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Abstract: Immunotherapy with immune checkpoint inhibitors (ICIs) has shown high efficiency in
clear cell renal cell carcinoma (ccRCC) treatment. However, the response to therapy among patients
varies greatly. Modern studies demonstrate the high potential of exosomal miRNAs as diagnostic
and prognostic markers in oncopathology. This study aimed to evaluate exosomal miRNA expression
profiles of miRNAs-144, -146a, -149, -126, and -155 in patients with clear cell renal cell carcinoma
treated with immune checkpoint inhibitors. The study included 35 patients whose venous blood
samples were taken before and after ICI therapy. Expression analysis was performed using real-time
quantitative PCR. It was demonstrated that the level of microRNA-146a increased after therapy
(median(IQR) 12.92(4.06–18.90)) compared with the level before it (median(IQR) 7.15(1.90–10.50);
p-value = 0.006). On the contrary, microRNA-126 was reduced after therapy with immune checkpoint
inhibitors (median(IQR) 0.85(0.55–1.03) vs. 0.48(0.15–0.68) before and after therapy, respectively;
p-value = 0.0001). In addition, miRNA-146a expression was shown to be reduced in patients with a
higher grade of immune-related adverse events (p-value = 0.020). The AUC value for the miRNA-146a
and miRNA-126 combination was 0.752 (95% CI 0.585–0.918), with the sensitivity at 64.3% and the
specificity at 78.9%. Thus, while it can be assumed that miRNA-146a and miRNA-126 can be used as
predictors for ICI therapy effectiveness, additional in-depth studies are required.

Keywords: renal cell carcinoma; ICI therapy; exosomal miRNAs; immune-related adverse events;
PD-1; biomarkers

1. Introduction

Immune checkpoint inhibitors (ICIs) have greatly changed the therapeutic outcomes
for patients with clear cell renal cell carcinoma (ccRCC) [1]. However, despite breakthroughs
in ccRCC treatment, only up to 40% of patients respond to ICIs, and there are still many
unclear questions regarding the mechanism underlying antitumor immunity and the
mechanisms of the ICIs’ actions. Renal cell carcinoma (RCC) relates to sensitivity to
immune system tumors. This feature allows for the use of immunomodulator drugs, in
particular, interferon-α or interleukin-2. Studies showed that tumor cells can “escape”
from immunological surveillance by the use of specific mechanisms of preventing the
development of autoimmune processes and native tissues damage. Efforts to combat such
mechanisms led to the development of novel immunotherapeutic medicines [1]. They work
via a process regulated by cellular and molecular factors, and a significant role goes to
inhibitory T-cell receptors, the so-called immune checkpoints [2,3] PD-1 (programmed cell
death pathway 1) and CTLA-4 (cytotoxic T-lymphocyte associated protein 4) [4–7]. PD-1 is
a membrane protein belonging to the CD28/CTLA-4 receptor family of suppressor T-cells.
PD-1 plays a key function in T-cell activity suppression and forestalling autoimmune
reactions. PD-1–PD-1 ligand interaction results in cell death of cytotoxic lymphocytes in the
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tumor microenvironment and enhancement of regulatory T-lymphocytes’ activity, which
helps the tumor to “escape” from immunological control [8–10]. Blockade of PD-1/PD-L1
enhances antitumor immunity by decreasing the immunosuppressive activity of regulatory
T-cells and the reactivation of effectory T-cells; it also stimulates the proliferation of memory
B-cells. It is assumed that the effect of PD-L1 expression on a drug’s effectiveness when
it acts on PD1/PD-L1 varies depending on the specific drug and disease. Despite the
fact that in some patients with high-level expression of programmed cell death ligand 1
(PD-L1) in the tumor, there is a greater effectiveness of immunotherapeutic drugs, it does
not allow for predicting the presence or absence of a clinical response to treatment. This
may be due to a number of factors. It has been determined that the PD-L1 expression
varies during tumor progression due to communication between the tumor and the cells
of immune system—the action of antitumor therapy, for example—against a background
of the use of tyrosine kinase inhibitors that suppress the activity of EGFR or ALK [4].
PD-L1 expression can be also changed during radiation therapy or chemotherapy—the
death of malignant cells leads to a massive release of antigens recognized by the body’s
immune system [5]. In addition, tumor heterogeneity should also be taken into account.
Increased PD-L1 secretion by tumor cells can be a result of mutations in the WALK, TEN,
and LKB1 genes. Although no mutations associated with the immunotherapy response
have been identified, the effectiveness of immunotherapeutic drugs increases as the number
of mutations increases in tumor cells [11].

Biomarkers currently used to predict ICIs’ effectiveness, such as PD-L1 and tumor
mutation burden, have restricted prognostic possibilities [12]. The cause of false positive
and false negative results in determining the PD-L1 and PD-L2 expression in immunohisto-
chemical studies may be changes in their genes. Nowadays, it is well-known that cancer
cells and tumor microenvironment cells secrete extracellular vesicle (EV) compounds, such
as exosomes and microvesicles (MVs), identified in the body’s biological fluids, including
blood, urine, sperm, and others. Exosomes, a class of small membrane vesicles, support
tumor progression by transporting proteins, bioactive substances, mRNAs, lncRNAs, mi-
croRNAs (miRNAs), and other agents necessary for the vital functioning of cancer cells.
Tumor cells excrete EVs that suppress the immune system response, deactivate T lympho-
cytes and natural killer cells, and promote regulatory T lymphocyte differentiation and
tumor growth [13]. EVs also contain nucleic acids (mRNAs, miRNAs, etc). Following
this discovery, miRNAs, a sort of small single-stranded non-coding RNA, have become
important players in the modulation of «cancer portrait» and it is known that they are
involved in the regulation of innate and specific immune responses by controlling the
expression of determining factors of immune control points [14].

From this point of view, circulating EVs containing miRNAs can contribute promising in-
formation on tumor cell biology and on interactions between tumors and the immune system.

Recent research proved that exosomes are involved in the development of tumor
resistance to medicines and radiation therapy [14,15]. Noted properties of exosomes
allow for using them as potential biological markers for liquid, minimally invasive biopsy.
Studies of inner-content exosomes may clarify the opportunities for early disease detection
of malignant tumors and evaluation of thetherapy’s effectiveness. MiRNAs are of interest
in cancer immunotherapy due to the fact that they can directly or indirectly influence the
expression of immune checkpoint receptors.

In the present study, we examined immune-related exosomal miRNA expression
profiles in clear cell renal cell carcinoma patients treated with nivolumab as potential
specific biomarkers for the ICI therapy response.

2. Materials and Methods
2.1. Study Setting and Population

The study included 35 patients with clear cell renal cell carcinoma treated with
nivolumab as immune checkpoint inhibitor therapy. The study included all available
patients with ccRCC receiving ICI treatment from 2020 to 2023, who lived in the territory
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of the Republic of Bashkortostan. We used consecutive sampling in the study, a non-
probability sampling technique that seeks to include all accessible subjects as part of the
sample [16]. Since the Republican Clinical Oncological Dispensary is the only referral
hospital for the Republic of Bashkortostan and its adjoining districts, this approach ensured
that the sampling during the last 2 years of enrollment was highly representative of the
clinical cases in this locality. In addition, we performed power calculation for our results
and observed a high power level equal to 83% for the 0.05 two-sided alpha level significance.
The inclusion and exclusion criteria of patients were the same as described in a previous
study [17]. The National Cancer Institute’s Common Terminology Criteria for Adverse
Events, version 4.0, was used for grading immune-related adverse events [18].

The clinical staff of the Republican Clinical Oncological Dispensary, Departments of
Oncology and Urology of the Clinic of Bashkir State Medical University, carried out venous
blood sampling from ccRCC patients before and after nivolumab treatment. Informed con-
sent was obtained from each patient for the collection of biological material and molecular
genetic studies.

2.2. Exosome miRNAs’ Isolation and Quantitative PCR

Exosome miRNAs’ isolation from 1 mL blood plasma, cDNA synthesis, and quanti-
tative real-time PCR were performed as described previously [17] using corresponding
miRCURY LNA Kits (Qiagen, Hilden, Germany) and the Rotor-Gene Q real-time PCR
product detection system (Qiagen, Hilden, Germany). Reactions included miRNA-16 and
hsa-miRNA-1228 as reference genes (endogenous control), and UniSp2, UniSp4, UniSp5,
UniSp6, and synthetic cel-miRNA-39 as isolation, reverse transcription, and amplification
exogenous controls (Qiagen, Hilden, Germany)). Exosomal miRNA levels’ estimation was
performed using the 2−∆∆Ct method based on the fact that the difference in the value of the
“threshold cycle” (∆Ct) between the gene of interest and the control gene is proportional to
the level of relative expression of the gene of interest.

2.3. miRNA Target Prediction and Pathway Analysis

MiRNA target prediction was performed using TarBase [19] and MirTarBase [20].
Pathway analysis of predicted target genes was performed using the STRING [21] and
ShinyGO [22] online resources.

2.4. Statistical Analysis

The equality of the variances in the distribution of signs was checked using the
Mann–Whitney U test for comparing groups on a quantitative basis. A paired Wilcoxon
signed-rank test was used for pairwise comparison of studied groups. Results data were
presented as a median (IQR). Survival curves of the ccRCC patients were plotted with the
Kaplan–Meier method and compared through a log-rank test. The diagnostic capability of
the studied miRNAs was evaluated using receiver operating characteristic (ROC) curves
and the area under the ROC curve (AUC). Calculations were made using GraphPad
Prism 6.07 software (v.6.7, GraphPad Software (Dotmatics), San Diego, CA, USA) and R
environment (package pROC [23], R Foundation for Statistical Computing, Vienna, Austria).
p-values less than 0.05 were regarded as the statistically significant level.

3. Results
3.1. Patient Characteristics

This study included 35 patients with clear cell renal cell carcinoma treated with
immune checkpoint inhibitor therapy. Expression levels of exosomal miRNA-144, -126,
-146a, -155, and -149 were evaluated before and after ICI therapy. Clinical characteristics
are presented in Table 1.
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Table 1. Baseline patient characteristics.

Characteristics № of Patients %

Age, years 62
Median 41–79
Gender

Male 16 45.7
Female 19 54.3

Histology
Clear cell 35 100.0

Non-clear cell 0 0
IMDC risk classification

Favorable 2 5.71
Intermediate 25 71.43

Poor 8 22.86
IMDC: International Metastatic Renal Cell Carcinoma Database Consortium.

3.2. Differential Expression of miRNA

We performed expression analysis using quantitative real-time PCR, where dysregula-
tion of exosomal miRNA-126 and miRNA-146a was observed. miRNA-146a levels before
ICI therapy were significantly lower compared with levels after therapy (median(IQR):
7.15 (1.90–10.50) and 12.92 (4.06–18.90)), respectively; p-value = 0.006) (Figure 1a). In con-
trast, miRNA-126 expression was higher before therapy compared to expression levels after
therapy (median(IQR): 0.85 (0.55–1.03) vs. 0.48 (0.15–0.68), respectively; p-value = 0.0001)
(Figure 1b). miRNA-149, miRNA-144, and miRNA-155 provided no significant differences
in the comparison groups (p-value > 0.05) (Figure 1c–e).
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Figure 1. Expression levels of exosomal miRNAs in RCC patients treated with ICI therapy: (a) miRNA-
146a; (b) miRNA-126; (c) miRNA-144; (d) miRNA-149; (e) miRNA-155. Significance level p-value was
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3.3. Association of miRNA-146a and miRNA-126 Expression Levels with Immune-Related
Adverse Events

We examined expression levels of miRNA-146a and miRNA-126 concerning immune-
related adverse events (irAEs) from nivolumab treatment. There were 20 patients with
0–2 grades of irAEs and 15 with 3–4 grades (Table 2). It was shown that ccRCC patients with
3–4 grades of irAEs had lower miRNA-146a expression (median(IQR): 17.54(6.03–21.07)
vs. 7.35(1.21–12.44) for 0–2 grades and 3–4 grades, respectively; p-value = 0.02) (Figure 2a).
Additionally, miRNA-126 did not show a statistically significant alteration in expression
level between groups of patients with high and low irAE grades (Figure 2b).

Table 2. IrAEs in RCC patients according to category and grade.

Category Grading, Number of Patients

Grades 0–2, n (%) Grades 3–4, n (%)

Skin-related events 7 (35.0) 5 (33.3)
Pneumonitis 1 (5.0) 5 (33.3)

Diarrhea/colitis 5 (25.0) 2 (13.3)
Endocrine-related events 12 (60.0) 3 (20.0)

Pancreatitis 1 (5.0) 2 (13.3)
Colitis 2 (10.0) 0

Hepatitis 1 (5.0) 1 (6.67)
Nephritis 1 (5.0) 0
Myalgia 1 (5.0) 0

Joint pain 1 (5.0) 0
Others 0 2 (13.3)
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Figure 2. Expression levels of exosomal miRNAs in clear cell renal cell carcinoma patients with differ-
ent grades of immune-related adverse events after second-line nivolumab therapy: (a) miRNA-126;
(b) miRNA-146a. Significance level p-value was calculated using Mann–Whitney U test. 0–2 grade,
3–4 grade—grades of irAEs.

3.4. Association between miRNA-146a Expression and ccRCC Patient Overall Survival

High and low miRNA-146a expression level groups were determined according to the
median of miRNA-146a expression in groups of patients after ICI therapy. The rate of 1-year
OS of ccRCC patients included in the study was 53.5% in that group with high miRNA-
146a expression, and 64.7% in the low miRNA-146a expression group. The Kaplan–Meier
analysis did not show a statistically-significant difference (p-value = 0.491) in survival
(Figure 3) between the comparison groups.
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Figure 3. The Kaplan–Meier analysis of high and low miRNA-146a expression level groups of ccRCC
patients after ICI therapy. p-value was calculated using Gehan–Breslow–Wilcoxon test.

3.5. Logistic Regression and ROC Curve Analyses

Logistic regression with following ROC curve analyses was performed to evaluate the
capability of the miRNA-146a and miRNA-126 combination to discriminate between irAEs
grades. As shown in Figure 4, the AUC value for the studied miRNA combination was
0.752 (95% CI 0.585–0.918), with the sensitivity at 64.3% and the specificity at 78.9%.
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3.6. Pathway Enrichment Analysis

We analyzed validated targets of miRNA-146a and miRNA-126 from the TarBase
and MirTarBase databases to better understand the role of these miRNAs in ICI-resistant
formations and renal cell carcinoma development. The list of included genes is presented in
Table 3. Pathways enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database identified 15 significantly enriched pathways (Table 4). Among the most
significant enriched pathways were the Toll-like receptor signaling pathway, pathogenic
Escherichia coli infection, salmonella infection, and apoptosis (Figure 5).
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Table 3. Validated miRNA-146a and miRNA-126 target genes included in enrichment analysis.

Symbol Ensembl Gene ID Chr Position (Mbp) Description

CASP8 ENSG00000064012 2 201.2334 caspase 8

TNFSF10 ENSG00000121858 3 172.5055 TNF superfamily member 10

TNFRSF10B ENSG00000120889 8 23.0201 TNF receptor superfamily member 10b

TOLLIP ENSG00000078902 11 1.2744 Toll-interacting protein

EIF4G2 ENSG00000110321 11 10.7971 eukaryotic translation initiation factor 4 gamma 2

FADD ENSG00000168040 11 70.2033 Fas-associated death domain

EIF4A1 ENSG00000161960 17 7.5728 eukaryotic translation initiation factor 4A1

IRAK1 ENSG00000184216 X 154.0105 Interleukin-1 receptor-associated kinase 1

Table 4. Enriched KEGG pathways for miRNA-146a and miRNA-126 validated targets.

Ontology Description Strength False Discovery Rate

hsa04620 Toll-like receptor signaling pathway 1.57 0.00052

hsa05130 Pathogenic Escherichia coli infection 1.4 0.00052

hsa05132 Salmonella infection 1.35 0.00052

hsa04210 Apoptosis 1.45 0.0010

hsa04217 Necroptosis 1.4 0.0013

hsa05164 Influenza A 1.35 0.0016

hsa05142 Chagas disease 1.45 0.0082

hsa04668 TNF signaling pathway 1.4 0.0102

hsa05162 Measles 1.31 0.0165

hsa04215 Apoptosis—multiple species 1.79 0.0179

hsa05161 Hepatitis B 1.25 0.0202

hsa05152 Tuberculosis 1.22 0.0217

hsa05169 Epstein–Barr virus infection 1.16 0.0297

hsa05170 Human immunodeficiency virus 1 infection 1.14 0.0323

hsa05416 Viral myocarditis 1.53 0.0378

Biomedicines 2023, 11, 801 8 of 14 
 

hsa05152 Tuberculosis 1.22 0.0217 
hsa05169 Epstein–Barr virus infection 1.16 0.0297 
hsa05170 Human immunodeficiency virus 1 infection 1.14 0.0323 
hsa05416 Viral myocarditis 1.53 0.0378 

 
Figure 5. Dot plot showing the results of KEGG pathway enrichment analyses performed for 
miRNA-146a and miRNA-126 validated targets. N. of Genes- number of genes. 

The most significant enriched pathway was the Toll-like receptor signaling path-
way, including four of the analyzed genes: TOLLIP, FADD, CASP8, and IRAK1 (Figure 6). 

 
Figure 6. Toll-like receptor signaling pathway including miRNA-146a and miRNA-126 validated 
target genes (highlighted in red), according to the KEGG database. 

Gene Ontology (GO) analysis was conducted to assess the involvement of the 
miRNA-146a and miRNA-126 validated target genes in the relevant biological process 
(BP), cellular component (CC), and molecular function (MF)—which are all summarized 
in Figure 7. Molecular function pathways were enriched by the next most significant 
pathways: death effector domain binding, TRAIL binding, NF-kappaB-inducing kinase 
activity, tumor necrosis factor receptor binding, and cytokine receptor binding (Figure 

Figure 5. Dot plot showing the results of KEGG pathway enrichment analyses performed for miRNA-
146a and miRNA-126 validated targets. N. of Genes- number of genes.



Biomedicines 2023, 11, 801 8 of 13

The most significant enriched pathway was the Toll-like receptor signaling pathway,
including four of the analyzed genes: TOLLIP, FADD, CASP8, and IRAK1 (Figure 6).
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Gene Ontology (GO) analysis was conducted to assess the involvement of the miRNA-
146a and miRNA-126 validated target genes in the relevant biological process (BP), cellular
component (CC), and molecular function (MF)—which are all summarized in Figure 7.
Molecular function pathways were enriched by the next most significant pathways: death
effector domain binding, TRAIL binding, NF-kappaB-inducing kinase activity, tumor
necrosis factor receptor binding, and cytokine receptor binding (Figure 7a). Among cell
components, the most significant pathways included CD95 death-inducing signaling com-
plex, ripoptosome, and eukaryotic translation initiation factor 4F complex (Figure 7b).
Concerning BP, the identified genes were significantly involved in the TRAIL-activated
apoptotic signaling pathway, negative regulation of extrinsic apoptotic signaling path-
way via death domain receptors, and positive regulation of I-kappaB kinase/NF-kappaB
signaling, among others (Figure 7c).
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4. Discussion

Immune checkpoint inhibitors are often used in modern clinical practice. However,
optimal selection of patients to achieve the effect of immunotherapy using non-invasive
biomarkers is difficult. ICIs have expanded the possibilities of cancer therapy, and nowa-
days, they are applied in approximately 50 different cancer types [24]. Therefore, increasing
attention has been paid to the identification and development of predictive biomark-
ers for the response of ICIs. Such biomarkers will allow to determine responders and
non-responders to ICIs before the therapy initiation. In this way, miRNAs are attractive
as high-potential prognostic, diagnostic biomarkers in different cancer types, response
treatments, and drug resistance scenarios. miRNA expression profiles may be applied to
evaluate the molecular-based findings resulting from ICI therapy and forecast the therapy
response. miRNAs are known to have a role in intercellular communication in cancer. We
supposed that exosomal miRNAs are potential molecular agents that allow ICI drugs to
exhibit their antitumor activity.

Exosomal microRNA expression profile analysis during ICI therapy in patients with
ccRCC has not been previously studied. There are studies demonstrating aberrant expression
of circulating miRNAs during ICI therapy in lung cancer and melanoma patients [25–29].
Halvorsen and colleagues determined 7 microRNAs in serum connected with OS in lung
cancer patients treated with nivolumab [25]. Using expression levels of exosomal miRNAs
as a criterion for patient selection before checkpoint inhibitor therapy in NSCLC was
studied by Peng. miRNAs belonging to the hsa-miR-320 family were upregulated and
associated with an unfavorable response to PD-1 inhibitors. In contrast, miR-125b-5p
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expression was reduced in patients with responses to anti-PD-1 therapy. The authors
considered the use of mir-125 expression as an on-therapy diagnostic tool for response
monitoring [26]. Another study also demonstrated an association between decreased
expression of microRNA-320 and microRNA-375 and the clinical benefit of nivolumab
therapy in advanced non-small-cell lung cancer patients. The clinical effectiveness was
attested with increases in exoPD-L1 and the PD1 + CD8 + T-cell fraction and a decrease in
immunosuppressive cytokines, which indicated the connection of miRNA expression with
these processes [28]. Francesco Pantano and colleagues demonstrated that the pretreatment
level of extracellular vesicle-associated miR-625-5p was related to survival values in ICI-
treated NSCLC patients. In spite of the correlation of the miR-625-5p expression level with
high PD-L1 expression, this made it possible to identify ICI non-responders, despite their
PDL-1 expression of more than 50% [27]. Li et al. investigated exosomal miR-3913-5p
and miR-184 expression levels significantly upregulated after the onset of osimertinib
non-response in NSCLC patients [29]. The eight specific miRNAs signatures were highly-
increased by nivolumab therapy and were attenuated only in peripheral lymphocytes for
long-responder metastatic ccRCC patients [30].

MiRNA-146a plays the regulatory role in perforin and IFN-γ development in T-cells,
thus reducing severe immune-related adverse events (irAEs) [31]. Previously, we demon-
strated that reduced expression of miRNA-146 in patients with ccRCC with serious immune-
related adverse events and SNP rs2910164 correlated with a higher risk of severe irAE pro-
duction [17]. It is also known that glatiramer acetate, used for RRMS treatment, promotes
the restoration of the aberrant expression of miR-142-3p and miR-146a in mononuclear cells
of peripheral blood from untreated RRMS patients [32].

miRNA-146a participates in the regulation of the pro-inflammatory immune response
and is controlled by the NF-kB gene. miR-146a is aberrantly expressed in various diseases
and regulates processes of the inflammatory response, innate and adaptive immunity,
differentiation of monocytic lines, and tumorigenesis [33]. It was previously determined
that the miRNA signature, including miRNA-146a, is involved in the accumulation of
myeloid-derived suppressor cells (MDSCs) and the development of treatment resistance
to immune checkpoint inhibitor therapy in patients with melanoma [34]. MDSCs directly
organize the mobility of cancer cells, causing the EMT [35] and stimulating signaling
pathways related to resistance to therapy, angiogenesis, and stroma restructuring [36].

We have not found any literature on the analysis of the miR-126 expression profile
in the ICI therapy. miRNA-126 deregulation has been detected in different cancer types.
It is known that miRNA-126 controls angiogenesis by regulating genes involved in phos-
phatidylinositol 3-kinase pathways, the vascular endothelial growth and carcinogenesis
pathways where miRNA-126 plays a dual role as oncogene or suppressor [37–46]. miRNA-
126 downregulation correlated with a shorter time until disease recurrence in ccRCC
patients [40]. Additionally, decreased miRNA-126 expression was observed in metastatic
tumors in comparison with primary ccRCC tumors [38,40,47,48]. Agudo and colleagues
identified that miRNA-126 regulates innate immunity—managing the expression of vas-
cular endothelial growth factor receptor 2 (VEGFR2) expressed by pDCs and the mTOR
signaling pathway—which controls VEGFR2 expression through the miRNA-126–TSC1
interplay [45,49]. Plasmacytoid dendritic cells constitute mainstream components of the
immune response and perform an important role in the modulation of immune toler-
ance [43]. Downregulated miR-126 could promote carcinogenesis due to the decreased
amount of IFN-α produced by pDCs [50]. At another point, miRNA-126 upregulation may
increase chronic inflammation and autoimmunity [51]. Lehman et al. determined that stem
cell spreading is regulated by miRNA-126 via the PI3K/AKT/GSK3 signaling pathway.
miR-126 overexpression disrupts cell cycle start, leading to a decrease in hematopoietic
contribution. miRNA-126 controls a lot of targets within the PI3K/AKT/GSK3β pathway,
reducing signal transmission in response to external signals [52]. miRNA-126 expression
in CD4 + T-cells was increased in relapsing–remitting multiple sclerosis (RRMS) patients
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and downregulated on treatment with natalizumab [53]. Natalizumab-mediated miRNA-
126 regulation likely supports a speedy and stable slowdown in disease activity.

This may explain our obtained results, which indicate that exosomal miRNA-126-
5p expression is an essential controller of inflammatory reactions and immune response.
The limited samples, interpopulation differences, different sources of miRNA, tumor
heterogeneity, and various localizations of tumors may explain the ranging results of the
above studies. The current study also had a small group of participants as a limitation
factor, but still had sufficient power. Further associated studies in large patient groups are
needed to search for a biomarker to forecast the response to ICI therapy in ccRCC patients.

5. Conclusions

Our results showed differences in the exosomal miRNA-146a and miRNA-126 ex-
pression levels involved in the immune response regulation in ccRCC patients before and
after ICI therapy. Understanding the mechanisms underlying the individual characteristics
of the ICI therapy response remains one of the key tasks to developing a personalized
approach in cancer therapy. The data obtained from small samples confirm the role of
exosomal miRNAs in predicting the ICI therapy’s effectiveness. Further studies and data
validation on large samples will allow for the further use of exosomal miRNAs expression
profiles as biomarkers for predicting the effectiveness and safety of immunotherapy.
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