep in improving the stemness of MSCs in vivo. 

Environmental factors such as smoking and pollution can contribute 
to disruptions in MSCs’ physiological activities. Here we show findings 
from five recently published articles. However, there are many more 
reports in the same issue that we can’t show because of space con
straints. It is reported that the regenerative potential of MSCs was 
compromised by smoking and nicotine use. These habits mediate unease 
proliferation, differentiation, and migration of MSCs [181]. A compar
ative review study between MSCs and dental stem cells showed that 
nicotine can violate the main biological activities of both of them [182]. 
It is reviewed that inducing oxidative stress because of smoking and 
nicotine use is one of the major mechanisms which interrupt the ther
apeutic potency of MSCs [183]. On the basis of these findings, we may 
conclude that quitting smoking and nicotine usage can increase stem
ness in MSCs in vivo, hence preventing a wide range of disorders caused 
by compromised MSCs. Concerning pollution, the mixture containing 

Fig. 7. Hormones and vitamins enhance MSCs’ stemness. Leptin and ghrelin regulate MSCs’ growth and differentiation through ERK pathway. Vitamin D3, 
Vitamin K2, PTH, Erythropoietin, and angiotensin II induce osteogenesis, adipogenesis, and chondrogenesis of MSCs by regulating indicated pathways. Vitamin D3 
promotes expression of integrin and TGF- β through ERK/JUNK pathway. Vitamin K2 increased expression of Runx2 by activating Wnt/β-catenin pathway, while PTH 
induce expression of ALP. Growth hormone, obestatin, ascorbic acid, and tetinoic acid improve MSCs’ differentiation. Growth hormone activates Wnt signaling, 
ascorbic acid induce decorin expression, and retinoic acidpromotes MSCs’ differentiation toward neuroretinal cell. Melatonin maintains MSCs survival and reverses 
senescence through inhibiting oxidative stress, and regulating ERK/P38 pathway and p53. β-estradiol has antioxidant role in MSCs via activating Nrf2/Sirt3/MnSOD 
pathway. Activate or regulate ( ), Inhibit ( ), hormone or vitamin (bold and underlined). 
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many pollutants, endocrine disrupting chemicals induced MSCs’ adi
pogenesis and epigenetic alteration [184]. Another pollutant, cadmium, 
also affected the physiological activity of MSCs-derived adipocytes by 
inducing expression of proinflammatory cytokines, IL-1β, IL-6, and CCL2 
[185]. To preserve the stemness of in vivo MSCs, we must avoid 
polluting resources and maintain a pollution-free environment. 

8. Conclusion remarks and future prospects 

Recent and current research has explored a variety of facts for 
improving the therapeutic efficacy of MSCs-based therapies, each with 
its own set of advantages and disadvantages. Methodologies targeted at 
increasing potency by increasing stemness factors expression showed 
promising outputs. Clinical trials assessing some of the MSCs-based 
product advancements should begin in the next years. The exact en
hancements examined will be chosen based on clinical or/and com
mercial issues such as safety, the convenience of use, potential toxicity, 
and cost, as well as their performance in preclinical models. 

MSCs’ therapy is entering a new era, with the focus shifting from 
initial feasibility studies to improvements in therapeutic regimen and 
treatment potency. In this context, the current research knowledge 
suggested many compounds to improve the therapeutic potency and 
stemness of MSCs. Among these are metformin, resveratrol, antioxi
dants, mTOR inhibitors, cytokines, hormones, growth factors, and vi
tamins. In addition, improving in vivo viability and stemness of MSCs by 
lifestyle modifications or clinically approved pharmacological 

interventions may contribute effectively to combat aging-related dis
eases and improving general health quality. Complete identification and 
understanding of the molecular mechanisms associated with these 
compounds and activities could lead to the development of effective 
mixtures of cell-free trophic factors that can be used to treat tissue 
damage and degeneration, thereby eliminating the risk of MSC trans
formation. However, major difficulties such as poor stem cell potency 
and age/disease-related host tissue deterioration may temper enthu
siasm for stem cell translation in general. The methodologies discussed 
in this review provide a testable foundation for launching innovative 
clinical trials based on MSCs treatment rational design. Engineered or 
enhanced MSCs have been used to treat a variety of diseases and con
ditions in animal models with great effectiveness. However, it is crucial 
to note that animal models may not be comparable to human diseases 
and conditions. As a result, the findings should be regarded with 
caution, as a translational trial in humans has yet to yield a positive 
result. Nonetheless, MSCs-based therapy remains a promising novel 
therapeutic approach for a variety of conditions, and it is obvious that 
inducing the expression of favorable factors can improve its therapeutic 
effects. More research is needed to accelerate the translation of pre
clinical discoveries into clinical practice. 
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Fig. 8. Enhancers of human MSCs’ stemness in vivo. Proper diet with healthy nutritious contents, sleep, exercise, and clinically approved medications may 
maintain the biological activities of human body’ MSCs in vivo through regulating PPAR-γ, circRNA3503-loaded exosomes, SASP, and skewed differentiation 
respectively. Conversely, obesity, sedentary, disturbed sleep, smoking, and pollution can downregulate MSCs’ biological activities in vivo by alternating epigenetics 
and inducing oxidative stress. Activate or regulate stemness ( , green), Inhibit stemness ( , red). 
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