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Abstract: A comprehensive theory of light-reflective characteristics and experimental technique of
liquid crystal layer thickness control for flexible optically rewritable electronic paper is presented.
Cylindrical pillars were used to control the gap between flexible substrates. The introduced prototype
of optically rewritable electronic paper has shown very promising performance. In this regard,
we report theoretical results of structural photosensitive alignment of nematic liquid crystals on
flexible substrate. The focus of theoretical study is on understanding the self-assembled complex
structure, governed by the interplay between surface anchoring and liquid crystal elasticity. Mueller
matrix spectroscopic ellipsometry was used to study light-reflecting characteristics and polarization
properties of the twisted nematic film.

Keywords: nematic liquid crystals; optically rewritable electronic paper; photoalignment; imaging
technologies; flexible substrates

1. Introduction

The 1970–1980s saw the development of nematic liquid crystals (NLCs) with a clear
focus on their application in electro-optic devices. However, NLCs also have potential in
sensing and chromatic corrections [1]. One of the most appealing applications of reflective
displays is flexible optically rewritable electronic paper (ORW e-paper) [2]. This device
represents an electrode-free reflective liquid crystal (LC) optical shutter with photosensitive
surface. In fact, flexible substrates have gained a significant attention in recent years, owing
to their unprecedented properties, such as light-weight, low cost, small thickness, easy
processing and popularity of the devices incorporating flexible components [3–5]. Several
plastic materials, e.g., polyethylene terephthalate (PET), polycarbonate and polyether-
sulfone, have been explored as substrates for different applications [6,7]. Meanwhile,
improvement of the cell gap uniformity still remains one of the main problems, which
needs to be solved for conservation of the ORW e-paper optical quality. The conventional
methods followed so far are random and uniform distribution of cylindrical pillars [8].
An alternative method for cell gap control represents photo-enforced stratification in fab-
rication of encapsulated LC on flexible substrate [9]. Enhancement of light reflectance
coefficient and optical compensation of phase retardation by plastic substrates are other
technical issues in flexible LC displays [10].

There exist other methods of ordering of spacers [8]. Spacers with highly adhesive
surfaces have strong bonding with the substrates. In this case, scratching of the alignment
layer is totally avoided. Roller and ink-jet printers have the potential to print adhesive
spacers on the substrate [11]. However, application of such printers is limited to its
availability in the market. Non-adhesive spacers are usually used in glass panels containing
liquid crystals.
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A crucial aspect of flexible liquid crystal displays includes investigations of optical
characteristics and liquid crystal cell gap control. Several comparative studies in light-
reflecting characteristics focused on the effect of angular observations have been previously
published [12,13]. In order to ensure constant cell gap, we analyze the method, which
allows fabrication of uniformly distributed spacers with promising results. In this case,
we will refer to the technique of silicon stamping for thickness control of LC gap in ORW
e-paper (developed in the Hong Kong University of Science and Technology). Evaluation of
the assembled flexible cell shows optimal optical performance and perspective for further
application of adhesive substrates. We also demonstrate that simple conditions of the
cell deformation, which include the height of the spacers, the change in the spacer height
and other parameters allowed us to bend the e-paper without any visible change of the
optical performance.

2. Methodology of Uniform Spacer Distribution

In order to obtain high image quality on flexible ORW e-paper, the thickness of the
LCD film must be uniform. The most obvious way to control the thickness is to cover the
surface with uniform array of cylindrical pillars (see Figure 1a). Such geometry is based on
the insight that several conditions must be satisfied at the same time. Further simulation
of optical characteristics will be clear if we represent the structure of ORW e-paper. When
NLC is sandwiched between the alignment layers, the photosensitive layer enables to
change the director twist angle (0 ≤ φ ≤ 90◦) across the cell, realizing reflective (φ = 0),
dark (φ = 90◦) and intermediate states (see Figure 1b).
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Figure 1. Color online. Structure of flexible e-paper spacers: (a) lateral and top views; (b) layered
structure of ORW e-paper. The scaling is not preserved.

As explained in the patent [14], there exist two main conditions for acceptable defor-
mation of the cell with thin flexible substrates, offering its “figure of merit”:

(a) Relative compression of the spacers caused by external pressure on the first of the
plates must not exceed the maximum value;

(b) Maximum deflection of the top plate between the spacers must be kept within prede-
termined limits.

In other words, these conditions set the threshold at different deformations of LC layer.
Mathematical interpretation of condition (a) has the form:

∆h
h

=
P
sE
≤ ∆h

h
max, (1)
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where h is the spacer height, ∆h is the absolute change in the spacer height, P is the applied
external pressure to the top plate, E is the elasticity modulus of the spacers and s is the
coefficient of the surface coverage by spacers (see Figure 1a).

Consequently, the condition for maximum deflection has the form:

∆d
d

=
PL4

4Epb3d
≤ ∆d

d
max, (2)

where d is the thickness of the LC layer, ∆d is the maximum deflection of the plate, L is the
distance between spacers, Ep is the elasticity modulus of the plate (usually the same as for
spacers) and b is the plate thickness.

It follows from expressions (1) and (2) that the relative compression of the spacers
∆h/h can be any infinitesimal value for sufficiently large coefficient s. Relative deflection of
the plate ∆d/d must be a small value if the plate thickness b is large enough. In other words,
the problem is reduced to determination of the external pressure under the condition
of its insensitivity with the given reference points. It follows that expressions (1) and
(2) set the limitations on the parameters of the ORW e-paper and define the limits of
acceptable deformations.

In order to obtain constant layer thickness, it is necessary to distribute the spacers on
plastic substrate. The corresponding stamping process includes the following steps: the
printing roller covers the surface with printing ink, then curing with ultraviolet radiation
under heating is applied to the substrate results in photopolymerization of the material.
The heating produces strong adhesion of the spacer to the substrate. As the result, adhesive
surface layer of the spacer does not cause any leak or contamination of the liquid crystal. At
the next stage, the photoalignment layer (sulfonic azo dye, SD1) needs to be spin coated on
the substrate with the spacers on the same side. Another plastic substrate with a polarizer
on the reverse side is coated with the alignment layer, e.g., HPL008 (DIC, Tokyo (Tokyo,
Japan)), which is not photosensitive. After creating the initial alignment direction on the
first substrate and setting the alignment direction on the second substrate, the surfaces are
assembled together and bonded with epoxy to seal the LC cell. Clamping silicone stamp
creates a gap on the plastic substrate with a height of about 10 µm. Using UV light to cure
the epoxy, the spacers will be solid. The flowchart of the described process is shown in
Figure 2a.

Crystals 2022, 12, x FOR PEER REVIEW 3 of 10 
 

 

where h is the spacer height, h is the absolute change in the spacer height, P is the ap-

plied external pressure to the top plate, E is the elasticity modulus of the spacers and s is 

the coefficient of the surface coverage by spacers (see Figure 1a). 

Consequently, the condition for maximum deflection has the form: 

∆𝑑

𝑑
=

𝑃𝐿4

4𝐸𝑝𝑏
3𝑑

≤
∆𝑑

𝑑
max, (2) 

where d is the thickness of the LC layer, d is the maximum deflection of the plate, L is 

the distance between spacers, Ep is the elasticity modulus of the plate (usually the same 

as for spacers) and b is the plate thickness. 

It follows from expressions (1) and (2) that the relative compression of the spacers 

h/h can be any infinitesimal value for sufficiently large coefficient s. Relative deflection 

of the plate d/d must be a small value if the plate thickness b is large enough. In other 

words, the problem is reduced to determination of the external pressure under the con-

dition of its insensitivity with the given reference points. It follows that expressions (1) 

and (2) set the limitations on the parameters of the ORW e-paper and define the limits of 

acceptable deformations. 

In order to obtain constant layer thickness, it is necessary to distribute the spacers 

on plastic substrate. The corresponding stamping process includes the following steps: 

the printing roller covers the surface with printing ink, then curing with ultraviolet radi-

ation under heating is applied to the substrate results in photopolymerization of the ma-

terial. The heating produces strong adhesion of the spacer to the substrate. As the result, 

adhesive surface layer of the spacer does not cause any leak or contamination of the liq-

uid crystal. At the next stage, the photoalignment layer (sulfonic azo dye, SD1) needs to 

be spin coated on the substrate with the spacers on the same side. Another plastic sub-

strate with a polarizer on the reverse side is coated with the alignment layer, e.g., 

HPL008 (DIC, Tokyo (Tokyo, Japan)), which is not photosensitive. After creating the ini-

tial alignment direction on the first substrate and setting the alignment direction on the 

second substrate, the surfaces are assembled together and bonded with epoxy to seal the 

LC cell. Clamping silicone stamp creates a gap on the plastic substrate with a height of 

about 10 μm. Using UV light to cure the epoxy, the spacers will be solid. The flowchart 

of the described process is shown in Figure 2a. 

 

 
(b) 

 

(a) (c) 
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Figure 2. Color online. (a) Flowchart of the manufacturing process of optically rewritable electronic
paper; photomicrographs of (b) planar and (c) twisted NLC orientations. Cylindrical spacer diameter:
∆L = 20 µm; distance between spacers: L = 200 µm.

Microphotographs in Figure 2b,c show the top view of two LC alignment structures.
It can be seen that the arrangement of spacers is fairly uniform. In practice, typical values
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of L can range within 60 and 200 µm and ∆L ranges between 5 and 25 µm. This means that
the spacers cannot be directly detected by human eye.

Assume that the director alignment is parallel to the surface of the pillars in its vicinity.
This condition can be achieved by photoalignment. The corresponding disorder of the
director alignment undoubtedly must have the effect on macroscopic optical properties.
In the next section we will study surface alignment of the director field with complex
alignment structure providing the corresponding volumetric distortions.

3. Theoretical Model

Spacers with highly adhesive surface make the cell damage-free when it is deformed
and provide better director alignment. In this section we aim to show that our experimental
observations impose the constraint for the ratio L/∆L = 10, which yields acceptable surface-
induced director distortions, i.e., undetectable with the naked eye. Correspondingly, the
coefficient of the surface coverage of the spacer s ≈ 0.785%.

3.1. Model of Surface-Induced Director Alignment

It seems an obvious step to consider the potential of uniformly ordered spacers by
considering director alignment on photosensitive surface. Let the function ϕ(x, y) define
director’s azimuthal angle on the photosensitive surface. According to the elasticity theory,
free energy of NLC in the one-constant approximation has the form [15]:

g =
K
2

[
(∇·n)2 + (n·∇ × n)2 + (n×∇× n)2

]
(3)

Consequently, in-plane director field can be found if we assume that the z-component
of vector n is 0 (see Figure 1b). This enables us to express the director as follows: n =
(cos ϕ, sin ϕ, 0), where ϕ is the azimuthal angle. Consequently, the Frank distortion energy
(3) takes the form:

g =
K
2

[(
∂ϕ

∂x

)2
+

(
∂ϕ

∂y

)2
]

(4)

The task of finding director distribution in the plane of photosensitive substrate con-
sists of minimization of the Frank free-energy functional (4) with the boundary conditions,
provided by it. Following the variational principle, one can compose the Euler equation,
which corresponds to the free energy minimum:

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 = 0 (5)

where x and y are the normalized coordinates. In the absence of spacers, it is convenient
to assume perfect alignment of the director, i.e., ϕ = 0. However, the presence of spacers
induces inhomogeneities in director alignment, which contribute to the formation of distor-
tions in the bulk. A primary goal is to minimize the relative area of the inhomogeneities.
This is achieved if the ratio L/r � 1, where r is the radius of the spacer and director
is aligned along the tangential direction of the spacer surface. In practice, the ratio L/r
ranges within 15–20. Clearly, the assumption of circular uniformly spaced spacers reduces
computational complexity. This provides the ability to calculate the derivative of the spacer
surface for further using as the boundary conditions.

Following the proposed geometry (Figure 1a), let the director have tangential align-
ment on the surfaces of spacers. Then, one can consider a sufficiently large area 1× 1 with
relatively small spacer of radius of 0.05 in the center (0.5; 0.5), which deforms the director
field. Having defined the equation of the circle, we can calculate its derivative for the top
and down arcs. Assuming that ϕ|x=0,1 = 0 and ϕ

∣∣y=0,1 = 0 , one can plot the solution of
Equation (5). Without loss of generality, we assume that the azimuthal angle distribution is
periodic along the (x; y) plane with the unit period. Then the resulting model distribution
takes the form, which is depicted in Figure 3.
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Figure 3. Color online. Model distribution of director on photosensitive surface. Parameters: r = 0.05,
L = 1. The color bar indicates the range of azimuthal angle.

Simulation of the director field shows insignificance of the area with highly disordered
surface alignment. In particular, for our example, the ratio between the spacers cross-
sectional area and the total area is about 0.785%. Bulk effects from the spacers must also
be taken into account. Such a solution, however, is not necessary, especially after several
the experiments. As we will see in the experimental Section 4, the inhomogeneities of
the director field in the vicinity of the cylindrical spacers are not sensitive for human eye
perception. This enables us to investigate optical properties of ORW e-paper under the
assumption that the substrate is flat.

3.2. Simulation of Optical Performance

Simulation of optical characteristics can be carried out by using the 8 × 8 transfer
matrix method. This approach employs theory of general methods of calculation of optical
characteristics of anisotropic stratified media by Berreman and Yeh and the theory of partial
coherence [16].

The idea of simulation of optical performance is that the voltage-off optical properties
of any liquid crystal display are determined by its twist angle 0 ≤ φ ≤ 90◦ and retardation
∆nd, where ∆n is the birefringence of twisted nematic display. The retardation can also
be represented by an angle d∆n/λ where λ is the wavelength of light. The concept of
the interaction of quasimonochromatic light with the ORW e-paper is based on the spec-
tral representation: the incident light is regarded as the composition of monochromatic
components of different wavelengths, each of which interacts with the optical system
independently of the others. Together with the input polarizer angle α = 0, and the output
analyzer angle γ = π/2, all the important optical properties, such as the transmission and
reflectance spectra, the contrast ratio, can be calculated. Since ORW e-paper is a reflective
device, consider the reflectance coefficient:

R = R(α, γ, φ, δ) (6)

The insight of the reflectance coefficient for the two states shows that the reflective
state has a weak dependence of the wavelength, while the “dark state” does not manifest
spectral dependence (see Figure 4a).
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Figure 4. Color online. (a) Reflectance spectra for reflective and dark states of the ORW e-paper;
(b) simulated CIE 1931 chromaticity diagram. Hemispherical directional reflectance for the twist
angle of (c) 90◦ and (d) 0◦. Liquid crystal layer thickness: 13.64 µm.

Once the value ∆nd is calculated for the liquid crystal layer, the change of color
coordinates of the liquid crystal is due solely to the interference of polarized beams; for
equal values of ∆nd their transmission spectra must be the same. Thus, one can calculate
∆nd for the sample of ORW e-paper. The simulated color triangle indicates identical color
points in the CIE 1931 chromaticity coordinates (X, Y) for “reflective” and “dark” states of
the ORW e-paper (Figure 4b). Here X and Y are normalized intensity values of red (R) and
green (G), respectively. Although blue (B) does not have its own axis in the diagram, it is
accounted for in the equations for X and Y:

X =
R

R + G + B
, Y =

G
R + G + B

.

This result was obtained by using MOUSE-LCD optimization software and it repre-
sents a practical, robust and generalized computational tool.

The investigation of viewing angle dependence was also carried out by exploiting the
features of quasimonochromatic light propagation in layered systems. This method allows
treatment with equal ease coherent and incoherent interactions between the fractions of
light propagating in the layered system. We then calculate the viewing angle dependences
for reflective and dark states of ORW e-paper. Solutions presented below were found by
means of MOUSE-LCD as well (see Figure 4c,d). Parameters of the problem are summarized
in Table 1. Spectral data for complex refractive index of aluminum were used for the metal
reflector. Calculation of the reflectance coefficients shows that it is symmetric with respect
to the angle of observation (see Figure 4c,d).
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Table 1. Material parameters describing the ORW e-paper.

Parameter Value, Unit Description

K11 1.3·10−6 dyn
Elastic constantsK22 7.1·10−7 dyn

K33 1.95·10−6 dyn
ε‖ 15.1 Parallel permittivity
ε⊥ 3.8 Perpendicular permittivity
d 13.64 µm LC layer thickness
d1 0.01 µm Photosensitive layer thickness

We have also transformed the data in Figure 4a,b into the calculation of the contrast
ratio. For the given structure, the contrast ratio achieves 13:1, which is highly desirable
ORW e-paper device [17]. In spite of excellent reflectance coefficient and contrast ratio,
there is a drawback in the choice of polarizers, which must have almost ideal transmittance
spectra for all wavelengths of visible light.

In addition to the significance of light-reflective and color characteristics, the effect
of variation in the incident angles on polarization characteristics has also been investi-
gated. Polarization state of the incident light is characterized with the polarization degree,
ellipticity and scatter of angular geometry. This arrangement enables to acquire all com-
ponents of the Stokes vector S = (S0, S1, S2, S3), which describes all possible polarization
states of light. This vector provides valuable information about reflecting characteristics

and polarization degree: P =
√

S2
1 + S2

2 + S2
2/S0. Under the assumption that the incident

light is taken to have a unit intensity, the corresponding Stokes parameters of the output
light can be considered in some sense as characteristics of the modeled device. The ratio
between the intensity of the component of the output light with the given polarization state
to the intensity of the incident light can also be calculated, and we will define it as PSA
TR (Polarizer–Sample–Analyzer Transmittance/Reflectance ratio) with the 84.11◦ orien-
tation angle of the major axis (see Figure 5a). Following the mathematical relationships
between the Stokes parameters, the ratio between the minor and major axes of the ellipse is
−2 × 10−4 [18].
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Figure 5. (a) Typical MOUSE LCD window with the output light characteristics; (b) dependence of
the polarization degree versus the angle of incidence.
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Further insight into optical performance of ORW e-paper is gained when the polar-
ization degree versus the angle of incidence is considered. The transmitted electric fields
propagate through a certain thickness of polyimide and alignment layers. The polarization
of the light changes as it propagates through these layers as coherent reflection occurs at
the interfaces of alignment layers and polyimide. Consequently, the polarization degree
is sensitive to the angle of incidence. The graph plotted in Figure 5b represents the de-
pendence of the polarization degree versus the angle of incidence. As can be noticed in
Figure 5b, the degree of polarization is relatively high with the minimum at 45◦.

High polarization degree (
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100%) is clearly important in ORW e-paper for maximizing
the contrast ratio. It is also important that the indirect methodology employed in this section
explains the calculated contrast ratio.

4. Results and Discussion

Following the flowchart depicted in Figure 2a, we applied the stamp printing method
for fabrication of flexible ORW e-paper. Application of this technique provides regularly
distributed spacers on the polyethersulfone substrate spin coated with SD1 layer. Photoin-
sensitive layer of compound HPL008 (Dainippon Ink and Chemicals, Japan) was also spin
coated onto PES substrate backed with the polarizer. After providing the initial alignment
direction of the first substrate and fixing the alignment direction of the second substrate,
the two substrates were bonded together with epoxy resin. The obtained cell was filled
in a vacuum with NLC. After exposing the cell with ultraviolet light, the desired image
is obtained. Figure 6 represents the result of the experimental study exhibiting predomi-
nant short wavelengths of visible light (see also Figure 4a, where short wavelengths have
reflectance coefficient). The image is clear and has a good quality, illustrating uniformity of
the cell gap.
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Figure 6. Recorded sample image on flexible ORW e-paper.

According to the experimental findings, the ratio L/∆L = 10 is optimal for flexible
ORW e-paper. It also follows from Equation (2) that any increase of distance L results in a
greater deformation of the top plate. Consequently, the LC layer thickness can be stabilized
by the plate with a greater elasticity modulus, Ep. Therefore, designing of flexible ORW
e-paper is a tradeoff between mechanical, geometrical and optical properties of the plates
and spacers.

Considering the findings of our investigation, we conclude that uniform distribution
of cylindrical spacers is the most suitable technique for fabrication of ORW e-paper and
simulation of its optical performance. Experimental investigation has shown that there
is no visible difference between flat and curved cells. This fact enabled us to calculate
optical characteristics on flat substrates. The calculated reflectance coefficient (≈42%)
and the contrast ratio of 13:1 superior other existing e-paper technologies. In view of the
experimental results, we argue that this method is the most suitable for mass production.
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5. Conclusions

In order to achieve acceptable optical characteristics for ORW e-paper, it is necessary to
show that the role of the spacer-induced director inhomogeneities is insignificant. Correct
selection of the ratio between the distance between spacers and cylindrical spacer diameter
is the most significant factor affecting the image quality. For uniform distribution of
cylindrical pillars, contrast ratio, mean reflectance coefficient and polarization state, have
demonstrated to provide the most acceptable results. The finding on the simulated CIE
1931 chromaticity diagram indicates that by color theory guided application, neutral color
characteristics can be established.

This work showed that for the development of flexible ORW e-paper technology for
practical applications, both the uniform ordering of spacers and quasimonochromatic light
propagation in layered systems must be considered.
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