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Abstract: Gliomas are the most common and malignant primary tumors of the central nervous system (CNS). 
Glioblastomas are the most malignant and aggressive form of primary brain tumors and account for the majori-
ty of brain tumor-related deaths. The current standard treatment for gliomas is surgical resection supplemented 
by postoperative chemotherapy. Platinum drugs are a class of chemotherapeutic drugs that affect the cell cycle, 
and the main site of action is the DNA of cells, which are common chemotherapeutic drugs in clinical practice. 
Chemotherapy with platinum drugs such as cisplatin, carboplatin, oxaliplatin, or a combination thereof is used 
to treat a variety of tumors. However, the results of gliomas chemotherapy are unsatisfactory, and resistance to 
platinum drugs is one of the important reasons. The resistance of gliomas to platinum drugs is the result of a 
combination of influencing factors. Decreased intracellular drug concentration, enhanced function of cell pro-
cessing active products, enhanced repair ability of cellular DNA damage, and blockage of related apoptosis 
pathways play an important role in it. It is known that the pathogenic properties of glioma cells and the  
response of glioma towards platinum-based drugs are strongly influenced by non-coding RNAs, particularly, by 
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs and lncRNAs control drug sensitivity 
and the development of tumor resistance towards platinum drugs. This mini-review summarizes the resistance 
mechanisms of gliomas to platinum drugs, as well as molecules and therapies that can improve the sensitivity of 
gliomas to platinum drugs. 
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1. INTRODUCTION

The platinum compound was synthesized for the first time in
1844, and then in 1965, American biologist Rosenberg accidentally 
discovered that cisplatin could inhibit tumor growth, which un-
veiled the prelude to the use of platinum drugs in tumor treatment 
[1]. After rigorous animal and clinical trials, the first platinum 
anticancer drug was approved by the United States Food and Drug 
Administration (US FDA) to treat testicular cancer in 1978. With 
the extensive development of related research around the world, 
platinum drugs for tumor treatment have developed to the third 
generation, including cisplatin, carboplatin, nedaplatin, oxaliplatin, 
and lobaplatin. At present, platinum drugs have been widely used 
in the clinical treatment of testicular tumors, ovarian tumors, lung 
cancer, and head and neck tumors, which have greatly improved 
the prognosis of these patients [2-6].  

 Glioma is the most common malignant tumor of the central 
nervous system, accounting for about 50% of neuroepithelial tumors, 
and is currently one of the tumors with an extremely poor prognosis 
in adults. In view of the infiltrative growth of gliomas to the sur-
rounding brain tissue, it is often difficult to achieve complete resec-
tion by surgery. Therefore, postoperative adjuvant chemotherapy is 
of great significance in killing the remaining tumor cells, prevent-
ing tumor recurrence, and improving the survival prognosis of 
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patients. Platinum-based anticancer drugs attack a single target, 
cellular DNA, and their direct coordination of nucleobases to nu-
cleophilic nitrogen plays an important role in the induction of tu-
mor cell apoptosis [7]. Many platinum complexes have been de-
signed to optimize platinum-DNA interactions, and increasing their 
affinity for DNA reduces the exposure of platinum to other cellular 
nucleophiles [8]. This effect can lead to the reduction of side ef-
fects [9]. Platinum drugs are used clinically in the treatment of 
gliomas, but due to the existence of drug resistance, the clinical 
effect of chemotherapy is not satisfactory, which hinders their 
clinical application [10-13]. Therefore, a comprehensive under-
standing and study of the molecular mechanisms of platinum anti-
cancer drug resistance are of profound significance for the devel-
opment of new glioma combination therapy and the development 
of new platinum drugs for the treatment of gliomas.  

2. MECHANISMS OF ANTITUMOR ACTION

Platinum drugs are antitumor drugs that act on the cell cycle.
When platinum drugs enter the cytoplasm through transmembrane 
transport, the dissociation reaction occurs in the cell. While Cl- is 
removed, it combines with two water molecules and finally pro-
duces hydrated platinum cations. Platinum cations may enter the 
cell nucleus through the nuclear pore complexes, and then combine 
with biological macromolecules such as protein, DNA, and RNA 
in the cell nucleus, of which DNA is the main target. 

 The position where platinum cations bind to DNA is the N7 
atom of guanine and adenine. When the platinum cation is com-
bined with the N7 atom, platinum drugs form inter-strand pairing 
cross-links and intra-strand pairing cross-links with target DNA. 
These two kinds of cross-links will destroy the local structure of 
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duplex DNA, thereby inhibiting DNA replication, and ultimately 
leading to cell cycle failure and apoptosis in tumor cells (Fig. 1) 
[14, 15].  

3. MECHANISMS OF DRUG RESISTANCE 

 There are many mechanisms involved in the clearance effect of 
platinum drugs on glioma cells. The drug resistance phenotype of 
glioma cells to platinum drugs can be generated by changes in any 
molecule of these mechanisms (Fig. 2). In addition, the inability of 
glioma cells to perform the apoptotic procedures normally is also 
involved in the development of the drug resistance phenotype. We 
have not found a mechanism that can reasonably explain this phe-
nomenon, but we still reach a consensus in some aspects: (1) drug 
transport is blocked, leading to the decrease of drug concentration 
in glioma cells; (2) enhanced ability of glioma cells to inactivate 
drugs; (3) DNA repair ability is enhanced, and the arrested cell 
cycle continues to run; (4) apoptotic pathways are blocked and 
glioma cells cannot be eliminated (Fig. 3) [16]. 

3.1. Molecular Mechanisms for Cisplatin Resistance in Glio-
mas 

 The NER (nucleotide excision repair) is an important protec-
tive mechanism in DNA damage caused by ultraviolet rays and 
chemical molecules. It plays an important role in regulating the 
resistance of platinum drugs. There is a difference in the expres-
sion of excision-repair cross-complementation group 1 (ERCC1) 
mRNA between non-tumor brain tissues and malignant brain tu-
mor tissues [17]. It has been proven that ERCC1 belongs to the 
NER pathway and is required for cisplatin damage repair [18]. 
ERCC1 has been found to be involved in drug resistance in a varie-
ty of tumor tissues [19, 20]. Chen et al. found that compared with 
cisplatin-sensitive human glioma tissues, the expression level of 
ERCC1 was higher in cisplatin-resistant human glioma tissues 
[21]. Furthermore, they found differences in the methylation levels 

of the ERCC1 promoter region between cisplatin-resistant human 
glioma tissues and cisplatin-sensitive human glioma tissues in 
subsequent studies. This methylation level is inversely correlated 
with the expression level of ERCC1 [22]. Decreased methylation 
levels in the ERCC1 promoter region lead to up-regulation of the 
expression of ERCC1, which in turn leads to the development of 
glioma resistance to cisplatin treatment. 

 Long non-coding RNAs (lncRNAs) are a class of non-coding 
RNAs greater than 200 nt in length, which have important func-
tions in transcriptional silencing, transcriptional activation, chro-
mosomal modification, and intranuclear transport [23, 24]. More 
and more studies have shown that lncRNAs play an important role 
in the occurrence, development, and chemoresistance of gliomas 
[25-27]. The lncRNA HOXD cluster antisense RNA 1 (HOXD-
AS1) resulted in cisplatin resistance in glioma cells by binding 
miR-204 [28]. The lncRNA differentiation antagonizing non-
protein coding RNA (DANCR) has been reported to play an onco-
genic role in varieties of cancers [29, 30]. DANCR upregulates the 
expression of AXL in glioma cells, which in turn activates the 
phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor kappa B 
(NF-κB) signaling pathway. Inhibition of this signaling pathway 
will improve glioma sensitivity to cisplatin [31, 32]. LncRNA 
DANCR contributes to drug resistance in glioma cells by activat-
ing the AXL/PI3K/Akt/NF-κB signaling pathway [33]. Studies 
have reported that lncRNA maternally expressed gene3 (MEG3) 
expression is down-regulated in a variety of tumor cells while ex-
erting tumor-suppressive effects [34, 35]. LncRNA MEG3 was 
previously reported to be involved in autophagy activation in blad-
der cancer cells [36]. LncRNA MEG3 was found to be down-
regulated in glioma-resistant cell lines. In glioma cells, LncRNA 
MEG3 also simultaneously reduced cisplatin-induced autophagy 
[37]. The increased autophagy induced by LncRNA MEG3 im-
proved the chemoresistance of glioma cells to cisplatin.  

 
 

Fig. (1). Antitumor mechanisms of platinum drugs. When platinum drugs enter the cytoplasm, they bind to two water molecules to produce hydrated 
platinum cations. After entering the nucleus, platinum cations can form pairing cross-links with target DNA. These cross-links will destroy the struc-
ture of DNA, thereby inhibiting DNA replication, and ultimately leading to cell cycle failure and apoptosis in tumor cells. (A higher resolu-
tion/colour version of this figure is available in the electronic copy of the article). 
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Fig. (2). Chemical structures of the platinum drugs discussed in the review.  
 

 
 

Fig. (3). The figure summarizes the resistance mechanisms of platinum anticancer drugs in glioma. (A higher resolution/colour version of this figure 
is available in the electronic copy of the article). 
 

 MicroRNAs (miRNAs) are small endogenous non-coding 
RNA molecules consisting of approximately 21-25 nucleotides. 
These miRNAs usually target one or more mRNAs and regulate 
gene expression by repressing or breaking target mRNAs at the 
translational level [38]. The expression levels of miRNAs vary in 
many tumor tissues, including glioma [39-41]. Yue et al. found 
that the content of miR-205 in serum samples from glioma patients 
was lower than that in normal samples [42]. MiR-205 expression 
was reduced in cisplatin-resistant glioma cell lines. In addition, 
miR-205 directly targets E2F transcription factor 1 (E2F1) to 
downregulate its expression in cisplatin-sensitive glioma cell lines 
[43]. MiR-205 confers cisplatin resistance in glioma cells by up-
regulating the expression level of E2F1. MiR-136 also contributes 
to cisplatin resistance in glioma cells through a similar mechanism 
[44]. Overexpression of miR-873 increased apoptosis in cisplatin-
resistant glioma cells. In addition, the expression of miR-873 was 
down-regulated while the expression of B-cell lymphoma 2 (Bcl-2) 
was up-regulated in glioma tissues compared with normal brain 
tissues. MiR-873 mediates cisplatin resistance in glioma cells by 
increasing the protein level of Bcl-2 [45].  

 Previous studies have reported that autophagy mediates cispla-
tin resistance in a number of tumor cells [46, 47]. LncRNA MEG3 
was reported to be involved in cisplatin resistance in glioma cells 
through autophagy [37]. Retinoblastoma protein (RB) exerts tu-
mor-suppressive effects by mediating cell cycle arrest [48]. Liu et 
al. found that in glioma cell lines, RB can elevate autophagy to 
enhance drug resistance [49]. Su et al. found that chloride channel 
3 (CLC-3) can activate both Akt/mammalian target of the rapamy-
cin (mTOR) signaling pathway and autophagy to mediate drug 

resistance in glioma cell lines. When the Akt/mTOR pathway is 
inhibited, chloride channel 3 can still increase resistance by acti-
vating autophagy [50].  

 Glutathione S-transferase pi gene (GSTP1) plays a role in cis-
platin resistance in a variety of tumors [51, 52]. GSTP1 is a mem-
ber of the GST family, which can catalyze the paired binding of 
endogenous and exogenous compounds and GSH [53]. It was re-
ported that the activation of protein kinase C alpha (PKCα) and 
subsequent GSTP1 phosphorylation were closely associated with 
decreased formation of inter-strand pairing cross-links of cisplatin 
and DNA as well as increased cisplatin resistance [54]. PKCα in-
creases cisplatin metabolism in glioma cell lines by phosphory-
lating GSTP1 on a serine-dependent basis, leading to drug re-
sistance development [55].  

3.2. Molecular Mechanisms for Carboplatin Resistance in Gli-
omas 

 Carboplatin is a new generation of platinum chemotherapy 
drugs, with fewer side effects than cisplatin. Carboplatin leads to 
DNA damage by forming adducts with DNA, which induces apop-
tosis in tumor cells [56, 57]. mTOR is an important eukaryotic cell 
signal involved in DNA and protein synthesis transcription, regu-
lating cell growth, metabolism, and apoptosis [58]. When the mTOR 
signaling pathway is inhibited, the mitogen�activated protein kinase 
(MAPK) pathway is activated and glioma cells have increased sensi-
tivity to carboplatin. In carboplatin-resistant glioma cell lines, the 
activated mTOR signaling pathway increased the level of GSH. 
Activation of the mTOR signaling pathway is one of the causes of 
carboplatin resistance in pediatric low-grade glioma [59].  
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 When glioma cells were treated with carboplatin, the protein 
levels of cellular FLICE-inhibitory protein (c-FLIP) and myeloid 
cell leukemia 1 (Mcl-1) were decreased, while apoptosis was in-
hibited. But the expression of c-FLIP and Mcl-1 was upregulated 
in carboplatin-resistant glioma cell lines. C-FLIP and Mcl-1 are 
involved in carboplatin resistance in glioma cells [60]. Recent 
studies have shown that Fanconi anemia group D2 protein 
(FANCD2) can modulate the effect of carboplatin therapy in chil-
dren with high-grade gliomas [61]. FANCD2 can bind to FA com-
plementation group I (FANCI) to participate in the repair of DNA 
damage [62]. In glioma cell lines resistant to carboplatin, the sensi-
tivity of FANCD2 to repair damaged DNA formation is enhanced 
[61-63].  

3.3. Molecular Mechanisms for Oxaliplatin Resistance in Gli-

omas 

 Oxaliplatin is a third-generation platinum drug that is involved 
in regulating DNA replication and transcription as well as in regu-
lating tumor immunity [64-66]. Oxaliplatin has a relatively strong 
antitumor effect on glioma cells. Upregulated expression of signal 
transducer and activator of transcription 3 (STAT3) was found in 
glioma cell lines resistant to oxaliplatin [67]. Studies indicated that 
STAT3-mediated signaling played an important role in the re-
sistance of glioma cells to oxaliplatin [65, 67]. 

CONCLUSION 

 Platinum drugs are often used clinically for the treatment of 
low-grade gliomas [10, 13]. The rapid generation of drug re-
sistance of glioma cells often leads to the failure of platinum drug 
therapy. As described in this paper, there are at least four mecha-
nisms involved in the resistance of glioma cells to platinum drugs. 
At present, there is no literature showing that a certain mechanism 
plays a leading role in it. We speculate that a variety of mecha-
nisms may be involved in the emergence of this therapeutic re-
sistance. These mechanisms with spatial heterogeneity may work 
at the same time. Previous studies have shown that the inhibition of 
a certain signaling pathway cannot completely reverse this drug 
resistance phenotype. Recently discovered molecules and therapies 
often change the sensitivity of glioma cells to platinum drugs by 
inhibiting multiple signaling pathways. For example, knockdown 
of miR-106a can inhibit the expression of P-glycoprotein (P-gp) 
and multidrug resistance-associated protein (MRP) and significant-
ly improve the sensitivity of glioma cells to cisplatin. Knockdown 
of miR-106a can also improve the effectiveness of treatment by 
inhibiting the expression of GST-π and ERCC1. This means that 
miR-106a is an effective target to reverse the resistance of gliomas 
to platinum drugs treatment [68]. In addition, interleukin-24 (IL-
24) in glioma cells affects the sensitivity of gliomas to cisplatin by 
regulating the expression levels of P-gp and Bcl-2. IL-24 may be a 
biomarker predicting the sensitivity of gliomas to chemotherapy 
[69]. Peroxisome proliferator-activated receptor-γ (PPAR-γ) also 
plays an important role in regulating the sensitivity of glioma cells 
to cisplatin. When the translation of PPAR-γ in glioma cells in-
creases, the expression levels of multidrug resistance mutation 1 
(MDR1) and multidrug resistance-associated protein 1 (MRP1) 
genes decrease, leading to the accumulation of cisplatin in glioma 
cells. In addition, overexpression of PPAR-γ can inhibit the ex-
pression of GST-π and GSH, thereby interfering with the role of 
the GSH system in the drug resistance of glioma cells. PPAR-γ can 
also induce tumor cell apoptosis by positively regulating the ex-
pression of P53 [70]. Cytokine-induced killer cells (CIK) therapy 
is a brand-new method of tumor treatment. When cisplatin-
resistant U87 cells interact with CIK, the expressions of MDR-1, 
MRP-1, GST-π, and Bcl-2 are all down-regulated, thus reversing 
the drug resistance of gliomas. Based on these results, CIK therapy 
is expected to play a positive role in improving the chemotherapy 
resistance of glioma patients [71].  

 An efficient drug delivery system creates extremely high con-
centrations of drugs locally in the tumor, which minimizes the side 
effects of the drug to increase its efficacy [72, 73]. Currently, lipo-
somes are one of the most mature drug delivery platforms for plat-
inum drug delivery [74]. Lipusu, L-NDDP and SPI-77 are the lipo-
somes that have been developed so far. Clinical trial results show 
that these liposomes are not only effective in delivering cisplatin 
but also have little toxicity [75-77]. In addition, nanotechnology 
plays an important role in improving drug delivery efficiency and 
reducing side effects [78, 79]. In animal experiments, the efficacy 
of oxaliplatin can be improved by using hyaluronic acid to poly-
merize nanoparticles [80]. Magnetic resonance-guided focused 
ultrasound systems can open the blood-brain barrier in a short time 
by using microbubbles. This technique can improve the efficiency 
of drug delivery to the central nervous system [81]. In a mouse 
glioma model, this technique enhanced carboplatin delivery, re-
duced tumor growth and improved survival [82]. 

 Based on the above findings, it is reasonable to believe that 
avoiding at least two mechanisms of drug resistance can restore the 
sensitivity level of glioma cells to platinum drugs to effective ther-
apeutic concentrations. However, the current dilemma is which 
mechanism of drug resistance should be blocked first in order to 
achieve the best therapeutic effect. This may be related to the type 
and pathological grade of gliomas. We boldly speculate: if we can 
simultaneously block the mechanisms that occur in the cell mem-
brane, cytoplasm, and nucleus, then it may be possible to restore 
the sensitivity of glioma cells to platinum drugs treatment. The 
discovery of new chemo-sensitization regimens and biomarkers for 
chemosensitivity prediction is helped by understanding the mecha-
nisms of platinum drug resistance in gliomas. These, combined 
with the glioma classification tools in the hands of clinicians can 
better classify patients, and ultimately develop efficient chemo-
therapy regimens with fewer side effects.  
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