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Abstract: This paper is concerned with the more general nonlinear stochastic Volterra integral
equations with doubly singular kernels, whose singular points include both s = t and s = 0.
We propose a Galerkin approximate scheme to solve the equation numerically, and we obtain the
strong convergence rate for the Galerkin method in the mean square sense. The rate is min{2−
2(α1 + β1), 1− 2(α2 + β2)} (where α1, α2, β1, β2 are positive numbers satisfying 0 < α1 + β1 < 1,
0 < α2 + β2 < 1

2 ), which improves the results of some numerical schemes for the stochastic Volterra
integral equations with regular or weakly singular kernels. Moreover, numerical examples are given
to support the theoretical result and explain the priority of the Galerkin method.

Keywords: stochastic Volterra integral equations; doubly singular kernels; Galerkin approximation;
strong convergence rate
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1. Introduction

Stochastic Volterra integral equations (SVIEs) were firstly introduced by Berger and
Mizel [1,2] and can be regarded as generalizations of stochastic differential equations or
deterministic Volterra integral equations. Due to the advantages of the SVIEs in describing
memory, heritability and ubiquitous noise perturbations, these kinds of equations have
extensive applications in many fields (e.g., finance [3], control science [4] and mathematical
biology [5]) and have spurred great research enthusiasm. An area of particular interest in
the study of SVIEs has been numerical analysis because the analytic solution to SVIEs is
rarely known and the numerical approximations provide a powerful tool for understand-
ing the behavior of the solution. Up to now, most numerical methods are developed to
deal with SVIEs with regular kernels. For example, Tudor [6] first proposed a one-step
numerical approximation for Itô–Volterra equations and obtained a basic convergence
theorem. Wen and Zhang [7,8] studied the rectangular method. Methods based on the oper-
ational matrix were introduced in [9–11]. Xiao et al. [12] introduced a split-step collocation
method for SVIEs. The Euler–Maruyama (EM) methods were discussed in [13–15]. Re-
cently, Conte et al. [16] introduced improved stochastic θ-methods, having better stability
properties, for the numerical integration of stochastic Volterra integral equations.

However, stochastic Volterra integral equations with singular kernels arise while
dealing with some problems in stochastic partial differential equations [17–19], such as
certain heat conduction problems with mixed boundary conditions, and in the analysis
of the fractional Brownian motion [20]. It is therefore of great value and significance to
consider SVIEs involving the kernels with singularities. Wang [21] established the existence
and uniqueness theorem for stochastic Volterra equations with singular kernels. Zhang [22]
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investigated the convergence of the EM method for this kind of equation. In particular,
Li et al. [23] recently proposed a θ-Euler–Maruyama scheme and a Milstein scheme to solve
SVIEs with weakly singular kernels numerically. It is observed that the singular SVIEs
have been relatively less studied. It is probably because the singularity of the integrand
kernel brings us more difficulties. In this case, the key Itô formula, which is a powerful and
necessary tool in the study of stochastic differential equations (SDEs), is not available and
we have to seek other tools and techniques.

In this paper, we will consider a class of more general stochastic Volterra integral
equations with doubly singular kernels of the following form

x(t) = x0 +
∫ t

0
(t− s)−α1 s−β1 f (x(s))ds +

∫ t

0
(t− s)−α2 s−β2 g(x(s))dB(s), 0 ≤ t ≤ T, (1)

where T > 0 and α1, α2, β1, β2 are positive numbers satisfying 0 < α1 + β1 < 1, 0 <
α2 + β2 < 1

2 ; f , g : [0, T]→ R are given measurable functions; B(t) is a standard Brownian
motion defined on a complete probability space (Ω, F ,P) and adapted to the filtration
{Ft}0≤t≤T ; and x0 is F0-measurable random variable such that E|x0|2 < +∞.

As we can see, SVIE (1) involves both diagonal and boundary singular kernels, that
is, the kernel functions are singular when s = t or s = 0, which are more general than the
case considered in [23–25], whose singular point only includes s = t. The existence and
uniqueness theorem of the true solution as well as the strong convergence of the Euler–
Maruyama method for Equation (1) have been developed in [26]. Li et al. [27] obtained the
asymptotic separation for Equation (1).

Our aim here is to establish the Galerkin approximations for Equation (1). This method
is high-order accurate, easy-to-handle complicated geometries and side conditions, highly
parallelizable, nonlinear stable and has the ability to capture discontinuities without spuri-
ous oscillations [28]. Hence, it has been extensively used for stochastic partial differential
equations [29–31] and stochastic fractional differential equations [32,33], while it has not
been analyzed to singular SVIEs.

The rest of this paper is organized as follows.
In Section 2, we present some preliminaries. Section 3 provides the main result and

Section 4 covers numerical experiments to illustrate the efficiency of the numerical method.
We conclude this work in Section 5.

2. Preliminaries
2.1. Lemmas and Assumption

Let us first introduce two important lemmas which will play critical roles in proving
our main result.

Denote ln+1 = ln · Γ(n(1−α−β)+1−β)
Γ(n(1−α−β)+2−α−β)

, n = 0, 1, 2, · · · with l0 = 1, where Γ(z) =∫ ∞
0 xz−1 exp(−x)dx, z > 0 is the Gamma function. Define

E1−α,1−β(s) =
∞

∑
n=0

lnsn(1−α−β). (2)

This function E1−α,1−β is closely related to the Mittag-Leffler function and has the
following asymptotic property.

Lemma 1 ([27]). The function E1−α,1−β defined as in (2) satisfies

E1−α,1−β(s) = O
(

s
1
2 (

1−α−β
1−α −1+β) exp

(
1− α

1− α− β
· s

1−α−β
1−α

))
as s→ ∞.
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Lemma 2 ([27]). Assume that α > 0, β > 0, α + β < 1, a ≥ 0, b ≥ 0 and u is a nonnegative
function satisfying that t−βu(t) is locally integrable on R+.
(1) If u satisfies

u(t) ≤ a + b
∫ t

0
(t− s)−αs−βu(s)ds ∀t ∈ R+,

then
u(t) ≤ aE1−α,1−β

(
(bΓ(1− α))1/(1−α−β)t

)
∀t ∈ R+.

(2) If u satisfies

u(t) ≥ a + b
∫ t

0
(t− s)−αs−βu(s)ds ∀t ∈ R+,

then
u(t) ≥ aE1−α,1−β

(
(bΓ(1− α))1/(1−α−β)t

)
∀t ∈ R+.

Throughout this paper, we impose the following conditions on the coefficients f and g.

Assumption 1. Assume that there exists a constant L > 0 such that for any x, y ∈ R, we have

| f (x)− f (y)|+ |g(x)− g(y)| ≤ L|x− y|, | f (x)|+ |g(x)| ≤ L(1 + |x|). (3)

2.2. A Numerical Approximation of White Noise for Stochastic Integral

Next, we introduce the approximation of the noise. Following the method discussed
in [29], let

0 = t0 < t1 < · · · < tN = T

with ti = i∆t and ∆t = T
N for i = 0, ..., N being a partition of [0, T]. Define

dB̂(t)
dt

=
1√
∆t

N

∑
i=1

ηiξi(t), (4)

where

ξi(t) =

{
1, ti ≤ t < ti+1,

0, otherwise,

and ηi ∼ N(0, 1) is defined by

ηi =
1√
∆t

∫ ti+1

ti

dB(t), i = 0, · · · , N − 1.

We substitute dB(t) with dB̂(t) in Equation (1) to obtain the following equation

x̂(t) = x0 +
∫ t

0
(t− s)−α1 s−β1 f (x̂(s))ds +

∫ t

0
(t− s)−α2 s−β2 g(x̂(s))dB̂(s), 0 ≤ t ≤ T. (5)

Let x̂(t) be the solution of the approximate SVIEs

dx̂(t)
dt

=
N

∑
i=1

(t− ti)
−α1 t−β1

i f (x̂(t)) +
N

∑
i=1

(t− ti)
−α2 t−β2

i g(x̂(t))
1√
∆t

ηiξi(t). (6)
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2.3. The Discontinuous Galerkin Method

Because (6) is a system of ODEs, we apply the standard discontinuous Galerkin
method for deterministic ODEs [28]. Multiplying (6) by v, integrating over In and using
integration by parts, we obtain the discontinuous Galerkin formulation∫

In
x̂iv′dt− x̂i(tn+1)v(tn+1) + x̂i(tn)v(tn)

=−
∫

In
(t− ti)

−α1 t−β1
i f̂i(t)vdt− ηi√

∆t

∫
In
(t− ti)

−α2 t−β2
i ĝi(t)vdt, i = 1, 2, . . . , d.

We define the piecewise polynomial space Vp
h =

{
v : v|In

∈ Pp(In), n = 0, 1, . . . , N − 1
}

as the space of polynomials of degree at most p in each interval In, where Pp(In) is the set of
all polynomials of degree less or equal than p on In. Because polynomials in Vp

h are allowed
to have discontinuities across element boundaries, we use v(t±n ) = lims→0± v(tn + s) to
denote the left limit and the right limit of v at tn. Next, we approximate each x̂i(t) by a
piecewise polynomial xi,h(t) ∈ Vp

h . The discrete discontinuous Galerkin scheme consists of
finding xi,h ∈ Vp

h such that: ∀v ∈ Vp
h and n = 0, . . . , N − 1, i = 1, 2, . . . , d.

−
∫

In
v′xi,hdt + xi,h

(
t−n+1

)
v
(
t−n+1

)
− xi,h

(
t−n
)
v
(
t+n
)

=
∫

In
(t− ti)

−α1 t−β1
i f̂i(t)vdt +

ηi√
∆t

∫
In
(t− ti)

−α2 t−β2
i ĝi(t)vdt.

where we used the classical upwind numerical flux. We will refer to this discontinuous
Galerkin scheme as the stochastic discontinuous Galerkin scheme.

3. Main Result

Theorem 1 ([26]). Under Assumption 1, there exists a unique strong solution x(t) to Equation (1).
Moreover, there exists a constant C > 0 such that

sup
0≤t≤T

E
[
|x(t)|2

]
≤ C, f or given T > 0.

The main result of this paper is the following theorem.

Theorem 2. Under Assumption 1, there exists a constant C > 0 such that

E|x(t)− x̂(t)|2 ≤ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}, (7)

where, for simplicity of notation, C is a positive constant which depends on α1, α2, β1, β2, T, L and
may change from line to line during the rest of the paper, while its specific form is of unimportance.

In order to prove Theorem 2, we need the following Lemma.

Lemma 3. Let x(t) be the solution of (1), then for any 0 ≤ t1 < t2 ≤ T, we have

E|x(t2)− x(t1)|2 ≤ C(t2 − t1)
min{2−2(α1+β1),1−2(α2+β2)}. (8)
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Proof. Observe that

x(t2)− x(t1) =
∫ t1

0
[(t2 − s)−α1 − (t1 − s)−α1 ]s−β1 f (x(s))ds

+
∫ t2

t1

(t2 − s)−α1 s−β1 f (x(s))ds

+
∫ t1

0
[(t2 − s)−α2 − (t1 − s)−α2 ]s−β2 g(x(s))dB(s)

+
∫ t2

t1

(t2 − s)−α2 s−β2 g(x(s))dB(s).

It follows that

E|x(t2)− x(t1)|2 ≤ 4E
∣∣∣∫ t1

0
[(t2 − s)−α1 − (t1 − s)−α1 ]s−β1 f (x(s))ds

∣∣∣2
+ 4E

∣∣∣∫ t2

t1

(t2 − s)−α1 s−β1 f (x(s))ds
∣∣∣2

+ 4E
∣∣∣∫ t1

0
[(t2 − s)−α2 − (t1 − s)−α2 ]s−β2 g(x(s))dB(s)

∣∣∣2
+ 4E

∣∣∣∫ t2

t1

(t2 − s)−α2 s−β2 g(x(s))dB(s)
∣∣∣2

:= I1 + I2 + I3 + I4.

On the one hand, Cauchy–Schwarz inequality and basic calculus imply that

I1 ≤ C(t2 − t1)
1−α1−β1

∫ t1

0
|(t2 − s)−α1 − (t1 − s)−α1 |s−β1E| f (x(s))|2ds

≤ C(t2 − t1)
1−α1−β1

∫ t1

0
|(t2 − s)−α1 − (t1 − s)−α1 |s−β1(1 + sup

0≤s≤T
E|x(s)|2)ds

≤ C(t2 − t1)
2−2α1−2β1

and

I2 ≤ 4E
∫ t2

t1

(t2 − s)−α1 s−β1 ds
∫ t2

t1

(t2 − s)−α1 s−β1 | f (x(s))|2ds

≤ C
[∫ t2

t1

(t2 − s)−α1 s−β1 ds
]2

≤ C
[∫ t2

t1

(t2 − s)−α1(s− t1)
−β1 ds

]2

≤ C(t2 − t1)
2−2α1−2β1 .

On the other hand, using Itô isometry, we obtain

I3 = 4E
∫ t1

0

∣∣∣[(t1 − s)−α2 − (t2 − s)−α2 ]s−β2 g(x(s))
∣∣∣2ds

= 4E
∫ t1

0
[(t1 − s)−2α2 s−2β2 − 2(t1 − s)−α2(t2 − s)−α2 s−2β2 + (t2 − s)−2α2 s−2β2 ]|g(x(s))|2ds

≤ E
∫ t1

0
[(t1 − s)−2α2 s−2β2 − (t2 − s)−2α2 s−2β2 ]|g(x(s))|2ds

≤ C(t2 − t1)
1−2α2−2β2
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and

I4 = 4E
∫ t2

t1

(t2 − s)−2α2 s−2β2 |g(x(s))|2ds

≤ C
∫ t2

t1

(t2 − s)−2α2(s− t1)
−2β2 ds

≤ C(t2 − t1)
1−2α2−2β2 .

The proof is completed.

Proof of Theorem 2. Let e(t) = x(t)− x̂(t), then we have

e(t) =
∫ t

0
(t− s)−α1 s−β1 [ f (x(s))− f (x̂(s))]ds

+

[∫ t

0
(t− s)−α2 s−β2 g(x(s))dB(s) +

∫ t

0
(t− s)−α2 s−β2 g(x̂(s))dB̂(s)

]
:= J1 + J2.

For the term J1, it follows from Assumption 1 that

E|J1|2 ≤ L
∫ t

0
(t− s)−α1 s−β1 ds

∫ t

0
(t− s)−α1 s−β1E|x(s)− x̂(s)|2ds

≤ C
∫ t

0
(t− s)−α1 s−β1E|e(s)|2ds.

Next, let us estimate the term J2. Observe that

J2 =
∫ t

0
(t− s)−α1 s−β2 g(x(s))[dB(s)− dB̂(s)]

+
∫ t

0
(t− s)−α2 s−β2 [g(x(s))− g(x̂(s))]dB̂(s)

:= J3 + J4.

In order to estimate J3, we assume there exists an integer N0 ≤ N such that tN0 ≤ t <
tN0+1, then

J3 =
N0−1

∑
i=0

∫ ti+1

ti

(t− s)−α2 s−β2 g(x(s))[dB(s)− dB̂(s)]

+
∫ t

tN0

(t− s)−α2 s−β2 g(x(s))[dB(s)− dB̂(s)]

:= J3,1 + J3,2.

According to (4), we obtain

J3,1 =
N0−1

∑
i=0

∫ ti+1

ti

[(t− s)−α2 s−β2 g(x(s))− 1
∆t

∫ ti+1

ti

(t− τ)−α2 τ−β2 g(x(τ))dτ]dB(s)

=
N0−1

∑
i=0

1
∆t

∫ ti+1

ti

[∫ ti+1

ti

[(t− s)−α2 s−β2 g(x(s))− (t− τ)−α2 τ−β2 g(x(τ))]dτ

]
dB(s).
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Based on the fact∫ ti+1

ti

[(t− s)−α2 s−β2 g(x(s))− (t− τ)−α2 τ−β2 g(x(τ))]dτ

=
∫ ti+1

ti

[(t− s)−α2 s−β2(g(x(s))− g(x(τ)))]dτ

+
∫ ti+1

ti

g(x(τ))[(t− s)−α2 s−β2 − (t− τ)−α2 τ−β2 ]dτ

≤L
∫ ti+1

ti

(t− s)−α2 s−β2 |x(s)− x(τ)|dτ

+ L
∫ ti+1

ti

(1 + x(τ))[(t− s)−α2 s−β2 − (t− τ)−α2 τ−β2 ]dτ,

one obtains

E|J3,1|2 ≤
C

∆t2

N0−1

∑
i=0

∫ ti+1

ti

E
∣∣∣∣∫ ti+1

ti

(t− s)−α2 s−β2 |x(s)− x(τ)|dτ

∣∣∣∣2ds

+
C

∆t2

N0−1

∑
i=0

∫ ti+1

ti

E
∣∣∣∣∫ ti+1

ti

(1 + x(τ))[(t− s)−α2 s−β2 − (t− τ)−α2 τ−β2 ]dτ

∣∣∣∣2ds

≤ C
∆t

N0−1

∑
i=0

∫ ti+1

ti

∫ ti+1

ti

(t− s)−2α2 s−2β2 |s− τ|min{2−2(α1+β1),1−2(α2+β2)}dτ ds

+
C

∆t2

N0−1

∑
i=0

∫ ti+1

ti

∣∣∣∣∫ ti+1

ti

[(t− s)−α2 s−β2 − (t− τ)−α2 τ−β2 ]dτ

∣∣∣∣2ds

:= J3,1,1 + J3,1,2.

On the one hand, it is easy to see that

J3,1,1 ≤
C
∆t

N0−1

∑
i=0

∫ ti+1

ti

(t− s)−2α2 s−2β2(s− ti)
1+min{2−2(α1+β1),1−2(α2+β2)}ds

≤ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}
N0−1

∑
i=0

∫ ti+1

ti

(t− s)−2α2 s−2β2 ds

≤ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}
∫ tN0

0
(t− s)−2α2 s−2β2 ds.

On the other hand,

J3,1,2 ≤
C

∆t2

N0−1

∑
i=0

∫ ti+1

ti

[∫ s

ti

[(t− s)−α2 s−β2 − (t− τ)−α2 τ−β2 ]dτ

]2
ds

=
C
∆t

N0−1

∑
i=0

∫ ti+1

ti

[∫ s

ti

[(t− s)−α2 s−β2 − (t− ti)
−α2 s−β2 ]dτ

]2
ds

≤ C
∆t

N0−1

∑
i=0

∫ ti+1

ti

[∫ s

ti

(t− s)−α2 s−β2 dτ

]2
ds

≤ C
∆t

N0−1

∑
i=0

∫ ti+1

ti

(t− s)−2α2(s− ti)
2−2β2 ds

≤ C(∆t)1−2β2

∫ N0

0
(t− s)−2α2 ds.



Fractal Fract. 2022, 6, 311 8 of 12

Consequently,

E|J3,1|2 ≤ C(∆t)1−2β2

∫ tN0

0
(t− s)−2α2 ds

+ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}
∫ tN0

0
(t− s)−2α2 s−2β2 ds.

(9)

Similarly, we can obtain

E|J3,2|2 ≤ C(∆t)1−2β2

∫ t

tN0

(t− s)−2α2 ds

+ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}
∫ t

tN0

(t− s)−2α2 s−2β2 ds.
(10)

Combining (9) with (10), we obtain

E|J3|2 ≤ C(∆t)1−2β2

∫ t

0
(t− s)−2α2 ds

+ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}
∫ t

0
(t− s)−2α2 s−2β2 ds

≤ C
[
(∆t)1−2β2 + (∆t)min{2−2(α1+β1),1−2(α2+β2)}

]
≤ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}.

Next, we estimate the term J4. For simplicity, let t = tN0+1, then

E|J4|2 = E
∣∣∣∫ t

0
(t− s)−α2 s−β2 [g(x(s))− g(x̂(s))]dB̂(s)

∣∣∣2
≤ E

∣∣∣ N0

∑
i=0

1
∆t

∫ ti+1

ti

[∫ ti+1

ti

(t− τ)−α2 τ−β2(g(x(τ))− g(x̂(τ)))dτ
]
dB(s)

∣∣∣2
≤

N0

∑
i=0

1
∆t2E

∫ ti+1

ti

∣∣∣∫ ti+1

ti

(t− τ)−α2 τ−β2(g(x(τ))− g(x̂(τ)))dτ
∣∣∣2ds

≤ C
N0

∑
i=0

1
∆t

∫ ti+1

ti

∫ ti+1

ti

(t− τ)−2α2 τ−2β2Ee2(τ)dτ ds

≤ C
∫ t

0
(t− s)−2α2 s−2β2Ee2(s)ds.

Combining this with the above estimates, we can derive that

E|e(t)|2 ≤ C
[
(∆t)min{2−2(α1+β1),1−2(α2+β2)}

+
∫ t

0
(t− s)−α1 s−β1E|e(s)|2ds +

∫ t

0
(t− s)−2α2 s−2β2E|e(s)|2ds

]
.

A simple application of the generalized Gronwall’s inequality in Lemma 2 yields

E|e(t)|2 ≤ C(∆t)min{2−2(α1+β1),1−2(α2+β2)}

·max
{

E1−α1,1−β1 [(CΓ(1− α1))]
1/(1−α1−β1)T, E1−2α2,1−2β2 [(CΓ(1− 2α2))]

1/(1−2α2−2β2)T
}

.

Finally, Lemma 1 helps us derive the required assertion. We complete the proof.
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4. Numerical Simulation

In this section, we will verify the numerical solution of the stochastic Volterra in-
tegral equations with doubly singular kernels and the strong convergence rate of the
Galerkin method.

Example 1. Let us consider the following stochastic Volterra integral equations with doubly
singular kernels

x(t) = 2 +
∫ t

0
(t− s)−α1 s−β1 sin(2x(s))ds +

∫ t

0
(t− s)−α2 s−β2 sin(x(s))dB(s), 0 ≤ t ≤ T. (11)

When the terminal time tN = T = 1, the positive arguments αi and βi(i = 1, 2) take the
following four cases:

• Case I: α1 = 0.4, β1 = 0.2, α2 = 0.1, β2 = 0.1;
• Case II: α1 = 0.4, β1 = 0.2, α2 = 0.2, β2 = 0.1;
• Case III: α1 = 0.4, β1 = 0.4, α2 = 0.1, β2 = 0.1;
• Case IV: α1 = 0.4, β1 = 0.2, α2 = 0.1, β2 = 0.2.

Obviously, functions f and g satisfy the Assumption 1. By Theorem 2, the conver-
gence rate of the Galerkin scheme is min{2− 2(α1 + β1), 1− 2(α2 + β2)}, we obtain the
convergence rate of Table 1. In order to verify the numerical solution of Equation (11)
and the strong convergence rate of the Galerkin method, we adopt five different step
sizes h = 2−4, 2−5, 2−6, 2−7, 2−8 on the same Brownian motion to compute the four cases,
respectively. The numerical solution by the Galerkin method with small step size h∗ = 2−14

is used to represent the unknown true solution. Figure 1 draws the calculated error results,
which are consistent with Theorems 1 and 2. Compared with the classic Euler–Maruyama
method or Milstein method, the Galerkin method is more accurate in algorithm estimation
by space discretization, for example, when β1 = β2 = 0, Equation (1) became SVIE with
weakly singular kernels, revealing the convergence rate of the Euler–Maruyama method is
min{1− α1, 1

2 − α2} in [23].

Table 1. Convergence rate for four cases of different values.

α1 β1 α2 β2 Convergence Rate

0.4 0.2 0.1 0.1 0.3

0.4 0.2 0.2 0.1 0.2

0.4 0.4 0.1 0.1 0.2

0.4 0.2 0.1 0.2 0.2

Example 2. We consider the following example

X(t) = 1 +
∫ t

0
(t− s)−α1 s−β1 sin(x(s))ds +

1
2

∫ t

0
(t− s)−α2 s−β2(sin(x(s)) + 2)dWs, t ∈ [0, 1]. (12)

Due to the appearance of the singularity in the above stochastic integral, it is difficult for
us to illustrate the convergence rate of the Galerkin scheme numerically. We set α1 = 0.3, α1 =
0.5, β1 = 0.2, β2 = 0.3. We regard the numerical solution yielded by small step size h∗ = 2−13 as
the ’exact’ solution. Moreover, the corresponding numerical solutions are generated by four different
step sizes h = 2−4, 2−5, 2−6 and 2−7, respectively. The mean square errors of the Galerkin scheme
are calculated at the terminal time tN = T = 1 by

e =

(
1
M

M

∑
i=1
|x(t)− x̂(t)|2

) 1
2
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where the expectation is approximated by averaging over M = 1000 Brownian sample paths.
The mean square errors are plotted in Figure 2 in a loglog scale. In these plots, the reference lines
and error lines are parallel to each other, revealing the convergence rate of the Galerkin scheme is
min{2− 2(α1 + β1), 1− 2(α2 + β2)}. Therefore, the convergence rate is 0.4.
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Figure 1. Loglog plot of errors against step sizes for the four cases.
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Figure 2. Loglog plot of errors against step sizes.

5. Conclusions

In this work, we investigated the Galerkin approximation for a class of nonlinear
stochastic Volterra integral equations with doubly singular kernels. These kinds of equa-
tions are more general, for example, when β1 = β2 = 0, Equation (1) becomes the
SVIE with weakly singular kernels studied in [23]. Because the Itô formula is not avail-
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able, the classical proof techniques can no longer be used. With the help of new tools
such as classical fractional calculus, the Mittag-Leffler-type function and generalized
Gronwall inequalities with singular kernels, we obtained the strong convergence rate
min{2− 2(α1 + β1), 1− 2(α2 + β2)} for the Galerkin method, which improves the cor-
responding result of the θ-Euler–Maruyama scheme in [23]. In forthcoming works, we
will consider other numerical methods for SVIEs with doubly singular kernels and verify
whether the order of convergence is optimal. Moreover, we will try to analyze the stability
of the numerical methods.
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