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Abstract
Glioma is the most frequent type of malignant tumor in the central nervous system, accounting for about 80% of primary 
malignant brain tumors, usually with a poor prognosis. A number of studies have been conducted on the molecular abnor-
malities in glioma to further understand its pathogenesis, and it has been found that lncRNAs (long non-coding RNA) play 
a key role in angiogenesis, tumor growth, infiltration and metastasis of glioma. Since specific lncRNAs have an aberrant 
expression in brain tissue, cerebrospinal fluid as well as peripheral circulation of glioma patients, they are considered to 
be potential biomarkers. This review focuses on the biological characteristics of lncRNA and its value as a biomarker for 
glioma diagnosis and prognosis. Moreover, in view of the role of lncRNAs in glioma proliferation and chemoradiotherapy 
resistance, we discussed the feasibility for lncRNAs as therapeutic targets. Finally, the persisting deficiencies and future 
prospects of using lncRNAs as clinical biomarkers and therapeutic targets were concluded.
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Introduction

Glioma is the most common and aggressive primary tumor 
of central nervous system, accounting for about 80% of 
primary malignant brain tumors [1]. In the 2016 World 
Health Organization (WHO) classification, gliomas are cat-
egorized into diffuse astrocytoma, oligodendroglioma and 
glioblastoma based on histological characteristics [2]. Glio-
blastoma is the most frequent and malignant subtype, with 
a median survival of only 14.1 months [3]. Innovatively, 
molecular features are incorporated into the diagnostic 

criteria of glioma according to the classification, includ-
ing isocitrate dehydrogenase (IDH) mutation and 1p/19q 
codeletion. Therefore, a better understanding of the genetic 
and molecular pathogenesis of glioma could contribute to 
more effective therapies. In recent years, emerging fields 
like genomics, transcriptomics and proteomics have brought 
an explosion of information about glioma. Accordingly, the 
research on glioma biomarkers is developing rapidly [4], 
and long non-coding RNA (lncRNA) have been paid more 
and more attention.

LncRNAs are a class of non-coding RNAs with longer 
than 200 nucleotides, involved in transcriptional, post-tran-
scriptional and epigenetic levels of gene regulation [5, 6]. 
The way in which lncRNAs interacts with other biomol-
ecules and modulates gene expression may be roughly fall 
into five categories (Fig. 1). (1) Signals. Under different 
stimulation, lncRNAs are specifically transcribed and partic-
ipate in signal transduction. Some lncRNAs have regulatory 
function in the signaling pathways after being transcribed, 
while others simply act as by-products in the regulatory 
pathways [7]. (2) Molecular decoys. This kind of lncRNAs 
directly bind to DNA-binding proteins or other transcription 
factors, thus blocking the action of this signaling pathway 
and regulating downstream gene transcription[8]. In par-
ticular, lncRNAs may act as effective natural microRNA 
sponges that regulate gene expression by competitively 
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binding microRNAs which known as competitive endog-
enous RNAs (ceRNAs) [9]. (3) Molecular guides. LncRNAs 
bind to those proteins and chromatin-modifying complexes, 
which usually identified as transcription factors, and then 
recruit them to specific sequences in the chromatin [10]. 
(4) Scaffolds. Multiple related transcription factors bind to 
single lncRNA molecule to initiate cross talk and integration 
between different signaling pathways. LncRNA scaffolds 
can co-regulate gene transcription temporally and spatially, 
which are conducive to the body and cells to produce feed-
back to external signals quickly [11].

Recent evidence indicates that aberrant lncRNA expres-
sion plays an important role in glioma pathogenesis [12], 
such as biogenesis, proliferation, angiogenesis and treatment 
resistance. When compared with mRNAs. the expression 
level of lncRNAs is higher in brain tissues than in other 
tissues [13], so lncRNAs may be more suitable biomarkers 
for glioma. In this review, we explore the potential use of 
lncRNAs as diagnostic and prognostic biomarkers, as well 
as their possible application in clinical treatment of glioma.

LncRNAs as biomarkers for glioma

lncRNA and glioma diagnosis

The current approach to diagnose glioma are mainly 
based on neuroimaging and biopsy. With the introduc-
tion of molecular parameters in the diagnosis of glioma 
[2], biopsy is of great significance for the treatment of 
glioma patients. However, the invasive procedure of tissue 
acquisition itself brings risks to the patients, and there is 
no way to know the subsequent mutation of tumor. Fur-
thermore, the focal sampling of a lesion may not fully 
capture the intratumoral heterogeneity [14]. By contrast, 
liquid biopsy, referring to the replacement of surgical 
biopsy specimens with fluid samples such as blood and 
cerebrospinal fluid (CSF), may be the answer to these chal-
lenges. Liquid biopsy offers the promise of diagnosis and 
mutational analysis of glioma in a non-invasive manner 
[15], being available as an effective supplement to existing 

Fig. 1  Four action modes of 
lncRNA mechanism. Four 
action modes of lncRNA mech-
anism. A Signals. LncRNAs are 
specifically transcribed under 
the stimulation of upstream sig-
nals and participate in signaling 
pathway as signal transduction 
molecules. B Decays. LncRNAs 
directly bind to transcription 
factors or miRNAs, thereby 
blocking the action and signal-
ing pathway of the molecules 
and regulating downstream gene 
transcription. C Guides. LncR-
NAs are combined with proteins 
and chromatin-modifying com-
plexes, which are then localized 
to specific DNA sequences. 
D Scaffolds. Multiple related 
transcription factors bind to 
the same lncRNA and jointly 
regulate gene transcription or 
inhibition
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solid biopsy. Liquid biopsies usually detect circulating 
tumor cells, extracellular vesicles, circulating tumor DNA 
(ctDNA) and circulating tumor RNA (ctRNA). As one of 
them, lncRNA is receiving more and more attention.

The best-known usage of lncRNA in cancer diagnosis is 
Prostate cancer antigen 3 (PCA3) in prostate cancer. PCA3 
is a specific lncRNA with an increased expression in more 
than 90% prostate tumors [16], which is already clinically 
used for prostate cancer detection and has been approved by 
the US Food and Drug Administration (FDA) [17]. Com-
pared with prostate cancer, the most important character-
istic of glioma is the existence of the blood–brain barrier, 
hinders the migration of glioma biomarkers to peripheral 
blood. Moreover, due to the presence of a large number of 
RNA enzymes in the blood, the half-life of free lncRNAs in 
the plasma is only 3 h and are easily decomposed. Neverthe-
less, lncRNAs can still exist stably in the peripheral blood 
attributed to the fact that exosomes serve as carriers for most 
lncRNAs [18]. The concentration of lncRNAs in exosomes 
can be even higher than that in derived cells [19]. Therefore, 
lncRNAs in peripheral blood and CSF could be suitable bio-
markers for the diagnosis and prognosis of glioma.

At the molecular level, the lncRNA expression show 
considerable variation whether between glioma and nor-
mal tissue or among different glioma subtypes. Zhang et al. 
analyzed a cohort of gene expression data from the Gene 
Expression Omnibus (GEO) and found 129 lncRNAs, which 
showed a more than two-fold difference between gliomas 
and normal brain tissues [20]. Another analysis of glioma 
data based on The Cancer Genome Atlas (TCGA) showed 
that lncRNAs are extensively induced or repressed in both 
glioblastoma and low-grade glioma (LGG) [21]. Some 

differentially expressed lncRNAs were reported to have 
the potential function as biomarkers for glioma diagnosis 
(Table1).

It is worth mentioning that serum lncRNA HOX tran-
script antisense RNA (HOTAIR) can perform a diagnostic 
biomarker for glioblastoma, with a sensitivity of 86.1% and 
a specificity of 87.5%. According to the data in TCGA, glio-
blastoma can be classified into classical, mesenchymal, neu-
ral, and proneural subtypes based on gene expression [32]. 
Research has found that HOTAIR expression varied in differ-
ent subtypes, which was markedly increased in the classical 
and mesenchymal subtypes compared with the neural and 
proneural subtypes [33]. Similarly, HOXA11-AS expression 
also showed great difference among the four glioblastoma 
subtypes. Specifically, the expression in the classical and 
mesenchymal subtypes was higher than that in the neural 
and proneural subtypes [34]. These results suggested that the 
expression level of some lncRNAs is closely related to tumor 
classification, and may even affect the malignant behavior 
of tumors.

lncRNA and glioma prognosis

Treatment for gliomas includes surgical resection, radiation 
and chemotherapy. The Response Assessment in Neuro-
Oncology (RANO) criteria based on magnetic resonance 
imaging (MRI) is considered to be the gold standard for 
treatment efficacy evaluation [35]. The main problem in 
measuring treatment effectiveness is pseudoprogression 
[36, 37], which is caused by the response of brain tissue 
to chemotherapy and radiotherapy. The imaging feature of 
pseudoprogression is defined as increased enhancement and 

Table 1  LncRNA as diagnostic biomarkers in glioma

AUC  area under the receiver operating characteristic (ROC) curve, ANRIL CDKN2B antisense RNA 1, DLX6-AS1 Distal-less homeobox 6-anti-
sense 1, ELF3-AS1 ETS transcription factor 3-antisense RNA 1, GAS8-AS1 growth arrest-specific 8-antisense 1, HOTAIR Hox transcript anti-
sense intergenic RNA, LINK-A Long intergenic non-coding RNA for kinase activation, NEAT1 Nuclear enriched abundant transcript 1, PSMG3-
AS1 Proteasome assembly chaperone 3-antisense 1, PVT1 Plasmacytoma variant translocation gene 1, SOX9 SRY-box transcription factor 9, 
ZNF667-AS1 Zinc finger protein 667-antisense RNA 1

LncRNA Levels Cohort AUC Evaluation Criteria Reference

ANRIL, SOX9 Upregulate 142 Patients, 120 Controls 0.930 Glioma Diagnosis [22]
DLX6-AS1 Upregulate 36 Patients 0.795 Glioma Diagnosis [23]
ELF3-AS1 Upregulate 182 Patients 0.8073 Glioma Diagnosis [24]
GAS8-AS1 Downregulate 51 Patients, 51 Controls 0.88 Glioblastoma Diagnosis [25]
HOTAIR Upregulate 43 Patients, 40 Controls 0.913 Glioblastoma Diagnosis [26]
HOTAIR Upregulate 123 Patients 0.716 Grade I / Grade II-IV Glioma Discrimination [27]
LINK-A Upregulate 52 Patients, 38 Controls 0.8543 Glioma Diagnosis [28]
NEAT1 Upregulate 51 Patients, 51 Controls 0.90 Glioblastoma Diagnosis [25]
PSMG3-AS1 Upregulate 62 Patients, 62 Controls 0.9010 Glioblastoma Diagnosis [29]
PVT1 Upregulate 59 Patients, 10 Controls 0.835 Glioma Diagnosis [30]
ZNF667-AS1 Upregulate 155 Patients 0.8541 Glioma Diagnosis [31]
ZNF667-AS1 Upregulate 155 Patients 0.7742 Grade I-II / Grade III-IV Glioma Discrimination [31]
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edema on MRI, hard to differ from tumor progression. This 
condition may be due to edema and increased vascular per-
meability caused by treatment-related local inflammation. 
Differential diagnosis is necessary because a combination of 
chemotherapy and radiotherapy may induce pseudoprogres-
sion in about 30% patients [38, 39]. Unfortunately, There is 
currently no effective radiological technique to distinguish 
pseudoprogression from tumor recurrence [40]. Several 
studies showed that lncRNA biomarkers may aid in the 
determination of glioma recurrence. For instance, lncRNA 
family with sequence similarity 225 member B (FAM225B) 
upregulates in recurrent glioblastoma, and is identified to be 
an independent prognostic factor for recurrent glioblastoma 
[41].

The multi-level involvement of lncRNAs in tumor bio-
logical process, makes them potential choices as prognostic 
biomarkers of glioma. Multiple lncRNAs have been con-
firmed to be closely related to the clinicopathological data 
and prognosis of glioma patients. A meta-analysis including 
14 eligible studies and 1415 glioma patients indicated that 
lncRNA expression not only significantly correlated with 
overall survival (OS) in glioma patients but also associated 
with tumor diameter, tumor grade, and Karnofsky Perfor-
mance Status Scale (KPS) [42]. According to another meta-
analysis study, the expression of urothelial carcinoma-asso-
ciated (UCA1) was positively associated with tumor size, 
while high MALAT1 expression could predict short OS [43]. 
Compared with single lncRNA, lncRNA signature displayed 
stronger predictive effect for prognosis (Table 2). Most of 
these studies were based on lncRNAs in brain tissue, but 
some studies investigated the relationship between lncRNAs 
in serum and glioma prognosis. For example, Shen et al. 
found the expression level of HOTAIR and growth arrest-
specific transcript 5 (GAS5) in serum were associated with 
survival, recurrence and progression in glioblastoma [44].

LncRNAs as therapeutic targets for glioma

lncRNA and signaling pathways

As mentioned above, the expression of lncRNAs in glioma 
differs greatly from that in normal tissues. Studies have con-
firmed that lncRNAs involved in various signaling pathways 
and play a role in diverse biological behaviors of glioma, 
such as proliferation, migration and invasion. Accordingly, 
lncRNAs can serve as therapeutic targets through regulating 
these signaling pathways (Fig. 2).

LncRNAs in PI3K/Akt signaling pathway

Phosphoinositide 3-kinase (PI3K) can be activated by some 
growth factor receptors such as epidermal growth factor 

receptor (EGFR), platelet-derived growth factor recep-
tor (PDGFR), fibroblast growth factor receptor (FGFR) as 
well as the insulin-like growth factor receptor (IGFR). The 
abnormal activation of PI3K and its downstream signaling 
pathways affects the apoptosis of cells, and has been sug-
gested to be involved in the growth, metabolism, invasion 
and angiogenesis of glioma [59].

lncRNA LPP antisense RNA-2 (LPP-AS2) is a lncRNA, 
which is found upregulated in glioblastoma. It functions as 
a ceRNA and decoys for miR-7-5p to upregulate the expres-
sion of EGFR and activate the downstream PI3K/AKT/c-
MYC pathway. Besides, LPP-AS2 is both directly and 
transcriptionally regulated by c-MYC, forming a positive 
feedback loop and promote tumorigenesis [60]. Similarly, 
lncRNA small nucleolar RNA host gene 16 (SNHG16) binds 
to miR-373-3p to regulate EGFR expression [61].

Phosphatase and tension homolog (PTEN) is a major 
tumor suppressor gene, which depletes levels of.

phosphoinositol 3,4, 5-triphosphate (PIP3) and downreg-
ulate PI3K [59]. Studies found lncRNA brain cytoplasmic 
RNA 1 (BCYRN1) [62], and DiGeorge Syndrome Critical 
Region Gene 5 (DGCR5) [63] function as ceRNAs, regulate 
PTEN expression and therefore play a tumor-suppressive 
role via PI3K/Akt pathway.

LncRNAs in Wnt/β‑catenin signaling pathway

Wnt is a group of secreted glycoproteins. When Wnt signal 
is lost, cytoplasmic β‐catenin acts as an intercellular adhe-
sion protein and degraded via the ubiquitination pathway. 
Once Wnt signal is activated, β‐catenin translocates from 
cytoplasm to nucleus, functions as a transcriptional coactiva-
tor and then regulates the expressions of target genes, such 
as c‐Myc and cyclin D1 [64]. Compared to normal tissues, 
expression of β-catenin is significantly higher in glioma tis-
sues, which is also associated with higher histological malig-
nancy grade and worse prognosis [65].

LncRNAs plays various roles in Wnt/β-catenin signal-
ing pathway. LncRNA solute carrier family 8 member A1 
antisense RNA 1 (SLC8A1-AS1) is highly upregulated in 
glioma tissues. It promotes proliferation, colony formation, 
migration, and invasion through activating Wnt/β‐catenin 
signaling [66]. Consistently, lncRNA ADAM Metallopepti-
dase with Thrombospondin Type 1 Motif 9 Antisense RNA 
1 (ADAMTS9-AS1) deficiency attenuates glioma cell pro-
liferation and induced glioma cell apoptosis proliferation 
and migration of glioma cells by suppressing Wnt/β‐catenin 
pathway [67]. Moreover, knockdown of lncRNA RP5-
821D11.7 (lncRNA-RP5) negatively affects glioma prolif-
eration, colony formation, migration and reduces epithe-
lial-mesenchymal transition (EMT) through Wnt/β-catenin 
cascade [68]. Conversely, lncRNA ST7 antisense RNA 1 
(ST7-AS1) expression is reduced in glioma tissues. ST7-AS1 
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overexpression downregulates polypyrimidine tract-binding 
protein 1 (PTBP1) expression, suppresses Wnt/β-catenin 
pathway and inhibits glioma progression, which might be a 
promising therapeutic target [69].

LncRNAs in Notch signaling pathway

Notch signaling consists of transmembrane receptors, 
transmembrane ligands and DNA binding proteins. Notch 
is hydrolyzed by proteases and releases Notch protein frag-
ment such as Notch intracellular domain (NICD), and then 
binds to transcription factor CSL (CBF1, Suppressor of 
Hairless, Lag-1) to regulate downstream gene expression 

of both normal cells and tumor cells [70]. The most impor-
tant physiological implication of the Notch pathway in gli-
oma lies in its maintenance of glioma stem cells (GSCs). 
Activation of the Notch pathway can produce more NICD 
and then induce GSC differentiation and contribute to 
intra-tumor heterogeneity [71]. Long intergenic non-pro-
tein coding RNA 1410 (LINC01410) motivates Notch sign-
aling pathway and accelerates the progression of glioma 
by sponging miR-506-3p and promoting NOTCH2 receptor 
[72]. Prostate cancer-up-regulated long noncoding RNA 
1(PlncRNA-1) promotes cell proliferation and inhibits cell 
apoptosis via modulation of Notch pathway, indicating 
that lncRNAs play vital roles in the regulatory of Notch 

Table 2  LncRNA as prognostic biomarkers in glioma

AUC  area under the receiver operating characteristic (ROC) curve, MES mesenchymal subtype, OS Overall Survival, LGG low-grade glioma, 
PCG protein coding gene

LncRNA Cohort AUC Evaluation Criteria Reference

6-lncRNA risk signature in LGG 529 LGG samples and 531 normal brain samples 0.884 1-year Survival [45]
0.857 3-year Survival
0.813 5-year Survival

7 EMT-related lncRNAs 633 glioblastoma samples and 28 normal brain 
samples

0.624 1-year Survival [46]
0.650 2-year Survival
0.657 3-year Survival

8 immune-associated lncRNAs in LGG 529 LGG samples and 5 normal brain samples 0.81 3-year Survival [47]
0.738 5-year Survival

8 mutant-derived lncRNAs signature in LGG 714 LGG samples 0.919 1-year Survival [48]
0.913 3-year Survival
0.851 5-year Survival

9 immune-associated lncRNAs of LGG 529 LGG samples and 1152 normal brain samples 0.87 OS Prediction [49]
10 MES-related lncRNAs 1284 glioma samples 0.762 OS Prediction [50]
10 immune-related lncRNAs 629 glioma samples 0.866 1-year Survival [51]

0.734 3-year Survival
0.64 5-year Survival

10-lncRNA-based Classifier 1094 glioma samples 0.892 3-year Survival [52]
0.836 5-year Survival

11 immune-related lncRNAs of LGG 529 LGG samples 0.866 3-year Survival [53]
0.762 5-year Survival

Ferroptosis-related lncRNAs Signature 1904 glioma samples 0.869 1-year Survival [54]
0.914 3-year Survival
0.879 5-year Survival

Glycolysis-related lncRNA Signature 685 glioma samples 0.851 3-year Survival [55]
0.879 5-year Survival

Metabolism-related lncRNA-mRNA Signature 951 glioma samples 0.806 OS Prediction [56]
PCG-lncRNA signature 233 glioma samples 0.69 1-year Survival [57]

0.72 2-year Survival
0.81 3-year Survival

AC064875.2 995 glioma samples 0.8961 OS Prediction [58]
HOTAIRM1 0.8893
LINC00908, 0.9142
RP11‐84A19.3 0.9000
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signaling pathway and have potential of becoming thera-
peutic targets.

lncRNA and therapeutic resistance

In all treatments of glioma like surgical resection, radia-
tion and chemotherapy, therapeutic resistance is an inevi-
table problem. The therapeutic tolerance of gliomas is 
closely related to GSCs. GSCs have features of pluripo-
tency and self-renewal and are capable of producing a 
variety of cell types that constitute the bulk of tumor [73]. 
After surgical resection, GSCs remaining are considered 
to be the main cause of glioma recurrence [74]. Similarly, 
CSCs are believed to be responsible for temozolomide 

(TMZ) resistance and become a source of new tumor cells 
[75]. CD133-expressing GSCs are enriched in glioma after 
radiation therapy, which were found to promote radiation 
resistance through various pathways such as the DNA 
damage checkpoint [76], Notch [77] and NF-κB [78].

There are a number of lncRNAs involving the self-
renewal, proliferation and differentiation of GSCs. Fritah 
et al. analyzed the transcriptome changes of GSCs under 
the standard chemotherapy by TMZ and found that TMZ 
induced the expression of a large number of lncRNAs. 
The researchers also integrated thousands of molecular 
associations in databases and generate a gene regulatory 
network. 22 lncRNAs were extracted from the network, 

Fig. 2  LncRNAs regulating important signaling pathways in glioma. 
lncRNAs can not only upregulate or activate the receptors on the sur-
face of the cell membrane but also affect key moleculesin the sign-

aling pathways, influecing the biological behavior of glioma. mTOR 
mammalian target of rapamycin, GSK-3 glycogen synthase kinase-3, 
LEF lymphoid enhancer factor; TCF, T-cell factor
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which involve in regulatory loops of drug response and 
have prognostic value in gliomas [79].

Notch signaling has received a lot of attention in pro-
moting GSC self-renewal and suppressing GSC differentia-
tion. It was found that Notch signaling regulates lncRNA 
taurine-upregulated gene 1(TUG1) expression in glioma, 
while TUG1 helps maintain the stemness of GSCs through 
antagonizing miR-145. Additionally, TUG1 targeting treat-
ment induces GSC differentiation and inhibits cell prolif-
eration in vivo [80]. Moreover, Several r lncRNAs such as 
SOX2 overlapping transcript (SOX2OT) [81], LINK00152 
[82], TP73-AS1 [83] and HOTAIRM1 [84] also play critical 
roles in the malignant behavior of GSCs and considered to 
be potential therapeutic targets for glioma.

TMZ, as a kind of alkylating agent, is the first-line 
therapy for glioma. Unlike many other chemotherapeutic 
drugs, TMZ can readily cross the blood–brain barrier [85]. 
Its metabolic products can methylate the guanine residues, 
The methylated guanine, which cannot be repaired by DNA 
mismatch repair (MMR), and leads to replication-associated 
double-stranded DNA breaks, G2/M cell cycle arrest, and 
eventl apoptosis [86].

Unfortunately, temozolomide only extends survival by 
two months [87], and gliomas are always resistant to TMZ. 
The most classic mechanism of resistance to TMZ therapy 
is upregulation of the enzyme methylguanine-DNA meth-
yltransferase (MGMT), which directly repairs methylated 
guanine. Several lncRNAs involved in the regulation of 
MGMT expression. Oncogene transforming growth fac-
tor beta1 (TGF-β1) is able to upregulate lncRNA H19 and 
HOXD-AS2, decrease miR-198 expression, and then pro-
mote temozolomide resistance and MGMT expression. 
[88]. Temozolomide-associated lncRNA in glioblastoma 
recurrence (lnc-TALC) can also increase MGMT expression 
by mediating the acetylation of H3K9, H3K27 and H3K36 
in MGMT promoter regions through the c-Met/Stat3/p300 
axis [89].

Extensive studies reported alterations in the DNA mis-
match repair (MMR) system also conferred resistance to 
temozolomide [90, 91]. One research found that lncRNA 
X-inactive Specific Transcript (XIST) coregulates MMR and 
MGMT pathways at the same time. XIST directly targets 
miR-29c to regulate one of the key MMR proteins, MSH6, 
and downregulates MGMT expression simultaneously [92].

Given to their extensive involvement in transcriptional 
and post-transcriptional regulatory, lncRNAs may also reg-
ulate drug-resistance pathways independent from MGMT. 
LncRNA small nucleolar RNA host gene 12 (SNHG12) acts 
as a sponge for miR-129-5p, leading to anti-apoptosis and 
G1/S transition via the MAPK/ERK pathway [93]. CACS2 
is a tumor-suppressive lncRNA that inhibits the proliferation 
of glioma cells and amplifies TMZ-induced repression of 
cell proliferation [94]. SET-binding factor 2 antisense RNA1 

(SBF2-AS1) [95] and MALAT1 [96] also enhances chemore-
sistance to temozolomide.

As stated above, the resistance of glioblastoma to radio-
therapy is similarly complex. Multiple signaling pathways 
collectively maintain the intrinsically-radioresistant glioma 
stem cell populations. [97]. In other tumors, lncRNAs medi-
tate radioresistance through various mechanisms including 
repair of DNA damage, cell cycle arrest, apoptosis, CSCs 
regulation, EMT, and autophagy [98]. Liu et al. use clustered 
regularly interspaced short palindromic repeat interference 
(CRISPRi) to screen out nine lncRNAs sensitizing cells to 
radiation, named as lncRNA Glioma Radiation Sensitizers 
(lncGRS) [99]. The expression of lncRNA antisense hypoxia-
inducible factor (AHIF) in glioblastoma augments under 
radiation, conferring the ability of vitality, invasion and radi-
ation resistance on tumor cells. More importantly, the ability 
can be transmitted between tumor cells through exosomes 
[100]. Lnc-RI acts as a ceRNA by competitively binding 
to miR-193a-3p, stabilizes RAD51 mRNA and increases 
spontaneous DNA double-strand break (DSBs) repair lev-
els [101]. Furthermore, TPTEP1 competitively interacting 
with mir-106a-5p to upregulate MaPK14 expression, thereby 
activating the P38 MaPK signaling pathway, and suppress-
ing glioma stemness and radioresistance [102]. LINK-RA1 
can stabilize the level of H2B K120 monoubiquitylation 
(H2Bub1), thus inhibiting the activation of autophagy and 
contributing to the radioresistance of glioma cells [103] 
(Fig. 3).

Conclusions and future prospects

Since been discovered in the last century, lncRNAs were 
once thought to be transcriptional noise for a long time. With 
the report [104] of HOTAIR, the regulation of lncRNAs on 
gene expression has become a focus of research. In the field 
of glioma, researchers have explored many lncRNAs with 
diagnostic and therapeutic potential. Glioma lncRNAs can 
be transported by exosomes, cross the blood–brain barrier 
and easily detected in peripheral circulation. Moreover, 
lncRNAs have the features of disease specificity and cell 
type specificity.

Although substantial experimental evidence and bioin-
formatics analysis suggest that lncRNAs have great poten-
tial as biomarkers in glioma, translating basic research into 
clinical practice still faces many difficulties, which is also 
the direction for future investigation. Firstly, to date, none 
of the lncRNA specificity is sufficiently high to pass the 
requirements of the Tumor Marker Utility Grading System 
Levels of Evidence/NCCN for clinical application [105]. 
Secondly, technical standards for the extraction of lncRNA 
samples need to be established, and there is an absence of 
clinical research to obtain biological correlation, sensitivity, 
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specificity, etc. Lastly, the concentration of lncRNA in 
peripheral blood is too low, and there lacks a rapid, economi-
cal and efficient approach for detection. Real-time polymer-
ase chain reaction (RT-PCR) is the gold standard for RNA 
level measurement, but it requires expensive equipment and 
is highly sensitive to genomic DNA contamination [106]. 
Microarray-based method is not easily interfered by contam-
ination, but does not involve the amplification of samples, 
resulting in low sensitivity [107]. New detection methods 
like nanosensors are highly anticipated. It's also required 
to determine whether the dysregulated lncRNA expression 
can be used as a predictor of tumorigenesis rather than just 
prognosis.

It’s exciting to make therapeutic targeting of lncRNAs 
in the clinic a reality. Nevertheless, better understanding of 
the off-target effects of nucleic acid therapeutics and poten-
tial toxicity is needed. CRISPR-Cas9 is another exciting 
technology that can be used to target lncRNAs, however, 
further research is needed to fully understand its effects and 
application.
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repair. The self-renewal of GSC is regulated by multiple lncRNAs, 
which have substantial effects in treatment resistance
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