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Abstract 
The structure and energy of planar superstructure defects (PSDs) in ordered alloys with the L1

0
 superstructure are analyzed 

using an approach based on the analysis of the translational and point symmetry of the structure and the summation of 
pairwise interatomic bonds across the defect plane. The symmetry analysis of the alloy revealed six superstructure domains 
and one antiphase vector. Analytical expressions are obtained for calculating the sublimation energy and the energy of an 
arbitrary PSD under the assumption of pairwise interatomic interactions and neglecting the tetragonality of the alloy and 
the relaxation of atoms due to the difference in the atomic radii of the components. An expression is derived for finding all 
possible planes of conservative antiphase boundaries. The presented results are useful for analyzing slip systems and clas-
sifying possible PSDs in L1

0
 ordered alloys.
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1 Introduction

There are many binary and ternary alloys, which in a certain 
temperature range are ordered into the L1

0
 superstructure 

based on the fcc lattice, see Fig. 1. Among them are the 
alloys containing magnetic elements Fe, Co and Ni, noble 
metals Cu and Au, as well as the light elements Ti and Al.

First of all, the fields of application of alloys with the L1
0
 

superstructure are described. Probably, magnetic L1
0
 ordered 

alloys are of most interest for applications [1–5]. FePt alloy, 
due to its large perpendicular magnetocrystalline anisot-
ropy, is a potential material for electrode for high-density 

information storage devices [1]. Tetragonal martensite L1
0
 

phase can appear as an intermediate phase in phase tran-
sitions in Fe-Ga ferromagnetic shape memory alloys [6]. 
L1

0
 TiAl has been studied as a high-temperature material 

because of its high melting temperature and low density [7].
Ordered alloys and compounds support phases with 

ordered vacancies. For instance, vacancy ordering in the 
carbon sublattice is observed in carbides of IV and V group 
transitional metals with B1 structure [8]. Copper-poor 
ordered vacancy compound Cu(In,Ga)Se

2
 can be used for 

high performance solar cells [9]. The first-principles density 
functional theory calculations reveal the stability of a family 
of ordered phases that combine features of L1

2
 and L1

0
 in 

different ratios and confirm the stability of vacancy ordered 
B2 derivatives that are stable in the Al-rich half of the phase 
diagram [10].

Ag or Pb can effectively promote the transition to the 
ordered state of L1

0
-FePt nanoparticles, which are used as 

catalysts [11–13]. The difference between the diffusion coef-
ficients of Ag and Pb can generate a large number of vacan-
cies in the lattice, which contribute to the rearrangement of 
Fe and Pt atoms.

Second, planar superstructure defects are defined and 
the mechanisms of their formation are described. A planar 
defect is called a superstructure defect if, on both sides of 
the plane of the defect, atoms remain in their lattice positions 
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(disregarding atomic relaxation near the defect due to the 
difference in atomic radii of the alloy components), but the 
arrangement of atoms on the shifted monatomic lattices 
changes [14]. Such defects are possible only in ordered 
alloys.

Planar superstructure defects (PSDs) are inevitably 
formed in the process of ordering by the mechanism of 
nucleation and growth as a result of the collision of different 
domains of the ordered phase [14]. They can also be formed 
as a result of dislocation glide [14]. APBs can be separated 
by interfacial boundaries as a result of the wetting phe-
nomenon. Wetting ordered interlayers have been observed 
experimentally and simulated using the Ising model in a L1

0
 

alloy with a composition close to Co
40

Pt
60

 [15]. A macro-
scopic layer of L1

2
 structure appears between orientational 

domain wall and a complex L1
2
/L1

0
/L1

2
 structure with four 

interfaces separates the anti-phase domains [15].
Next, the effect of PSDs on the properties of L1

0
 alloys 

is discussed. PSDs control many properties of the ordered 
alloys. For example, L1

0
 ordered TiAl alloy exhibits a flow-

stress anomaly with a maximum at approximately 600 ◦ C, 
which is explained by the dislocation dissociation and for-
mation of planar defects [16]. Superdislocations break up 
into a triplet that includes an antiphase boundary (APB) and 
an internal stacking fault. The screw dislocation undergoes 
a glissile-sessile transition with increasing temperature, and 
the octahedral slip is replaced by a cubic one. Cross slip on 
octahedral planes at room temperature explains the high-
temperature flow stress peak in TiAl [16].

It has been proposed that the high coercivity in L1
0
 FePd 

films is explained by pinning of magnetic domain walls by 
APBs and twin boundaries [17].

Molecular dynamics simulations have shown that �
-TiAl with L1

0
 ordered structure has a higher radiation 

resistance against primary damage formation, as compared 

to the disordered Ti-50 at%Al alloy [18]. A positive cor-
relation between dislocation density and coercivity of L1

0
 

Mn-Al alloys was established in the work [19].
A theoretical study on the ordering kinetics of FePt nan-

oparticles during high temperature annealing has shown 
that the remaining APBs are the major obstacle in obtain-
ing completely ordered nanoparticles [20].

A high degree of ordering of L1
0
 alloys can be achieved 

not only by prolonged annealing. Highly ordered CoPt and 
NiPt nanoparticles with L1

0
 structure were obtained at 

lower processing temperatures and shorter reaction times 
than ordinary thermal processes [21]. At high tempera-
tures, an order-disorder phase transition usually occurs. 
Using in-situ synchrotron X-ray scattering it was shown 
that PtNi nanocrystals on sapphire substrate were ordered 
in the tetragonal L1

0
 structure at low temperatures and 

at 640 ◦ C a transition to the disordered fcc structure was 
observed [22].

The ordered L1
0
 phase is tetragonal and anisotropic; this 

must be taken into account when evaluating the properties 
of single crystals, for example, diffusion coefficients, as was 
done in molecular dynamics studies for FePt ally in the tem-
perature range from 1300 to 1600 K [23]. The L1

0
 tetragonal 

distortion of FeNi can be enhanced by introducing interstitial 
N-doping, which can control its magnetic properties [24].

Long-period superstructures with antiphase domains in 
the annealed nanocrystals of L1

0
-ordered CoPt alloy have 

been observed by high-resolution transmission electron 
microscopy in form of a checkerboard pattern [25].

Finally, various modeling methods used to study the 
structure and properties of L1

0
 alloys are discussed. The 

time evolution of antiphase domains in L1
0
 ordered Fe-Pd 

alloy was simulated based on the combination of the cluster 
variation method with the phase-field method [26–28].

Monte Carlo simulations of alloy ordering is often per-
formed for rigid lattice, i.e., neglecting atomic relaxation 
[29]. Either the vacancy diffusion according to the Glauber 
algorithm or voxel Ising-type models can be used [29, 30]. 
Energies of PSDs in various superstructures were expressed 
in terms of pair interatomic potentials [31, 32].

Generalized Ginzburg-Landau approach was used to for-
mulate the statistical theory of equilibrium antiphase and 
interphase boundaries for the B2 and L1

0
 ordered alloys [33].

Ab-initio simulation method was used to calculate the 
energies of APBs in Al-rich �-TiAl alloys with L1

0
 super-

structure. The relaxed APB energies for type-A and type-C 
APBs were found to be 15.44 and 124.16 mJ/m2 , respec-
tively [34]. In Al

5
Ti

3
 alloy, type-A and type-C APBs are 

most common. This alloy is an Al-rich derivative of the �
-TiAl phase with L1

0
 order. In the work [35], the Monte 

Carlo simulation of the ordering kinetics has been performed 
and the expressions for the energies of type-A and type-C 
APBs have been given in therms of pair interaction energies.

Fig. 1  A cubic translational cell of the L1
0
 superstructure based on 

the fcc lattice. Atoms A and B are shown in blue and yellow, respec-
tively. For convenience, for the lattice parameter a = 2 is set, then the 
translation vectors of the cubic lattice are u

1
= (2, 0, 0) , u

2
= (0, 2, 0) , 

u
3
= (0, 0, 2) . Cubic monatomic sublattices are numbered from 1 to 4. 

Sublattices 1 and 2 (3 and 4) are occupied by the atoms A (B)
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Theoretical studies of the structure and properties of 
ordered alloys began in the middle of the last century [14, 
36–38]. In these and subsequent works, the theory of inter-
phase and antiphase boundaries in fcc and bcc ordered alloys 
was developed on the basis of an analysis of the symmetry 
of alloys and assumptions about pair interactions and rigid 
coordination spheres. In this work, a similar approach and 
similar assumptions are used to simplify the problem and 
make it possible to obtain analytical expressions for the PSD 
energy. The calculation of the PSD energy is reduced to the 
summation of pair interactions across the plane of the defect. 
Symmetry analysis is used to describe all possible types of 
PSDs in the L1

0
 superstructure and to obtain a list of crystal-

lographic planes in which conservative APBs are possible.
It can be seen that PSDs constitute an important class 

of defects in ordered alloys. A systematic analysis of the 
structure and energy of such defects in L1

0
 ordered alloys 

has not been done. An analysis of the structure and energy 
of the PSDs for the family of ternary X

2
YZ Heusler alloys 

was recently carried out [39]. In the present study, a similar 
analysis is carried out for alloys with the L1

0
 superstructure.

2  Structure of the Alloy

This section describes the L1
0
 packing of atoms in a binary 

alloy of stoichiometric composition AB based on the fcc lat-
tice. The tetragonality of the lattice is neglected for simplic-
ity. Let the cubic translational cell shown in Fig. 1 in the 
Cartesian coordinate system xyz, has the lattice parameter 
a. It is convenient to carry out a crystallogeometric analysis 
of the alloy by taking a = 2 ; in this case, all the coordinates 
of the atoms will be expressed in whole numbers. Atoms of 
the L1

0
 superstructure occupy the sites of the fcc lattice. This 

superstructure is a union of four monatomic simple cubic 
lattices, two of which are occupied by A atoms, and the other 
two by B atoms. Atoms A and B are shown in Fig. 1 in blue 
and yellow, respectively.

First, the lattice L as a set of points in three-dimensional 
space with radius vectors

is defined, where �i , i = 1, 2, 3 , are any integers and ui are 
three linearly independent vectors defining the basis of the 
lattice.

Simple cubic lattice Lc with the lattice parameter a = 2 is 
generated by the vectors

The superstructure L1
0
 , as noted above, can be defined as a 

union of 4 monatomic cubic lattices Lc (numbered by index 

(1)x = �
1
u
1
+ �

2
u
2
+ �

3
u
3
,

(2)u
1
= (2, 0, 0), u

2
= (0, 2, 0), u

3
= (0, 0, 2).

m = 1, 2, 3, 4 ) shifted by vectors �m , with atoms of sort Sm 
occupying the points of the m-th shifted lattice:

where the shift vectors are

The shifted cubic lattices are occupied by the atoms of sorts 
A and B as follows (see Fig. 1):

Expressions from (2) to (5) define the L1
0
 superstructure as 

a union of 4 monatomic cubic lattices.

3  Sublimation Energy of the Alloy

The sublimation energy is the energy required to evaporate 
the crystal (to break all interatomic bonds). It is assumed 
that the interatomic interactions are described by pairwise 
potentials �SiSj

(r) , where � is the interaction energy of atoms 
of sorts Si and Sj located at a distance of r. Here the super-
structure L1

0
 defined by (2-5) is considered. The sublimation 

energy of the superstructure Q per unit volume can be writ-
ten as follows:

where

In Eq. (6), the first line is the interaction energy of mono-
atomic shifted lattices, and the second line is the interac-
tion energy of atoms in the monoatomic shifted lattices. 
|U| = a3 = 8 is the volume of a primitive translation cell, 
which can be calculated as the determinant of the U matrix, 
the rows of which contain the Cartesian coordinates of the 
vectors ui given by (2). In practice, the limits of summation 
over the indices �i are finite, sufficient to take into account 
all interactions within the cutoff radius of the potentials.

Expanding the sums in Eq. (6), the sublimation energy 
of the alloy per unit volume is expressed through pair 

(3)Q =

4⋃
m=1

(Lc + �m)Sm
,

(4)
�
1
=(0, 0, 0), �

2
= (1, 1, 0),

�
3
=(0, 1, 1), �

4
= (1, 0, 1).

(5)S
1
= A, S

2
= A, S

3
= B, S

4
= B.

(6)

E =
1

|U|
4∑

i, j = 1

i > j

+∞∑
𝜎
1
,𝜎

2
,𝜎

3
=−∞

𝜑SiSj
(|A|)

+
1

2|U|
4∑
i=1

[
− 𝜑SiSi

(0) +

+∞∑
𝜎
1
,𝜎

2
,𝜎

3
=−∞

𝜑SiSi
(|B|)

]
,

(7)
A =�

1
u
1
+ �

2
u
2
+ �

3
u
3
+ �i − �j,

B =�
1
u
1
+ �

2
u
2
+ �

3
u
3
.
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potentials, taking into account interactions up to the 8th 
coordination sphere

here Ri are the coordination sphere radii [40]:

From the expression (8) it follows that, within first eight 
coordination spheres, on the odd coordination spheres the 
bonds AA, AB, and BB contribute to the sublimation energy, 
while on the even spheres, the contribution appears only 
from the AA and BB bonds.

4  Energetically Equivalent 
but Geometrically Different 
Representations of the L1

0
 Superstructure

Here it is assumed that the L1
0
 superstructure is defined by 

Eqs. (2-5).
Symmetry operations applied to the L1

0
 superstructure, 

such as shifts by a lattice vector or point symmetry trans-
formations of the cubic lattice, do not change the mutual 
arrangement of atoms and, therefore, do not change the sub-
limation energy. Here all possible geometrically different 
representations of the L1

0
 superstructure that have the same 

sublimation energy will be found. To do this, first the shifts 
along the lattice vectors �i , i = 1, 2, 3, 4 defined by Eq. (4), 
and then 48 point symmetry transformations of the cubic 
lattice [41] are applied to the L1

0
 superstructure. Note that 

taking into account the symmetry of the lattice helps to solve 

(8)

E =
1

a3

[
4�AA

(
R
1

)
+ 16�AB

(
R
1

)
+ 4�BB

(
R
1

)

+6�AA

(
R
2

)
+ 6�BB

(
R
2

)
+ 8�AA

(
R
3

)
+ 32�AB

(
R
3

)
+ 8�BB

(
R
3

)
+12�AA

(
R
4

)
+ 12�BB

(
R
4

)
+ 8�AA

(
R
5

)
+ 32�AB

(
R
5

)
+ 8�BB

(
R
5

)
+8�AA

(
R
6

)
+ 8�BB

(
R
6

)
+ 16�AA

(
R
7

)
+ 64�AB

(
R
7

)
+ 16�BB

(
R
7

)

+6�AA

(
R
8

)
+ 6�BB

(
R
8

)]
,

(9)

R
1
= a∕

√
2, R

2
= a, R

3
= a

√
3∕2, R

4
= a

√
2,

R
5
= a

√
5∕2, R

6
= a

√
3, R

7
= a

√
7∕2, R

8
= 2a.

various problems, for example, to find exact dynamic solu-
tions of the equations of motion of atoms in crystals [42].

The first step is the analysis of the shifts along the lat-
tice vectors. In Table. 1 the change in the sorts of atoms of 
four cubic shifted lattices, Si , is shown for the shift vectors 
�j , given by Eq. (4). The shifts are performed according to 
(�m − �j)mod(2) , that is, the components of the vectors after 
subtraction are returned to the volume of a cubic transla-
tional cell with a lattice parameter a = 2 . It can be seen from 
Table. 1 that the shift by the vectors �

1
 and �

2
 do not change 

the arrangement of the atom sorts. On the other hand, the 
shifts by the vectors �

3
 and �

4
 swap the atom sorts A and B.

Application of the 48 point symmetry transformations of 
the cubic lattice reveals energetically equivalent representa-
tions of the L1

0
 superstructure different from those shown 

in Table. 1.
In Fig. 2 all possible energetically equivalent and geomet-

rically different representations of the L1
0
 superstructure are 

shown. In panels (a) and (b) the structures listed in Tab. 1 are 

Table 1  Chang in the atomic sorts of four cubic shifted lattices of the 
L1

0
 superstructure, defined by Eqs.  (2-5) as a result of the shifts by 

the vectors �
i
 , i = 1, 2, 3, 4

Shift vectors �
1
= (0, 0, 0), �

2
= (1, 1, 0)

S
i
 after shift AABB

Shift vectors �
3
= (0, 1, 1), �

4
= (1, 0, 1)

S
i
 after shift BBAA

Table 2  Chang in the atomic sorts of four cubic shifted lattices of the 
L1

0
 superstructure, defined by Eqs. (2-5) as a result of point symme-

try transformations

Transformation Rotation of AABB by �∕2 about x axis

S
i
 after transformation ABBA

Transformation Rotation of AABB by �∕2 about y axis
S
i
 after transformation ABAB

Transformation Rotation of BBAA by �∕2 about x axis
S
i
 after transformation BAAB

Transformation Rotation of BBAA by �∕2 about y axis
S
i
 after transformation BABA

Fig. 2  All possible arrangements of A and B atoms on the shifted 
cubic lattices in the L1

0
 superstructure obtained by the lattice vec-

tor shifts and point symmetry transformations: a AABB, b BBAA, c 
ABBA, d ABAB, e BAAB and f BABA. This is a complete list of pos-
sible domains in the L1

0
 superstructure
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shown, while other structures are listed in Tab. 2. Structures 
(a) and (b) can be transformed one to another by the lattice 
vector shift. The same is true for the structures (c) and (d), 
as well as for the structures (d) and (f). Structures (a) and 
(c) can be transformed one to another by the rotation by �∕2 
about x axis. Structures (a) and (d) can be transformed one 
to another by the rotation by �∕2 about y axis. Structures (b) 
and (e) can be transformed one to another by the rotation by 
�∕2 about x axis. Structures (b) and (f) can be transformed 
one to another by the rotation by �∕2 about y axis.

5  Analysis of Possible Types of Planar 
Superstructure Defects in L1

0

With the results obtained in Sec. 4 one can describe all pos-
sible PSDs in the L1

0
 superstructure. The plane of a PSD 

separates geometrically different but energetically equivalent 
representations of the L1

0
 superstructure. Antiphase bounda-

ries and C-domains should be distinguished. A conservative 
antiphase boundary (CAPB) separates two domains which 
can be superposed by a shift by a lattice vector parallel to 
the defect plane. A non-conservative antiphase boundary 
(NCAPB) is formed if the shift vector cannot be parallel to 
the defect plane. C-domain boundary separates two domains 
which can be superimposed by the rotation by the angle �∕2 . 
In some cases a shift by the lattice vector is required after 
the rotation.

Domains AABB and BBAA produce CAPB or NCAPB 
since they can be superposed by a shift by a lattice vector. 
The same is true for domains ABBA and BAAB, as well as 
for domains ABAB and BABA.

Domain AABB (or BBAA) together with any domain 
except for BBAA (or AABB) produce a C-domain. Simi-
larly, domain ABBA (or BAAB) together with any domain 
except for BAAB (or ABBA) produce a C-domain; and 
domain ABAB (or BABA) together with any domain except 
for BABA (or ABAB) produce a C-domain.

Figure 3(a) shows the defect-free L1
0
 superstructure, 

wile panels (b) to (f) show five different types of PSD 
with orientation (001); the defect plane is shaded. Below 
the defect plane in all cases the AABB domain is placed. 
Above the defect one has the domain (a) AABB, (b) BBAA, 
(c) ABAB, (d) BABA, (e) ABBA and (f) BAAB. Accord-
ing to the classification described above, in (b) NCAPB is 
seen, since the shift vector t superposing the two domains 
is not parallel to the defect plane. All other defects are 
C-domains. In (d) and (f) after the rotation by �∕2 the shift 
by the vector t is applied.

As one can see, CAPB are not possible in the case of 
(001) orientation, but they are possible for (010) and (100) 
orientations, as will be shown later.

In Fig. 4(a) the defect-free L1
0
 superstructure is shown. 

Panels (b) to (f) show five different types of PSD with 
orientation (100); the defect plane is shaded. To the left 
of the defect plane in all cases the AABB domain is placed. 
To the right of the defect one has the domain (a) AABB, 
(b) BBAA, (c) ABAB, (d) BABA, (e) ABBA and (f) BAAB. 
In (b) CAPB is realized, since the shift vector t is parallel 
to the defect plane. All other defects are C-domains. In 
(d) and (f) after the rotation by �∕2 the shift by the vector 
t is applied.

Fig. 3  a Defect-free L1
0
 superstructure. (b-f) PSDs with orientation 

(001) obtained by substituting the upper half-space with geometri-
cally different representations of L1

0
 superstructure (the defect plane 

is shaded). Below the defect plane in all cases the AABB domain is 
placed. Above the defect one has the domains b BBAA, c ABAB, d 
BABA, e ABBA and f BAAB 
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6  Energy of Planar Superstructure Defects

In this section, the energy of an arbitrary PSD will be calcu-
lated under the assumption of pairwise interatomic interac-
tions and without taking into account the tetragonality of the 
L1

0
 alloy and atomic relaxation near the defect. Equations 

(2) to (5) define the L1
0
 superstructure, and the defect plane 

has Miller indices (h, k, l).
The PSD energy will be calculated by summing the ener-

gies of the atomic planes parallel to the plane of the defect. 
This is realized through the choice of the new translation 
vectors ũi two of which are parallel to the defect plane. For 
definiteness, let ũ

1
 and ũ

2
 be parallel to the defect plane. The 

third translation vector of the primitive cell of the L1
0
 alloy 

should be chosen such that the volume of the translational 
cell of the lattice Lc is unchanged.

A two-dimensional lattice P defined by the translation 
vectors ũ

1
 and ũ

2
 is considered. Using the new basis, the 

superstructure Q is written as a union of atomic planes par-
allel to the defect:

where � is an integer index and �m are the vectors (4).
Now the following two half-crystals terminated by the 

(h, k, l) plane are defined:

(10)Q =

4⋃
m=1

+∞⋃
𝜉=−∞

(
P + �m + 𝜉ũ

3

)
Sm
,

(11)

Q̃− =

4⋃
m=1

−1⋃
𝜉=−∞

(
P + �m + 𝜉ũ

3

)
Sm

,

Q̂+ =

4⋃
k=1

+∞⋃
𝜉=0

(
P + �k + 𝜉ũ

3

)
Sk
.

These half-crystals have L1
0
 superstructure with different 

arrangement of atoms on the shifted sublattices Sm and Sk , 
there exist six such sublattices listed in Tables. 1, 2: AABB, 
BBAA, ABAB, BABA, ABBA and BAAB. Index � in (11) 
ranges over negative and non-negative values in the half-
crystals designated with the subscripts “-” and “+” , respec-
tively. If Sm = Sk then there is no defect and the defect does 
exist for Sm ≠ Sk.

The PSD energy is calculated per unit area as the sum 
of three terms:

The first term stands for the energy release per unit area as 
a result of joining of two half-crystals. The other two terms 
present the surface energy of these half-crystals. For exam-
ple, to calculate the first term on the right side of (12), the 
interaction energies of two-dimensional packings on both 
sides of the defect plane are summed:

where

and the multiplayer |ũ
1
× ũ

2
|−1 normalizes the energy of the 

defect per unit area.
When calculating the energies E

(
Q̃− ↔ Q̃+

)
 and 

E
(
Q̂− ↔ Q̂+

)
 in (12), the expression (13) can be used 

taking �SmSm
(|r|) and �SkSk

(|r|) , respectively, instead of 
�SmSk

(|r|).

(12)E = E
(
Q̃− ↔ Q̂+

)
−

E

2

(
Q̃− ↔ Q̃+

)
−

E

2

(
Q̂− ↔ Q̂+

)
.

(13)

E
(
Q̃− ↔ Q̂+

)

=
1

|ũ
1
× ũ

2
|

4∑
m=1

−1∑
𝜉=−∞

4∑
k=1

+∞∑
𝜂
1
,𝜂
2=−∞

∞∑
𝜂
3
=0

𝜑SmSk
(|r|),

(14)
r = rSm

− rSk
= (�m + 𝜉ũ

3
)− (�k + 𝜂

1
ũ
1

+ 𝜂
2
ũ
2
+ 𝜂

3
ũ
3
),

Fig. 4  a Defect-free L1
0
 super-

structure. PSD with orientation 
(100) obtained by substituting 
the right half-space with geo-
metrically different representa-
tions of L1

0
 superstructure (the 

defect plane is shaded). The 
AABB domain is located to the 
left of the defect plane in all 
cases. To the right of the defect 
one has the domains b BBAA, 
c ABAB, d BABA, e ABBA and 
f BAAB 
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Here PSDs with orientations (001) and (100) are consid-
ered. The results will be presented in terms of ordering ener-
gies �SmSk

 and energy parameters ΔSmSk
 , defined as follows:

where R is the radius of a coordination sphere (9).

6.1  Defects in the (001) Plane

For this defect orientation, the primitive cell translation vec-
tors are ũi = ui , see (2), and the shift vectors are �i , see (4). 
Inserting these vectors in (12), taking into account (13) and 
(14), the energies of five PSDs are expressed, as described 
below.

1. Case Sm = AABB , Sk = BBAA , see Fig. 3(b):

2. Case Sm = AABB , Sk = ABAB , see Fig. 3(c):

3. Case Sm = AABB , Sk = BABA , see Fig. 3(d). The defect 
energy in this case is equal to the energy in case 2.

4. Case Sm = AABB , Sk = ABBA , see Fig. 3(e). The defect 
energy in this case is equal to the energy in case 2.

5. Case Sm = AABB , Sk = BAAB , see Fig. 3(f). The defect 
energy in this case is equal to the energy in case 2.

Note that the energies of all defects include the energy 
parameter ΔAB since they change stoichiometry near the 
defect. In Case 1 NCAPB, and in Cases 2 to 5 C-domains 
with the same energy are realized.

6.2  Defects in the (100) Plane

For this defect orientation ũ
1
= u

2
 , ũ

2
= u

3
 , ũ

3
= u

1
 , see (2), 

and �i are given by (4). Inserting these vectors in (12), the 
following results can be obtained for different domains of 
the L1

0
 structure on both sides of the defect.

1. Case Sm = ABAB , Sk = BABA , see Fig. 4(b):

(15)
�AB(R) =�AA(R) + �BB(R) − 2�AB(R),

ΔAB(R) =�AA(R) − �BB(R),

(16)

E =
1

a2

[
4�AB(R1

) − 4ΔAB(R1
) − 2�AB(R2

) − 8ΔAB(R3
)

− 8�AB(R4
) + 16�AB(R5

) + 8ΔAB(R5
) − 8�AB(R6

)

+ 12�AB(R7
) − 12ΔAB(R7

) − 4�AB(R8
) + 4�AB(R9

)

− 12ΔAB(R9
) − 24�AB(R10

)
]
.

(17)

E =
1

a2

[
�AB(R1

) − 2ΔAB(R1
) − �AB(R2

) + 2�AB(R3
)

− 4ΔAB(R3
) − 4�AB(R4

) + 4�AB(R5
) − 4ΔAB(R5

)

− 4�AB(R6
) + 8�AB(R7

) − 8ΔAB(R7
) − 2�AB(R8

)

+ 5�AB(R7
) − 6ΔAB(R7

) − 12�AB(R10
)
]
.

2. Case Sm = ABAB , Sk = AABB , see Fig. 4(c):

3. Case Sm = ABAB , Sk = BBAA , see Fig. 4(d):

4. Case Sm = ABAB , Sk = ABBA , see Fig. 4(e):

5. Case Sm = ABAB , Sk = BAAB , see Fig. 4(f). The result is 
the same as in case 4.

Note that in Case 1 the defect energy is expressed through 
the ordering energies �AB , that is, CAPB is realized which 
does not change the stoichiometry near the defect. In Cases 4 
and 5 the defect energy is also expressed in terms of �AB . 
These are the C-domains that do not change the stoichiom-
etry near the defect. Interestingly, the energy of the defect 
in Case 1, Eq. (18), is exactly twice that of the defects in 
Cases 4 and 5, Eq. (21). Defects in Cases 2 and 3 give the 
energies in terms of both �AB and ΔAB since they change the 
stoichiometry in the vicinity of the defects.

7  List of all Possible Planes of CAPBs in L1
0
 

Alloys

CAPBs are formed in ordered alloys by glide of partial dis-
locations, which leads to hardening of the alloy. CAPBs are 
created only by the dislocations whose Burger’s vector is not 
a translation vectors of the superstructure [14]. To determine 
active slip systems in ordered alloys, it is important to know 
in which crystallographic planes CAPBs are possible.

(18)

E =
1

a2

[
− 2�AB(R2

) + 8�AB(R3
) − 8�AB(R4

) − 8�AB(R6
)

+ 16�AB(R7
) − 4�AB(R8

) + 16�AB(R9
) − 24�AB(R10

)
]
.

(19)

E =
1

a2

[
�AB(R1

) + 2ΔAB(R1
) − �AB(R2

) + 2�AB(R3
)

− 4ΔAB(R3
) − 4�AB(R4

) + 4�AB(R5
) + 4ΔAB(R5

)

− 4�AB(R6
) + 8�AB(R7

) + 8ΔAB(R7
) − 2�AB(R8

)

+ 5�AB(R9
) + 6ΔAB(R9

) − 12�AB(R10
)
]
.

(20)

E =
1

a2

[
�AB(R1

) − 2ΔAB(R1
) − �AB(R2

) + 2�AB(R3
)

− 4ΔAB(R3
) − 4�AB(R4

) + 4�AB(R5
) − 4ΔAB(R5

)

− 4�AB(R6
) + 8�AB(R7

) − 8ΔAB(R7
) − 2�AB(R8

)

+ 5�AB(R9
) − 6ΔAB(R9

) − 12�AB(R10
)
]
.

(21)

E =
1

a2

[
− �AB(R2

) + 4�AB(R3
) − 4�AB(R4

) − 4�AB(R6
)

+ 8�AB(R7
) − 2�AB(R8

) + 8�AB(R9
) − 12�AB(R10

)
]
.
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To solve this problem, consider the superstructure L1
0
 , 

whose primitive translational cell is shown in Fig. 5. The 
primitive cell of the fcc lattice Lp has the following transla-
tion vectors, see Fig. 5:

The lattice L is then defined by the following generating 
vectors:

The vectors wi are shown in Fig. 5 in orange. The transla-
tional cell defined by these vectors includes two atoms. In 
addition to (2-5) the L1

0
 superstructure can be defined based 

on the lattice L:

where the shift vectors of the monatomic lattice L are:

The sorts of the shifted lattices in (24) are:

As mentioned above, CAPB is obtained by the shift of a 
half of the crystal by the lattice vector t which satisfies two 
conditions: (i) vector t is parallel to the PSD plane (h, k, l) 
and (ii) it changes the sorts of atoms on sublattices. Such a 
vector is called an antiphase vector. The L1

0
 superstructure 

defined by (24) and (26) includes 2 sublattices with the shift 
vectors �m . Displacement along �

2
 leads to a change in the 

sorts of atoms on the sublattices. Therefore, there is only one 
antiphase vector that creates PSDs:

(22)v
1
= (2, 0, 0), v

2
= (1, 1, 0), v

3
= (0, 1, 1).

(23)
w
1
= v

1
= (2, 0, 0), w

2
= v

2
= (1, 1, 0),

w
3
= 2v

3
= (0, 2, 2).

(24)Q =

2⋃
m=1

(
L + �m

)
Sm
,

(25)�
1
= (0, 0, 0), �

2
= (0, 1, 1).

(26)S
1
= A, S

2
= B.

The antiphase vector t in (27) is given in the Cartesian coor-
dinates. The calculations will be carried out in the basis of 
the vectors vi , i = 1, 2, 3 , see (22), generating the fcc lattice 
Lp . In this basis, the antiphase vector t is:

The displacement vector (28) generates an infinite number 
of CAPB planes parallel to this vector. Moreover, the points 
of the lattice L can be shifted to the points L + t by any of 
the displacement vector of the form

where � , � , and � are arbitrary integers. CAPBs are formed 
in the plane with Miller’s indices (h, k, l) parallel to at leas 
one of the vectors in (29). Such Miller’s indices can be found 
from the equation

The integer solution of equation (30) having integer coef-
ficients can be written in the form

where new integer parameters � and � are introduced. Insert-
ing in (31) the coefficients a, b, and c defined in (29), the 
desired Miller indices can be written as:

To find all possible planes of CAPBs for the antiphase vec-
tor t one should go through all the integer indices � , � , � , 
� , and � in equation (32). Note that in (32) K

1
= 1 , K

2
= 1 , 

K
3
= 2 , as seen in (23). In practice, planes with small Miller 

indices are of interest, and they can be found by considering 
−N < 𝜉, 𝜂,𝜑, 𝛼, 𝛽 < N , where N is large enough.

Recall that the Miller indices in (32) are given in the 
basis vi . They can be converted into indices (h�, k�, l�) with 
respect to the Cartesian coordinates using the following 
expressions:

where the determinants of the following matrices must be 
calculated:

(27)t = �
2
= (0, 1, 1).

(28)t = (0, 0, 1)
def
=(t

1
, t
2
, t
3
).

(29)
(
t
1
+ �K

1
, t
2
+ �K

2
, t
3
+ �K

3

)def
=(a, b, c),

(30)ah + bk + cl = 0.

(31)
⎛⎜⎜⎝

h

k

l

⎞⎟⎟⎠
=

⎛⎜⎜⎝

−bc(� + �)

ac�

ab�

⎞⎟⎟⎠
,

(32)

⎛⎜⎜⎝

h

k

l

⎞⎟⎟⎠
=

⎛⎜⎜⎝

−(t
2
+ �K

2
)(t

3
+ �K

3
)(� + �)

(t
1
+ �K

1
)(t

3
+ �K

3
)�

(t
1
+ �K

1
)(t

2
+ �K

2
)�

⎞⎟⎟⎠
=

⎛⎜⎜⎝

−�(1 + 2�)(� + �)

�(1 + 2�)�

���

⎞⎟⎟⎠
.

(33)(h�, k�, l�) =

(
V
1

V
,
−V

2

V
,
V
3

V

)
,

Fig. 5  Primitive translational cell of the fcc lattice defined by the vec-
tors v

1
 , v

2
 , v

3
 and primitive translational cell of the L1

0
 superstructure 

defined by the vectors w
1
 , w

2
 , w

3
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Here vij are given in the Cartesian coordinate system.
The complete list of planes where CAPBs are possible is 

(only planes with Miller indices (h�, k�, l�) not greater than 
2 are presented):

8  Discussion

The results obtained should be discussed from a practical 
point of view.

In this work, a crystallogeometric analysis of alloys with 
the L1

0
 superstructure was carried out and the sublimation 

energy of the alloy and the energy of the planar superstruc-
ture defect were derived analytically. The expression (32) 
was derived to find all possible planes where CAPBs are 
possible.

All possible domains (arrangements of A and B atoms on 
shifted cubic lattices) in the L1

0
 superstructure are presented 

in Fig. 2. Any PSD separates two different domains. Since 
there are six such domains, there are at most 15 PSDs for any 
particular orientation, because there are 15 combinations of 
different domain pairs.

The list of all planes where CAPBs are possible, Eq. (34), 
is useful for the analysis of slip systems in the considered 
alloys. In fcc crystals, slip occurs on the close-packed {111} 
planes along the close-packed ⟨110⟩ directions. There are 
12 slip systems in total, since in each of the four octahedral 
planes (1 1 1) , (1 1 1̄) , (1 1̄ 1) , (1 1̄ 1̄) there are three close 
packed directions. However, all these planes are in the list 
Eq. (34). Therefore, slip in all close-packed planes is hin-
dered by the formation of CAPB. Then, the secondary slip 
systems experimentally observed for fcc crystals [43, 44], 
can become active. Indeed, for the slip system {001}[110] , 
CAPBs are formed in the planes (1 0 0) and (0 1 0) , but they 
are not formed in the plane (0 0 1) . The dislocations can 

V =

|||||||

v
11

v
12

v
13

v
21

v
22

v
22

v
31

v
32

v
33

|||||||
, V

1
=

|||||||

v
12

v
13

h

v
22

v
23

k

v
32

v
33

l

|||||||
,

V
2
=

|||||||

v
11

v
13

h

v
21

v
23

k

v
31

v
33

l

|||||||
, V

3
=

|||||||

v
11

v
12

h

v
21

v
22

k

v
31

v
32

l

|||||||
.

(34)

(0 1 0), (0 1 1), (0 1 2), (0 1 1̄), (0 1 2̄),

(1 0 0), (1 0 1), (1 0 2), (1 0 1̄), (1 0 2̄),

(1 1 1), (1 1 1̄), (1 2 0), (1 2 1), (1 2 2),

(1 2 1̄), (1 2 2̄), (1 1̄ 1), (1 1̄ 1̄), (1 2̄ 0),

(1 2̄ 1), (1 2̄ 2), (1 2̄ 1̄), (1 2̄ 2̄), (2 1 0),

(2 1 1), (2 1 2), (2 1 1̄), (2 1 2̄), (2 1̄ 0),

(2 1̄ 1), (2 1̄ 2), (2 1̄ 1̄), (2 1̄ 2̄).

easily slide in the latter plane. Similarly, for the slip system 
{110}[110] , CAPBs are formed in the planes (0 1 1) , (0 1 1̄) , 
(1 0 1) and (1 0 1̄) , but they are not formed in the planes 
(1 1 0) and (1 1̄ 0) . Dislocation glide in the last two planes 
is not suppressed by the formation of CAPB.

Analytical expression for the energy of PSD, Eqs. (12)-
(14), was obtained under several important assumptions: (i) 
the tetragonality of L1

0
 alloys was not taken into account, 

(ii) pairwise interatomic interactions were assumed, and 
(iii) the relaxation of atoms near defects was not taken into 
account. This means that the obtained results are most reli-
able for alloys with small tetragonality and small deviation 
of elastic constants from the Cauchy relation, which is often 
used as a measure of the importance of the many-body part 
of potentials [45].

Nevertheless, the analytical expressions for PSD energy 
can be useful. For example, analysis of the defect energies 
for the (1 0 0) plane reveals that the energy of the defect 
in Case 1, Eq. (18), is exactly twice that of the defects in 
Cases 4 and 5, Eq. (21).

Our crystallographic approach does not take into account 
the effect of temperature on the mechanical properties of 
ordered alloys. This problem can be solved using molecular 
dynamics or other methods.

9  Conclusions

The results of this study can be summarized as follows.

• An analysis of the translational and point symmetry of 
the L1

0
 superstructure revealed all possible domains 

shown in Fig. 2. There are six such domains, and there-
fore, for any particular orientation, there are no more than 
15 PSDs, according to the number of different combina-
tions of domain pairs.

• An analytical expression (32) is obtained to find all pos-
sible CAPB orientations. The list of all planes on which 
CAPBs are possible, with Miller indices not higher than 
2, is given by Eq. (34). This list is useful for analyzing 
slip systems in the alloys under consideration.

• Within the framework of the accepted assumptions, an 
analytical expression for the PSD energy, Eqs. (12)-(14), 
is obtained. Knowing the PSD energies, one can pre-
dict their probability: the most probable are defects with 
lower energy.

Overall, the results obtained are useful in the analysis of the 
impact of planar superstructure defects on mechanical and 
physical properties of the alloys with L1

0
 superstructure.
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