SEARCH FOR NEW DRUGS

SYNTHESIS AND ANTIDEPRESSANT ACTIVITY OF THIETANE-CONTAINING 4-(2-OXO-2-PHENYLETHYL)-1*H*-1,2,4-TRIAZOL-4-IUM BROMIDES

F. A. Khaliullin,^{1,*} E. E. Klen,¹ I. L. Nikitina,¹ V. N. Pavlov,¹ G. A. Rozit,¹ G. G. Gaisina,¹ and A. V. Samorodov¹

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 12, pp. 27 - 34, December, 2022.

Original article submitted July 13, 2022.

Thietane-containing 4-(2-oxo-2-phenylethyl)-1*H*-1,2,4-triazol-4-ium bromides were synthesized by quaternization of thietanyltriazoles with phenacyl bromides. The starting thietanyltriazoles were obtained by the reaction of 1,2,4-triazoles and 2-chloromethylthiirane followed by oxidation of 1-(thietan-3-yl)-1,2,4-triazole to 1-(1-oxidotheitan-3-yl)-1,2,4-triazole and 1-(1,1-dioxidothietan-3-yl)-1,2,4-triazole. The structures of the synthesized compounds were confirmed by IR, PMR, and ¹³C and ¹⁵N NMR spectroscopy. An *in vivo* study of the antidepressant activity revealed the promising compound 1-(1,1-dioxidothietan-3-yl)-4-(2-oxo-2-phenylethyl)-1*H*-1,2,4-triazol-4-ium bromide (**IXa**), which statistically significantly reduced the duration of immobilization in the forced swimming test by 44% as compared to the control group. Compound **IXa** is a low-toxic substance (class 4 toxicity) with a high bioavailability predicted according to *in silico* calculations.

Keywords: 1,2,4-triazole, thietane, antidepressant activity, SwissADME, GUSAR-online.

Depression and anxiety disorders are the principal causes of global incidence of diseases and cause enormous economic harm on society [1]. Many patients do not achieve remission and recovery because existing antidepressants are not effective enough [2]. Therefore, the development of new more effective antidepressants, including those directed at new therapeutic targets, is an important thrust of psychopharmacology [3].

1,2,4-Triazole derivatives (trazodone and nefazodone) and 3-substituted thietane-1,1-dioxides have characteristic antidepressant effects [4-9]. Potent antidepressant properties were observed by us in recent research on 1,24-triazole derivatives containing a thietane ring [10-12].

Several psychotropic agents contain oxophenylalkyl moieties in their structures. Antidepressant activity was found for bupropion (an inhibitor of neuronal reverse uptake of noradrenaline and dopamine) [13] and the atypical neuroleptic roluperidone, which was proposed for treating schizophrenia (antagonist of $5HT_{2A}$ - and σ 2-receptors) and

Fig. 1. Design of potential antidepressants.

¹ Bashkir State Medical University, Ministry of Health of Russia, 3 Lenina St., Ufa, 450008 Russia.

^{*} e-mail: ferkat@mail.ru

1597

The target thietane-containing 4-(2-oxo-2-phenylethyl)-1*H*-1,2,4-triazol-4-ium bromides were synthesized in two steps from 1,2,4-triazole. The first step produced the starting 1-thietanyl-1,2,4-triazoles **II**, **IV**, and **V**. The reaction of triazole (**I**) with 2-chloromethylthiirane in H_2O in the presence of KOH formed asymmetric 1-(thietan-3-yl)-1,2,4triazole (**II**) in 39% yield (Scheme 1). The structure of **II** was confirmed by the presence in the PMR spectrum of two singlets for the triazole-ring protons at 7.95 and 8.11 ppm and characteristic resonances of the thietane-ring protons [15].

Oxidation of **II** by H_2O_2 (two-fold molar excess) produced 1-(1-oxothietan-3-yl)-1,2,4-triazole (**IV**) in 13% yield (Scheme 1). The PMR and ¹³C NMR spectra of sulfoxide **IV** were consistent with the formation of *cis*- and *trans*-isomers in a 1:5 ratio [16, 17]. The PMR spectrum showed two resonances of S(CH)₂ groups of the *cis*-isomer at ~3.9 and 4.8 ppm; of the *trans*-isomer, at ~3.6 and 3.9 ppm. The NCH

proton of the *trans*-isomer was sterically close to the S=O oxygen atom. Its multiplet was shifted to weak field by 1.14 ppm as compared to the multiplet of the *cis*-isomer. The ¹³C NMR spectrum of **IV** contained resonances for the NCH carbon atom of the *cis*-isomer at 42.7 ppm; of the *trans*-isomer, at 51.4 ppm. The IR spectrum of **IV** exhibited a characteristic absorption for the vS=O vibration at 1063 cm⁽¹ [18].

Oxidation of **II** by H_2O_2 (10-fold molar excess) produced 1-(1,1-dioxothietan-3-yl)-1,2,4-triazole (**V**) in 41% yield (Scheme 1). Compound **V** was also synthesized by dioxothietanylation of 1,2,4-triazole by the literature method [19]. Samples of **V** did not depress the melting point of mixtures. Their IR and PMR spectra agreed fully.

The second step involved quaternization of the starting compounds by phenacyl bromides. Usually, quaternization of 1-substituted 1,2,4-triazoles uses prolonged heating with alkylating agents in Me₂CO or MeCN [20]. Triazoles **II**, **IV**, and **V** were reacted with an equimolar amount of phenacyl bromides **VIa-c** in Me₂CO under reflux for 4 - 13 h (Scheme 2) to form thietane-containing 4-(2-oxo-2-phenylethyl)-1*H*-1,2,4-triazol-4-ium bromides (**VII-IXa-c**) in 11 - 53% yields. PMR spectra of **VII-IXa-c** gave resonances for phenacyl methylene protons at 6.1 - 6.3 ppm and for phenyl aromatic protons at 7.6 - 8.5 ppm. The triazole ring proton resonances were shifted to weak field by 1 - 2 ppm as com-

Fig. 3. Principal correlations in NOESY spectrum of IXc.

pared to the those of the starting compounds. ¹³C NMR spectra of **VII-IXa-c** showed weak-field resonances at 188 – 190 ppm for the C=O groups. Sulfoxides **VIIIa-c**, like the starting compound **IV**, were dominated by the *trans*-isomer. The yields of **VIIa-c** did not increase if the reactions of **II** with the phenacyl bromides were performed with microwave activation.

Two-dimensional (2D) HMBC, HSQC, and NOESY spectra of **IXc** were recorded for unambiguous confirmation of the quaternization of the N^4 -position.

The 2D ¹H(¹³C HMBC spectrum of **IXc** established that the protons of the CH₂CO(moiety in the N⁴-position were coupled to C³ and C⁵ of the triazole ring (Fig. 2*a*). The 2D ¹H–¹⁵N HMBC spectrum of **IXc** showed coupling of N⁴ with the CH₂CO(protons and the triazole H₅ proton (Fig. 2*b*).

The 2D NOESY spectrum of **IXc** exhibited cross peaks between the $CH_2CO(\text{protons and triazole-ring protons H}^3$ and H⁵ (Fig. 3). The formation of quaternization products at the N⁴-position agreed with the literature [20].

IR spectra of **VII-IXa-c** contained absorption bands for vC=O vibrations in the range $1682 - 1706 \text{ cm}^{-1}$. IR spectra of sulfoxides **VIIIa-c** contained a characteristic absorption band for vS=O at $1074 - 1078 \text{ cm}^{-1}$; of sulfones **IXa-c**, two absorption bands for vSO₂ groups at ~1143 and 1327 cm⁻¹.

EXPERIMENTAL CHEMICAL PART

IR spectra were recorded from KBr pellets on an InfraLUM FT-02 FT spectrometer (Russia). PMR and ¹³C NMR spectra were taken on a Bruker AM-300 pulsed spectrometer (USA) at operating frequency 300.13 MHz (¹H) for **II** and **V** and on a Bruker Avance III pulsed spectrometer (USA) at operating frequency 500.13 MHz (¹H) and 125.47 MHz (¹³C) for the other compounds. Chemical shifts in PMR and ¹³C NMR spectra were given vs. residual solvent resonances of CDCl₃ (7.26 ppm for ¹H and 77.0 ppm for ¹³C) and DMSO-d₆ (2.50 ppm for ¹H and 39.5 ppm for ¹³C). ¹³C NMR spectra were edited based on DEPT-90 and DEPT-135 experiments. 2D ¹H–¹³C HMBC, ¹H–¹H NOESY, and ¹H–¹⁵N HMBC spectra of **IXc** were recorded using stan-

dard multi-pulse sequences embedded in the instrument software. Chemical shifts in ¹⁵N NMR spectra were given in ppm vs. liquid NH₃ external standard.

Elemental analyses for C, H, N, and S were performed on a Hekatech Euro3000 analyzer (Germany) and agreed satisfactorily with those calculated. Melting points were measured on a Stuart SMP30 apparatus (Great Britain). The course of reactions and purity of synthesized compounds were monitored by TLC on Sorbfil PTSKh-P-A-UF plates using CHCl₃–EtOH (9:1, v/v). Spots were detected in UV light and in a chamber with I₂ vapor.

GC-MS spectra of **II**, **IV**, and **V** were recorded using a gas chromatograph with an Agilent MSD 5977B mass-selective detector (USA). The carrier gas was He (1.0 mL/min). The electron-impact ionizing potential was 70 eV. The chromatographic separation used an HP-5ms quartz capillary column ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$). The injected sample volume for all measurements was 1 µL. The vaporizer and interface temperatures were 130°C for **II**; 170°C, **IV**; and 200°C, **V**. The analysis time was 30 min. The scanned mass range was 40 - 500 m/z. Experimental data were recorded and processed using Qualitative Analysis 10.0 software.

Microwave syntheses were performed in a CEM Discover SP monomodal microwave system (USA) at operating frequency 2.45 GHz. The reactions occurred in a 35-mL vessel with a special lid. The reaction temperature was monitored by an inbuilt IR sensor on the external vessel surface.

Compound **III** was prepared by the literature method [21]; phenacyl bromides **VIa-c**, as before [22]. Commercially available reagents were used in the work.

1-(Thietan-3-yl)-1,2,4-triazole (II). A solution of KOH (2.62 g, 24 mmol) in H₂O (20 mL) was treated with triazole (**I**, 1.38 g, 20 mmol), heated to $60 - 70^{\circ}$ C, and treated with 2-chloromethylthiirane (1.34 g, 24 mmol). The reaction mixture was stirred for 1 h, cooled, and extracted with CHCl₃ (2 × 15 mL). The CHCl₃ extract was filtered through a layer of silica gel. The filtrate was evaporated under vacuum. The oily residue was purified by reprecipitation from an Me₂CO solution of hexane (2:1, v/v) and dried. Yield: 1.10 g (39%), yellow oil. PMR spectrum (CDCl₃), δ , ppm: 3.28 – 3.50 (m, 2H, S(CH)₂), 3.84 – 4.13 (m, 2H, S(CH)₂), 5.53 – 5.73 (m, 1H, NCH), 7.95 (s, 1H, H_{tr}), 8.11 (s, 1H, H_{tr}). Found, *m/z*: 141.0 [M⁺]. Calc., *m/z*: 141.0 [M⁺]. C₅H₇N₃S.

1-(1-Oxothietan-3-yl)-1,2,4-triazole (IV). Compound II (2.60 g, 20 mmol) in glacial HOAc (35 mL) was treated with H_2O_2 solution (37.7%, 1.36 g, 40 mmol). The reaction mixture was held for 2 h at room temperature, neutralized with NH₃ solution to pH 7 – 8, and extracted with CHCl₃ (3 × 25 mL). The CHCl₃ extract was evaporated under vacuum to dryness. The residue was triturated with hexane. The precipitate was filtered off, rinsed with H₂O, and dried. Yield: 0.40 g (13%), white powder, mp 99 – 101°C (*i*-PrOH–hexane, 1:1). IR spectrum, v_{max} , cm⁻¹: 1063 (S=O), 1186, 1276 (C-N), 1503 (C=N), 2950 – 3108 (C-H). PMR spectrum, CDCl₃, δ , ppm: 3.63 – 3.68 (m, 2H, S(CH)₂) –

trans, 3.90 - 3.95 (m, 2H, S(CH)₂) – *cis* and *trans*, 4.17 – 4.21 (m, 2H, S(CH)₂) – *cis*, 4.75 – 4.81 (m, 1H, NCH) – *cis*, 5.87 – 5.92 (m, 1H, NCH) – *trans*, 8.02 (s, 1H, H_{tr}) – *cis* and *trans*, 8.13 (s, 1H, H_{tr}) – *trans*, 8.15 (s, 1H, H_{tr}) – *cis*. ¹³C NMR spectrum (CDCl₃), δ , ppm: 42.7 (NCH) – *cis*, 51.4 (NCH) – *trans*, 57.1 (S(CH₂)₂) – *trans*, 59.5 (S(CH₂)₂) – *cis*, 142.2 (CH_{tr}) – *cis*, 142.7 (CH_{tr}) – *trans*, 152.9 (CH_{tr}) – *cis*, 153.2 (CH_{tr}) – *trans*. Ratio of *cis*- and *trans*-isomers 1:5. Found, *m/z*: 157.0 [M⁺]. Calc., *m/z*: 157.0 [M⁺]. C₅H₇N₃O₂S.

1-(1,1-Dioxothietan-3-yl)-1,2,4-triazole (V). Compound II (2.86 g, 20 mmol) in glacial HOAc (30 mL) was treated with H_2O_2 solution (30%, 6.80 g, 200 mmol), refluxed for 1 h, cooled, and neutralized with NH₃ solution to pH 9 – 10. The resulting precipitate was filtered off, rinsed with H₂O, and dried. Yield 1.41 g (41%), white powder, mp 187 – 188°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 1141, 1325 (SO₂), 1173, 1280 (C-N), 1508 (C=N), 2973 – 3099 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 4.61 – 4.74 (m, 2H, S(CH)₂), 4.75 – 4.91 (m, 2H, S(CH)₂), 5.42 – 5.55 (m, 1H, NCH), 8.12 (s, 1H, H_{tr}), 8.73 (s, 1H, H_{tr}). Found, *m/z*: 173.0 [M⁺]. Calc., *m/z*: 173.0 [M⁺]. C₅H₇N₃O₂S.

General method for synthesis of thietane-containing 4-(2-oxo-2-phenylethyl)-1*H*-1,2,4-triazol-4-ium bromides (VII-IXa-c)

A. A solution of **II** (5 mmol) in Me_2CO (25 mL) was treated with phenacyl bromide (**VIa-c**, 5 mmol). The mixture was refluxed for 13 h and cooled. The resulting precipitate was filtered off, rinsed with Et₂O, and dried.

Compounds **VIII-IXa-c** were prepared analogously with refluxing for 4 h for **VIIIa-c** and for 9 h for **IXa-c**.

B. A reaction vessel was charged with a solution of II (0.28 g, 2 mmol) in Me₂CO (10 mL), treated with phenacyl bromide (**VIa-c**, 2 mmol), sealed, placed into a microwave oven at 80°C and power 100 W for 60 min with dynamic control, and cooled. The resulting precipitate was filtered off, rinsed with Et₂O, and dried.

4-(2-Oxo-2-phenylethyl)-1-(thietan-3-yl)-1*H***-1,2,4-tri azol-4-ium bromide (VIIa).** Yield: A. 0.53 g (31%), B. 0.20 (29%), white powder, mp 160 – 161°C (*i*-PrOH(hexane, 1:1). IR spectrum, v_{max} , cm⁻¹: 1169, 1232 (C-N), 1572, 1599 (C=C, C=N), 1706 (C=O), 3037 – 3082 (C-H). PMR spectrum (DMSO-d₆), δ, ppm: 3.49 – 3.52 (m, 2H, S(CH)₂), 3.89 – 3.94 (m, 2H, S(CH)₂), 6.14 (s, 2H, CH₂), 6.17 – 6.20 (m, 1H, NCH), 7.63 – 7.66 (m, 2H, H_{arom}), 7.76 – 7.79 (m, 1H, H_{arom}), 8.06 – 8.09 (m, 2H, H_{arom}), 9.24 (s, 1H, H_t); 10.16 (s, 1H, H_t). ¹³C NMR spectrum (DMSO-d₆), δ, ppm: 32.7 (S(CH₂)₂), 54.3 (CH₂CO), 56.6 (NCH), 128.7 (CH_{arom}), 129.7 (CH_{arom}), 133.8 (C_{arom}), 135.3 (CH_{arom}), 143.3 (CH_t), 146.3 (CH_t), 190.7 (CO). C₁₃H₁₄BrN₃OS.

4-[2-(4-Bromophenyl)-2-oxoethyl]-1-(thietan-3-yl)-1H-1,2,4-triazol-4-ium bromide (VIIb). Yield: A. 0.75 g (45%), B. 0.23 (24%), white powder, mp 178 – 180°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 1161, 1235 (C-N), 1569, 1599 (C=C, C=N), 1694 (C=O), 3004 – 3031 (C-H). PMR spectrum (DMSO-d₆), δ, ppm: 3.49 - 3.54 (m, 2H, S(CH)₂), 3.91 - 3.94 (m, 2H, S(CH)₂), 6.13 (s, 2H, CH₂), 6.18 - 6.21 (m, 1H, NCH), 7.89 (d, 2H, J 8.5 Hz, H_{arom}), 8.01 (d, 2H, J 8.5 Hz, H_{arom}), 9.24 (s, 1H, H_{tr}), 10.16 (s, 1H, H_{tr}). ¹³C NMR spectrum (DMSO-d₆), δ, ppm: 32.2 (S(CH₂)₂), 53.8 (CH₂CO), 56.2 (NCH), 128.9 (C_{arom}), 130.2 (CH_{arom}), 132.3 (CH_{arom}), 132.4 (C_{arom}), 142.8 (CH_{tr}), 145.8 (CH_{tr}), 189.6 (CO). C₁₃H₁₃Br₂N₃OS.

4-[2-(4-Nitrophenyl)-2-oxoethyl]-1-(thietan-3-yl)-1*H***-1,2,4-triazol-4-ium bromide (VIIc).** Yield: 0.23 g (12%), B. 0.11 (14%), white powder, T_{dec} 207°C (EtOH). IR spectrum, v_{max} , cm⁻¹: 1151, 1227 (C-N), 1348, 1524 (NO₂), 1569, 1599 (C=C, C=N), 1704 (C=O), 3028 – 3082 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 3.49 – 3.52 (m, 2H, S(CH)₂), 3.89 – 3.94 (m, 2H, S(CH)₂), 6.17 – 6.22 (m, 3H, NCH, CH₂), 8.29 (d, 2H, J 8.7 Hz, H_{arom}), 8.45 (d, 2H, J 8.8 Hz, H_{arom}), 9.24 (s, 1H, H_{tr}), 10.16 (s, 1H, H_{tr}). ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 32.6 (S(CH₂)₂), 54.7 (CH₂CO), 56.7 (NCH), 124.7 (CH_{arom}), 130.2 (CH_{arom}), 138.5 (C_{arom}), 143.3 (CH_{tr}), 146.3 (CH_{tr}), 151.1(C_{arom}), 189.2 (CO). C₁₃H₁₃BrN₄O₃S.

1-(1-Oxothietan-3-yl)-4-(2-oxo-2-phenylethyl)-1H-1,2 ,4-triazol-4-ium bromide (VIIIa). Yield 0.20 g (11%), white powder, mp 155-157°C (EtOH - hexane, 2:5). IR spectrum, v_{max}, cm⁻¹: 1074 (S=O), 1186, 1241 (C-N), 1572, 1601 (C=C, C=N), 1700 (C=O), 3043-3082 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 3.66 – 3.67 (m, 2H, S(CH)₂) – cis, 3.78 - 3.83 (m, 2H, S(CH)₂) – trans, 4.01 - 4.05 (m, 2H, $S(CH)_{2}$ - trans, 4.35 - 4.39 (m, 2H, $S(CH)_{2}$) - cis, 5.53 - 5.68 (m, 1H, NCH) - cis, 6.17 - 6.20 (s, 2H, CH₂) cis and trans, 6.30 - 6.33 (m, 1H, NCH) - trans, 7.64 - 7.67 (m, 2H, H_{arom}), 7.78 – 7.81 (m, 1H, H_{arom}), 8.07 – 8.09 (m, 2H, H_{arom}), 9.29 – 9.32 (m, 1H, H_{tr}), 10.18 – 10.22 (m, 1H, H_{tr}). ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 45.9 (NCH) – cis, 54.0 (CH₂CO), 54.1 (NCH) - trans, 55.8 (S(CH₂)₂) - cis, 58.4 $(S(CH_2)_2)$ – trans, 128.3 (CH_{arom}) , 129.2 (CH_{arom}) , 133.4 (C_{arom}), 134.8 (CH_{arom}), 143.2 (CH_{tr}) – *cis*, 143.8 $(CH_{tr}) - trans, 146.2 (CH_{tr}) - cis, 146.3 (CH_{tr}) - trans, 190.3$ (CO). Ratio of *cis*- and *trans*-isomers 1:5. C₁₃H₁₄BrN₃O₂S.

4-[2-(4-Bromophenyl)-2-oxoethyl]-1-(1-oxothietan-3-yl)-1H-1,2,4-triazol-4-ium bromide (VIIIb). Yield 0.67 g (32%), white powder, T_{dec} 182°C (Me₂CO). IR spectrum, v_{max} , cm⁻¹: 1078 (S=O), 1175, 1237 (C-N), 1572, 1601 (C=C, C=N), 1682 (C=O), 3043 – 3082 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 3.65 – 3.71 (m, 2H, S(CH)₂) – *cis*, 3.77 – 3.83 (m, 2H, S(CH)₂) – *trans*, 4.00 – 4.05 (m, 2H, S(CH)₂) – *trans*, 4.35 – 4.39 (m, 2H, S(CH)₂) – *cis*, 5.52 – 5.59 (m, 1H, NCH) – *cis*, 6.17 (s, 2H, CH₂), 6.29 – 6.35 (m, 1H, NCH) – *trans*, 7.89 (d, 2H, J 8.6 Hz, H_{arom}), 8.01 (d, 2H, J 8.7 Hz, H_{arom}), 9.31 (s, 1H, H_{tr}) – *cis*. ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 45.9 (NCH) – *cis*, 53.9 (CH₂CO), 54.1 (NCH) – *trans*, 55.8 (S(CH₂)₂) – *cis*, 58.4 (S(CH₂)₂) – *trans*, 128.9 (C_{arom}), 130.2 (CH_{arom}), 132.3

 (CH_{arom}) , 132.4 (C_{arom}) , 143.6 $(CH_{tr}) - cis$, 143.8 $(CH_{tr}) - trans$, 146.1 $(CH_{tr}) - cis$, 146.3 $(CH_{tr}) - trans$, 189.7 (CO). Ratio of *cis*- and *trans*-isomers 1:4. $C_{13}H_{13}Br_{2}N_{3}O_{2}S$.

4-[2-(4-Nitrophenyl)-2-oxoethyl]-1-(1-oxothietan-3-yl)-1H-1,2,4-triazol-4-ium bromide (VIIIc). Yield 1.06 (53%), white powder, T_{dec} 169°C (*i*-PrOH(H₂O, 10:1). IR spectrum, v_{max} , cm⁻¹: 1074 (S=O), 1167, 1219 (C-N), 1350, 1522 (NO₂), 1572, 1601 (C=C, C=N), 1700 (C=O), 3043 - 3082 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 3.66 – 3.72 (m, 2H, $S(CH)_2$) – cis, 3.78 – 3.84 (m, 2H, $S(CH)_2$) – trans, 4.01-4.06 (m, 2H, S(CH)₂) - trans, 4.36-4.41 (m, 2H, $S(CH)_2$ - cis, 5.54 - 5.61 (m, 1H, NCH) - cis, 6.25 (s, 2H, CH₂), 6.31 – 6.37 (m, 1H, NCH) – trans, 8.31 – 8.33 (m, 2H, H_{arom}), 8.46 (d, 2H, J 8.9 Hz, H_{arom}), 9.14 (s, 1H, H_{tr}) – cis and trans, 10.22 (s, 1H, H_{tr}) – trans, 10.29 (s, 1H, H_{tr}) – *trans.* ¹³C NMR spectrum (DMSO-d₆), δ, ppm: 45.9 (NCH) - cis, 54.1 (NCH) - trans, 54.4 (CH₂CO), 55.8 (S(CH₂)₂) trans, 58.4 (S(CH₂)₂) - cis, 124.2 (CH_{arom}), 129.8 (CH_{arom}), 138.0 (C_{arom}), 143.8 (CH_{tr}) – cis and trans, 146.1 (CH_{tr}) – *cis*, 146.3 (CH_{tr}) – *trans*, 150.7 (C_{arom}), 189.6 (CO). Ratio of *cis*- and *trans*-isomers 1:5. $C_{13}H_{13}BrN_4O_4S$.

1-(1,1-Dioxothietan-3-yl)-4-(2-oxo-2-phenylethyl)-1*H***-1,2,4-triazol-4-ium bromide (IXa).** Yield 0.30 g (16%), white powder, mp 189 – 190°C (EtOH). IR spectrum (v_{max} , cm⁻¹): 1143, 1329 (SO₂), 1186, 1227 (C-N), 1569, 1587 (C=C, C=N), 1695 (C=O), 3007 – 3067 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 4.77 – 4.81 (m, 2H, S(CH)₂), 4.94 – 4.99 (m, 2H, S(CH)₂), 5.91 – 5.93 (m, 1H, NCH), 6.21 – 6.23 (m, 2H, CH₂) 7.63 – 7.66 (m, 2H, H_{arom}), 7.76 – 7.79 (m, 1H, H_{arom}), 8.07 – 8.08 (m, 2H, H_{arom}), 9.33 – 9.35 (m, 1H, H_{tr}), 10.33 – 10.37 (m, 1H, H_{tr}). ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 43.1 (NCH), 54.5 (CH₂CO), 71.4 (S(CH₂)₂), 128.2 (CH_{arom}), 129.1 (CH_{arom}), 133.3 (C_{arom}), 134.7 (CH_{arom}), 144.5 (CH_{tr}), 146.1 (CH_{tr}), 190.1 (CO). C₁₃H₁₄BrN₃O₃S.

4-[2-(4-Bromophenyl)-2-oxoethyl]-1-(1,1-dioxothietan-3-yl)-1*H***-1,2,4-triazol-4-ium bromide (IXb). Yield 1.07 g (47%), white powder, T_{dec} 193°C (***i***-BuOH(H₂O, 10:1). IR spectrum (v_{max}, cm⁻¹): 1143, 1325 (SO₂), 1173, 1216 (C-N), 1569, 1596 (C=C, C=N), 1697 (C=O), 3007 – 3067 (C-H). PMR spectrum (DMSO-d₆), \delta, ppm: 4.76 – 4.80 (m, 2H, S(CH)₂), 4.94 – 4.99 (m, 2H, S(CH)₂), 5.62 – 5.66 (m, 1H, NCH), 6.13 (s, 2H, CH₂), 7.81 – 7.86 (m, 2H, H_{arom}), 7.98 – 8.05 (m, 2H, H_{arom}), 9.12 (s, 1H, H_{tr}), 9.46 (s, 1H, H_{tr}). ¹³C NMR spectrum (DMSO-d₆), \delta, ppm: 41.6 (NCH), 56.1 (CH₂CO), 71.4 (S(CH₂)₂), 121.4 (CH_{arom}), 125.1 (CH_{arom}), 129.2 (C_{arom}), 130.6 (CH_{tr}), 132.6 (CH_{tr}), 138.2 (C_{arom}), 190.9 (CO). C₁₃H₁₃Br₂N₃O₂S.**

1-(1,1-Dioxothietan-3-yl)-4-[2-(4-nitrophenyl)-2-oxoethyl]-1H-1,2,4-triazol-4-ium bromide (IXc). Yield 0.88 g (42%), white powder, T_{dec} 195°C (*n*-PrOH(H₂O, 10:1). IR spectrum, v_{max} , cm⁻¹: 1143, 1326 (SO₂), 1184, 1227 (C-N), 1390, 1550 (NO₂), 1569, 1596 (C=C, C=N), 1706 (C=O), 3007 – 3067 (C-H). PMR spectrum (DMSO-d₆), δ , ppm: 4.79 – 4.83 (m, 2H, S(CH)₂), 4.95 – 5.00 (m, 2H, S(CH)₂), 5.90 – 5.96 (m, 1H, NCH), 6.26 (s, 2H, CH₂), 8.32 (d, 2H, J 8.8 Hz, $H^{2.6}_{arom}$), 8.47 (d, 2H, J 8.8 Hz, $H^{3.5}_{arom}$), 9.32 (s, 1H, H^{3}_{tr}), 10.33 (s, 1H, H^{5}_{tr}). ¹³C NMR spectrum (DMSO-d₆), δ , ppm: 42.7 (NCH), 54.1 (CH₂CO), 70.9 (S(CH₂)₂), 124.2 (CH^{3.5}_{arom}), 129.8 (CH^{2.6}_{arom}), 138.0 (C¹_{arom}), 144.6 (CH⁵_{tr}), 146.1 (CH₃), 150.7 (C⁴_{arom}), 189.6 (CO). ¹⁵N NMR spectrum (DMSO-d₆), δ , ppm: 174.3 (N⁴_{tr}), 222.9 (N¹_{tr}), 289.2 (N²_{tr}), 368.7 (NO₂). C₁₃H₁₃BrN₄O₄S.

EXPERIMENTAL BIOLOGICAL PART

Antidepressant activity. The antidepressant activity of synthesized VIIa, b, VIIIa, and IXa, b was evaluated using outbred white male mice and the behavioral tail suspension test (TST) [23], forced swimming test (FST) [24], and open-field test (OF) [25]. Experimental animals (20 – 24 g) were kept under vivarium conditions on a balanced diet according to GOST R 50258 – 92. All studies were conducted according to requirements of the *European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes* (ETS No. 123, 1986) [26] and Decision No. 81 of the Council of the Eurasian Economic Commission of Nov. 3, 2016, *On Approval of Good Labora- tory Practice Rules of the Eurasian Economic Union in the Field of Drug Circulation* [27].

The tested compounds were dissolved in normal saline and administered in doses equimolar to fluoxetine (10 mg/kg) once intraperitoneally (i.p.) 30 min before testing, by analogy to the scheme for administering the reference drug fluoxetine (10 mg/kg, Fluoxetine, 20-mg capsules, Promed, RF). The behavior of the animals in the TST, FST, and OF was recorded on a video camera and analyzed using the BrainTest program [28]. The total duration of immobilization (DI) was determined in the TST; DI, in the FST; duration of active and passive swimming, in the FST with calculation of the chronobiological index of depression (ID) as the ratio of the number of short immobilization periods (duration sec) to the number of active swimming periods. The number of patterns of grooming, rearing, supported rearing, stretch-attend posture, sniffing, movement, motion in place, and sitting was recorded in the OF. The emotional anxiety parameters (EA, i.e., the sum of patterns of sniffing, movement, and stretch-attend posture) and orientation-exploratory activity (OEA, i.e., the sum of patterns of motion in place, rearing, and supported rearing) were calculated.

The *in vivo* acute toxicity (LD_{50}) of **IXa** was estimated by the method of Deichmann and LeBlanc [29]. The compound was injected once i.p. to outbred white male mice (n = 6). The lowest dose causing a lethal outcome was determined.

Results were statistically analyzed using the Statistica 13.3 program (TIBCO Software, Inc., USA). The nature of the distribution was evaluated. The basic parameters of the descriptive statistics (median, interquartile interval, mini-

Synthesis and Antidepressant Activity

Fig. 4. Effects of **VIIa**, **b**, **VIIIa**, **IXa**, **b** on DI in TST-a), DI in TST-b), and ID in FST-c), and number of movements-d), orientation-exploratory activity-e), and emotional anxiety-f) in OF test. Note: medians of groups and interquartile interval \pm minimum – maximum are given in the graphs; p < 0.05 for the Mann(Whitney U-criterion as compared to the control group.

mum – maximum, root-mean-square deviation, outliers) were estimated and compared using the Kruskal(Wallis and Mann(Whitney criteria [30]. The statistical significance level was taken as 0.05.

RESULTS AND DISCUSSION

Fluoxetine (10 mg/kg) showed an antidepressant effect in the FST, reducing the ID by 27% (p = 0.011) vs. the con-

trol group (Fig. 4c) and did not affect the DI in the TST and FST (Fig. 4a and 4b).

All tested compounds also reduced the ID in the FST by 19-39% (p < 0.05, Fig. 4c) and did not change the TST DI (Fig. 4a) as compared to the control. Also, **IXa** statistically significantly reduced the FST DI by 44% vs. the control group (p = 0.003, Fig. 4b).

Only **VIIIa** significantly increased the number of movements in the OF test (by 32%, p = 0.043, Fig. 4d) as compared to the control group. It did not affect the EA and OEA. The other compounds did not affect these parameters (Fig. 4e and 4f). This was indicative of the manifestation by them in the screening tests of a true antidepressant effect.

The results led to the conclusion that the amount of active swimming and the number of jumps $(151\% \rightarrow 193\% \rightarrow 214\%, p > 0.05$ for all compared pairs²) tended to increase as the degree of oxidation of the sulfur increased (VIIa \rightarrow VIIIa \rightarrow IXa). The ID in this series increased insignificantly (61% \rightarrow 69% \rightarrow 81%, p > 0.05 for all compared pairs).

Introduction of a Br atom onto the benzene ring increased the number of jumps $\rightarrow 50\% \rightarrow 175\%$, p = 0.043) only in the series of thietanes $\rightarrow VIIa \rightarrow VIIb$) while the reverse dependence was observed in the series of thietane di-

oxides \rightarrow **IXa** \rightarrow **IXb**), i.e., the jumps $\rightarrow 81\% \rightarrow 64\%$, p = 0.08), amount of active swimming $\rightarrow 214\% \rightarrow 109\%$, p = 0.045), and DI $\rightarrow 56\% \rightarrow 119\%$, p = 0.045) of the animals tended to decrease.

The increased number of movements without effects on the number of jumps and amount of active swimming of the mice under the influence of **VIIIa** (by 32% as compared to the control, p = 0.043) led to the conclusion that the antidepressant activity of the compound was associated with psychoactive action and was not a consequence of psychostimulatory activity.

Thus, introduction of a Br atom on the benzene ring nullified the psychoactive effect of the thietane-dioxide ring. However, it was noteworthy that the strength of the antidepressant effect did not depend on the degree of oxidation of the sulfur or on the presence of a Br atom on the benzene ring.

The new compounds were analyzed according to Lipinski's rule of five and the Veber rule using the SwissADME web resource [31] to reveal compounds capable after *in vivo* testing of providing a drug candidate.

The molecular masses of the synthesized compounds were <500 g/mol. The structures of **VII-IXa-c** did not contain H-bond donors. The number of acceptors was ≤10 . The compounds contained ≤10 rotating bonds. The topological polar surface area (TPSA) was ≤140 Å², which led to the

TABLE 1. Prognosis of *in silico* Physicochemical Parameters and Acute Toxicity and Agreement with Lipinski's Rule of Five and Veber Rule of VII-IXa-c

	Parameter								
Compound	MM, g/mol	RB ^a	HBA ^b	HBD ^c	TPSA ^{d} , A ^{2}	Lipophilicity, LogP _{o/w}	by Lipinski	by Veber	LD ₅₀ of rat-i.p.), mg/kg
VIIa	340.24	4	2	0	64.07	- 1.81	+		240.60 class 4
VIIb	419.13	4	2	0	64.07	- 4.87	+	+	480.60e class 4
VIIc	385.24	5	4	0	109.89	- 4.21	+	+	527.30e class 4
VIIIa	356.24	4	3	0	75.05	- 4.34	+	+	320.00 class 4
VIIIb	435.13	4	3	0	75.05	- 4.46	+	+	228.40e class 4
VIIIc	401.24	5	5	0	120.87	- 4.57	+	+	288.20e class 4
IXa	372.24	4	4	0	81.29	- 5.55	+	+	492.90 class 4
IXb	451.13	4	4	0	81.29	- 5.72	+	+	535.70e class 4
IXc	417.24	5	6	0	127.11	- 6.63	+	+	494.30e class 4

Note: number of bonds capable of free rotation-a); number of H-bond acceptors-b); number of H-bond donors-c); topological polar surface area-d), compound fell outside the applicability range of the models.

 $^{^2}$ Values expressed in percent of the control value taken as 100%.

conclusion that **VII-IXa-c** agreed with Lipinski's and Veber's rules. Therefore, they probably had high peroral bioavailability (Table 1). The GUSAR-online web resource was used for a preliminary assessment of the acute toxicity [32]. A calculation of the toxicity upon i.p. administration to rats showed that the synthesized compounds fell in class 4 toxicity (low-toxic compounds) according to the GOST 12.1.007–76 classification [33, 34] (Table 1).

The LD_{50} value of the most promising compound (**IXa**) was determined *in vivo* to confirm the calculated acute toxicities. The value was 1000 mg/kg, which corresponded to class 4 toxicity.

Thus, further preclinical studies of 1-(1,1-dioxothietan- 3-yl)-4-(2-oxo-2-phenylethyl)-1H-1,2,4-triazol-4-ium bromide (**IXa**) are promising based on an overall evaluation of the pharmacological screening, acute toxicity, and *in silico* calculation of its pharmacokinetic parameters.

REFERENCES

- D. F. Santomauro, A. M. Mantilla Herrera, J. Shadid, et al., Lancet, 398, 1700 – 1712 (2021).
- M. Sanches, J. Quevedo, and J. C. Soares, Prog. Neuropsychopharmacol. Biol. Psychiatry, 106, 110157 (2021).
- Y. Xu, C. Wang, J. J. Klabnik, and J. M. O' Donnell, *Curr: Neuropharmacol.*, **12**, 108-119 (2014).
- I. L. Nikitina, R. A. Gabidullin, E. E. Klen, et al., *Khim.-farm. Zh.*, **46**(4), 17-22-2012); *Pharm. Chem. J.*, **46**(4), 213 – 218-(2012).
- E. E. Klen, I. L. Nikitina, N. N. Makarova, et al., *Khim.-farm. Zh.*, **50**(10), 15-21-2016); *Pharm. Chem. J.*, **50**(10), 642 – 648 (2016).
- F. A. Khaliullin, I. L. Nikitina, E. E. Klen, et al., *Khim.-farm. Zh.*, **53**, No. 12, 8 – 15-2019); *Pharm. Chem. J.*, **53**(12), 1106 – 1112 (2019).
- I. L. Nikitina and G. G. Gaisina, *Res. Results Pharmacol.*, 7(3), 63 – 71 (2021).
- I. L. Nikitina, G. G. Gaisina, E. F. Galimova, et al., CNS Neurol. Disord.: Drug Targets, 20(10), 982 – 995 (2021).
- O. A. Ivanova, I. L. Nikitina, E. K. Alekhin, et al., *Kazan. Med. Zh.*, 93(1), 108 112 (2012).
- E. E. Klen, N. N. Makarova, F. A. Khaliullin, et al., *Bashk. Khim. Zh.*, **15**(4), 112 114 (2008).
- F. A. Khaliullin, I. L. Nikitina, E. E. Klen, et al., *Khim.-farm. Zh.*, **55**(2), 13 – 19 (2021); *Pharm. Chem. J.*, **55**(2), 123 – 129 (2021).
- 12. E. E. Klen, I. L. Nikitina, O. A. Ivanova, et al., *Vopr. Biol., Med. Farm. Khim.*, **20**(12), 4 – 9 (2017).

- S. R. Khan, R. T. Berendt, C. D. Ellison, et al., *Profiles Drug Subst. Excipients Relat. Methodol.*, 41, 1 30 (2016).
- M. T. Jones, M. T. Strassnig, and P. D. Harvey, *Expert Opin.* Emerging Drugs, 25, 189 – 200 (2020).
- S. Lesniak, W. J. Kinart, and J. Lewkowski, in: *Comprehensive Heterocyclic Chemistry III*, A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor (eds.), Oxford (2008), pp. 389 – 428.
- J. Contreras and S. Madariaga, *Bol. Soc. Chil. Quim.*, No. 3, 469 – 478 (2000).
- D. C. Dittmer, B. H. Patwardhan, and J. T. Bartholomew, Org. Magn. Reson., 18(2), 82 – 86 (1982).
- E. Pretsch, P. Buhlmann, and C. Affolter, *Structure Determina*tion of Organic Compounds, Springer, Berlin, New York-2000).
- E. E. Klen, N. N. Makarova, and F. A. Khaliullin, *Chem. Heterocycl. Compd.*, 48(10), 1473 1476 (2013).
- T. Alpers, T. W. T. Muesmann, O. Temme, et al., *Eur. J. Org. Chem.*, 2018(31), 4331 4337 (2018).
- E. E. Klen, F. A. Khaliullin, N. N. Makarova, et al., *Zh. Org. Khim.*, 44, 1729 1731 (2008).
- 22. S. A. Laufer, D. R. J. Hauser, and A. J. Liedtke, *Synthesis*, **2008**(02), 253 266 (2008).
- 23. L. Steru, Psychopharmacology, 85(3), 367 370 (1985).
- E. V. Shchetinin, V. A. Baturin, E. B. Arushanyan, et al., *Zh. Vyssh. Nervn. Deyat.*, **39**, 958 964 (1989).
- A. V. Val'dman and V. P. Poshivalov, *Pharmacological Regulation of Intraspecies Behavior* [in Russian], Meditsina, Leningrad (1984).
- European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes, ETS No. 123, Strasbourg (1986).
- Decision No. 81 of the Council of the Eurasian Economic Commission of Nov. 3, 2016, On Approval of Good Laboratory Practice Rules of the Eurasian Economic Union in the Field of Drug Circulation, (2020).
- Certificate of State Registration of Computer Program No. 2008610170-Russia, (2008).
- W. B. Deichmann and T. J. LeBlanc, J. Ind. Hyg. Toxicol., 25, 415 – 417 (1943).
- 30. S. White, *Basic & Clinical Biostatistics: Fifth Edition*, McGraw-Hill Education, (2019).
- 31. A. Daina, O. Michielin, and V. Zoete, *Sci. Rep.*, 7, 42717 (2017).
- A. A. Lagunin, A. V. Zakharov, D. S. Filimonov, et al., *Mol. Inf.*, **30**(2-3), 241-250 (2011).
- GOST 12.1.007–76, System of Labor Safety Standards-SLSS). Hazardous Substances. Classification and General Safety Requirements-with Amendments (Nos. 1 and 2) of March 10, 1976 (2022).
- 34. I. V. Berezovskaya, *Khim.-farm. Zh.*, **37**, No. 3, 32 34 (2003); *Pharm. Chem. J.*, **37**(3), 139 – 141 (2003).