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A B S T R A C T   

Cervical cancer is the second most common cancer in women. The detection of oncopathologies in the early 
stages of development is a paramount task of modern medicine, which can be solved only by improving modern 
diagnostic methods. The use of screening for certain tumor markers could complement modern tests such as 
testing for oncogenic types of human papillomavirus (HPV), cytology, colposcopy with acetic acid and iodine 
solutions. Such highly informative biomarkers can be long noncoding RNAs (lncRNAs) that are highly specific 
compared to the mRNA profile and are involved in the regulation of gene expression. LncRNAs are a class of non- 
coding RNAs molecules that are typically over 200 nucleotides in length. LncRNAs may be involved in the 
regulation of all major cellular processes, including proliferation and differentiation, metabolism, signaling 
pathways, and apoptosis. LncRNAs molecules are highly stable due to their small size, which is also their un-
doubted advantage. The study of individual lncRNAs as regulators of the expression of genes involved in the 
mechanisms of oncogenesis cervical cancer can be not only of great diagnostic value, but, as a result, of ther-
apeutic significance in cervical cancer patients. This review article will present the characteristics of lncRNAs 
that allow them to be used as accurate diagnostic and prognostic tools, as well as to consider them as effective 
therapeutic targets in cervical cancer.   

1. Introduction 

Cervical cancer is the second malignant tumor that seriously 
threatens women’s health. There are more than 490,000 new cases of 
cervical cancer in the world every year. In recent years, the incidence of 
cervical cancer in my country has increased significantly and has a 
younger trend [1]. Cervical cancer is a disease in which multiple factors, 
multiple genes, and multiple links interact together to form a complex 
molecular regulatory mechanism. Surgical resection is the main treat-
ment for early-stage cervical cancer, and the prognosis is good, while 
surgery combined with chemotherapy and radiotherapy is the main 

treatment for middle-advanced cervical cancer, and the prognosis is 
poor [2]. The diagnosis and treatment of cervical cancer lack specific 
indicators for monitoring tumor metastasis, judging prognosis, recur-
rence, and guiding individualized treatment. Therefore, finding ideal 
and effective tumor molecular markers is of great significance for 
improving the diagnosis and treatment of cervical cancer. At present, 
lncRNAs are popular tumor molecular markers in the field of life sci-
ences. Chen Qiantao and other scholars used high-throughput lncRNAs 
chip technology to detect the changes of lncRNA expression profiles in 
cervical cancer tissue and normal cervical tissue, and detected a total of 
30,586 lncRNAs. After cluster analysis and comparison, a total of 22,043 
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differentially expressed lncRNAs were found, of which 11,545 were 
up-regulated and 10,498 were down-regulated [3]. It shows that 
lncRNAs plays an important role in cervical cancer, and what function 
and how it plays a role in cervical cancer is worth exploring. 

Most of the human genome can be transcribed, but less than 2% of 
the genome are protein-coding genes, and the rest of the genome is 
transcribed into non-coding RNA (non-coding RNA, ncRNAs). NcRNAs 
can be divided into two categories according to their molecular length, 
namely, short non-coding RNAs (small non-coding RNA, sncRNAs) with 
a length of less than 200 nt and long non-coding RNAs (long non-coding 
RNA, lncRNAs) with a length of more than 200 nt. According to the 
relative position of adjacent protein-coding transcripts, lncRNAs can be 
divided into sense lncRNAs, antisense lncRNAs, bidirectional lncRNAs, 
intragenic lncRNAs, and intergenic lncRNAs [4]. With the development 
of next-generation sequencing technology, the biological functions and 
behavioral mechanisms of lncRNAs in eukaryotes have been gradually 
elucidated. Studies have shown that lncRNAs can interact with DNA, 
RNA, and proteins, and regulate the biological processes of cells through 
different molecular mechanisms of DNA methylation, histone modifi-
cation, and miRNA competitive inhibition [5–7]. LncRNAs are not only 
widely involved in the normal growth and development of the body, but 
also closely related to the occurrence and development of human dis-
eases. Studies have shown that the expression of various lncRNAs 
changes significantly in the occurrence and development of cervical 
cancer and after treatment of cervical cancer [3,8]. Therefore, in-depth 
study of the relationship between lncRNAs and cervical cancer is ex-
pected to provide a new basis for the clinical diagnosis and effective 
treatment of cervical cancer. 

2. Abnormal regulation of lncRNAs in cervical cancer 

LncRNAs play a role in many biological processes in cells. Studies 
have shown that various lncRNAs are expressed differently in cervical 

cancer and may be involved in growth, differentiation, migration, in-
vasion, apoptosis, and other processes, thereby influencing the occur-
rence and development of cervical cancer [3,9]. The abnormal 
regulation of lncRNAs in cervical cancer is shown in Fig. 1. 

2.1. LncRNAs affect the progression and prognosis of cervical cancer 

Cervical cancer is a disease caused by the interaction of many factors, 
many genes and multiple connections through complex molecular reg-
ulatory mechanisms. More and more studies show that lncRNA can be 
used to diagnose and predict tumors [10,11]. Jean et al. found that 
TCONS_00026907 is abnormally expressed in cervical cancer using a 
lncRNA microarray. The expression of TCONS_00026907 is significantly 
upregulated in cervical cancer tissues, and this may promote the cell 
cycle process, proliferation, migration and invasion, as well as inhibit 
apoptosis. Mechanistic studies have shown that after TCONS_00026907 
silencing, miR-143-5p expression was significantly increased and ELK1 
target gene expression downstream of miR-143-5p was significantly 
reduced, thereby suppressing the development of cervical cancer [12] 
(Fig. 1a). In addition, from normal cervical tissue, cervical intra-
epithelial neoplasia (CIN) to cervical cancer tissue, Fan et al. [13] found 
that expression of inflammation-associated lncRNA receptor interleukin 
7 (interleukin 7 receptor, IL7R) tends to increase. High IL7R expression 
is positively correlated with tumor size, FIGO stage, and lymph node 
metastasis, and patients with high expression have a shorter overall 
survival and poor prognosis. Cox regression analysis showed that IL7R 
can be used as an independent predictor of cervical cancer. Functional 
experiments show that interference with IL7R expression can inhibit 
cervical cancer growth In vitro experiments show that Bcl-2 expression 
is reduced and caspase-3 expression is increased, which can inhibit 
cervical cancer growth by promoting apoptosis. In vivo experiments also 
show that reduced expression of Ki-67 inhibits the growth of cervical 
cancer (Fig. 1b). 

Fig. 1. The role of long non-coding RNAs in cervical 
cancer. a: TCONS_00026907 regulates ELK1 to pro-
mote cervical cancer progression by inhibiting miR- 
143-5p. b: IL7R is an independent predictor of cer-
vical cancer through the regulation of Bcl-2, caspase- 
3 and Ki-67; c: MEG3 inhibits cervical cancer pro-
gression by modulating PI3K/AKT/Bcl-2/Bax/P21 
and PI3K/AKT/MMP-2/9 signaling pathways; d: 
ZNF667-AS1 is associated with overall survival, 
tumor size, and FIGO stage of cervical cancer and 
inhibits cell cloning and proliferation of cervical 
cancer; e: ZEB1-AS1 regulates EMT-associated E- 
cadherin to promote invasion and migration of cer-
vical cancer cells through activation of the p38MAPK 
signaling pathway; f: HOTAIR promotes invasion and 
migration of cervical cancer cells by upregulating 
VEGF, MMP-9, EMT-associated proteins E-cadherin, 
β-catenin and vimentin, Snail and Twist transcription 
factors, and upregulating MKL1 through inhibition of 
miR206; g: TUG1 inhibits apoptosis of cervical cancer 
cells by regulating Bcl-2 and caspase-3; h: CCHE1 
promotes cervical cancer cell proliferation through 
regulation of PCNA; i, j: AFAP1-AS1 and CARLo-5 
promote cervical cancer cell proliferation by regu-
lating cell cycle-associated CDK2 and CyclinA2 pro-
teins; k: PVT1 contributes to cervical cancer 
resistance to chemotherapy through the regulation of 
EMT-related proteins E-cadherin, fibronectin and 
vimentin; l: Low expression of CASC2 regulated PTEN 
to increase cervical cancer resistance to chemo-
therapy by stimulating miR-21; m: NEAT1 regulates 
cyclin D1, caspase-3 and caspase-9 to increase cervi-
cal cancer resistance to radiotherapy by inhibiting 
miR-193b-3p.   
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In contrast, the long-chain non-coding MEG3, ZNF667-AS1, was 
underexpressed in cervical cancer. Maternally expressed gene 3 (MEG3) 
is the first imprinted lncRNA discovered, which has the function of 
suppressing tumors, and it is located on chromosome 14q32. MEG3 is 
low expressed in cervical cancer and negatively correlated with FIGO 
stage, tumor size and lymph node metastasis [14]. Wang et al. showed 
by RT-PCR and Western blotting analysis that after overexpression of 
MEG3, the gene and protein expressions of PI3K, AKT, MMP-2, MMP-9 
and Bcl-2 were all decreased, while the gene and protein expressions of 
Bax and P21 were all decreased raised [15]. This suggests that MEG3 
inhibits cervical cancer progression by regulating 
PI3K/AKT/Bcl-2/Bax/P21 and PI3K/AKT/MMP-2/9 signaling pathways 
in cervical cancer (Fig. 1c). In addition, transcription factor zinc finger 
protein 667 (Zinc finger protein 667, ZNF667-AS1) is also known as 
lncRNA MORT. Its expression was significantly low in cervical cancer, 
and the expression level was negatively correlated with overall survival 
rate, tumor size and FIGO stage, while high expression of ZNF667-AS1 
could reduce the proliferation and clonal ability of cervical cancer 
cells [16] (Fig. 1d). 

2.2. LncRNAs affect the invasion and migration of cervical cancer 

Invasion is the most critical step in the process of tumor cell metas-
tasis, which includes the degradation of the cell matrix, the activation of 
tumor cell motility molecular pathways, and the transformation of 
intercellular links [17]. lncRNAs are essential for promoting cell growth, 
and their abnormal expression contributes to the growth and survival of 
tumor cells. Long non-coding ZEB1 antisense 1 (LncRNA ZEB1 Antisense 
1, ZEB1-AS1) is upregulated in cervical cancer, and it is associated with 
the clinical characteristics of cervical cancer invasion and migration. 
Gan et al. found that the expression of p-p38 could be significantly 
reduced by interfering with the expression of ZEB1-AS1, indicating that 
silencing ZEB1-AS1 could effectively inhibit the p38MAPK signaling 
pathway [18]. Further experiments found that compared with the con-
trol group, co-transfection of ZEB1-AS1siRNA and p38MAPK pathway 
inhibitor SB203580 could inhibit the protein E-cadherin related to 
epithelial-to-mesenchymal transition (EMT). The expression of Vimen-
tin and N-cadherin which promote EMT transformation, did not change 
significantly. In addition, after interfering with ZEB1-AS1, the inhibition 
of EMT transformation in HeLa cells can be reversed by the p38MAPK 
activator anisomycin, indicating that low expression of ZEB1-AS1 can 
inhibit the EMT transformation of HeLa cells by blocking the p38MAPK 
signaling pathway, thereby inhibiting the invasion and migration of 
HeLa cells (Fig. 1e). In addition, Huang et al. found that Homeobox gene 
transcript antisense RNA (HOTAIR), a lncRNA highly expressed in cer-
vical cancer, was associated with poor prognosis of cervical cancer [19]. 
Kim et al. found that after silencing HOTAIR, the expression of VEGF and 
MMP-9 decreased significantly, the expression of E-cadherin increased, 
the expression of β-catenin and Vimentin decreased, and the expression 
of transcription factors Snail and Twist, which promote EMT trans-
formation, decreased, thereby inhibiting the expression of cervical 
cancer [20]. Both these markers and transcription factors are important 
players in tumor invasion and migration (Fig. 1f). In addition, after 
HOTAIR was silenced, the expression of miR206 was up-regulated, 
while the expression of miR206 downstream target protein mega-
karyoblastic leukemia 1 (MKL1) was down-regulated, and it could in-
crease the distribution of MKL1 in the cytoplasm, indicating that 
HOTAIR promotes the expression of MKL1 by inhibiting the expression 
of miR206 And change the distribution of MKL1 cells to promote cer-
vical cancer invasion and migration. However, MKL1 can bind to the 
HOTAIR promoter CArG box to activate HOTAIR transcription, and form 
a positive feedback with HOTAIR to promote HOTAIR expression. In 
conclusion, MKL1 is an important promoter of HOTAIR in cervical 
cancer invasion and migration [21] (Fig. 1f). 

2.3. lncRNAs affect apoptosis and proliferation of cervical cancer 

LncRNAs affect the fate of tumor cells by regulating the proliferation 
and apoptosis of tumor cells. Taurine upregulated gene 1 (TUG1) is an 
lncRNA upregulated in cervical cancer, which is closely related to the 
biological characteristics and poor prognosis of cervical cancer cells 
[22]. Hu et al. found that by experimentally knocking out TUG1, the 
expression of apoptosis-related mitochondrial pathway protein Bcl-2 
was significantly reduced, and the expression of caspase-3 was signifi-
cantly increased, thereby promoting cervical cancer cell apoptosis [23] 
(Fig. 1g). In addition, overexpression of cervical cancer highly expressed 
lncRNA 1 (CCHE1) can promote the proliferation of cervical cancer cells, 
while knocking out CCHE1 inhibits cell proliferation [24]. RNA 
pull-down analysis showed that CCHE1 physiologically binds to PCNA 
mRNA, and the interaction between the two leads to the upregulation of 
the expression of proliferating cell nuclear antigen (PCNA), a tumor 
proliferation marker, thereby promoting the proliferation of cervical 
cancer cells (Fig. 1h). In addition, downregulation of actin 
filament-associated protein 1-antisense RNA 1 (Actin 
filament-associated protein 1-antisense RNA1, AFAP1-AS1) and 
cancer-associated region long non-coding RNA (CARLo-5) can cause 
cells to undergo S-phase arrest, and the expression of S-phase-related 
proteins CDK2 and Cyclin A2 will be down-regulated to varying degrees, 
thereby inhibiting the proliferation of HeLa cells. It was shown that 
AFAP1-AS1 and CARLo-5 affect cervical cancer proliferation by regu-
lating the cell cycle [25] (Fig. 1i and j). 

2.4. LncRNAs affect the radiochemotherapy resistance of cervical cancer 

More and more studies show that lncRNAs may play a role in 
chemotherapy and chemotherapy resistance by regulating the cell cycle, 
apoptosis, and DNA damage repair [26–29]. Eden et al. found that 
translocation of plasmacytoma variant 1 (PVT1), lncRNAs, significantly 
highly expressed in cervical cancer, was associated with resistance to the 
chemotherapy drug cisplatin [30]. At the same time, Shen et al. also 
found that inhibition of PVT1 expression can significantly increase the 
expression of E-cadherin in CaSki cells, while the expression of fibro-
nectin and vimentin significantly decreased, thereby increasing the 
sensitivity of CaSki cells to paclitaxel and high expression PVT1 can 
induce EMT transformation and make cervical cancer cells resistant to 
paclitaxel [31]. This suggests that PVT1 promotes paclitaxel resistance 
in cervical cancer cells, promoting EMT transformation (Fig. 1k). In 
addition, cancer susceptibility candidate 2 (CASC2) is an lncRNAs with 
low expression in cervical cancer. Suppression of CASC2 expression can 
significantly attenuate cisplatin’s inhibition of cervical cancer cell pro-
liferation and increase the median lethal dose (IC50), while over-
expression can enhance cisplatin’s inhibition of cervical cancer cell 
proliferation and decrease the IC50 value. This suggests that low CASC2 
expression contributes to cisplatin resistance in cervical cancer. Mech-
anistic studies have shown that CASC2 can competitively inhibit 
miR-21, thereby increasing the miR-21 expression of the downstream 
target protein PTEN (tumor suppressor), and PTEN can increase the 
chemosensitivity of cervical cancer cells to cisplatin by regulating the 
AKT signaling pathway [32] (Fig. 1k). In addition, nuclear-enriched 
abundant transcript 1 (Nuclear-enriched abundant transcript 1, 
NEAT1) is a lncRNAs highly expressed in radiation-resistant cervical 
cancer cells [33]. Suppression of NEAT1 expression attenuated the 
proliferation of radioresistant cells and reduced the dose of ionizing 
radiation, while overexpression of NEAT1 did the opposite. This in-
dicates that high expression of NEAT1 is closely related to the resistance 
of cervical cancer to radiotherapy. Mechanistic studies have shown that 
after NEAT1 suppression, miR-193b-3p expression is upregulated, cyclin 
D1 expression is downregulated, resulting in cell cycle arrest in the 
G0/G1 phase, and caspase-3 and caspase-9 expression is upregulated, 
inducing apoptosis. This indicated that high expression of NEAT1 con-
tributes to the resistance of cervical cancer cells to radiation therapy 
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through regulation of the cell cycle and apoptosis (Fig. 1m). Thus, in 
radiotherapy and chemotherapy of cervical cancer, lncRNAs may play a 
role in resistance to radiotherapy and chemotherapy through a specific 
molecular regulatory mechanism. Therefore, the regulation of lncRNAs 
may be a good option for the treatment of patients with cervical cancer, 
especially those resistant to radiation or chemotherapy. 

3. Molecular regulation mechanism of lncRNAs in cervical 
cancer 

3.1. Interaction of lncRNAs with proteins/mRNAs 

LncRNAs can interact with proteins, mRNA or miRNA, and partici-
pate in the basic biological functions of living organisms by regulating 
gene expression, such as gene imprinting, histone modification, mRNA 
splicing, etc. [34]. Cervical cancer-related lncRNAs can directly bind to 
proteins or mRNAs to play a regulatory role at the post-transcriptional 
level. LINC00473 is an lncRNA highly expressed in cervical cancer, 
and its high expression can promote cervical cancer cell proliferation 
and inhibit cell apoptosis [35]. Mechanistic studies showed that 
LINC00473 can directly bind to cell proliferation-related transcription 
factor interleukin-binding factor 2 (ILF2), which had no effect on ILF2 
mRNA levels, but ILF2 protein levels were significantly changed: after 
silencing LINC00473, the half-life of ILF2 protein was shortened, while 
overexpression ILF2 protein half-life is prolonged after LINC00473. This 
indicates that LINC00473 can inhibit ILF2 protein degradation, thereby 
promoting cervical cancer cell proliferation and inhibiting apoptosis. In 
addition, the high expression of CCHE1 in cervical cancer can combine 
with PCNA mRNA to up-regulate the expression of PCNA, thereby pro-
moting the proliferation of cervical cancer cells [24]. These studies 
suggest that the interaction of lncRNAs with proteins or mRNAs plays a 
key role in the development of cervical cancer. 

3.2. Interaction of lncRNAs and miRNAs 

The competing endogenous RNA (ceRNA) hypothesis is that 
lncRNAs, mRNAs, pseudogenes, and circular RNAs in the ncRNAs family 
competitively bind to miRNAs through their miRNAs response elements 
(MREs), thereby regulating gene expression. That is to say, lncRNAs can 
act as ceRNAs to inhibit miRNA expression and activity at the post- 
transcriptional level [36–38]. Gao et al. reported that the expression 
of PVT1 was negatively correlated with miR-424, indicating that PVT1 
could promote the proliferation, migration and invasion of cervical 
cancer cells by negatively regulating the expression of miR-424, thereby 
promoting the development of cervical cancer [39]. In addition, CASC2 
can competitively bind to miR-21 and upregulate the expression of 
PTEN, the downstream target protein of miR-21, thereby promoting the 
chemosensitivity of cervical cancer cells to cisplatin and inhibiting the 
development of cervical cancer [32]. In addition, NEAT1 can also act as 
a ceRNA to inhibit the expression of miR-193b-3p, thereby upregulating 
the expression of cyclin D1, the downstream target of miR-193b-3p, 
accelerating the cell cycle and promoting the development of cervical 
cancer [33]. In summary, lncRNAs can act as a “miRNA sponge” to 
inhibit the expression of miRNAs, up-regulate or down-regulate the 
expression of miRNAs downstream targets, thereby promoting or 
inhibiting the development of tumors. 

3.3. Single nucleotide polymorphisms (SNPs) of lncRNAs 

Genome-wide association studies (GWAS) have revealed a large 
number of closely related genetic variants associated with diseases and 
traits, with at least one-third of the identified variants not within 
protein-coding genes, but instead mapping to non-coding intervals [40]. 
Verhaegh et al. reported for the first time that the single nucleotide 
polymorphism of the H19 gene was closely related to the risk of bladder 
cancer, which opened the prelude to the study of lncRNA single 

nucleotides and tumors [41]. Multiple studies have shown that somatic 
mutations such as single nucleotide polymorphisms in tumor suppressor 
genes or oncogenes play an important role in the genetic susceptibility to 
cervical cancer [42–44]. Guo et al. conducted a case-control analysis of 
510 cervical cancer patients and 713 normal individuals and found that 
three haplotype SNPs (rs920778, rs1899663 and rs4759314) in HOTAIR 
were closely related to the risk of cervical cancer [45]. Among them, 
SNP rs920778 in the HOTAIR enhancer gene was strongly associated 
with cervical cancer. Compared with the wild-type rs920778 CC geno-
type, patients carrying the rs920778(CT + TT) mutation genotype had a 
2.17-fold increased risk of developing cervical cancer. The HOTAIR 
rs920778 SNP T variant allele is located in the HOTAIR intron 2 region, 
which can enhance the activity of the enhancer located in the HOTAIR 
intron 2 region. And compared with rs920778 CC, HOTAIR mRNA 
expression was significantly increased in cervical cancer patients car-
rying rs920778 CT or TT genotype. This indicates that the 
risk-associated allele T is closely related to the expression of HOTAIR, 
and SNP rs920778 can promote the expression of HOTAIR, thereby 
promoting the genetic susceptibility to cervical cancer. At the same time, 
Jin et al. also reported that HOTAIR rs7958904 affects the genetic sus-
ceptibility of cervical cancer by regulating the proliferation of cervical 
cancer cells [46]. In addition, it has been shown that rs7133268 of the 
TNF and HNRNPL-related immunoregulatory lncRNA (THRIL) genes 
can reduce the genetic susceptibility to cervical precancerous lesions 
[47]. These studies indicate that the single nucleotide polymorphisms of 
lncRNAs play an important role in the occurrence and development of 
cervical cancer (Table 1). 

4. Potential clinical application of lncrnas in cervical cancer 

Metastasis and recurrence are the biggest obstacles in the clinical 
treatment of cervical cancer. Therefore, finding effective tumor markers 
is of great value in improving the prognosis of cervical cancer. LncRNAs 
can be used in the diagnosis and prognosis of cervical cancer. For 
example, receiver operating characteristic curve (ROC) analysis showed 

Table 1 
Long non-coding RNAs with oncogenic and oncosuppressive functions in cer-
vical cancer.  

LncRNAs Function Deregulated pathways in 
cervical cancer 

References 

MEG3 Oncosuppressive  [14] 
PVT1 Oncogenic EZH2, Myc, Nop2, p15, p16, 

H3K27me3, NF-kB 
[48–55] 

H19 Oncogenic IGF2, HPV E6 oncoprotein [56] 
FAM83H- 

AS1 
Oncogenic HPV E6, E6-p300 [57] 

MALAT1 Oncogenic RBG2, E-cadherin, β-catenin, 
vimentin, ZO-1, caspase-3, 
caspase-8, Bax, Bcl-2, and BclxL 

[58] 

PAX8 AS1 Oncosuppressive PAX8, NOTCH1 (pancreatic 
carcinoma) 

[59] 

CCAT2 Oncogenic MYC, wnt in colon cancer [60] 
C5orf66- 

AS1 
Oncogenic RING1 [61] 

SPRY4-IT1 Oncogenic ZEB1, EMT, E-cadherin, 
vimentin 

[62] 

CCAT1 Oncogenic MMP14 [63] 
GAS5 Oncosuppressive IER3 [64] 
NOC2L-4.1 Oncogenic YAP1 [65] 
CCHE1 Oncogenic PCNA, ERK/MAPK [24,66] 
HOTAIR Oncogenic BCL2, PRC2, LSD1, VEGF, mmP- 

9, mTOR, Notch, Wnt, STAT3, 
wnt/β-catenin, PI3K/AKT, HPV 
E7 oncoprotein 

[19,20, 
67–75] 

EBIC Oncogenic EZH2, Wnt/β-catenin, E- 
cadherin 

[76,77] 

RSU1P2 Oncogenic IGF1R, N-myc [78] 
LINC00675 Oncogenic Wnt/β-catenin, Bax and GSK-3β 

Bcl-2 
[79]  
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that the expression of SPRY4 intronic transcript 1 (SPRY4 intronic 
transcript 1, SPRY4-IT1) is a good candidate for distinguishing cervical 
cancer tissue from normal tissue (sensitivity: 78.3%, specificity: 63.6%), 
the area under the ROC curve (Area under ROC curve, AUC) was 0.741 
(95%CI: 0.632–0.849, P < 0.001), indicating that the diagnostic accu-
racy of SPRY4 for cervical cancer was higher than that of high [80]. In 
addition, HOTAIR can also be used to distinguish cervical cancer tissue 
from normal tissue (sensitivity: 60.6%, heterosexuality: 87.2%) and 
lymph node metastasis (sensitivity: 85.1%, specificity: 64.9%), and the 
multivariate Cox regression model showed FIGO stage (P < 0.000 1, HR 
= 1.994, 95%CI: 1.359–2.927), lymph node metastasis (P = 0.005, HR 
= 2.636, 95%CI: 1.348–5.156) and HOTAIR expression level (P = 0.012, 
HR = 2.863, 95% CI: 1.263–6.490), indicating that HOTAIR has high 
diagnostic accuracy for cervical cancer and can be used as an indepen-
dent predictor for the prognosis of cervical cancer [19]. In summary, 
SPRY4 and HOTAIR among lncRNAs are promising markers of cervical 
cancer, which can be used as diagnostic indicators and good markers for 
prognosis of cervical cancer (Table 2). 

5. Conclusion 

LncRNAs pass through the entire biological process, are involved in 
the regulation of cancer cell proliferation, anti-apoptosis, migration, and 
resistance to radiation and chemotherapy through various molecular 
regulatory mechanisms, and play a key role in the development of 
various forms of cancer, including cervical cancer [91–94]. Therefore, 
these lncRNAs are ideal molecular markers for cervical cancer and are 
expected to be effective targets for the treatment of cervical cancer. 
Although some progress has been made in the study of lncRNA in the 
pathological mechanism of cervical cancer development, the occurrence 
and development of cervical cancer is determined not by any one factor, 
but by a combination of other factors that affect the incidence of cervical 
cancer. For example: studies of lncRNAs and epigenetics, including DNA 
methylation, histone modification, gene imprinting, chromosome 
remodeling, etc.; study of regulatory networks of lncRNAs and micro-
RNAs, study of cell signal transduction and lncRNAs pathways, etc. The 
focus of future research should be based on existing research results, 
further deepen the study of the lncRNA mechanism that regulates the 
occurrence and development of cervical cancer, and fully solve the 
mystery. LncRNAs will have broad prospects for use as effective markers 
for the clinical diagnosis and treatment of cervical cancer. 

Table 2 
Potential of using lncRNAs in cervical cancer therapy.  

LncRNA Involved 
cases (no. 
and sample) 

Detection 
material 

Clinical marker type 
and Clinical 
significance 

References 

SOX21- 
AS1 

160 patients 
(tumor tissue 
vs. adjacent 
normal 
tissue) 

Tissue Prognostic High 
SOX21-AS1 has a 
shorter OS and is 
positively correlated 
with FIGO stage, 
lymph node 
metastasis, and depth 
of cervical invasion 

[81] 

MEG3 Plasma (36 
CIN I, 48 CIN 
II, 76 CIN 
III,168 
cervical 
cancer 
patients, 328 
healthy 
controls) 
Tissue (168 
cervical 
cancer tissue 
vs. adjacent 
normal 
tissue) 

Plasma Diagnostic and 
Prognostic Higher 
MEG3 methylation 
level is associated 
with poor RFS and OS 
and positively 
correlated HR-HPV 
infection, lymph 
node metastasis. The 
sensitivity and 
specificity are 81.3% 
and 63.5% for 
prediction of lymph 
node metastasis, 
63.1% and 84.2% for 
the diagnosis of HPV 
infection. 

[82] 

GHET1 94 patients 
with cervical 
cancer vs. 47 
normal 

Tissue Prognostic High 
GHET1 is associated 
with poor OS and 
correlated with 
clinical stage, distant 
metastasis, and poor 

[83] 

SNHG14 30 patients 
(tumor tissue 
vs. adjacent 
normal 
tissue) 

Tissue Prognostic High 
SNHG14 has a 
shorter OS and is 
positively correlated 
with tumor size, 
FIGO stage, and 
lymph node 
metastasis 

[84] 

LINC00511 92 cervical 
cancer tissues 
vs. 40 
adjacent 
normal 
tissues 

Tissue Prognostic High 
LINC00511 is 
associated with poor 
OS and positively 
correlated with 
clinical stage, tumor 
size, lymph node 
metastasis, 
histological type of 
adenocarcinoma, and 
distant metastasis 

[85] 

PVT1 156 patients 
with SCCs 
(tumor tissue 
vs. adjacent 
normal 
tissue) 

Serum and 
tissues 
Prognostic 

Diagnostic and 
Prognostic High 
serum PVT1 has a 
shorter OS and is 
positively correlated 
with tumor size 

[86] 

AFAP1- 
AS1 

TCGA, SRA, 
GEO and 
UCSC XENA 
database 

Tissue Prognostic High 
AFAP1-AS1 is 
positively associated 
with the TNM stage, 
high expression and 
hypomethylation of 
AFAP1-AS1 is 
associated with poor 
OS 

[87] 

lncRNA- 
ATB 

187 patients 
(tumor tissue 
vs. adjacent 
normal 
tissue) 

Tissue Prognostic High 
lncRNA-ATB has a 
shorter OS and PFS 
and is positively 
correlated with SCC 
antigen level, tumor 
size, lymph node 

[88]  

Table 2 (continued ) 

LncRNA Involved 
cases (no. 
and sample) 

Detection 
material 

Clinical marker type 
and Clinical 
significance 

References 

metastasis, and FIGO 
stage 

GIHCG Plasma (80 
patients with 
cervical 
cancer vs. 80 
normal 
subjects) 
Tissue (58 
cervical 
cancer tissue 
vs. adjacent 
normal 
tissue) 

Serum and 
tissue 

Diagnostic The 
sensitivity and 
specificity is 88.75% 
and 87.5% for 
cervical cancer 
diagnosis 

[89] 

AC126474 TCGA 
database 
(305 patients 
with cervical 
cancer vs. 
305 normal 
subjects) 

Tissue Prognostic Low 
AC126474 and 
C5orf66-AS1 are 
associated with poor 
OS 

[90]  
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